201
|
Cruz-Villalón G, Pérez-Giraldo C. Effect of allicin on the production of polysaccharide intercellular adhesin in Staphylococcus epidermidis. J Appl Microbiol 2011; 110:723-8. [PMID: 21205098 DOI: 10.1111/j.1365-2672.2010.04929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Polysaccharide intercellular adhesin (PIA) is the main agglutination agent in the biofilm forming strain Staphylococcus epidermidis. To find an explanation for the observed inhibition of biofilm formation by allicin, we studied the effect of allicin on PIA production in samples treated with sub MIC doses of allicin and compared this with a control culture without allicin. METHODS AND RESULTS Bacteria (Staph. epidermidis ATCC 35984) were grown in glass tubes, and PIA was extracted by vortex vibration using microbeads and NN dimethyl acetamide/LiCl as solvent. The extracts were filtered and passed through size exclusion columns. Chromatographic fractions were analysed with an excess of sodium metaperiodate and the excess was determined spectrophotometrically using 2,4,6-tripyridyl-s-triazine. CONCLUSION The amount of exopolysaccharides in samples previously treated with allicin is significantly lower than in the control. This finding suggests a specific enzymatic inhibition in PIA synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides an insight into the mechanism of biofilm formation, and is a biochemical model for PIA inhibition by allicin. The analysis proposed may be useful in studies of production of exopolysaccharides responsible for adherence and agglutination of Staph. epidermidis. Prevention of biofilm formation by allicin opens up a new field of in vitro studies and permits us to envisage future clinical applications.
Collapse
Affiliation(s)
- G Cruz-Villalón
- Department of Microbiology, Faculty of Medicine, University of Extremadura, Badajoz, Spain.
| | | |
Collapse
|
202
|
Wu X, Wang Y, Tao L. Sulfhydryl compounds reduce Staphylococcus aureus biofilm formation by inhibiting PIA biosynthesis. FEMS Microbiol Lett 2011; 316:44-50. [PMID: 21204926 DOI: 10.1111/j.1574-6968.2010.02190.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus is the most common opportunistic pathogen causing foreign-body-associated infections. It has been widely accepted that biofilms would help the bacteria to cope with variable environments. Here we showed that treatment with sulfhydryl compounds such as dithiothreitol, β-mercaptoethanol or cysteine inhibited biofilm formation significantly in S. aureus. These sulfhydryl compounds at biofilm-inhibitive concentrations caused little inhibition of the growth rate and the initial adhesion ability of the cells. Real-time reverse transcriptase-PCR showed that the transcriptional level of ica, which encodes essential enzymes for polysaccharide intercellular adhesion (PIA) biosynthesis, was decreased after the treatment with thiols. Proteomic analysis revealed that Embden-Meyerhof-Parnas pathway and pentose phosphate pathway were strengthened while N-acetyl-glucosamine-associated polysaccharide metabolism was repressed in the cells treated with thiols. These changes finally resulted in the inhibition of PIA biosynthesis. We hope the discovery of this major physiological phenomenon will help in the prevention and clinical therapy of biofilm-associated problems caused by S. aureus.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | |
Collapse
|
203
|
Di Cagno R, De Angelis M, Calasso M, Gobbetti M. Proteomics of the bacterial cross-talk by quorum sensing. J Proteomics 2011; 74:19-34. [DOI: 10.1016/j.jprot.2010.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/14/2010] [Accepted: 09/29/2010] [Indexed: 01/03/2023]
|
204
|
Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother 2010; 55:860-6. [PMID: 21135178 DOI: 10.1128/aac.01005-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study (Z. X. Peng et al., Carbohydr. Polym. 81:275-283, 2010) demonstrated that water-soluble quaternary ammonium salts, which are produced by the reaction of chitosan with glycidyl trimethylammonium chloride, provide chitosan derivatives with enhanced antibacterial ability. Because biofilm formation is believed to comprise the key step in the development of orthopedic implant-related infections, we further evaluated the efficacy of hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with different degrees of substitution (DS; referred to as HACC 6%, 18%, and 44%) in preventing biofilm formation on a titanium surface. We used a tissue culture plate method to quantify the biomass of Staphylococcus epidermidis and Staphylococcus aureus biofilms and found that HACC, especially HACC 18% and 44%, significantly inhibited biofilm formation compared to the untreated control, even at concentrations far below their MICs (P < 0.05). Scanning electron microscopy showed that inhibition of biofilm formation on titanium increased dramatically with increased DS and HACC concentrations. Confocal laser scanning microscopy indicated that growth of a preexisting biofilm on titanium was inhibited by concentrations of HACC 18% and 44% below their minimum biofilm eradication concentrations. We also demonstrated that HACC inhibited the expression of icaA, which mediates the production of extracellular polysaccharides, both in new biofilms and in preexisting biofilms on titanium. Our results indicate that HACC may serve as a new antibacterial agent to inhibit biofilm formation and prevent orthopedic implant-related infections.
Collapse
|
205
|
Lowery CA, Salzameda NT, Sawada D, Kaufmann GF, Janda KD. Medicinal chemistry as a conduit for the modulation of quorum sensing. J Med Chem 2010; 53:7467-89. [PMID: 20669927 PMCID: PMC2974035 DOI: 10.1021/jm901742e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Colin A. Lowery
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Nicholas T. Salzameda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Daisuke Sawada
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Gunnar F. Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology & Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
206
|
Oliveira A, Cunha MDLR. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res Notes 2010; 3:260. [PMID: 20946672 PMCID: PMC2973941 DOI: 10.1186/1756-0500-3-260] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The most clearly characterized component of staphylococcal biofilms is the polysaccharide intercellular adhesin (PIA) encoded by the icaADBC operon. Biofilm production was studied in 80 coagulase-negative staphylococci (CNS) strains isolated from clinical specimens of newborns with infection hospitalized at the Neonatal Unit of the University Hospital, Faculty of Medicine of Botucatu, and in 20 isolates obtained from the nares of healthy individuals without signs of infection. The objective was to compare three phenotypic methods with the detection of the icaA, icaD and icaC genes by PCR. FINDINGS Among the 100 CNS isolates studied, 82% tested positive by PCR, 82% by the tube test, 81% by the TCP assay, and 73% by the CRA method. Using PCR as a reference, the tube test showed the best correlation with detection of the ica genes, presenting high sensitivity and specificity. CONCLUSIONS The tube adherence test can be indicated for the routine detection of biofilm production in CNS because of its easy application and low cost and because it guarantees reliable results with excellent sensitivity and specificity.
Collapse
Affiliation(s)
- Adilson Oliveira
- UNESP - Univ Estadual Paulista, Department of Microbiology and Immunology, Biosciences Institute Bacteriology Laboratory, Botucatu, SP, Brazil.
| | | |
Collapse
|
207
|
Jabbouri S, Sadovskaya I. Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication ofStaphylococcus epidermidisassociated with medical implant infections. ACTA ACUST UNITED AC 2010; 59:280-91. [DOI: 10.1111/j.1574-695x.2010.00695.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
208
|
Abstract
Staphylococcus epidermidis is a highly significant nosocomial pathogen mediating infections primarily associated with indwelling biomaterials (e.g., catheters and prostheses). In contrast to Staphylococcus aureus, virulence properties associated with S. epidermidis are few and biofilm formation is the defining virulence factor associated with disease, as demonstrated by animal models of biomaterial-related infections. However, other virulence factors, such as phenol-soluble modulins and poly-gamma-DL-glutamic acid, have been recently recognized that thwart innate immune system mechanisms. Formation of S. epidermidis biofilm is typically considered a four-step process consisting of adherence, accumulation, maturation and dispersal. This article will discuss recent advances in the study of these four steps, including accumulation, which can be either polysaccharide or protein mediated. It is hypothesized that studies focused on understanding the biological function of each step in staphylococcal biofilm formation will yield new treatment modalities to treat these recalcitrant infections.
Collapse
Affiliation(s)
- Paul D Fey
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| | | |
Collapse
|
209
|
Diemond-Hernández B, Solórzano-Santos F, Leaños-Miranda B, Peregrino-Bejarano L, Miranda-Novales G. Production of icaADBC-encoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with Staphylococcal device-related infections. BMC Infect Dis 2010; 10:68. [PMID: 20230642 PMCID: PMC2848661 DOI: 10.1186/1471-2334-10-68] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 03/15/2010] [Indexed: 11/10/2022] Open
Abstract
Background Biofilm production has been established as a virulence factor which allows Staphylococcus to adhere and persist in medical devices. The objective was to determine whether therapeutic failure in patients infected with Staphylococcus spp. is linked to biofilm production, the presence of the ica operon, and the bacterial insertion sequence element IS256. Methods Staphylococcus spp. isolates from patients with device-related infections were collected. Therapeutic failure with proper antimicrobial treatment was registered. Biofilm phenotype was determined by Congo red test agar and Christensen assay. Presence of the ica operon genes A-D and IS256 was detected by PCR. Differences were compared through x2. Results 100 isolates from staphylococcal infections episodes were included: 40 sepsis/bacteremia, 32 ependymitis, and 28 peritonitis. 73.77% of CoNS and 79.5% of S. aureus isolates harbored the icaD gene, 29% of all isolates IS256-A+ IS256-D genes, icaA and icaB genes were only found in CoNS (27.8% and 21.3% respectively). Therapeutic failure occurred in 95.4.% of patients with a positive IS256-A+ IS256-D S. epidermidis isolate, RR 5.49 (CI 95% 2.24-13.44 p ≤ 0.0001), and 85.76% in CoNS isolates, RR 2.57 (CI 95% 0.97-6.80, p = 0.05). Although none S. aureus was positive for IS256-A + IS256-D, therapeutic failure was observed in 35.8%. Conclusions The presence of icaA/D genes along with the sequence element IS256 was associated with therapeutic failure in most CoNS infections, even though its absence in S. aureus isolates does not ensure therapeutic success.
Collapse
Affiliation(s)
- Bernardo Diemond-Hernández
- Unidad de Investigación en Epidemiología Hospitalaria, Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
210
|
McCann MT, Gilmore BF, Gorman SP. Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Staphylococcus epidermidis, the most frequently isolated coagulase-negative staphylococcus, is the leading cause of infection related to implanted medical devices (IMDs). This is directly related to its capability to establish multilayered, highly structured biofilms on artificial surfaces. At present, conventional systemic therapies using standard antimicrobial agents represent the main strategy to treat and prevent medical device-associated infections. However, device-related infections are notoriously difficult to treat and bacteria within biofilm communities on the surface of IMDs frequently outlive treatment, and removal of the medical device is often required for successful therapy. Importantly, major advances in this research area have been made, leading to a greater understanding of the complexities of biofilm formation of S. epidermidis and resulting in significant developments in the treatment and prevention of infections related to this member of the coagulase-negative group of staphylococci. This review will examine the pathogenesis of the clinically significant S. epidermidis and provide an overview of the conventional and emerging antibiofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.
Collapse
Affiliation(s)
- Maureen T McCann
- Maureen McCann, Brendan Gilmore, Sean Gorman: Queens University of Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- Maureen McCann, Brendan Gilmore, Sean Gorman: Queens University of Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Sean P Gorman
- Maureen McCann, Brendan Gilmore, Sean Gorman: Queens University of Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
211
|
Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 2009; 75:187-207. [PMID: 19943904 DOI: 10.1111/j.1365-2958.2009.06981.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Virulence of nosocomial pathogen Staphylococcus epidermidis is essentially related to formation of adherent biofilms, assembled by bacterial attachment to an artificial surface and subsequent production of a matrix that mediates interbacterial adhesion. Growing evidence supports the idea that proteins are functionally involved in S. epidermidis biofilm accumulation. We found that in S. epidermidis 1585v overexpression of a 460 kDa truncated isoform of the extracellular matrix-binding protein (Embp) is necessary for biofilm formation. Embp is a giant fibronectin-binding protein harbouring 59 Found In Various Architectures (FIVAR) and 38 protein G-related albumin-binding (GA) domains. Studies using defined Embp-positive and -negative S. epidermidis strains proved that Embp is sufficient and necessary for biofilm formation. Further data showed that the FIVAR domains of Embp mediate binding of S. epidermidis to solid-phase attached fibronectin, constituting the first step of biofilm formation on conditioned surfaces. The binding site in fibronectin was assigned to the fibronectin domain type III12. Embp-mediated biofilm formation also protected S. epidermidis from phagocytosis by macrophages. Thus, Embp is a multifunctional cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis, and therefore is well suited for promoting implant-associated infections.
Collapse
Affiliation(s)
- Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Rohde H, Frankenberger S, Zähringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 2009; 89:103-11. [PMID: 19913940 DOI: 10.1016/j.ejcb.2009.10.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus epidermidis is of major importance in infections associated with indwelling medical devices. The tight pathogenic association is essentially linked to the species ability to form adherent biofilms on artificial surfaces. Aiming at identifying novel targets for vaccination or therapy much effort has been made to unravel the molecular mechanisms leading to S. epidermidis biofilm formation. At present, polysaccharide intercellular adhesin (PIA) is the best studied factor involved in S. epidermidis biofilm accumulation. PIA is a glycan of beta-1,6-linked 2-acetamido-2-deoxy-D-glucopyranosyl residues of which 15 % are non-N-acetylated. PIA-producing S. epidermidis are widespread in clinical strain collections and PIA synthesis has been shown to be essential for S. epidermidis virulence. Moreover, PIA homologues have been identified in many other staphylococcal species, including the major human pathogen Staphylococcus aureus, and also Gram-negative human pathogens, suggesting that it might represent a more general pathogenicity principle in biofilm-related infections. In this review the current knowledge about the structure and biosynthesis of PIA is summarized. Additionally, information on its role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is discussed.
Collapse
Affiliation(s)
- Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
213
|
Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 54:380-7. [PMID: 19858261 DOI: 10.1128/aac.00155-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are complicated by the ability of the organism to grow in surface-adhered biofilms on a multitude of abiotic and biological surfaces. These multicellular communities are notoriously difficult to eradicate with antimicrobial therapy. Cells within the biofilm may be exposed to a sublethal concentration of the antimicrobial due to the metabolic and phenotypic diversity of the biofilm-associated cells or the protection offered by the biofilm structure. In the present study, the influence of a sublethal concentration of tigecycline on biofilms formed by an epidemic MRSA-16 isolate was investigated by transcriptome analysis. In the presence of the drug, 309 genes were upregulated and 213 genes were downregulated by more than twofold in comparison to the levels of gene regulation detected for the controls not grown in the presence of the drug. Microarray data were validated by real-time reverse transcription-PCR and phenotypic assays. Tigecycline altered the expression of a number of genes encoding proteins considered to be crucial for the virulence of S. aureus. These included the reduced expression of icaC, which is involved in polysaccharide intercellular adhesin production and biofilm development; the upregulation of fnbA, clfB, and cna, which encode adhesins which attach to human proteins; and the downregulation of the cap genes, which mediate the synthesis of the capsule polysaccharide. The expression of tst, which encodes toxic shock syndrome toxin 1 (TSST-1), was also significantly reduced; and an assay performed to quantify TSST-1 showed that the level of toxin production by cells treated with tigecycline decreased by 10-fold (P < 0.001) compared to the level of production by untreated control cells. This study suggests that tigecycline may reduce the expression of important virulence factors in S. aureus and supports further investigation to determine whether it could be a useful adjunct to therapy for the treatment of biofilm-mediated infections.
Collapse
|
214
|
Chaudhury A, Nagaraja M, Kumar AG. Potential of Biofilm Formation by Staphylococci on Polymer Surface and its Correlation with Methicillin Susceptibility. Indian J Med Microbiol 2009; 27:377-8. [DOI: 10.4103/0255-0857.55450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
215
|
Blum-Menezes D, Bratfich OJ, Padoveze MC, Moretti ML. Hospital strain colonization by Staphylococcus epidermidis. Braz J Med Biol Res 2009; 42:294-8. [PMID: 19287909 DOI: 10.1590/s0100-879x2009000300011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 01/15/2009] [Indexed: 11/22/2022] Open
Abstract
The skin and mucous membranes of healthy subjects are colonized by strains of Staphylococcus epidermidis showing a high diversity of genomic DNA polymorphisms. Prolonged hospitalization and the use of invasive procedures promote changes in the microbiota with subsequent colonization by hospital strains. We report here a patient with prolonged hospitalization due to chronic pancreatitis who was treated with multiple antibiotics, invasive procedures and abdominal surgery. We studied the dynamics of skin colonization by S. epidermidis leading to the development of catheter-related infections and compared the genotypic profile of clinical and microbiota strains by pulsed field gel electrophoresis. During hospitalization, the normal S. epidermidis skin microbiota exhibiting a polymorphic genomic DNA profile was replaced with a hospital-acquired biofilm-producer S. epidermidis strain that subsequently caused repetitive catheter-related infections.
Collapse
Affiliation(s)
- D Blum-Menezes
- Laboratório de Epidemiologia Molecular, Bactérias e Fungos, Disciplina de Infectologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | |
Collapse
|
216
|
Agarwal A, Singh KP, Jain A. Medical significance and management of staphylococcal biofilm. ACTA ACUST UNITED AC 2009; 58:147-60. [PMID: 19793317 DOI: 10.1111/j.1574-695x.2009.00601.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Biofilm is one of the important virulence factors of staphylococci that plays a role in many device-related infections such as native valve endocarditis, otitis media, urinary tract infections, cystic fibrosis, acute septic arthritis, etc. Biofilm is a microbially derived sessile community of microorganisms, developed either from single or multiple microorganisms. Formation of biofilm is a two-step process: adherence of cells to a surface and accumulation of cells to form multilayered cell clusters. A trademark of biofilm formation in staphylococci is the production of polysaccharide intercellular adhesin. In the formation and regulation of biofilm, some biosynthetic genes (icaADBC) and some regulatory genes (icaR, sar, agr, rbf, sigma(B)) are involved. In this article, we reviewed the structure and formation of staphylococcal biofilm and its role in medical infections.
Collapse
Affiliation(s)
- Astha Agarwal
- Department of Microbiology, Chhatrapati Shahuji Maharaj Medical University, Lucknow, UP, India
| | | | | |
Collapse
|
217
|
Mercier KA, Cort JR, Kennedy MA, Lockert EE, Ni S, Shortridge MD, Powers R. Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170). Protein Sci 2009; 18:606-18. [PMID: 19241370 DOI: 10.1002/pro.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa is the prototypical biofilm-forming gram-negative opportunistic human pathogen. P. aeruginosa is causatively associated with nosocomial infections and with cystic fibrosis. Antibiotic resistance in some strains adds to the inherent difficulties that result from biofilm formation when treating P. aeruginosa infections. Transcriptional profiling studies suggest widespread changes in the proteome during quorum sensing and biofilm development. Many of the proteins found to be upregulated during these processes are poorly characterized from a functional standpoint. Here, we report the solution NMR structure of PA1324, a protein of unknown function identified in these studies, and provide a putative biological functional assignment based on the observed prealbumin-like fold and FAST-NMR ligand screening studies. PA1324 is postulated to be involved in the binding and transport of sugars or polysaccharides associated with the peptidoglycan matrix during biofilm formation.
Collapse
Affiliation(s)
- Kelly A Mercier
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Although nosocomial infections by Staphylococcus epidermidis have gained much attention, this skin-colonizing bacterium has apparently evolved not to cause disease, but to maintain the commonly benign relationship with its host. Accordingly, S. epidermidis does not produce aggressive virulence determinants. Rather, factors that normally sustain the commensal lifestyle of S. epidermidis seem to give rise to additional benefits during infection. Furthermore, we are beginning to comprehend the roles of S. epidermidis in balancing the epithelial microflora and serving as a reservoir of resistance genes. In this Review, I discuss the molecular basis of the commensal and infectious lifestyles of S. epidermidis.
Collapse
Affiliation(s)
- Michael Otto
- National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 9000 Rockville Pike Building 33 1W10, Bethesda, Maryland 20892, USA.
| |
Collapse
|
219
|
The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 2009; 191:5953-63. [PMID: 19633088 DOI: 10.1128/jb.00647-09] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We found that Acinetobacter baumannii contains a pgaABCD locus that encodes proteins that synthesize cell-associated poly-beta-(1-6)-N-acetylglucosamine (PNAG). Both a mutant with an in-frame deletion of the pga locus (S1Deltapga) and a transcomplemented strain (S1Deltapga-c) of A. baumannii were constructed, and the PNAG production by these strains was compared using an immunoblot assay. Deleting the pga locus resulted in an A. baumannii strain without PNAG, and transcomplementation of the S1Deltapga strain with the pgaABCD genes fully restored the wild-type PNAG phenotype. Heterologous expression of the A. baumannii pga locus in Escherichia coli led to synthesis of significant amounts of PNAG, while no polysaccharide was detected in E. coli cells harboring an empty vector. Nuclear magnetic resonance analysis of the extracellular polysaccharide material isolated from A. baumannii confirmed that it was PNAG, but notably only 60% of the glucosamine amino groups were acetylated. PCR analysis indicated that all 30 clinical A. baumannii isolates examined had the pga genes, and immunoblot assays indicated that 14 of the 30 strains strongly produced PNAG, 14 of the strains moderately to weakly produced PNAG, and 2 strains appeared to not produce PNAG. Deletion of the pga locus led to loss of the strong biofilm phenotype, which was restored by complementation. Confocal laser scanning microscopy studies combined with COMSTAT analysis demonstrated that the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by wild-type and pga-complemented A. baumannii strains were significantly greater than the biovolume, mean thickness, and maximum thickness of 16-h and 48-h-old biofilms formed by the S1Deltapga mutant strain. Biofilm-dependent production of PNAG could be an important virulence factor for this emerging pathogen that has few known virulence factors.
Collapse
|
220
|
Arciola CR, Campoccia D, Gamberini S, Donati ME, Baldassarri L, Montanaro L. Occurrence of ica genes for slime synthesis in a collection of Staphylococcus epidermidis strains from orthopedic prosthesis infections. ACTA ACUST UNITED AC 2009; 74:617-21. [PMID: 14620986 DOI: 10.1080/00016470310018054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Staphylococcus epidermidis is a frequent pathogen in infections associated with orthopedic implants. We studied 123 S. epidermidis strains from infections related to orthopedic implants, as regards their ability to express a factor of virulence, namely the slime, an extracellular polysaccharide, which mediates adherence to implants and bacterial colonization. The slime-producing ability was determined by PCR detection of icaA and icaD genes responsible for slime synthesis, and by culture on Congo red agar plates in which slime-producing strains form black colonies, while nonslime-forming ones develop red colonies. 56% of the S. epidermidis isolates were icaA- icaD-positive and grew to become black colonies. In the evaluation of the distribution of slime-forming strains in different sites and types of implants, we found a slight, but not statistically significant, increase in slime-forming strains in total joint prostheses, where tissue compression near the articular faces can form niches in which bacteria crowd, sheltered by the slime. Our findings confirm the role of ica genes as a virulence marker in the pathogenesis of implant-associated orthopedic infections. However, they do not show the existence of a higher frequency of slime-positive strains in a specific type of implant.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Laboratory on Biocompatibility of Implant Materials, Rizzoli Orthopedic Institute, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
221
|
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 PMCID: PMC2698413 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 621] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
Affiliation(s)
- Ece Karatan
- Department of Biology, Appalachian State University, Boone, NC 28608, USA.
| | | |
Collapse
|
222
|
Eftekhar F, Speert D. Biofilm formation by persistent and non-persistent isolates of Staphylococcus epidermidis from a neonatal intensive care unit. J Hosp Infect 2009; 71:112-6. [DOI: 10.1016/j.jhin.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
223
|
Costa AR, Henriques M, Oliveira R, Azeredo J. The role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. Eur J Clin Microbiol Infect Dis 2009; 28:623-9. [PMID: 19130107 DOI: 10.1007/s10096-008-0684-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. The adherence of S. epidermidis 1457 and the mutant defective in PIA production (1457-M10) to urinary epithelium and endothelium was estimated by colony counting. Minimum bactericidal concentration and mean reduction of cellular activity (XTT) following antibiotic exposure was determined for planktonic and adhered bacteria. S. epidermidis 1457 adhered to a greater extent to both cells than the mutant strain. The adhered strains had a significantly higher antimicrobial tolerance than their planktonic counterparts. The mutant strain was, in general, the most susceptible to the antibiotics assayed. In conclusion, PIA may influence S. epidermidis adherence to host tissues and their antimicrobial susceptibility. Initial adhesion may be the main step for the acquisition of resistance in S. epidermidis.
Collapse
Affiliation(s)
- A R Costa
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
224
|
Dice B, Stoodley P, Buchinsky F, Metha N, Ehrlich GD, Hu FZ. Biofilm formation by ica-positive and ica-negative strains of Staphylococcus epidermidis in vitro. BIOFOULING 2009; 25:367-375. [PMID: 19267282 DOI: 10.1080/08927010902803297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Staphylococcus epidermidis is a clinically important opportunistic pathogen that forms biofilm infections on nearly all types of indwelling medical devices. The biofilm forming capability of S. epidermidis has been linked to the presence of the ica operon in the genome, and the amount of biofilm formation measured by the crystal violet (CV) adherence assay. Six S. epidermidis strains were characterized for their ica status using PCR, and their biofilm forming ability over 6 days, using the CV assay and a flow cell system. Ica-negative strains characterized as 'negative for biofilm formation' based on the CV assay were demonstrated to form strongly attached biofilms after 6 days. However, the biofilms were not as extensive as the ica-positive strains. It was concluded that ica is not required for biofilm formation, nor is the 24-h CV assay generalizable for predicting the 6-day biofilm-forming ability for all S. epidermidis strains.
Collapse
Affiliation(s)
- Bethany Dice
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
225
|
Koskela A, Nilsdotter-Augustinsson A, Persson L, Söderquist B. Prevalence of the ica operon and insertion sequence IS256 among Staphylococcus epidermidis prosthetic joint infection isolates. Eur J Clin Microbiol Infect Dis 2008; 28:655-60. [PMID: 19034541 DOI: 10.1007/s10096-008-0664-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022]
Abstract
Joint replacement surgery has improved the quality of life for hundreds of thousands of patients. However, the infection of a joint implant is an important and serious complication, though the prevalence is low. Staphylococcus epidermidis is the most important pathogen involved in foreign-body infections. S. epidermidis is also a commensal that comprises a substantial part of the normal skin flora of humans. The possibility to demonstrate potential specific virulence markers may facilitate the interpretation of the bacteriological findings, as well as the clinical decision. The prevalence of the ica locus and insertion sequence IS256 by using polymerase chain reaction (PCR) among 32 clinical S. epidermidis isolates from prosthetic joint infections (PJIs) and 24 commensal isolates from nares and skin was investigated. Sixteen (50%) of the 32 PJI isolates harbored the ica operon compared with one-third of the commensal isolates obtained from the samples of the skin and nares of healthy individuals. The IS256 was demonstrated in 26 (81%) out of 32 PJI isolates. By contrast, IS256 was found in one of 24 commensal isolates. In conclusion, IS256 may be superior to the ica operon as a marker of the invasive capacity of S. epidermidis, since it was found in most of the PJI isolates, but rarely among commensals.
Collapse
Affiliation(s)
- A Koskela
- Clinical Research Center, Orebro University Hospital, 701 85, Orebro, Sweden
| | | | | | | |
Collapse
|
226
|
Stevens NT, Sadovskaya I, Jabbouri S, Sattar T, O'Gara JP, Humphreys H, Greene CM. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2. Cell Microbiol 2008; 11:421-32. [PMID: 19016779 DOI: 10.1111/j.1462-5822.2008.01264.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.
Collapse
Affiliation(s)
- Niall T Stevens
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland Education & Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
227
|
Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J Bacteriol 2008; 190:8163-70. [PMID: 18931111 DOI: 10.1128/jb.01181-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.
Collapse
|
228
|
Pintens V, Massonet C, Merckx R, Vandecasteele S, Peetermans WE, Knobloch JKM, Van Eldere J. The role of sigmaB in persistence of Staphylococcus epidermidis foreign body infection. MICROBIOLOGY-SGM 2008; 154:2827-2836. [PMID: 18757816 DOI: 10.1099/mic.0.2007/015768-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcal biofilm formation depends on the transcription factor sigma(B). We further investigated the role of sigma(B) in biofilm formation and persistence in vitro and in vivo in a subcutaneous rat model. As expected, expression of all sigma(B) operon genes was transiently higher in the first 6 h of biofilm formation compared to planktonic bacteria, concurrent with a temporary upregulation of icaA and aap expression. However, we also observed a second upregulation of sigB expression in biofilm more than 2 days old without upregulation of icaA or aap. Biofilm formation by Staphylococcus epidermidis strains 8400 and 1457 was compared to that of isogenic mutants with inactivation of rsbU, of rsbUVW and of the entire sigma(B) operon. Both wild-type strains and the constitutively sigB-expressing rsbUVW mutant showed a strong biofilm-positive phenotype. The rsbUVW mutant biofilm was, however, thinner and more evenly spread than the wild-type biofilm. Inactivation of SigB in the rsbUVWsigB mutant or mutation of the positive regulator RsbU reduced both the number of sessile bacteria and polysaccharide intercellular adhesin (PIA) synthesis. These differences between the wild-types and their respective mutants appeared after 6 h in in vitro biofilms but only after 4 days in in vivo biofilms. Our results provide additional evidence for a role for sigma(B) in biofilm formation. They also suggest a role for sigma(B) in biofilm maturation and stability that is independent of PIA or accumulation-associated protein (Aap) and point to significant differences in the temporal development between in vitro and in vivo biofilms.
Collapse
Affiliation(s)
- Valerie Pintens
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Caroline Massonet
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Rita Merckx
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan Vandecasteele
- Department of Internal Medicine and Infectious Diseases, AZ Sint-Jan AV, Ruddershove 10, B-8000 Brugge, Belgium
| | - Willy E Peetermans
- Department of Internal Medicine, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Johannes K-M Knobloch
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Lübeck, 23538 Lübeck, Germany
| | - Johan Van Eldere
- Department of Medical Diagnostics, Laboratory of Clinical and Experimental Microbiology, KULeuven, UZ Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
229
|
The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 2008; 74:4509-15. [PMID: 18515487 DOI: 10.1128/aem.00336-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bacterium Xenorhabdus nematophila is an insect pathogen and an obligate symbiont of the nematode Steinernema carpocapsae. X. nematophila makes a biofilm that adheres to the head of the model nematode Caenorhabditis elegans, a capability X. nematophila shares with the biofilms made by Yersinia pestis and Yersinia pseudotuberculosis. As in Yersinia spp., the X. nematophila biofilm requires a 4-gene operon, hmsHFRS. Also like its Yersinia counterparts, the X. nematophila biofilm is bound by the lectin wheat germ agglutinin, suggesting that beta-linked N-acetyl-D-glucosamine or N-acetylneuraminic acid is a component of the extracellular matrix. C. elegans mutants with aberrant surfaces that do not permit Yersinia biofilm attachment also are resistant to X. nematophila biofilms. An X. nematophila hmsH mutant that failed to make biofilms on C. elegans had no detectable defect in symbiotic association with S. carpocapsae, nor was virulence reduced against the insect Manduca sexta.
Collapse
|
230
|
Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 2008; 190:3670-80. [PMID: 18359807 PMCID: PMC2394981 DOI: 10.1128/jb.01920-07] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/08/2008] [Indexed: 01/13/2023] Open
Abstract
The linear homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in diverse eubacteria. Its function in Escherichia coli K-12 requires the gene products of the pgaABCD operon, all of which are necessary for biofilm formation. PgaC is an apparent glycosyltransferase that is required for PGA synthesis. Using a monoclonal antibody directed against E. coli PGA, we now demonstrate that PgaD is also needed for PGA formation. The deletion of genes for the predicted outer membrane proteins PgaA and PgaB did not prevent PGA synthesis but did block its export, as shown by the results of immunoelectron microscopy (IEM) and antibody adsorption assays. IEM also revealed a conditional localization of PGA at the cell poles, the initial attachment site for biofilm formation. PgaA contains a predicted beta-barrel porin and a superhelical domain containing tetratricopeptide repeats, which may mediate protein-protein interactions, implying that it forms the outer membrane secretin for PGA. PgaB contains predicted carbohydrate binding and polysaccharide N-deacetylase domains. The overexpression of pgaB increased the primary amine content (glucosamine) of PGA. Site-directed mutations targeting the N-deacetylase catalytic activity of PgaB blocked PGA export and biofilm formation, implying that N-deacetylation promotes PGA export through the PgaA porin. The results of previous studies indicated that N-deacetylation of beta-1,6-GlcNAc in Staphylococcus epidermidis by the PgaB homolog, IcaB, anchors it to the cell surface. The deletion of icaB resulted in release of beta-1,6-GlcNAc into the growth medium. Thus, covalent modification of beta-1,6-GlcNAc by N-deacetylation serves distinct biological functions in gram-negative and gram-positive species, dictated by cell envelope differences.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Vila J, Soriano A, Mensa J. [Molecular basis of microbial adherence to prosthetic materials. Role of biofilms in prosthesis-associated infection]. Enferm Infecc Microbiol Clin 2008; 26:48-54; quiz 55. [PMID: 18208766 DOI: 10.1157/13114395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adherence of microorganisms to a surface is the first step in the formation of most biofilms. Adherence can take place on both virgin material and material coated with proteins or glycoproteins generated by the host. The importance of these mechanisms depends on the type of implant. In this review we will discuss the molecular basis of bacterial adherence to inert material, the implication of adherence in biofilm formation, and the advantages of biofilm production by bacteria causing prosthesis-associated infection.
Collapse
Affiliation(s)
- Jordi Vila
- Servicio de Microbiología, Centro de Diagnóstico Biomédico, Hospital Clínico, Barcelona, España.
| | | | | |
Collapse
|
232
|
Greco C, Mastronardi C, Pagotto F, Mack D, Ramirez-Arcos S. Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. Transfusion 2008; 48:969-77. [PMID: 18346023 DOI: 10.1111/j.1537-2995.2007.01631.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Coagulase-negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet (PLT) preparations and have been implicated in adverse transfusion reactions worldwide. The most frequently identified contaminant is Staphylococcus epidermidis, which is noted for its ability to maintain chronic hospital-acquired infections by forming biofilms as a chief virulence mechanism. STUDY DESIGN AND METHODS Strains of S. epidermidis isolated from contaminated PLT preparations in Canada were distinguished via gene-specific polymerase chain reaction (PCR) with divIVA as a marker. Biofilm-forming ability was assessed by the presence of the gene icaD, slime production on Congo red agar, and biofilm formation on polystyrene surfaces. Production of polysaccharide intercellular adhesin (PIA) was resolved by immunofluorescence. RESULTS Eight of the 13 (62%) CoNS isolates under study were identified as S. epidermidis. Of these, four strains (50%) were classified as strong biofilm producers. Three of the four biofilm-positive strains (75%) produced slime, harbored the icaD gene, and had positive expression of PIA. CONCLUSIONS Despite the presumable commensal origin of the CoNS isolates, a large proportion of S. epidermidis strains demonstrated a potential for enhanced virulence. Identification of contaminant staphylococci as biofilm producers is thus relevant and informative with regard to treatment approach in the circumstance of inadvertent infection of a PLT recipient.
Collapse
Affiliation(s)
- Carey Greco
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
233
|
Darby C. Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol 2008; 16:158-64. [PMID: 18339547 DOI: 10.1016/j.tim.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/16/2008] [Accepted: 01/23/2008] [Indexed: 11/30/2022]
Abstract
Bubonic plague, one of history's deadliest infections, is transmitted by fleas infected with Yersinia pestis. The bacteria can starve fleas by blocking their digestive tracts, which stimulates the insects to bite repeatedly and thereby infect new hosts. Direct examination of infected fleas, aided by in vitro studies and experiments with the nematode Caenorhabditis elegans, have established that Y. pestis forms a biofilm in the insect. The extracellular matrix of the biofilm seems to contain a homopolymer of N-acetyl-d-glucosamine, which is a constituent of many bacterial biofilms. A regulatory mechanism involved in Y. pestis biofilm formation, cyclic-di-GMP signaling, is also widespread in bacteria; yet only Y. pestis forms biofilms in fleas. Here, the historical background of bubonic plague is briefly described and recent studies investigating the mechanisms by which these unique and deadly biofilms are formed are discussed.
Collapse
Affiliation(s)
- Creg Darby
- Department of Cell and Tissue Biology, University of California, San Francisco, Box 0640/Room C-734, San Francisco, CA 94143-0640, USA.
| |
Collapse
|
234
|
Greco C, Mastronardi C, Pagotto F, Mack D, Ramirez-Arcos S. Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. Transfusion 2008. [DOI: 10.1111/j.1537-2995.2007.01631.x-i2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
235
|
Bobrov AG, Kirillina O, Forman S, Mack D, Perry RD. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 2008; 10:1419-32. [DOI: 10.1111/j.1462-2920.2007.01554.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
236
|
Jeng WY, Ko TP, Liu CI, Guo RT, Liu CL, Shr HL, Wang AHJ. Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis. Nucleic Acids Res 2008; 36:1567-77. [PMID: 18208836 PMCID: PMC2275139 DOI: 10.1093/nar/gkm1176] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Expression of the gene cluster icaADBC is necessary for biofilm production in Staphylococcus epidermidis. The ica operon is negatively controlled by the repressor IcaR. Here, the crystal structure of IcaR was determined and the refined structure revealed a homodimer comprising entirely α-helices, typical of the tetracycline repressor protein family for gene regulations. The N-terminal domain contains a conserved helix-turn-helix DNA-binding motif with some conformational variations, indicating flexibility in this region. The C-terminal domain shows a complementary surface charge distribution about the dyad axis, ideal for efficient and specific dimer formation. The results of the electrophoretic mobility shift assay and isothermal titration calorimetry suggested that a 28 bp core segment of the ica operator is implicated in the cooperative binding of two IcaR dimers on opposite sides of the duplex DNA. Computer modeling based on the known DNA-complex structure of QacR and site-specific mutagenesis experiments showed that direct protein–DNA interactions are mostly conserved, but with slight variations for recognizing the different sequences. By interfering with the binding of IcaR to DNA, aminoglycoside gentamicin and other antibiotics may activate the icaADBC genes and elicit biofilm production in S. epidermidis, and likely S. aureus, as a defense mechanism.
Collapse
Affiliation(s)
- Wen-Yih Jeng
- Institute of Biological Chemistry, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the three-dimensional structure of a staphylococcal biofilm by cell-cell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines.
Collapse
Affiliation(s)
- M Otto
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
238
|
Vuong C, Otto M. The biofilm exopolysaccharide polysaccharide intercellular adhesin--a molecular and biochemical approach. Methods Mol Biol 2008; 431:97-106. [PMID: 18287750 DOI: 10.1007/978-1-60327-032-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exopolysaccharides play a crucial role in the formation of biofilms and biofilm resistance to antimicrobials and innate host defense. Here we describe methods to analyze and quantify polysaccharide intercellular adhesin (PIA), a biofilm exopolysaccharide made of N-acetylglucosamine that is found in staphylococci and many other bacterial biofilm-forming pathogens.
Collapse
Affiliation(s)
- Cuong Vuong
- Department of Anesthesiology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
239
|
Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential. GLYCOSCIENCE AND MICROBIAL ADHESION 2008; 288:157-82. [DOI: 10.1007/128_2008_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
240
|
Abstract
Bacterial biofilms are found under diverse environmental conditions, from sheltered and specialized environments found within mammalian hosts to the extremes of biological survival. The process of forming a biofilm and the eventual return of cells to the planktonic state involve the coordination of vast amounts of genetic information. Nevertheless, the prevailing evidence suggests that the overall progression of this cycle within a given species or strain of bacteria responds to environmental conditions via a finite number of key regulatory factors and pathways, which affect enzymatic and structural elements that are needed for biofilm formation and dispersal. Among the conditions that affect biofilm development are temperature, pH, O2 levels, hydrodynamics, osmolarity, the presence of specific ions, nutrients, and factors derived from the biotic environment. The integration of these influences ultimately determines the pattern of behavior of a given bacterium with respect to biofilm development. This chapter will present examples of how environmental conditions affect biofilm development, most of which come from studies of species that have mammalian hosts.
Collapse
Affiliation(s)
- C C Goller
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
241
|
Hinnebusch BJ, Erickson DL. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 2008; 322:229-48. [PMID: 18453279 PMCID: PMC3727414 DOI: 10.1007/978-3-540-75418-3_11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-beta-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response.
Collapse
Affiliation(s)
- B J Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIH, NIAID, Hamilton, MT 59840, USA.
| | | |
Collapse
|
242
|
Izano EA, Sadovskaya I, Wang H, Vinogradov E, Ragunath C, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB. Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb Pathog 2008; 44:52-60. [PMID: 17851029 PMCID: PMC2253675 DOI: 10.1016/j.micpath.2007.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
Clinical isolates of the periodontopathogen Aggregatibacter actinomycetemcomitans form matrix-encased biofilms on abiotic surfaces in vitro. A major component of the A. actinomycetemcomitans biofilm matrix is poly-beta-1,6-N-acetyl-d-glucosamine (PGA), a hexosamine-containing polysaccharide that mediates intercellular adhesion. In this report, we describe studies on the purification, structure, genetics and function of A. actinomycetemcomitans PGA. We found that PGA was very tightly attached to A. actinomycetemcomitans biofilm cells and could be efficiently separated from the cells only by phenol extraction. A. actinomycetemcomitans PGA copurified with LPS on a gel filtration column. (1)H NMR spectra of purified A. actinomycetemcomitans PGA were consistent with a structure containing a linear chain of N-acetyl-d-glucosamine residues in beta(1,6) linkage. Genetic analyses indicated that all four genes of the pgaABCD locus were required for PGA production in A. actinomycetemcomitans. PGA mutant strains still formed biofilms in vitro. Unlike wild-type biofilms, however, PGA mutant biofilms were sensitive to detachment by DNase I and proteinase K. Treatment of A. actinomycetemcomitans biofilms with the PGA-hydrolyzing enzyme dispersin B made them 3 log units more sensitive to killing by the cationic detergent cetylpyridinium chloride. Our findings suggest that PGA, extracellular DNA and proteinaceous adhesins all contribute to the structural integrity of the A. actinomycetemcomitans biofilm matrix.
Collapse
Affiliation(s)
- Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Irina Sadovskaya
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Hailin Wang
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Chandran Ragunath
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | | | - Saïd Jabbouri
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Malcolm B. Perry
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
243
|
Montanaro L, Campoccia D, Pirini V, Ravaioli S, Otto M, Arciola CR. Antibiotic multiresistance strictly associated with IS256 andica genes inStaphylococcus epidermidis strains from implant orthopedic infections. J Biomed Mater Res A 2007; 83:813-8. [PMID: 17559115 DOI: 10.1002/jbm.a.31399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study the presence both of the ica genes, encoding for biofilm exopolysaccharide production, and the insertion sequence IS256, a mobile element frequently associated to transposons, was investigated in relationship with the prevalence of antibiotic resistance among Staphylococcus epidermidis strains. The investigation was conducted on 70 clinical isolates derived from orthopedic implant infections. Among the clinical isolates investigated a dramatic high level of association was found between the presence of ica genes as well as of IS256 and multiple-resistance to all the antibiotics tested (oxacillin, penicillin, gentamicin, erythromycin, clindamycin, chloramphenicol, sulfamethoxazole + trimethoprim, ciprofloxacin, vancomycin). Noteworthy, a striking full association between the presence of IS256 and resistance to gentamicin was found, being none of the IS256-negative strain resistant to this antibiotic. This association is probably because of the link of the corresponding aminoglycoside-resistance genes, and IS256, often co-existing within the same staphylococcal transposon. In conclusion, in orthopedics, the presence of ica genes and that of IS256 in S. epidermidis genome should both be considered as informative markers of clinically relevant strains equipped with greatest and broadest resistance potential to survive to medical treatments.
Collapse
Affiliation(s)
- Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
244
|
Liberto MC, Matera G, Quirino A, Lamberti AG, Capicotto R, Puccio R, Barreca GS, Focà E, Cascio A, Focà A. Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiol Res 2007; 164:522-8. [PMID: 17928210 DOI: 10.1016/j.micres.2007.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/14/2007] [Accepted: 04/18/2007] [Indexed: 10/22/2022]
Abstract
Twenty-nine staphylococcal isolates from different clinical samples were tested for slime production: phenotypic characterization was carried out using Christensen test (tube test) and Congo red agar plate test (CRA plate test), while the presence and expression of icaA and icaD genes were evaluated by real-time PCR. In 79.3% of studied strains there was a concordance between slime production and presence of icaA and icaD genes, and between lack of slime production and absence of both or only one of the tested genes. In four of five strains where positive phenotype was not associated with the presence of ica genes, gene co-expression (evaluated by mRNA determination) was lacking, while in only a case out of five, there was the presence of transcripts without phenotype. Our study, for the first time, introduces real-time PCR for the detection of both icaA and icaD genes and their mRNA and, furthermore, addresses the relationship between slime phenotype absence and mRNA expression, in clinical isolates of coagulase-negative staphylococci.
Collapse
Affiliation(s)
- Maria Carla Liberto
- Department of Medical Sciences, Institute of Microbiology, University Magna Graecia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Manuel SGA, Ragunath C, Sait HBR, Izano EA, Kaplan JB, Ramasubbu N. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. FEBS J 2007; 274:5987-99. [PMID: 17949435 DOI: 10.1111/j.1742-4658.2007.06121.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dispersin B (DspB), a family 20 beta-hexosaminidase from the oral pathogen Aggregatibacter actinomycetemcomitans, cleaves beta(1,6)-linked N-acetylglucosamine polymer. In order to understand the substrate specificity of DspB, we have undertaken to characterize several conserved and nonconserved residues in the vicinity of the active site. The active sites of DspB and other family 20 hexosaminidases possess three highly conserved acidic residues, several aromatic residues and an arginine at subsite -1. These residues were mutated using site-directed mutagenesis and characterized for their enzyme activity. Our results show that a highly conserved acid pair in beta-hexosaminidases D183 and E184, and E332 play a critical role in the hydrolysis of the substrates. pH activity profile analysis showed a shift to a higher pH (6.8) in the optimal activity for the E184Q mutant, suggesting that this residue might act as the acid/base catalyst. The reduction in k(cat) observed for Y187A and Y278A mutants suggests that the Y187 residue (unique to DspB) located on a loop might play a role in substrate specificity and be a part of subsite +1, whereas the hydrogen-bond interaction between Y278A and the N-acetyl group might help to stabilize the transition state. Mutation of W237 and W330 residues abolished hydrolytic activity completely suggesting that alteration at these positions might collapse the binding pocket for the N-acetyl group. Mutation of the conserved R27 residue (to R27A or R27K) also caused significant reduction in k(cat) suggesting that R27 might be involved in stabilization of the transition state. From these results, we conclude that in DspB, and possibly in other structurally similar family 20 hydrolases, some residues at the active site assist in orienting the N-acetyl group to participate in the substrate-assisted mechanism, whereas other residues such as R27 and E332 assist in holding the terminal N-acetylglucosamine during the hydrolysis.
Collapse
Affiliation(s)
- Suba G A Manuel
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
246
|
Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 2007; 3:e102. [PMID: 17676995 PMCID: PMC1933452 DOI: 10.1371/journal.ppat.0030102] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 06/04/2007] [Indexed: 12/19/2022] Open
Abstract
It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified d-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound d-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants. In humans, lysozyme plays an important role in the suppression of bacterial infections. However, some bacterial pathogens, such as Staphylococcus aureus, are completely resistant to lysozyme. Here we demonstrate that lysozyme acts on S. aureus in two ways: as a muramidase (cell wall lytic enzyme) and as a cationic antimicrobial peptide (CAMP). S. aureus has developed resistance mechanisms against both activities by modifying distinct cell wall structures. Modification of the peptidoglycan by O-acetylation (OatA) renders the cells resistant to the muramidase activity. Modification of teichoic acids by d-alanine esterification (Dlt) renders the cells resistant to lysozyme's CAMPs and other CAMPs. Transcriptome analysis of the glycopeptide resistance-associated (GraRS) two-component system revealed that this global regulator controls 248 genes such as other global regulators, colonization factors, or exotoxin-encoding genes. Since GraRS also upregulates the dlt operon, it was not surprising that in the graRS mutant teichoic acid d-alanylation is markedly decreased, which explains its increased sensitivity to CAMPs. By comparative analysis of mutants we were able to dissect genes that were responsive to the dual activities of lysozyme. Here we show how efficiently S. aureus is protected from the human defense system, which enables this pathogen to cause persistent infections.
Collapse
Affiliation(s)
- Silvia Herbert
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Agnieszka Bera
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Christiane Nerz
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Dirk Kraus
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Christiane Goerke
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Michael Meehl
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Ambrose Cheung
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Friedrich Götz
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
247
|
Greco C, Martincic I, Gusinjac A, Kalab M, Yang AF, Ramírez-Arcos S. Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. Transfusion 2007; 47:1143-53. [PMID: 17581148 DOI: 10.1111/j.1537-2995.2007.01249.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Staphylococcus epidermidis grows slowly in platelet (PLT) preparations compared to other bacteria, presenting the possibility of missed detection by routine screening. S. epidermidis is a leading cause of nosocomial sepsis, with virulence residing in its ability to establish chronic infections through production of slime layers, or biofilms, on biomedical devices. This study aims to establish biofilm formation (BF) as a mode of growth by S. epidermidis in PLT preparations. STUDY DESIGN AND METHODS Biofilm-positive (BFpos) and -negative (BFneg) S. epidermidis strains were grown in whole blood-derived PLTs (WBDPs) and in glucose-rich medium (TSBg). An assay for BF was adapted for cultures grown in WBDPs or filtered WBDPs in polystyrene culture plates. Bacterial attachment to polyvinylchloride PLT bags and PLTs was examined by scanning electron microscopy. RESULTS Both strains display similar growth profiles in WBDPs and TSBg. Unexpectedly, evidence of BF was observed on PLT bags and on PLTs directly, not only by the BFpos strain but also by the BFneg strain. The BFpos strain displayed greater plastic adherence than the BFneg strain in WBDPs (p < 0.05). BF by the BFneg strain was approximately 10-fold greater in WBDPs compared to TSBg (p < 0.05), likely by use of PLTs as a scaffold. Furthermore, BF by S. epidermidis was significantly decreased when PLT concentration was reduced 1000-fold. CONCLUSIONS S. epidermidis forms biofilms on PLT aggregates and on PLT bags under PLT storage conditions. Our results demonstrate that the PLT storage environment can promote a BF growth mechanism for contaminant bacteria.
Collapse
Affiliation(s)
- Carey Greco
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
248
|
Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C, Kher WB, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007; 43:1-9. [PMID: 17412552 PMCID: PMC1950449 DOI: 10.1016/j.micpath.2007.02.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
Most field isolates of the swine pathogen Actinobacillus pleuropneumoniae form tenacious biofilms on abiotic surfaces in vitro. We purified matrix polysaccharides from biofilms produced by A. pleuropneumoniae field isolates IA1 and IA5 (serotypes 1 and 5, respectively), and determined their chemical structures by using NMR spectroscopy. Both strains produced matrix polysaccharides consisting of linear chains of N-acetyl-D-glucosamine (GlcNAc) residues in beta(1,6) linkage (poly-beta-1,6-GlcNAc or PGA). A small percentage of the GlcNAc residues in each polysaccharide were N-deacetylated. These structures were nearly identical to those of biofilm matrix polysaccharides produced by Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. PCR analyses indicated that a gene encoding the PGA-specific glycoside transferase enzyme PgaC was present on the chromosome of 15 out of 15 A. pleuropneumoniae reference strains (serotypes 1-12) and 76 out of 77 A. pleuropneumoniae field isolates (serotypes 1, 5 and 7). A pgaC mutant of strain IA5 failed to form biofilms in vitro, as did wild-type strains IA1 and IA5 when grown in broth supplemented with the PGA-hydrolyzing enzyme dispersin B. Treatment of IA5 biofilms with dispersin B rendered them more sensitive to killing by ampicillin. Our findings suggest that PGA functions as a major biofilm adhesin in A. pleuropneumoniae. Biofilm formation may have relevance to the colonization and pathogenesis of A. pleuropneumoniae in pigs.
Collapse
Affiliation(s)
- Era A. Izano
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - Irina Sadovskaya
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Martha H. Mulks
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chandran Ragunath
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | - William B. Kher
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| | | | - Saïd Jabbouri
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies INSERM ERI 002, Université du Littoral-Côte d’Opale, Boulogne-sur-mer 62327, France
| | - Malcolm B. Perry
- Institute for Biological Sciences, National Research Council, Ottawa, K1A 0R6 Ontario, Canada
| | - Jeffrey B. Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, NJ 07103, USA
| |
Collapse
|
249
|
Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, Sifri CD. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog 2007; 3:e57. [PMID: 17447841 PMCID: PMC1853117 DOI: 10.1371/journal.ppat.0030057] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 03/05/2007] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA) in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP) kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host–pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation. Biofilm is an agglomeration of microbes bound together by a slimy matrix composed of excreted proteins and polysaccharide polymers. Most bacteria in the environment reside in biofilms, as do 80% or more of those causing human infections, according to some estimates. During infection, biofilm matrix acts as a safe haven, protecting bacterial cells from antibiotics, immune cells, and antimicrobial factors. In this report, we demonstrate that the ability of Staphylococcus epidermidis to produce a lethal infection within the intestinal tract of the roundworm Caenorhabditis elegans depends on the S. epidermidis intercellular adhesion (ica) locus, which is responsible for the synthesis of the principal exopolysaccharide of staphylococcal biofilm, polysaccharide intercellular adhesin (PIA). Using a collection of bacterial and nematode mutants, we show that PIA promotes infection by working against protective immune factors controlled by the C. elegans SEK-1 PMK-1 p38 mitogen-activated protein kinase pathway. In addition to providing further evidence for the immunoprotective function of the biofilm polymer PIA, these results show that C. elegans can be used in a simple, live animal model for the study of host–pathogen interactions involving biofilm matrix.
Collapse
Affiliation(s)
- Jakob Begun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica M Gaiani
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Dietrich Mack
- Medical Microbiology and Infectious Diseases, The School of Medicine, University of Wales Swansea, Swansea, United Kingdom
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Costi D Sifri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
250
|
Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 2007; 51:2733-40. [PMID: 17548491 PMCID: PMC1932551 DOI: 10.1128/aac.01249-06] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapies to eradicate medical device-associated infections often fail because of the ability of sessile bacteria, encased in their exopolysaccharide matrix, to be more drug resistant than planktonic organisms. In the last two decades, several strategies to prevent microbial adhesion and biofilm formation on the surfaces of medical devices, based mainly on the use of antiadhesive, antiseptic, and antibiotic coatings on polymer surfaces, have been developed. More recent alternative approaches are based on molecules able to interfere with quorum-sensing phenomena or to dissolve biofilms. Interestingly, a newly purified beta-N-acetylglucosaminidase, dispersin B, produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans, is able to dissolve mature biofilms produced by Staphylococcus epidermidis as well as some other bacterial species. Therefore, in this study, we developed new polymeric matrices able to bind dispersin B either alone or in combination with an antibiotic molecule, cefamandole nafate (CEF). We showed that our functionalized polyurethanes could adsorb a significant amount of dispersin B, which was able to exert its hydrolytic activity against the exopolysaccharide matrix produced by staphylococcal strains. When microbial biofilms were exposed to both dispersin B and CEF, a synergistic action became evident, thus characterizing these polymer-dispersin B-antibiotic systems as promising, highly effective tools for preventing bacterial colonization of medical devices.
Collapse
Affiliation(s)
- G Donelli
- Department of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|