201
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
202
|
Balboni A, Govoni M, Rossi V, Roberti M, Cavalli A, Di Stefano G, Manerba M. Lactate dehydrogenase inhibition affects homologous recombination repair independently of cell metabolic asset; implications for anticancer treatment. Biochim Biophys Acta Gen Subj 2020; 1865:129760. [PMID: 33035602 DOI: 10.1016/j.bbagen.2020.129760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cancer cells show highly increased glucose utilization which, among other cancer-essential functions, was found to facilitate DNA repair. Lactate dehydrogenase (LDH) activity is pivotal for supporting the high glycolytic flux of cancer cells; to our knowledge, a direct contribution of this enzyme in the control of DNA integrity was never investigated. In this paper, we looked into a possible LDH-mediated regulation of homologous recombination (HR) repair. METHODS We identified two cancer cell lines with different assets in energy metabolism: either based on glycolytic ATP or on oxidative reactions. In cells with inhibited LDH, we assessed HR function by applying four different procedures. RESULTS Our findings revealed an LDH-mediated control of HR, which was observed independently of cell metabolic asset. Since HR inhibition is known to make cancer cells responsive to PARP inhibitors, in both the cellular models we finally explored the effects of a combined inhibition of LDH and PARP. CONCLUSIONS The obtained results suggest for LDH a central role in cancer cell biology, not merely linked to the control of energy metabolism. The involvement of LDH in the DNA damage response could suggest new drug combinations to obtain improved antineoplastic effects. GENERAL SIGNIFICANCE Several evidences have correlated the metabolic features of cancer cells with drug resistance and LDH inhibition has been repeatedly shown to increase the antineoplastic power of chemotherapeutics. By shedding light on the processes linking cell metabolism to the control of DNA integrity, our findings also give a mechanistic explanation to these data.
Collapse
Affiliation(s)
- Andrea Balboni
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Marcella Manerba
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
203
|
Kamada S, Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Long Non-coding RNAs Involved in Metabolic Alterations in Breast and Prostate Cancers. Front Oncol 2020; 10:593200. [PMID: 33123488 PMCID: PMC7573247 DOI: 10.3389/fonc.2020.593200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast and prostate cancers are the most prevalent cancers in females and males, respectively. These cancers exhibit sex hormone dependence and thus, hormonal therapies are used to treat these cancers. However, acquired resistance to hormone therapies is a major clinical problem. In addition, certain portions of these cancers initially exhibit hormone-independence due to the absence of sex hormone receptors. Therefore, precise and profound understanding of the cancer pathophysiology is required to develop novel clinical strategies against breast and prostate cancers. Metabolic reprogramming is currently recognized as one of the hallmarks of cancer, as exemplified by the alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Dysregulation of metabolic enzymes and their regulators such as kinases, transcription factors, and other signaling molecules contributes to metabolic alteration in cancer. Moreover, accumulating lines of evidence reveal that long non-coding RNAs (lncRNAs) regulate cancer development and progression by modulating metabolism. Understanding the mechanism and function of lncRNAs associated with cancer-specific metabolic alteration will therefore provide new knowledge for cancer diagnosis and treatment. This review provides an overview of recent studies regarding the role of lncRNAs in metabolism in breast and prostate cancers, with a focus on both sex hormone-dependent and -independent pathways.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
204
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
205
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
206
|
Linke C, Wösle M, Harder A. Anti-cancer agent 3-bromopyruvate reduces growth of MPNST and inhibits metabolic pathways in a representative in-vitro model. BMC Cancer 2020; 20:896. [PMID: 32948135 PMCID: PMC7501688 DOI: 10.1186/s12885-020-07397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism. The malignant peripheral nerve sheath tumor (MPNST), a very aggressive, therapy resistant, and Neurofibromatosis type 1 associated neoplasia, shows a high metabolic activity and affected patients may therefore benefit from 3-BrPA treatment. To elucidate the specific mode of action, we used a controlled cell model overexpressing proteasome activator (PA) 28, subsequently leading to p53 inactivation and oncogenic transformation and therefore reproducing an important pathway in MPNST and overall tumor pathogenesis. METHODS Viability of MPNST cell lines S462, NSF1, and T265 in response to increasing doses (0-120 μM) of 3-BrPA was analyzed by CellTiter-Blue® assay. Additionally, we investigated viability, reactive oxygen species (ROS) production (dihydroethidium assay), nicotinamide adenine dinucleotide dehydrogenase activity (NADH-TR assay) and lactate production (lactate assay) in mouse B8 fibroblasts overexpressing PA28 in response to 3-BrPA application. For all experiments normal and nutrient deficient conditions were tested. MPNST cell lines were furthermore characterized immunohistochemically for Ki67, p53, bcl2, bcl6, cyclin D1, and p21. RESULTS MPNST significantly responded dose dependent to 3-BrPA application, whereby S462 cells were most responsive. Human control cells showed a reduced sensitivity. In PA28 overexpressing cancer cell model 3-BrPA application harmed mitochondrial NADH dehydrogenase activity mildly and significantly failed to inhibit lactate production. PA28 overexpression was associated with a functional glycolysis as well as a partial resistance to stress provoked by nutrient deprivation. 3-BrPA treatment was not associated with an increase of ROS. Starvation sensitized MPNST to treatment. CONCLUSIONS Aggressive MPNST cells are sensitive to 3-BrPA therapy in-vitro with and without starvation. In a PA28 overexpression cancer cell model leading to p53 inactivation, thereby reflecting a key molecular feature in human NF1 associated MPNST, known functions of 3-BrPA to block mitochondrial activity and glycolysis were reproduced, however oncogenic cells displayed a partial resistance. To conclude, 3-BrPA was sufficient to reduce NF1 associated MPNST viability potentially due inhibition of glycolysis which should lead to the initiation of further studies and promises a potential benefit for NF1 patients.
Collapse
Affiliation(s)
- Christian Linke
- Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Brandenburg an der Havel, Germany
| | - Markus Wösle
- Clinic for Radiotherapy and Radiation Oncology, Dessau City Hospital, Dessau-Roßlau, Germany
| | - Anja Harder
- Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Brandenburg an der Havel, Germany. .,Institute of Neuropathology, University Hospital Münster, Münster, Germany. .,Institute of Pathology, Brandenburg Medical School Theodor Fontane, Dessau City Hospital, Auenweg 38, 06847, Dessau-Roßlau, Germany.
| |
Collapse
|
207
|
Otto Warburg: The journey towards the seminal discovery of tumor cell bioenergetic reprogramming. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165965. [PMID: 32949769 DOI: 10.1016/j.bbadis.2020.165965] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is now regarded as a hallmark of cancer. This phenomenon was first observed at the level of cellular energetics, in the form of very high rates of lactic acid fermentation, not only in anoxia, but also in the presence of oxygen levels that do not compromise respiration. This intriguing tumor phenotype, characterized by a very low energy yield, was unveiled, in the early 1920s, by Otto Warburg, one of the greatest biochemists of all time. This manuscript outlines aspects of Warburg's personal and research life that, in retrospect, might be viewed as a preparation for his successful approach to the cancer problem. It also discusses the experiments that led to the discovery and briefly presents Warburg's theory for the origin of tumors. Finally, it concludes with considerations regarding the novel avenues that this monumental and still intriguing discovery opened in terms of diagnosis and treatment of cancer.
Collapse
|
208
|
Sellam LS, Zappasodi R, Chettibi F, Djennaoui D, Yahi-Ait Mesbah N, Amir-Tidadini ZC, Touil-Boukoffa C, Ouahioune W, Merghoub T, Bourouba M. Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism. Arch Biochem Biophys 2020; 690:108479. [PMID: 32679194 PMCID: PMC8507490 DOI: 10.1016/j.abb.2020.108479] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
The upregulation of checkpoint inhibitor PD-L1 expression has recently been associated with nasopharyngeal carcinoma (NPC) resistance to therapy. The mechanism of induction of PD-L1 has also been linked to enhanced aerobic glycolysis promoted by HIF1-α dysregulation and LDH-A activity in cancer. Here, we investigated the effect of the anti-tumoral compound Silibinin on HIF-1α/LDH-A mediated cancer cell metabolism and PD-L1 expression in NPC. Our results demonstrate that exposure to Silibinin potently inhibits tumor growth and promotes a shift from aerobic glycolysis toward oxidative phosphorylation. The EBV + NPC cell line C666-1 and glycolytic human tumor explants treated with Silibinin displayed a reduction in LDH-A activity which consistently associated with a reduction in lactate levels. This effect was accompanied by an increase in intracellular citrate levels in C666-1 cells. Accordingly, expression of HIF-1α, a critical regulator of glycolysis, was down-regulated after treatment. This event associated with a down-regulation in PD-L1. Altogether, our results provide evidence that silibinin can alter PD-L1 expression by interfering with HIF-1α/LDH-A mediated cell metabolism in NPC. These results provide a new perspective for Silibinin use to overcome PD-L1 mediated NPC resistance to therapy.
Collapse
Affiliation(s)
- Leïla Sarah Sellam
- Cell and Molecular Biology Laboratory (LBCM), Team Cytokines and Nitric oxide Synthase: Immunity and Pathogeny, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fayçal Chettibi
- Otorhinolaryngology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - Djamel Djennaoui
- Otorhinolaryngology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | | | | | - Chafia Touil-Boukoffa
- Cell and Molecular Biology Laboratory (LBCM), Team Cytokines and Nitric oxide Synthase: Immunity and Pathogeny, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Wahiba Ouahioune
- Central Laboratory for Anatomopathology, Frantz Fanon Hospital, Blida, Algeria
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - Mehdi Bourouba
- Cell and Molecular Biology Laboratory (LBCM), Team Cytokines and Nitric oxide Synthase: Immunity and Pathogeny, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
209
|
Bozzetti F, Stanga Z. Does nutrition for cancer patients feed the tumour? A clinical perspective. Crit Rev Oncol Hematol 2020; 153:103061. [DOI: 10.1016/j.critrevonc.2020.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
|
210
|
Liang T, Ye X, Yan D, Deng C, Li Z, Tian B. FAM46B Promotes Apoptosis and Inhibits Glycolysis of Prostate Cancer Through Inhibition of the MYC-LDHA Axis. Onco Targets Ther 2020; 13:8771-8782. [PMID: 32943883 PMCID: PMC7478375 DOI: 10.2147/ott.s258724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Increased dependence on glycolysis is a known element of cancer. This study was designed to examine critical glycolysis components including transcription factor MYC and its downstream target lactate dehydrogenase A (LDHA), potential upstream regulators of glycolysis such as family with sequence similarity 46 member B (FAM46B), and the impact of the abundance of these proteins on apoptosis and glycolysis in prostate cancer. Materials and Methods A total of 70 primary prostate cancer patient samples were compared to normal tissues for FAM46B and LDHA expression and the corresponding patients’ survival was monitored for 60 months. Prostate cancer cell lines were employed for protein expression manipulation, glucose uptake and LDH assays, and apoptosis measurements. A xenograft mouse model was used to quantify the role of FAM46B and LDHA on tumor growth in vivo. Results FAM46B expression was reduced in prostate tumor tissue compared to normal tissue and prostate cancer patients who expressed low amounts of FAM46B had shortened average lifespans compared to those who expressed higher amounts of FAM46B (p=0.008). FAM46B overexpression reduced glucose uptake, decreased LDH activity, and induced apoptosis in prostate cancer cell lines while FAM46B shRNA increased MYC levels in a non-malignant prostate cell line (P69). Conversely, forced expression of LDHA in LNCaP cells produced an increase in glycolysis markers with a corresponding decrease in apoptosis. FAM46B-overexpressing xenografts had starkly blunted growth which was restored with co-overexpression of LDHA. Conclusion FAM46B plays a central role in regulating glycolysis and apoptosis in prostate cancer and operates through the regulation of LDHA via MYC. FAM46B’s keystone status in prostate cancer makes it a potential, robust biomarker for prostate cancer prognosis and a promising therapeutic target.
Collapse
Affiliation(s)
- Tao Liang
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| | - Xuxiao Ye
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| | - Dongliang Yan
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| | - Chao Deng
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| | - Zuowei Li
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| | - Binqiang Tian
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, People's Republic of China
| |
Collapse
|
211
|
Hyperpolarized [1- 13C]pyruvate-to-[1- 13C]lactate conversion is rate-limited by monocarboxylate transporter-1 in the plasma membrane. Proc Natl Acad Sci U S A 2020; 117:22378-22389. [PMID: 32839325 DOI: 10.1073/pnas.2003537117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) is a noninvasive metabolic-imaging modality that probes carbon flux in tissues and infers the state of metabolic reprograming in tumors. Prevailing models attribute elevated hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in aggressive tumors to enhanced glycolytic flux and lactate dehydrogenase A (LDHA) activity (Warburg effect). By contrast, we find by cross-sectional analysis using genetic and pharmacological tools in mechanistic studies applied to well-defined genetically engineered cell lines and tumors that initial hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates as well as global conversion were highly dependent on and critically rate-limited by the transmembrane influx of [1-13C]pyruvate mediated predominately by monocarboxylate transporter-1 (MCT1). Specifically, in a cell-encapsulated alginate bead model, induced short hairpin (shRNA) knockdown or overexpression of MCT1 quantitatively inhibited or enhanced, respectively, unidirectional pyruvate influxes and [1-13C]pyruvate-to-[1-13C]lactate conversion rates, independent of glycolysis or LDHA activity. Similarly, in tumor models in vivo, hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion was highly dependent on and critically rate-limited by the induced transmembrane influx of [1-13C]pyruvate mediated by MCT1. Thus, hyperpolarized [1-13C]pyruvate MRSI measures primarily MCT1-mediated [1-13C]pyruvate transmembrane influx in vivo, not glycolytic flux or LDHA activity, driving a reinterpretation of this maturing new technology during clinical translation. Indeed, Kaplan-Meier survival analysis for patients with pancreatic, renal, lung, and cervical cancers showed that high-level expression of MCT1 correlated with poor overall survival, and only in selected tumors, coincident with LDHA expression. Thus, hyperpolarized [1-13C]pyruvate MRSI provides a noninvasive functional assessment primarily of MCT1 as a clinical biomarker in relevant patient populations.
Collapse
|
212
|
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, Zhong H, Cui Y, Yuan L, Gong F, Wang Z, Li H, Peng H, Zhang G. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (Lond) 2020; 40:501-517. [PMID: 32820611 PMCID: PMC7571401 DOI: 10.1002/cac2.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background T‐cell acute lymphoblastic leukemia (T‐ALL) is an uncommon and aggressive subtype of acute lymphoblastic leukemia (ALL). In the serum of T‐ALL patients, the activity of lactate dehydrogenase A (LDHA) is increased. We proposed that targeting LDHA may be a potential strategy to improve T‐ALL outcomes. The current study was conducted to investigate the antileukemic effect of LDHA gene‐targeting treatment on T‐ALL and the underlying molecular mechanism. Methods Primary T‐ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate. MTT, colony formation, apoptosis, and cell cycle assays were performed to investigate the effects of oxamate on T‐ALL cells. Quantitative real‐time PCR (qPCR) and Western blotting analyses were applied to determine the related signaling pathways. A mitochondrial reactive oxygen species (ROS) assay was performed to evaluate ROS production after T‐ALL cells were treated with oxamate. A T‐ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene‐editing technology, and then TUNEL, Western blotting, and T‐ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T‐ALL transgenic zebrafish. Results Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells. It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production (all P < 0.001). Blocking LDHA significantly decreased the gene and protein expression of c‐Myc, as well as the levels of phosphorylated serine/threonine kinase (AKT) and glycogen synthase kinase 3 beta (GSK‐3β) in the phosphatidylinositol 3′‐kinase (PI3K) signaling pathway. LDHA gene knockdown delayed disease progression and down‐regulated c‐Myc mRNA and protein expression in T‐ALL transgenic zebrafish. Conclusion Targeting LDHA exerted an antileukemic effect on T‐ALL, representing a potential strategy for T‐ALL treatment.
Collapse
Affiliation(s)
- Haizhi Yu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Respiratory and Critical Medicine, NHC Key Laboratory of Pulmonary Immune-related Diseases, People's Hospital of Guizhou University, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, P. R. China
| | - Yafei Yin
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, P. R. China
| | - Yifang Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P. R. China
| | - Zhao Cheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Wenyong Kuang
- Department of Hematology, Hunan Children's Hospital, Changsha, Hunan, 410005, P. R. China
| | - Ruijuan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Haiying Zhong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Yajuan Cui
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Lingli Yuan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Fanjie Gong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Zhihua Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Heng Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, 410011, P. R. China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
213
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
214
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
215
|
Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, Ruokolainen J, Mehra P, Das BC, Kamal MA, Kumar D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci 2020; 258:118236. [PMID: 32795537 DOI: 10.1016/j.lfs.2020.118236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in head and neck squamous cell carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle and metabolic signalling through interacting with tumor suppressor proteins, p53 and pRb. Since, metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific nutrients and alteration of various metabolic associated genes may provide a unique opportunity for pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the molecular mechanism (s) and metabolic regulation in HNSCC depending on the HPV status. We have also discussed the possible potential therapeutic approaches for HPV associated HNSCC through targeting metabolic pathways.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Prabhat Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Shilpi Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Doiwala, Dehradun 248016, India; Department of Immunology and Microbiology, School of Medicine, University of Rio Grande Valley, McAllen, TX, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Pravesh Mehra
- Department of Oral and Maxillofacial surgery, Lady Hardinge Medical College, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, NSW, Australia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India.
| |
Collapse
|
216
|
Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020; 125:105796. [DOI: 10.1016/j.biocel.2020.105796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
|
217
|
Lafita-Navarro MC, Perez-Castro L, Zacharias LG, Barnes S, DeBerardinis RJ, Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J Biol Chem 2020; 295:12398-12407. [PMID: 32611766 DOI: 10.1074/jbc.ac120.014189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer Barnes
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, Dallas, Texas, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
218
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
219
|
Protein Kinase Cα Promotes Proliferation and Migration of Schwann Cells by Activating ERK Signaling Pathway. Neuroscience 2020; 433:94-107. [PMID: 32171817 DOI: 10.1016/j.neuroscience.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. However, the underlying mechanisms remain poorly understood. Here, we found that protein kinase Cα (PKCα), a serine/threonine kinase, expressed in SCs was significantly up-regulated after PNI. Activating PKCα with phorbol 12-myristate 13-acetate (PMA), a phorbol ester binds and activates PKCα) promoted SCs proliferation and migration. While, silence of PKCα by siRNAs inhibited these processes. PD184352, an inhibitor of MEK1, reversed the effect induced by PMA on SCs. Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
Collapse
|
220
|
BCG Vaccinations Upregulate Myc, a Central Switch for Improved Glucose Metabolism in Diabetes. iScience 2020; 23:101085. [PMID: 32380424 PMCID: PMC7205768 DOI: 10.1016/j.isci.2020.101085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Myc has emerged as a pivotal transcription factor for four metabolic pathways: aerobic glycolysis, glutaminolysis, polyamine synthesis, and HIF-1α/mTOR. Each of these pathways accelerates the utilization of sugar. The BCG vaccine, a derivative of Mycobacteria-bovis, has been shown to trigger a long-term correction of blood sugar levels to near normal in type 1 diabetics (T1D). Here we reveal the underlying mechanisms behind this beneficial microbe-host interaction. We show that baseline glucose transport is deficient in T1D monocytes but is improved by BCG in vitro and in vivo. We then show, using RNAseq in monocytes and CD4 T cells, that BCG treatment over 56 weeks in humans is associated with upregulation of Myc and activation of nearly two dozen Myc-target genes underlying the four metabolic pathways. This is the first documentation of BCG induction of Myc and its association with systemic blood sugar control in a chronic disease like diabetes. T1D has insufficient aerobic glycolysis; this causes insufficient sugar utilization BCG vaccine lowers blood sugar levels in T1D by augmenting aerobic glycolysis BCG-induced shift to aerobic glycolysis is associated with Myc activation Host-microbe BCG interactions through Myc activate sugar-regulating genes in T1D
Collapse
|
221
|
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science 2020; 368:368/6487/eaaw5473. [PMID: 32273439 DOI: 10.1126/science.aaw5473] [Citation(s) in RCA: 1390] [Impact Index Per Article: 278.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. As our understanding of the complexity of tumor biology increases, so does our appreciation of the complexity of tumor metabolism. Metabolic heterogeneity among human tumors poses a challenge to developing therapies that exploit metabolic vulnerabilities. Recent work also demonstrates that the metabolic properties and preferences of a tumor change during cancer progression. This produces distinct sets of vulnerabilities between primary tumors and metastatic cancer, even in the same patient or experimental model. We review emerging concepts about metabolic reprogramming in cancer, with particular attention on why metabolic properties evolve during cancer progression and how this information might be used to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
222
|
Pant K, Richard S, Peixoto E, Gradilone SA. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front Med (Lausanne) 2020; 7:113. [PMID: 32318579 PMCID: PMC7146077 DOI: 10.3389/fmed.2020.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It is crucial to explore the underlying mechanisms of CCA carcinogenesis and development to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic targets. In recent times, the reprogramming of tumor cells metabolism has been recognized as a hallmark of cancer. The modification from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer cell proliferation and provides a favorable environment for tumor development. The alteration of metabolic programming in cancer cells is complex and may occur via mutations and epigenetic modifications within oncogenes, tumor suppressor genes, signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism in cancer and the signaling pathways involved in this phenomena as they may affect CCA development. Understanding the regulatory pathways of glucose metabolism such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of this devastating disease and may offer relevant information in the exploration of new diagnostic biomarkers and targeted therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
223
|
Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, Bamba T, Tateishi C, Tomonaga T, Matsumoto M, Nakayama KI. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun 2020; 11:1320. [PMID: 32184390 PMCID: PMC7078194 DOI: 10.1038/s41467-020-15136-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose metabolism is remodeled in cancer, but the global pattern of cancer-specific metabolic changes remains unclear. Here we show, using the comprehensive measurement of metabolic enzymes by large-scale targeted proteomics, that the metabolism both carbon and nitrogen is altered during the malignant progression of cancer. The fate of glutamine nitrogen is shifted from the anaplerotic pathway into the TCA cycle to nucleotide biosynthesis, with this shift being controlled by glutaminase (GLS1) and phosphoribosyl pyrophosphate amidotransferase (PPAT). Interventions to reduce the PPAT/GLS1 ratio suppresses tumor growth of many types of cancer. A meta-analysis reveals that PPAT shows the strongest correlation with malignancy among all metabolic enzymes, in particular in neuroendocrine cancer including small cell lung cancer (SCLC). PPAT depletion suppresses the growth of SCLC lines. A shift in glutamine fate may thus be required for malignant progression of cancer, with modulation of nitrogen metabolism being a potential approach to SCLC treatment. Glucose metabolism is known to be dysregulated in cancer. Here, the authors show that glutamine nitrogen is also affected in cancer and demonstrate that glutaminase 1 and phosphoribosyl pyrophosphate amidotransferase are the key enzymes that control this metabolic switch.
Collapse
Affiliation(s)
- Manabu Kodama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Kiyotaka Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Susumu Yoshioka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.,LSI Medience Corporation, 1-13-4 Uchikanda, Chiyoda-ku, Tokyo, 101-8517, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Chisa Tateishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. .,Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
224
|
Zuo S, Wu L, Wang Y, Yuan X. Long Non-coding RNA MEG3 Activated by Vitamin D Suppresses Glycolysis in Colorectal Cancer via Promoting c-Myc Degradation. Front Oncol 2020; 10:274. [PMID: 32219064 PMCID: PMC7078156 DOI: 10.3389/fonc.2020.00274] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/17/2020] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC), a common tumor, is characterized by a high mortality rate. Long non-coding RNA maternally expressed gene 3 (MEG3) serves a regulatory role in the carcinogenesis and progression of several types of cancer; however, its role in CRC remains largely unknown. The aim of this study was to explore the regulatory role and mechanism(s) of MEG3 in CRC. The Warburg effect or aerobic glycolysis is characteristic of the metabolism of tumor cells. To determine the effect of MEG3 on glycolysis of CRC cells, we used an XF analyzer to perform glycolysis stress test assays and found that overexpression of MEG3 significantly inhibited glycolysis, glycolytic capacity, as well as lactate production in CRC cells, whereas knockdown of MEG3 produced the opposite effect. Mechanistically, overexpression of MEG3 induced ubiquitin-dependent degradation of c-Myc and inhibited c-Myc target genes involved in the glycolysis pathway such as lactate dehydrogenase A, pyruvate kinase muscle 2, and hexokinase 2. Moreover, we found that MEG3 can be activated by vitamin D and vitamin D receptor (VDR). Clinical data demonstrated that MEG3 was positively associated with serum vitamin D concentrations in patients with CRC. We found that 1,25(OH)2D3 treatment increased MEG3 expression, and knockdown of VDR abolished the effect of MEG3 on glycolysis. These results indicate that vitamin D-activated MEG3 suppresses aerobic glycolysis in CRC cells via degradation of c-Myc. Thus, vitamin D may have therapeutic value in the treatment of CRC.
Collapse
Affiliation(s)
- Siyu Zuo
- Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Lei Wu
- Department of Clinical Medicine, First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
225
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
226
|
MYC-regulated pseudogene HMGA1P6 promotes ovarian cancer malignancy via augmenting the oncogenic HMGA1/2. Cell Death Dis 2020; 11:167. [PMID: 32127525 PMCID: PMC7054391 DOI: 10.1038/s41419-020-2356-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Pseudogenes have long been considered as nonfunctional genomic sequences. Recent studies have shown that they can potentially regulate the expression of protein-coding genes and are dysregulated in diseases including cancer. However, the potential roles of pseudogenes in ovarian cancer have not been well studied. Here we characterized the pseudogene expression profile in HGSOC (high-grade serous ovarian carcinoma) by microarray. We identified 577 dysregulated pseudogenes and most of them were up-regulated (538 of 577). HMGA1P6 (High mobility group AT-hook 1 pseudogene 6) was one of the overexpressed pseudogenes and its expression was inversely correlated with patient survival. Mechanistically, HMGA1P6 promoted ovarian cancer cell malignancy by acting as a ceRNA (competitive endogenous RNA) that led to enhanced HMGA1 and HMGA2 expression. Importantly, HMGA1P6 was transcriptionally activated by oncogene MYC in ovarian cancer. Our findings reveal that MYC may contribute to oncogenesis through transcriptional regulation of pseudogene HMGA1P6 in ovarian cancer.
Collapse
|
227
|
Yang B, Ding L, Chen Y, Shi J. Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902847. [PMID: 32195096 PMCID: PMC7080508 DOI: 10.1002/advs.201902847] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/22/2019] [Indexed: 05/02/2023]
Abstract
It was recently recognized that cancer therapeutic efficacy may be greatly compromised by an intrinsic protective mechanism called autophagy, by which cancer cells survive in harsh conditions such as starvation. Here, a synergetic strategy is described for cancer treatment by suppressing such a protective mechanism for augmenting tumor-starvation therapy. The synergetic therapy is achieved by restraining glucose metabolism using an antiglycolytic agent to predispose cancer cells to severe energy deprivation; concurrently the downstream autophagic flux and compensatory energy supplies are blocked by the autophagy inhibitor black phosphorus nanosheet. Cancer cells fail to extract their own nutrient to feed themselves, finally succumbing to therapeutic interventions and starving to death. Both in vitro and in vivo results evidence the cooperative effect between the autophagy inhibitor and antiglycolytic agent, which leads to remarkable synergetic antineoplastic outcome. It is expected that such a combinational approach by concurrently blocking exogenous and endogenous nutrition supplies will be beneficial to the design of effective tumor-specific cancer therapies in the future.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Li Ding
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
228
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
229
|
Li N, Liu X. Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance. Onco Targets Ther 2020; 13:1787-1795. [PMID: 32161473 PMCID: PMC7051807 DOI: 10.2147/ott.s238920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various cancer tissues and plays a significant role in promoting cancer progression and metastasis. Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action remain unknown. This review introduces the basic structure and functions of PGAM1 and its family members and summarizes recent advances in the role of PGAM1 and various inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic perspective. Recent studies have highlighted a correlation between PGAM1 and clinical features and prognosis of cancer as well as the development of target drugs for PGAM1. The integrated information in this review will help better understand the specific roles of PGAM1 in cancer progression. Furthermore, the information highlights the non-glycolytic functions of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug research.
Collapse
Affiliation(s)
- Na Li
- 1st Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| | - Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| |
Collapse
|
230
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
231
|
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, Ganapathy V. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 2020; 39:3292-3304. [PMID: 32071396 DOI: 10.1038/s41388-020-1216-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
GPR81 is a G-protein-coupled receptor for lactate, which is upregulated in breast cancer and plays an autocrine role to promote tumor growth by tumor cell-derived lactate. Here we asked whether lactate has any paracrine role via activation of GPR81 in cells present in tumor microenvironment to help tumor growth. First, we showed that deletion of Gpr81 suppresses breast cancer growth in a constitutive breast cancer mouse model (MMTV-PyMT-Tg). We then used a syngeneic transplant model by monitoring tumor growth from a mouse breast cancer cell line (AT-3, Gpr81-negative) implanted in mammary fat pad of wild-type mice and Gpr81-null mice. Tumor growth was suppressed in Gpr81-null mice compared with wild-type mice. There were more tumor-infiltrating T cells and MHCIIhi-immune cells in tumors from Gpr81-null mice compared with tumors from wild-type mice. RNA-seq analysis of tumors indicated involvement of immune cells and antigen presentation in Gpr81-dependent tumor growth. Antigen-presenting dendritic cells expressed Gpr81 and activation of this receptor by lactate suppressed cell-surface presentation of MHCII. Activation of Gpr81 in dendritic cells was associated with decreased cAMP, IL-6 and IL-12. These findings suggest that tumor cell-derived lactate activates GPR81 in dendritic cells and prevents presentation of tumor-specific antigens to other immune cells. This paracrine mechanism is complementary to the recently discovered autocrine mechanism in which lactate induces PD-L1 in tumor cells via activation of GPR81 in tumor cells, thus providing an effective means for tumor cells to evade immune system. As such, blockade of GPR81 signaling could boost cancer immunotherapy.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Pushpak Bhattacharjee
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sabarish Ramachandran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Bojana Ristic
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Mohd Omar F Sikder
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
232
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
233
|
Luiken S, Fraas A, Bieg M, Sugiyanto R, Goeppert B, Singer S, Ploeger C, Warsow G, Marquardt JU, Sticht C, De La Torre C, Pusch S, Mehrabi A, Gretz N, Schlesner M, Eils R, Schirmacher P, Longerich T, Roessler S. NOTCH target gene HES5 mediates oncogenic and tumor suppressive functions in hepatocarcinogenesis. Oncogene 2020; 39:3128-3144. [PMID: 32055024 PMCID: PMC7142020 DOI: 10.1038/s41388-020-1198-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
NOTCH receptor signaling plays a pivotal role in liver homeostasis and hepatocarcinogenesis. However, the role of NOTCH pathway mutations and the NOTCH target gene HES5 in liver tumorigenesis are poorly understood. Here we performed whole-exome sequencing of 54 human HCC specimens and compared the prevalence of NOTCH pathway component mutations with the TCGA-LIHC cohort (N = 364). In addition, we functionally characterized the NOTCH target HES5 and the patient-derived HES5-R31G mutation in vitro and in an orthotopic mouse model applying different oncogenic backgrounds, to dissect the role of HES5 in different tumor subgroups in vivo. We identified nonsynonymous mutations in 14 immediate NOTCH pathway genes affecting 24.1% and 16.8% of HCC patients in the two independent cohorts, respectively. Among these, the HES5-R31G mutation was predicted in silico to have high biological relevance. Functional analyses in cell culture showed that HES5 reduced cell migration and clonogenicity. Further analyses revealed that the patient-derived HES5-R31G mutant protein was non-functional due to loss of DNA binding and greatly reduced nuclear localization. Furthermore, HES5 exhibited a negative feedback loop by directly inhibiting the NOTCH target HES1 and downregulated the pro-proliferative MYC targets ODC1 and LDHA. Interestingly, HES5 inhibited MYC-dependent hepatocarcinogenesis, whereas it promoted AKT-dependent liver tumor formation and stem cell features in a murine model. Thus, NOTCH pathway component mutations are commonly observed in HCC. Furthermore, the NOTCH target gene HES5 has both pro- and anti-tumorigenic functions in liver cancer proposing a driver gene dependency and it promotes tumorigenesis with its interaction partner AKT.
Collapse
Affiliation(s)
- Sarah Luiken
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Fraas
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Bieg
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Raisatun Sugiyanto
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Ploeger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gregor Warsow
- German Cancer Research Center (DKFZ), Bioinformatics and Omics Data Analytics, Heidelberg, Germany
| | - Jens U Marquardt
- First Department of Medicine, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Sticht
- Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | | | - Stefan Pusch
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Matthias Schlesner
- German Cancer Research Center (DKFZ), Bioinformatics and Omics Data Analytics, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany.,Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
234
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
235
|
Cancer Glycolytic Dependence as a New Target of Olive Leaf Extract. Cancers (Basel) 2020; 12:cancers12020317. [PMID: 32013090 PMCID: PMC7072393 DOI: 10.3390/cancers12020317] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Oleuropein (Ole), the main bioactive phenolic component of Olea europaea L. has recently attracted the scientific attention for its several beneficial properties, including its anticancer effects. This study is intended to investigate whether an olive leaf extract enriched in Ole (OLEO) may counteract the aerobic glycolysis exploited by tumor cells. We found that OLEO decreased melanoma cell proliferation and motility. OLEO was also able to reduce the rate of glycolysis of human melanoma cells without affecting oxidative phosphorylation. This reduction was associated with a significant decrease of glucose transporter-1, protein kinase isoform M2 and monocarboxylate transporter-4 expression, possible drivers of such glycolysis inhibition. Extending the study to other tumor histotypes, we observed that the metabolic effects of OLEO are not confined to melanoma, but also confirmed in colon carcinoma, breast cancer and chronic myeloid leukemia. In conclusion, OLEO represents a natural product effective in reducing the glycolytic metabolism of different tumor types, revealing an extended metabolic inhibitory activity that may be well suited in a complementary anti-cancer therapy.
Collapse
|
236
|
Wei X, Zhang Y, Li C, Ai K, Li K, Li H, Yang J. The evolutionarily conserved MAPK/Erk signaling promotes ancestral T-cell immunity in fish via c-Myc-mediated glycolysis. J Biol Chem 2020; 295:3000-3016. [PMID: 31996375 DOI: 10.1074/jbc.ra119.012231] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an ancient and evolutionarily conserved signaling pathway involved in numerous physiological processes. Despite great advances in understanding MAPK-mediated regulation of adaptive immune responses in mammals, its contribution to T-cell immunity in early vertebrates remains unclear. Herein, we used Nile tilapia (Oreochromis niloticus) to investigate the regulatory roles of MAPK/extracellular signal-regulated kinase (Erk) signaling in ancestral T-cell immunity of jawed fish. We found that Nile tilapia possesses an evolutionarily conserved MAPK/Erk axis that is activated through a classical three-tier kinase cascade, involving sequential phosphorylation of RAF proto-oncogene serine/threonine-protein kinase (Raf), MAPK/Erk kinase 1/2 (Mek1/2), and Erk1/2. In Nile tilapia, MAPK/Erk signaling participates in adaptive immune responses during bacterial infection. Upon T-cell activation, the MAPK/Erk axis is robustly activated, and MAPK/Erk blockade by specific inhibitors severely impairs T-cell activation. Furthermore, signals from MAPK/Erk were indispensable for primordial T cells to proliferate and exert their effector functions. Mechanistically, activation of the MAPK/Erk axis promoted glycolysis via induction of the transcriptional regulator proto-oncogene c-Myc (c-Myc), to ensure the proper activation and proliferation of fish T cells. Our results reveal the regulatory mechanisms of MAPK/Erk signaling in T-cell immunity in fish and highlight a close link between immune signals and metabolic programs. We propose that regulation of T-cell immunity by MAPK/Erk is a basic and sophisticated strategy that evolved before the emergence of the tetrapod lineage. These findings shed light on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
237
|
Ding J, Yao Y, Huang G, Wang X, Yi J, Zhang N, Liu C, Wang K, Zhang Y, Wang M, Liu P, Ye M, Li M, Cheng H. Targeting the EphB4 receptor tyrosine kinase sensitizes HER2-positive breast cancer cells to Lapatinib. Cancer Lett 2020; 475:53-64. [PMID: 32006616 DOI: 10.1016/j.canlet.2020.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Clinical data analysis reveals that the expression of the EphB4 receptor tyrosine kinase is significantly elevated in HER2-positive breast cancer and high levels of EphB4 strongly correlate with poor disease prognosis. However, the impact of EphB4 activation on HER2-positive breast cancer cells and the potential of EphB4 as a therapeutic target remain to be explored. Here, we show that EphB4 overexpression confers gain-of-function activities to HER2-positive breast cancer cells, rendering resistance to a HER2/EGFR inhibitor Lapatinib. Furthermore, using integrated transcriptomic and tyrosine phosphoproteomic analyses, followed by biochemical confirmation, we establish that EphB4 activation engages the SHP2/GAB1-MEK signaling cascade and downstream c-MYC activation, and thereby limits the overall drug responses to Lapatinib. Finally, we demonstrate that, in HER2-positive breast tumors, inhibition of EphB4 combined with Lapatinib is more effective than either alone. These findings provide new insights into the signaling networks dictating therapeutic response to Lapatinib as well as a rationale for co-targeting EphB4 in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jinlei Ding
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yating Yao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gena Huang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaonan Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingyan Yi
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chongya Liu
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kainan Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuan Zhang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Min Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Pixu Liu
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.
| | - Man Li
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Hailing Cheng
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
238
|
San-Millán I, Julian CG, Matarazzo C, Martinez J, Brooks GA. Is Lactate an Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells. Front Oncol 2020; 9:1536. [PMID: 32010625 PMCID: PMC6971189 DOI: 10.3389/fonc.2019.01536] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022] Open
Abstract
Lactate is a ubiquitous molecule in cancer. In this exploratory study, our aim was to test the hypothesis that lactate could function as an oncometabolite by evaluating whether lactate exposure modifies the expression of oncogenes, or genes encoding transcription factors, cell division, and cell proliferation in MCF7 cells, a human breast cancer cell line. Gene transcription was compared between MCF7 cells incubated in (a) glucose/glutamine-free media (control), (b) glucose-containing media to stimulate endogenous lactate production (replicating some of the original Warburg studies), and (c) glucose-containing media supplemented with L-lactate (10 and 20 mM). We found that both endogenous, glucose-derived lactate and exogenous, lactate supplementation significantly affected the transcription of key oncogenes (MYC, RAS, and PI3KCA), transcription factors (HIF1A and E2F1), tumor suppressors (BRCA1, BRCA2) as well as cell cycle and proliferation genes involved in breast cancer (AKT1, ATM, CCND1, CDK4, CDKN1A, CDK2B) (0.001 < p < 0.05 for all genes). Our findings support the hypothesis that lactate acts as an oncometabolite in MCF7 cells. Further research is necessary on other cell lines and biopsy cultures to show generality of the findings and reveal the mechanisms by which dysregulated lactate metabolism could act as an oncometabolite in carcinogenesis.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO, United States
| | - Colleen G Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher Matarazzo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Janel Martinez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - George A Brooks
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
239
|
Fang E, Wang X, Wang J, Hu A, Song H, Yang F, Li D, Xiao W, Chen Y, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and neuroblastoma progression. Am J Cancer Res 2020; 10:1555-1571. [PMID: 32042322 PMCID: PMC6993229 DOI: 10.7150/thno.37383] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
As a hallmark of metabolic reprogramming, aerobic glycolysis contributes to tumorigenesis and aggressiveness. However, the mechanisms and therapeutic strategies regulating aerobic glycolysis in neuroblastoma (NB), one of leading causes of cancer-related death in childhood, still remain elusive. Methods: Transcriptional regulators and their downstream glycolytic genes were identified by a comprehensive screening of publicly available datasets. Dual-luciferase, chromatin immunoprecipitation, real-time quantitative RT-PCR, western blot, gene over-expression or silencing, co-immunoprecipitation, mass spectrometry, peptide pull-down assay, sucrose gradient sedimentation, seahorse extracellular flux, MTT colorimetric, soft agar, matrigel invasion, and nude mice assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using log-rank test and Cox regression assay. Results: Transcription factor myeloid zinc finger 1 (MZF1) was identified as an independent prognostic factor (hazard ratio=2.330, 95% confidence interval=1.021 to 3.317), and facilitated glycolysis process through increasing expression of hexokinase 2 (HK2) and phosphoglycerate kinase 1 (PGK1). Meanwhile, a 21-amino acid peptide encoded by upstream open reading frame of MZF1, termed as MZF1-uPEP, bound to zinc finger domain of Yin Yang 1 (YY1), resulting in repressed transactivation of YY1 and decreased transcription of MZF1 and downstream genes HK2 and PGK1. Administration of a cell-penetrating MZF1-uPEP or lentivirus over-expressing MZF1-uPEP inhibited the aerobic glycolysis, tumorigenesis and aggressiveness of NB cells. In clinical NB cases, low expression of MZF1-uPEP or high expression of MZF1, YY1, HK2, or PGK1 was associated with poor survival of patients. Conclusions: These results indicate that therapeutic targeting of YY1/MZF1 axis by MZF1-uPEP inhibits aerobic glycolysis and NB progression.
Collapse
|
240
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2020; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
241
|
Kondaiah P, Kundu P, Santosh V. Mechanisms of cell competition in glioblastoma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_29_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
242
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
243
|
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2019; 206:107451. [PMID: 31836453 DOI: 10.1016/j.pharmthera.2019.107451] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of such metabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
244
|
Abstract
In this Review, Rashkovan et al. discuss the role of cancer metabolic circuitries feeding anabolism and redox potential in leukemia development and recent progress in translating these important findings to the clinic. Leukemia cell proliferation requires up-regulation and rewiring of metabolic pathways to feed anabolic cell growth. Oncogenic drivers directly and indirectly regulate metabolic pathways, and aberrant metabolism is central not only for leukemia proliferation and survival, but also mediates oncogene addiction with significant implications for the development of targeted therapies. This review explores leukemia metabolic circuitries feeding anabolism, redox potential, and energy required for tumor propagation with an emphasis on emerging therapeutic opportunities.
Collapse
Affiliation(s)
- Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
245
|
Cheng A, Zhang P, Wang B, Yang D, Duan X, Jiang Y, Xu T, Jiang Y, Shi J, Ding C, Wu G, Sang Z, Wu Q, Wang H, Wu M, Zhang Z, Pan X, Pan YY, Gao P, Zhang H, Zhou CZ, Guo J, Yang Z. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect. Nat Commun 2019; 10:5566. [PMID: 31804482 PMCID: PMC6895051 DOI: 10.1038/s41467-019-13485-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Overexpressed Aurora-A kinase promotes tumor growth through various pathways, but whether Aurora-A is also involved in metabolic reprogramming-mediated cancer progression remains unknown. Here, we report that Aurora-A directly interacts with and phosphorylates lactate dehydrogenase B (LDHB), a subunit of the tetrameric enzyme LDH that catalyzes the interconversion between pyruvate and lactate. Aurora-A-mediated phosphorylation of LDHB serine 162 significantly increases its activity in reducing pyruvate to lactate, which efficiently promotes NAD+ regeneration, glycolytic flux, lactate production and bio-synthesis with glycolytic intermediates. Mechanistically, LDHB serine 162 phosphorylation relieves its substrate inhibition effect by pyruvate, resulting in remarkable elevation in the conversions of pyruvate and NADH to lactate and NAD+. Blocking S162 phosphorylation by expression of a LDHB-S162A mutant inhibited glycolysis and tumor growth in cancer cells and xenograft models. This study uncovers a function of Aurora-A in glycolytic modulation and a mechanism through which LDHB directly contributes to the Warburg effect.
Collapse
Affiliation(s)
- Aoxing Cheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dongdong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongliang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ya Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahui Shi
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chengtao Ding
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhihong Sang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiang Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yue-Yin Pan
- Department of Medical Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS key Laboratory of Innate Immunity and Chronic Disease, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
246
|
Jiang L, Zhao L, Bi J, Guan Q, Qi A, Wei Q, He M, Wei M, Zhao L. Glycolysis gene expression profilings screen for prognostic risk signature of hepatocellular carcinoma. Aging (Albany NY) 2019; 11:10861-10882. [PMID: 31790363 PMCID: PMC6932884 DOI: 10.18632/aging.102489] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Metabolic changes are the markers of cancer and have attracted wide attention in recent years. One of the main metabolic features of tumor cells is the high level of glycolysis, even if there is oxygen. The transformation and preference of metabolic pathways is usually regulated by specific gene expression. The aim of this study is to develop a glycolysis-related risk signature as a biomarker via four common cancer types. Only hepatocellular carcinoma was shown the strong relationship with glycolysis. The mRNA sequencing and chip data of hepatocellular carcinoma, breast invasive carcinoma, renal clear cell carcinoma, colorectal adenocarcinoma were included in the study. Gene set enrichment analysis was performed, profiling three glycolysis-related gene sets, it revealed genes associated with the biological process. Univariate and multivariate Cox proportional regression models were used to screen out prognostic-related gene signature. We identified six mRNAs (DPYSL4, HOMER1, ABCB6, CENPA, CDK1, STMN1) significantly associated with overall survival in the Cox proportional regression model for hepatocellular carcinoma. Based on this gene signature, we were able to divide patients into high-risk and low-risk subgroups. Multivariate Cox regression analysis showed that prognostic power of this six gene signature is independent of clinical variables. Further, we validated this data in our own 55 paired hepatocellular carcinoma and adjacent tissues. The results showed that these proteins were highly expressed in hepatocellular carcinoma tissues compared with adjacent tissue. The survival time of high-risk group was significantly shorter than that of low-risk group, indicating that high-risk group had poor prognosis. We calculated the correlation coefficients between six proteins and found that these six proteins were independent of each other. In conclusions, we developed a glycolysis-related gene signature that could predict survival in hepatocellular carcinoma patients. Our findings provide novel insight to the mechanisms of glycolysis and it is useful for identifying patients with hepatocellular carcinoma with poor prognoses.
Collapse
Affiliation(s)
- Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang North New Area, Shenyang 110122, Liaoning, China
| |
Collapse
|
247
|
Laganá G, Barreca D, Calderaro A, Bellocco E. Lactate Dehydrogenase Inhibition: Biochemical Relevance and Therapeutical Potential. Curr Med Chem 2019; 26:3242-3252. [PMID: 28183261 DOI: 10.2174/0929867324666170209103444] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Lactate dehydrogenase (LHD) is a key enzyme of anaerobic metabolism in almost all living organisms and it is also a functional checkpoint for glucose restoration during gluconeogenesis and single-stranded DNA metabolism. This enzyme has a well preserved structure during evolution and among the species, with little, but sometimes very useful, changes in the amino acid sequence, which makes it an attractive target for the design and construction of functional molecules able to modulate its catalytic potential and expression. Research has focused mainly on the selection of modulator especially as far as LDH isozymes (especially LDH-5) and lactate dehydrogenases of Plasmodium falciparum (pfLDH) are concerned. This review summarizes the recent advances in the design and development of inhibitors, pointing out their specificity and therapeutic potentials.
Collapse
Affiliation(s)
- Giuseppina Laganá
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Davide Barreca
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Calderaro
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Ersilia Bellocco
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| |
Collapse
|
248
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
249
|
Guddeti RK, Bali P, Karyala P, Pakala SB. MTA1 coregulator regulates LDHA expression and function in breast cancer. Biochem Biophys Res Commun 2019; 520:54-59. [PMID: 31570164 DOI: 10.1016/j.bbrc.2019.09.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Protein1 (MTA1) is a chromatin modifier and its expression is significantly associated with prognosis of many cancers. However, its role in glucose metabolism remains unexplored. Here, we report that MTA1 has a significant role in glucose metabolism where MTA1 regulates the LDHA expression and activity and subsequently its function in breast cancer motility. The results showed that MTA1 expression is positively correlated with the LDHA expression levels in breast cancer patients. Further, it was found that MTA1 is necessary for the optimal expression of LDHA. The underlying molecular mechanism involves the interaction of MTA1 with c-Myc and recruitment of MTA1-c-Myc complex on to the LDHA promoter to regulate its transcription. Consequently, the LDHA knock down using LDHA specific siRNA in MCF7 cells stably expressing MTA1 reduced the migration of MCF7 cells. Altogether these findings revealed the regulatory role for MTA1 in LDHA expression and its resulting biological function.
Collapse
Affiliation(s)
- Rohith Kumar Guddeti
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| | - Prerna Bali
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India
| | - Prashanthi Karyala
- Department of Biochemistry, Indian Academy Degree College Autonomous, Hennur Main Road, Bengaluru, 560043, Karnataka, India
| | - Suresh B Pakala
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati, 517507, Andhra Pradesh, India.
| |
Collapse
|
250
|
Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, Li D, Song H, Wang J, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med 2019; 11:e10835. [PMID: 31709724 PMCID: PMC6895612 DOI: 10.15252/emmm.201910835] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is a hallmark of metabolic reprogramming in tumor progression. However, the mechanisms regulating glycolytic gene expression remain elusive in neuroblastoma (NB), the most common extracranial malignancy in childhood. Herein, we identify that CUT‐like homeobox 1 (CUX1) and CUX1‐generated circular RNA (circ‐CUX1) contribute to aerobic glycolysis and NB progression. Mechanistically, p110 CUX1, a transcription factor generated by proteolytic processing of p200 CUX1, promotes the expression of enolase 1, glucose‐6‐phosphate isomerase, and phosphoglycerate kinase 1, while circ‐CUX1 binds to EWS RNA‐binding protein 1 (EWSR1) to facilitate its interaction with MYC‐associated zinc finger protein (MAZ), resulting in transactivation of MAZ and transcriptional alteration of CUX1 and other genes associated with tumor progression. Administration of an inhibitory peptide blocking circ‐CUX1‐EWSR1 interaction or lentivirus mediating circ‐CUX1 knockdown suppresses aerobic glycolysis, growth, and aggressiveness of NB cells. In clinical NB cases, CUX1 is an independent prognostic factor for unfavorable outcome, and patients with high circ‐CUX1 expression have lower survival probability. These results indicate circ‐CUX1/EWSR1/MAZ axis as a therapeutic target for aerobic glycolysis and NB progression.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|