201
|
Bonagura TW, Deng M, Brown TR. A naturally occurring mutation in the human androgen receptor of a subject with complete androgen insensitivity confers binding and transactivation by estradiol. Mol Cell Endocrinol 2007; 263:79-89. [PMID: 17011702 DOI: 10.1016/j.mce.2006.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
The clinical phenotype of complete androgen insensitivity (CAIS) was associated with a mutation in the human androgen receptor (hAR) gene encoding the amino acid substitution, M745I, in the hAR protein. Transcriptional activation of hAR(M745I) by the synthetic androgen, methyltrienolone (R1881), was reduced compared to wild-type (wt) hAR. The transcriptional co-activator, androgen receptor associated protein 70 (ARA70), failed to enhance transactivation of hAR(M745I) at lower concentrations of R1881 (0.01-0.1 nM), whereas the p160 co-activators, SRC-1 and TIF2, stimulated activity. Transcriptional activity of hAR(M745I) was stimulated by 1 or 10 nM R1881 and activity was further enhanced by co-expression of ARA70 similar to that of the hAR(wt). Transcriptional activity of hAR(wt) was minimally stimulated by estradiol (E2) without or with co-expression of ARA70, whereas 10 or 100 nM E2 increased transactivation by hAR(M745I) of the androgen-responsive MMTV-luciferase reporter gene by 10-fold and activity was further enhanced by ARA70. Increasing concentrations of E2 competed more effectively for binding of R1881 to hAR(M745I) than to hAR(wt), indicative of the preferential binding of E2 to the mutant hAR. Partial tryptic digestion of hAR wt and M745I revealed that activation of the mutant protein was reduced in the presence of R1881. By contrast, tryptic digestion showed that the mutant hAR was activated by the binding of E2. In conclusion, the clinical phenotype of CAIS resulted from a hAR gene mutation encoding hAR(M745I) with reduced binding and transactivation by androgens, but the novel properties of enhanced affinity for and increased transactivation by estradiol.
Collapse
Affiliation(s)
- Thomas W Bonagura
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2103, United States
| | | | | |
Collapse
|
202
|
Affiliation(s)
- Elizabeth M Wilson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7500, USA
| |
Collapse
|
203
|
Qi W, Wu H, Yang L, Boyd DD, Wang Z. A novel function of caspase-8 in the regulation of androgen-receptor-driven gene expression. EMBO J 2006; 26:65-75. [PMID: 17170703 PMCID: PMC1782381 DOI: 10.1038/sj.emboj.7601483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 09/11/2006] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation by the androgen receptor (AR) is critical for male sexual development and prostate cancer. In this study, we used an expression cloning strategy to identify molecules that regulate AR-driven transcription. Screening of a human cDNA library resulted in isolation of caspase-8 (Casp8), an initiator caspase that mediates death-receptor-induced apoptosis. Casp8 repressed AR-dependent gene expression independently of its apoptotic protease activity by disrupting AR amino-terminal and carboxy-terminal (N/C) interaction and inhibiting androgen-induced AR nuclear localization. Protein-protein interaction analysis revealed that three motifs in Casp8 specifically interacted with the motifs that are known to be involved in AR N/C interaction. Substitutions of the amino-acid residues critical for AR-Casp8 interactions abolished the Casp8-mediated inhibition of AR transactivation. In addition, knockdown of Casp8 by RNA interference specifically affected the androgen-dependent expression of AR-targeting genes in LNCaP cells. These results indicate that Casp8 has a novel function beyond its known role in the mediation of apoptosis.
Collapse
Affiliation(s)
- Wei Qi
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Wu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas D Boyd
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhengxin Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030-4009, USA. Tel.: +1 713 794 1035; Fax: +1 713 792 8747; E-mail:
| |
Collapse
|
204
|
Abstract
Androgen resistance causes the androgen insensitivity syndrome in its variant forms and is a paradigm of clinical syndromes associated with hormone resistance. In its complete form, the syndrome causes XY sex reversal and a female phenotype. Partial resistance to androgens is a common cause of ambiguous genitalia of the newborn, but a similar phenotype may result from several other conditions, including defects in testis determination and androgen biosynthesis. The biological actions of androgens are mediated by a single intracellular androgen receptor encoded by a gene on the long arm of the X chromosome. Mutations in this gene result in varying degrees of androgen receptor dysfunction and phenotypes that often show poor concordance with the genotype. Functional characterization and three-dimensional modelling of novel mutant receptors has been informative in understanding the mechanism of androgen action. Management issues in syndromes of androgen insensitivity include decisions on sex assignment, timing of gonadectomy in relation to tumour risk, and genetic and psychological counselling.
Collapse
Affiliation(s)
- Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | | |
Collapse
|
205
|
Karvonen U, Jänne OA, Palvimo JJ. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 2006; 312:3165-83. [PMID: 16860317 DOI: 10.1016/j.yexcr.2006.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.
Collapse
Affiliation(s)
- Ulla Karvonen
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
206
|
Werner R, Schütt J, Hannema S, Röpke A, Wieacker P, Hiort O, Holterhus PM. Androgen receptor gene mutations in androgen insensitivity syndrome cause distinct patterns of reduced activation of androgen-responsive promoter constructs. J Steroid Biochem Mol Biol 2006; 101:1-10. [PMID: 16930995 DOI: 10.1016/j.jsbmb.2006.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Assessment of quantitative impairment of reporter gene activation is an important strategy proving pathogenetic relevance of androgen receptor (AR)-gene mutations in androgen insensitivity syndrome (AIS). We hypothesized the additional existence of mutation-specific patterns of reduced target gene activation. Four AR-gene mutations causing AIS, L712F, M780I, R855H, and V866M, respectively, were recreated in an AR-expression plasmid. Activation of three structurally different androgen-dependent promoters (MMTV, (ARE)2TATA, and GRE-OCT) was measured in transfected CHO-cells in response to dihydrotestosterone (DHT), testosterone, androstenedione and stanozolol (S). V866M showed the lowest activity across all conditions. R855H exhibited strikingly high activation of MMTV in response to DHT. M780I showed markedly low activation of (ARE)2TATA by S. L712F demonstrated high activation of GRE-OCT. In essence, each mutation was characterized in this model by a specific pattern of reduced reporter gene activation. Our AR crystal structure analyses showed that L712 and M780 may cause distinct alterations of AR-ligand- and AR-coregulator interaction interfaces supporting the experimental observations. Our data support the hypothesis that mutations of the AR-gene in AIS induce mutation-specific patterns of reduced promoter activation in vitro. Considering the diversity of natural androgen-regulated promoters, mutation-specific differences of androgen response patterns may be of relevance in vivo and consequently may influence the AIS-phenotype. Assessment of transactivation patterns in vitro may be an interesting concept to extend functional description of AR-gene mutations in AIS.
Collapse
Affiliation(s)
- Ralf Werner
- Department of Pediatric and Adolescent Medicine, University of Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
207
|
Dehm SM, Tindall DJ. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem 2006; 281:27882-93. [PMID: 16870607 DOI: 10.1074/jbc.m605002200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen ablation inhibits androgen receptor (AR) activity and is as an effective treatment for advanced prostate cancer (PCa). Invariably, PCa relapses in a form resistant to further hormonal manipulations. Although this stage of the disease is androgen-refractory, or androgen depletion-independent (ADI), most tumors remain AR-dependent through aberrant mechanisms of AR activation. We employed the LNCaP/C4-2 model of PCa progression to study AR activity in androgen-dependent and ADI PCa cells. In this report, we show that the AR is transcriptionally inactive in androgen-dependent LNCaP cells in the absence of androgens. However, in ADI C4-2 cells, the AR displays a high level of constitutive, androgen-independent transcriptional activity. To study the mechanisms of ligand-dependent and ligand-independent AR activation in these AR-expressing cells, we generated a reporter system based on swapping the DNA binding domain of the AR with the DNA binding domain of the yeast Gal4 transcription factor. In androgen-dependent PCa cells, the well characterized C-terminal AR activation function-2 (AF-2) domain was critical for strong, ligand-dependent activity. Conversely, in ADI PCa cells, constitutive, ligand-independent AR activity was AF-2-independent but instead dependent on N-terminal AR domains. Importantly, the ligand- and AF-2-independent mode of AR activation observed in ADI PCa cells was completely resistant to the antiandrogen, bicalutamide. Our data thus demonstrate that the AR can inappropriately activate transcription in ADI PCa cells via mechanisms that are resistant to castration and AR antagonism, the two modes of androgen ablation used to treat advanced PCa.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
208
|
Tung L, Abdel-Hafiz H, Shen T, Harvell DME, Nitao LK, Richer JK, Sartorius CA, Takimoto GS, Horwitz KB. Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol Endocrinol 2006; 20:2656-70. [PMID: 16762974 DOI: 10.1210/me.2006-0105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The two, nearly identical, isoforms of human progesterone receptors (PR), PR-B and -A, share activation functions (AF) 1 and 2, yet they possess markedly different transcriptional profiles, with PR-B being much stronger transactivators. Their differences map to a unique AF3 in the B-upstream segment (BUS), at the far N terminus of PR-B, which is missing in PR-A. Combined mutation of two LXXLL motifs plus tryptophan 140 in BUS, to yield PR-BdL140, completely destroys PR-B activity, because strong AF3 synergism with downstream AF1 and AF2 is eliminated. This synergism involves cooperative interactions among receptor multimers bound at tandem hormone response elements and is transferable to AFs of other nuclear receptors. Other PR-B functions-N-/C-terminal interactions, steroid receptor coactivator-1 coactivation, ligand-dependent down-regulation-also require an intact BUS. All three are autonomous in PR-A, and map to N-terminal regions common to both PR. This suggests that the N-terminal structure adopted by the two PR is different, and that for PR-B, this is controlled by BUS. Indeed, gene expression profiling of breast cancer cells stably expressing PR-B, PR-BdL140, or PR-A shows that mutation of AF3 destroys PR-B-dependent gene transcription without converting PR-B into PR-A. In sum, AF3 in BUS plays a critical modulatory role in PR-B, and in doing so, defines a mechanism for PR-B function that is fundamentally distinct from that of PR-A.
Collapse
Affiliation(s)
- Lin Tung
- Department of Medicine, RC1 South, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Iyer AK, Zhang YH, McCabe ERB. Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1) and small heterodimer partner (SHP) (NR0B2) form homodimers individually, as well as DAX1-SHP heterodimers. Mol Endocrinol 2006; 20:2326-42. [PMID: 16709599 DOI: 10.1210/me.2005-0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1) (NR0B1), and small heterodimer partner (SHP) (NR0B2) are atypical nuclear receptor superfamily members that function primarily as corepressors through heterodimeric interactions with other nuclear receptors. Mutations in DAX1 cause adrenal hypoplasia congenita, and mutations in SHP lead to mild obesity and insulin resistance, but the mechanisms are unclear. We investigated the existence and subcellular localization of DAX1 and SHP homodimers and the dynamics of homodimerization. We demonstrated DAX1 homodimerization in the nucleus and cytoplasm, and dissociation of DAX1 homodimers upon heterodimerization with steroidogenic factor 1 (SF1) or ligand-activated estrogen receptor-alpha (ERalpha). DAX1 homodimerization involved an interaction between its amino and carboxy termini involving its LXXLL motifs and activation function (AF)-2 domain. We observed SHP homodimerization in the nucleus of mammalian cells and showed dissociation of SHP homodimers upon heterodimerization with ligand-activated ERalpha. We observed DAX1-SHP heterodimerization in the nucleus of mammalian cells and demonstrated the involvement of the LXXLL motifs and AF-2 domain of DAX1 in this interaction. We further demonstrate heterodimerization of DAX1 with its alternatively spliced isoform, DAX1A. This is the first evidence of homodimerization of individual members of the unusual NR0B nuclear receptor family and heterodimerization between its members. Our results suggest that DAX1 forms antiparallel homodimers through the LXXLL motifs and AF-2 domain. These homodimers may function as holding reservoirs in the absence of heterodimeric partners. The formation of DAX1 and SHP homodimers and DAX1-SHP and DAX1-DAX1A heterodimers suggests the possibility of novel functions independent of their coregulator roles, suggesting additional complexity in the molecular mechanisms of DAX1 and SHP action.
Collapse
Affiliation(s)
- Anita K Iyer
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095-1752, USA
| | | | | |
Collapse
|
210
|
van de Wijngaart DJ, van Royen ME, Hersmus R, Pike ACW, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ. Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 2006; 281:19407-16. [PMID: 16690616 DOI: 10.1074/jbc.m602567200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon hormone binding, a hydrophobic coactivator binding groove is induced in the androgen receptor (AR) ligand-binding domain (LBD). This groove serves as high affinity docking site for alpha-helical FXXLF motifs present in the AR N-terminal domain and in AR cofactors. Study of the amino acid requirements at position +4 of the AR FXXLF motif revealed that most amino acid substitutions strongly reduced or completely abrogated AR LBD interaction. Strong interactions were still observed following substitution of Leu+4 by Phe or Met residues. Leu+4 to Met or Phe substitutions in the FXXLF motifs of AR cofactors ARA54 and ARA70 were also compatible with strong AR LBD binding. Like the corresponding FXXLF motifs, interactions of FXXFF and FXXMF variants of AR and ARA54 motifs were AR specific, whereas variants of the less AR-selective ARA70 motif displayed increased AR specificity. A survey of currently known AR-binding proteins revealed the presence of an FXXFF motif in gelsolin and an FXXMF motif in PAK6. In vivo fluorescence resonance energy transfer and functional protein-protein interaction assays showed direct, efficient, and specific interactions of both motifs with AR LBD. Mutation of these motifs abrogated interaction of gelsolin and PAK6 proteins with AR. In conclusion, we have demonstrated strong interaction of FXXFF and FXXMF motifs to the AR coactivator binding groove, thereby mediating specific binding of a subgroup of cofactors to the AR LBD.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Butler LM, Centenera MM, Neufing PJ, Buchanan G, Choong CSY, Ricciardelli C, Saint K, Lee M, Ochnik A, Yang M, Brown MP, Tilley WD. Suppression of Androgen Receptor Signaling in Prostate Cancer Cells by an Inhibitory Receptor Variant. Mol Endocrinol 2006; 20:1009-24. [PMID: 16423882 DOI: 10.1210/me.2004-0401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is increasing evidence that sensitization of the androgen receptor (AR) signaling pathway contributes to the failure of androgen ablation therapy for prostate cancer, and that direct targeting of the AR may be a useful therapeutic approach. To better understand how AR function could be abrogated in prostate cancer cells, we have developed a series of putative dominant-negative variants of the human AR, containing deletions or mutations in activation functions AF-1, AF-5, and/or AF-2. One construct, AR inhibitor (ARi)-410, containing a deletion of AF-1 and part of AF-5 of the AR, had no intrinsic transactivation activity but inhibited wild-type AR (wtAR) in a ligand-dependent manner by at least 95% when transfected at a 4:1 molar ratio. ARi-410 was an equally potent inhibitor of gain-of-function AR variants. Ectopic expression of ARi-410 inhibited the proliferation of AR-positive LNCaP cells, but not AR-negative PC-3 cells. Whereas ARi-410 also marginally inhibited progesterone receptor activity, this was far less pronounced than the effect on AR (50% vs. 95% maximal inhibition, respectively), and there was no inhibition of either vitamin D or estrogen receptor activity. In the presence of ligand, ARi-410 interacted with wtAR, and both receptors translocated into the nucleus. Whereas the amino-carboxy terminal interaction was not necessary for optimal dominant-negative activity, disruption of dimerization through the ligand binding domain reduced the efficacy of ARi-410. In addition, although inhibition of AR function by ARi-410 was not dependent on DNA binding, the DNA binding domain was required for dominant-negative activity. Taken together, our results suggest that interaction between ARi-410 and the endogenous AR in prostate cancer cells, potentially through the DNA binding and ligand binding domains, results in a functionally significant reduction in AR signaling and AR-dependent cell growth.
Collapse
Affiliation(s)
- Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Department of Medicine, The University of Adelaide, Hanson Institute, P.O. Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Awais M, Sato M, Lee X, Umezawa Y. A Fluorescent Indicator To Visualize Activities of the Androgen Receptor Ligands in Single Living Cells. Angew Chem Int Ed Engl 2006; 45:2707-12. [PMID: 16555356 DOI: 10.1002/anie.200503185] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Awais
- Department of Chemistry, School of Science, The University of Tokyo and Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
213
|
Awais M, Sato M, Lee X, Umezawa Y. A Fluorescent Indicator To Visualize Activities of the Androgen Receptor Ligands in Single Living Cells. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
214
|
Dubbink HJ, Hersmus R, Pike ACW, Molier M, Brinkmann AO, Jenster G, Trapman J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 2006; 20:1742-55. [PMID: 16627595 DOI: 10.1210/me.2005-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
215
|
Li J, Fu J, Toumazou C, Yoon HG, Wong J. A Role of the Amino-Terminal (N) and Carboxyl-Terminal (C) Interaction in Binding of Androgen Receptor to Chromatin. Mol Endocrinol 2006; 20:776-85. [PMID: 16373397 DOI: 10.1210/me.2005-0298] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The N-terminal domain of AR is known to engage a hormone-dependent interaction with its C-terminal ligand-binding domain, and this N/C interaction is known to modulate AR transcriptional activity. Using Xenopus oocytes as a model system to study transcriptional regulation in chromatin, we found that two previously reported N/C interaction-defective AR mutants, one with deletion of 23FQNLF27(ARDeltaF) and one with a Gly 21 to Glu mutation (ARG21E), were surprisingly inactive in activating transcription from various reporters assembled into chromatin. Further study using chromatin immunoprecipitation assay revealed that these mutants failed to bind both mouse mammary tumor virus-long terminal repeat and prostate-specific antigen enhancer assembled into chromatin. This defect is specific to chromatin because both mutants could bind to a consensus AR response element in vitro and activate transcription driven by mouse mammary tumor virus-long terminal repeat in transient transfection as effective as the wild-type AR. To further substantiate this novel finding, we established 293 cell lines that stably expressed either AR or ARDeltaF mutant in an inducible manner. Using these cell lines, we confirmed by using chromatin immunoprecipitation assay that AR but not ARDeltaF could bind to the endogenous prostate-specific antigen enhancer. Furthermore, we found that the ARDeltaF mutant interacts poorly with Brg1, the ATPase subunit of the chromatin-remodeling factor SWI/SNF. Taken together, our study reveals a novel role of AR N/C interaction in control of AR chromatin binding and suggests a working model that the proper N/C interaction is required for AR to recruit SWI/SNF complex, which in turn remodels chromatin to allow AR to bind to AR response elements in chromatin.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
216
|
Kazmin D, Prytkova T, Cook CE, Wolfinger R, Chu TM, Beratan D, Norris JD, Chang CY, McDonnell DP. Linking ligand-induced alterations in androgen receptor structure to differential gene expression: a first step in the rational design of selective androgen receptor modulators. Mol Endocrinol 2006; 20:1201-17. [PMID: 16574741 DOI: 10.1210/me.2005-0309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we used a DNA microarray analysis to demonstrate that differently conformed receptors facilitate distinct patterns of gene expression in LNCaP cells. Interestingly, we observed a complete overlap in the identity of genes expressed after treatment with mechanistically distinct AR ligands. However, it was differences in the kinetics of gene regulation that distinguished these compounds. Follow-up studies, in cell-based assays of AR action, confirmed the importance of these alterations in gene expression. Together, these studies demonstrate an important link between AR structure, gene expression, and biological outcome. This relationship provides a firm underpinning for mechanism-based screens aimed at identifying SARMs with useful clinical profiles.
Collapse
Affiliation(s)
- Dmitri Kazmin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Carascossa S, Gobinet J, Georget V, Lucas A, Badia E, Castet A, White R, Nicolas JC, Cavaillès V, Jalaguier SS. Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Mol Endocrinol 2006; 20:1506-18. [PMID: 16527872 PMCID: PMC2246011 DOI: 10.1210/me.2005-0286] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that controls growth and survival of prostate cancer cells. In the present study, we investigated the regulation of AR activity by the receptor-interacting protein 140 (RIP140). We first showed that RIP140 could be coimmunoprecipitated with the receptor when coexpressed in 293T cells. This interaction appeared physiologically relevant because chromatin immunoprecipitation assays revealed that, under R1881 treatment, RIP140 could be recruited to the prostate-specific antigen encoding gene in LNCaP cells. In vitro glutathione S-transferase pull-down assays provided evidence that the carboxy-terminal domain of AR could interact with different regions of RIP140. By means of fluorescent proteins, we demonstrated that ligand-activated AR was not only able to translocate to the nucleus but also to relocate RIP140 from very structured nuclear foci to a diffuse pattern. Overexpression of RIP140 strongly repressed AR-dependent transactivation by preferentially targeting the ligand binding domain-dependent activity. Moreover, disruption of RIP140 expression induced AR overactivation, thus revealing RIP140 as a strong AR repressor. We analyzed its mechanism of transrepression and first demonstrated that different regions of RIP140 could mediate AR-dependent repression. We then showed that the carboxy-terminal end of RIP140 could reverse transcriptional intermediary factor 2-dependent overactivation of AR. The use of mutants of RIP140 allowed us to suggest that C-terminal binding protein played no role in RIP140-dependent inhibition of AR activity, whereas histone deacetylases partly regulated that transrepression. Finally, we provided evidence for a stimulation of RIP140 mRNA expression in LNCaP cells under androgen treatment, further emphasizing the role of RIP140 in androgen signaling.
Collapse
Affiliation(s)
- Sophie Carascossa
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Jérôme Gobinet
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Virginie Georget
- Institut Biologie Intégrative
Institut Biologie intégrative7 quai Saint-Bernard 75252 Paris Cedex 05,FR
| | - Annick Lucas
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Eric Badia
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Audrey Castet
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Roger White
- Institute of Reproductive and Developmental
Imperial College LondonDu Cane Road, London W12 0NN,GB
| | - Jean-Claude Nicolas
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Vincent Cavaillès
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Stéphan Sj Jalaguier
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
- * Correspondence should be adressed to: Stéphan Sj Jalaguier
| |
Collapse
|
218
|
He B, Gampe RT, Hnat AT, Faggart JL, Minges JT, French FS, Wilson EM. Probing the Functional Link between Androgen Receptor Coactivator and Ligand-binding Sites in Prostate Cancer and Androgen Insensitivity. J Biol Chem 2006; 281:6648-63. [PMID: 16365032 DOI: 10.1074/jbc.m511738200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor required for male sex development and virilization and contributes to prostate cancer initiation and progression. High affinity androgen binding triggers conformational changes required for AR transactivation. Here we characterized naturally occurring AR gene mutations in the region of activation function 2 (AF2) that decrease or increase AR transcriptional activity by altering the region bounded by AF2 and the ligand binding pocket without affecting equilibrium androgen binding affinity. In the androgen insensitivity syndrome, germ line AR mutations increase the androgen dissociation rate and reduce AR FXXLF motif binding and the recruitment of steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs. In prostate cancer, somatic AR mutations in AF2 or near the bound ligand slow androgen dissociation and increase AR stabilization and coactivator recruitment. Crystal structures of the AR ligand binding domain bound to R1881 and FXXLF or LXXLL motif peptide indicate the mutations are proximal to the AF2 bound peptide, adjacent to the ligand pocket, or in a putative ligand gateway. The results suggest a bidirectional structural relay between bound ligand and coactivator that establishes AR functional potency in vivo.
Collapse
Affiliation(s)
- Bin He
- Laboratory for Reproductive Biology, Lineberger Comprehensive Cancer Center, Department of Pediatrics, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Alimirah F, Chen J, Xin H, Choubey D. Androgen receptor auto-regulates its expression by a negative feedback loop through upregulation of IFI16 protein. FEBS Lett 2006; 580:1659-64. [PMID: 16494870 DOI: 10.1016/j.febslet.2006.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 01/26/2023]
Abstract
Expression of androgen receptor (AR) in prostate epithelial cells is thought to regulate cell proliferation, differentiation, and survival. However, the molecular mechanisms remain unclear. We report that re-expression of AR in PC-3 human prostate cancer cell line resulted in upregulation of IFI16 protein, a negative regulator of cell growth. We found that the IFI16 protein bound to AR in a ligand-dependent manner and the DNA-binding domain (DBD) of the AR was sufficient to bind IFI16. Furthermore, re-expression of IFI16 protein in LNCaP prostate cancer cells, which do not express IFI16 protein, resulted in downregulation of AR expression and an inhibition of the expression of AR target genes. Our observations identify a role for IFI16 protein in AR-mediated functions.
Collapse
Affiliation(s)
- Fatouma Alimirah
- Department of Radiation Oncology, Loyola University Chicago and Edward Hines Jr. VA Hospital, 5th Avenue and Roosevelt Road, Building #1, Mail Code 114B, Hines, IL 60141, USA
| | | | | | | |
Collapse
|
220
|
Katoh H, Ogino Y, Yamada G. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis. FEBS Lett 2006; 580:1607-15. [PMID: 16480982 DOI: 10.1016/j.febslet.2006.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/27/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
We cloned a full-length androgen receptor (AR) cDNA from chicken (Gallus gallus) gonads. The cDNA sequence has an open reading frame of 2109 bp encoding 703 amino acids. The chicken AR (cAR) shares high homology with ARs from other species in its amino acid sequences, in particular DNA binding domain (DBD) and ligand binding domain (LBD). RT-PCR analysis revealed that cAR mRNA is expressed in several embryonic tissues of both sexes, and relatively higher expression was observed in left ovary compared with testis. The immunoreactive signal of AR was co-localized within the ovarian cell nucleus, while such nuclear localization was not detected in those of testis. To get insight on the possible role of androgen-AR signaling during gonadal development, non-steroidal AR antagonist, flutamide, was administrated in ovo. The treatment induced the disorganization of sex cords in ovarian cortex at day 12 of incubation. The effect was restored by testosterone co-treatment, implying the possibility that AR mediated signaling may be involved in ovarian morphogenesis. Furthermore, co-treatment of flutamide with estradiol-17beta (E2) also restored the phenotype, suggesting androgen-AR signaling might activate aromatase expression that is necessary for estrogen synthesis. These findings suggest androgen-AR signaling might contribute to chicken embryonic ovarian development.
Collapse
Affiliation(s)
- Hironori Katoh
- Center for Animal Resources and Development (CARD), Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
221
|
Lavery D, Mcewan I. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2006; 391:449-64. [PMID: 16238547 PMCID: PMC1276946 DOI: 10.1042/bj20050872] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving alpha-helix structure, in response to protein-protein interactions and structure-stabilizing solutes.
Collapse
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Iain J. Mcewan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
222
|
Burd CJ, Petre CE, Morey LM, Wang Y, Revelo MP, Haiman CA, Lu S, Fenoglio-Preiser CM, Li J, Knudsen ES, Wong J, Knudsen KE. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A 2006; 103:2190-5. [PMID: 16461912 PMCID: PMC1413684 DOI: 10.1073/pnas.0506281103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin D1 is a multifaceted regulator of both transcription and cell-cycle progression that exists in two distinct isoforms, cyclin D1a and D1b. In the prostate, cyclin D1a acts through discrete mechanisms to negatively regulate androgen receptor (AR) activity and thus limit androgen-dependent proliferation. Accordingly, cyclin D1a is rarely overexpressed in prostatic adenocarcinoma and holds little prognostic value in this tumor type. However, a common polymorphism (A870) known to facilitate production of cyclin D1b is associated with increased prostate cancer risk. Here we show that cyclin D1b is expressed at high frequency in prostate cancer and is up-regulated in neoplastic disease. Furthermore, our data demonstrate that, although cyclin D1b retains AR association, it is selectively compromised for AR regulation. The altered ability of cyclin D1b to regulate the AR was observed by using both in vitro and in vivo assays and was associated with compromised regulation of AR-dependent proliferation. Consistent with previous reports, expression of cyclin D1a inhibited cell-cycle progression in AR-dependent prostate cancer cells. Strikingly, cyclin D1b significantly stimulated proliferation in this cell type. AR-negative prostate cancer cells were nonresponsive to cyclin D1 (a or b) expression, indicating that defects in AR corepressor function yield a growth advantage specifically in AR-dependent cells. In summary, these studies indicate that the altered AR regulatory capacity of cyclin D1b contributes to its association with increased prostate cancer risk and provide evidence of cyclin D1b-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher A. Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089
| | - Shan Lu
- Pathology and Laboratory Medicine and
| | | | - Jiwen Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Erik S. Knudsen
- Departments of *Cell Biology and
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH 45267
| | - Jiemin Wong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Karen E. Knudsen
- Departments of *Cell Biology and
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH 45267
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
223
|
Chang CY, Abdo J, Hartney T, McDonnell DP. Development of Peptide Antagonists for the Androgen Receptor Using Combinatorial Peptide Phage Display. Mol Endocrinol 2005; 19:2478-90. [PMID: 16051662 DOI: 10.1210/me.2005-0072] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Under the auspices of the Nuclear Receptor Signaling Atlas (NURSA) , we have undertaken to evaluate the feasibility of targeting nuclear receptor-coactivator surfaces for new drug discovery. The underlying objective of this approach is to provide the research community with reagents that can be used to modulate the transcriptional activity of nuclear receptors. Using combinatorial peptide phage display, we have been able to develop peptide antagonists that target specific nuclear receptor (NR)-coactivator binding surfaces. It can be appreciated that reagents of this nature will be of use in the study of orphan nuclear receptors for whom classical ligands have not yet been identified. In addition, because the interaction of coactivators with the receptor is an obligate step for NR transcriptional activity, it is anticipated that peptides that block these interactions will enable the definition of the biological and pharmacological significance of individual NR-coactivator interactions. In this report, we describe the use of this approach to develop antagonists of the androgen receptor by targeting its coactivator-binding pocket and their use to study the coactivator-binding surface of this receptor. Based on our findings, we believe that molecules that function by disrupting the androgen receptor-cofactor interactions will have use in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
224
|
Buchanan G, Birrell SN, Peters AA, Bianco-Miotto T, Ramsay K, Cops EJ, Yang M, Harris JM, Simila HA, Moore NL, Bentel JM, Ricciardelli C, Horsfall DJ, Butler LM, Tilley WD. Decreased Androgen Receptor Levels and Receptor Function in Breast Cancer Contribute to the Failure of Response to Medroxyprogesterone Acetate. Cancer Res 2005; 65:8487-96. [PMID: 16166329 DOI: 10.1158/0008-5472.can-04-3077] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we reported that androgen receptor (AR), but not estrogen receptor (ER) or progesterone receptor (PR), is predictive of response to the synthetic progestin, medroxyprogesterone acetate (MPA), in a cohort of 83 patients with metastatic breast cancer. To further investigate the role of AR in determining response to MPA in this cohort, we analyzed AR levels by immunohistochemistry with two discrete antisera directed at either the NH2 or the COOH termini of the receptor. Compared with tumors that responded to MPA (n = 31), there was a significant decrease in the intensity and extent of AR immunoreactivity with both AR antisera in tumors from nonresponders (n = 52). Whereas only a single AR immunostaining pattern was detected in responders to MPA, reflecting concordance of immunoreactivity with the two AR antisera, tumors from nonresponders exhibited four distinct AR immunostaining patterns: (a) concordance with the two antibodies (31%), (b) staining only with the COOH-terminal antibody (33%), (c) staining only with the NH2-terminal antibody (22%), or (d) no immunoreactivity with either NH2- or COOH-terminal antibody (14%). DNA sequencing and functional analysis identified inactivating missense gene mutations in the ligand-binding domain of the AR in tumors from two of nine nonresponders positive with the NH2-terminal AR antisera but negative for COOH-terminal immunoreactivity and lacking specific, high-affinity dihydrotestosterone binding in tumor cytosol fractions. Tumors with more AR than the median level (37 fmol/mg protein) had significantly lower levels of PR (30 fmol/mg protein) than tumors with low AR (PR; 127 fmol/mg protein) despite comparable levels of ER. Ligand-dependent activation of the AR in human T47D and MCF-7 breast cancer cells resulted in inhibition of estradiol-stimulated cell proliferation and a reduction in the capacity of the ER to induce expression of the PR. These effects could be reversed using a specific AR antisense oligonucleotide. Increasing the ratio of AR to ER resulted in a greater androgen-dependent inhibition of ER function. Collectively, these data suggest that reduced levels of AR or impaired AR function contribute to the failure of MPA therapy potentially due to abrogation of the inhibitory effect of AR on ER signaling.
Collapse
Affiliation(s)
- Grant Buchanan
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide/Hanson Institute, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci U S A 2005; 102:9802-7. [PMID: 15994236 PMCID: PMC1168953 DOI: 10.1073/pnas.0408819102] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-regulated transcription factors important in human physiology and disease. In certain NRs, including the androgen receptor (AR), ligand binding to the carboxy-terminal domain (LBD) regulates transcriptional activation functions in the LBD and amino-terminal domain (NTD). The basis for NTD-LBD communication is unknown but may involve NTD-LBD interactions either within a single receptor or between different members of an AR dimer. Here, measurement of FRET between fluorophores attached to the NTD and LBD of the AR established that agonist binding initiated an intramolecular NTD-LBD interaction in the nucleus and cytoplasm. This intramolecular folding was followed by AR self-association, which occurred preferentially in the nucleus. Rapid, ligand-induced intramolecular folding and delayed association also were observed for estrogen receptor-alpha but not for peroxisome proliferator activated receptor-gamma2. An antagonist ligand, hydroxyflutamide, blocked the NTD-LBD association within AR. NTD-LBD association also closely correlated with the transcriptional activation by heterologous ligands of AR mutants isolated from hormone-refractory prostate tumors. Intramolecular folding, but not AR-AR affinity, was disrupted by mutation of an alpha-helical ((23)FQNLF(27)) motif in the AR NTD previously described to interact with the AR LBD in vitro. This work establishes an intramolecular NTD-LBD conformational change as an initial component of ligand-regulated NR function.
Collapse
Affiliation(s)
- Fred Schaufele
- Diabetes Center and Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Ye X, Han SJ, Tsai SY, DeMayo FJ, Xu J, Tsai MJ, O'Malley BW. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc Natl Acad Sci U S A 2005; 102:9487-92. [PMID: 15983373 PMCID: PMC1172261 DOI: 10.1073/pnas.0503577102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Chang CY, McDonnell DP. Androgen receptor-cofactor interactions as targets for new drug discovery. Trends Pharmacol Sci 2005; 26:225-8. [PMID: 15860367 DOI: 10.1016/j.tips.2005.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cofactor recruitment is a crucial regulatory step in nuclear receptor signal transduction. Given the obligate nature of interactions between cofactors and these receptors for transcriptional activity, it is likely that drugs that target coactivator interaction surfaces will function as pure antagonists with particular utility in the treatment of estrogen- and androgen-dependent cancers. Recent crystallographic analysis of one of the major protein-protein interaction surfaces on the androgen receptor has raised expectations that it will be possible to develop small-molecule antagonists that block cofactor interactions.
Collapse
Affiliation(s)
- Ching-yi Chang
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | | |
Collapse
|
228
|
Quigley CA, Tan JA, He B, Zhou ZX, Mebarki F, Morel Y, Forest MG, Chatelain P, Ritzén EM, French FS, Wilson EM. Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction. Mech Ageing Dev 2005; 125:683-95. [PMID: 15541764 DOI: 10.1016/j.mad.2004.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Partial androgen insensitivity with sex phenotype variation in two unrelated families was associated with missense mutations in the androgen receptor (AR) gene that disrupted the AR NH(2)-terminal/carboxy terminal interaction. Each mutation caused a single amino acid change within the region of the ligand-binding domain that forms activation function 2 (AF2). In one family, the mutation I737T was in alpha helix 4 and in the other F725L was between helices 3 and 4. Neither mutation altered androgen binding as determined by assays of mutant AR in the patient's cultured genital skin fibroblasts or of recombinant mutant receptors transfected into COS cells. In transient cotransfection assays in CV1 cells, transactivation with the AR mutants at low concentrations of DHT was reduced several fold compared with wild-type AR but increased at higher concentrations. Defects in NH(2)-terminal/carboxy terminal interactions were identified in mammalian two hybrid assays. In similar assays, there was reduced binding of the p160 coactivators TIF2/SRC2 and SRC1 to the mutant AR ligand binding domains (LBD). In the family with AR I737T, sex phenotype varied from severely defective masculinization in the proband to a maternal great uncle whose only manifestation of AIS was severe gynecomastia. He was fertile and passed the mutation to two daughters. The proband of the F725L family was also incompletely masculinized but was raised as a male while his half-sibling by a different father was affected more severely and reared as a female. These studies indicate that the function of an AR AF2 mutant in male development can vary greatly depending on the genetic background.
Collapse
Affiliation(s)
- Charmian A Quigley
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7500, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
Androgens play pivotal roles in sex differentiation and development, in reproductive functions, and sexual behavior. The actions of androgens are mediated through the intracellular androgen receptor (AR), a member of the nuclear receptor (NR) superfamily, which regulates a wide range of target gene expression. Recent studies indicate that the proper transcriptional activity of AR is modulated by AR coregulators, including coactivators that can enhance AR transactivation and corepressors that can suppress AR transactivation. Here, we summarize the recent discoveries relating to AR corepressor function with the following different mechanisms: (1) corepressors that inhibit the DNA binding or nuclear translocation of AR; (2) corepressors that recruit histone deacetylases; (3) corepressors that interrupt the interaction between AR and its coactivators; (4) corepressors that interrupt the interaction between the N-terminus and C-terminus of AR; (5) corepressors that function as scaffolds for other AR coregulators; (6) corepressors that target the basal transcriptional machinery; (7) other mechanisms. The potential impact and future directions of AR corepressors are also discussed.
Collapse
Affiliation(s)
- Liang Wang
- George H. Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
230
|
Bai S, He B, Wilson EM. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 2005; 25:1238-57. [PMID: 15684378 PMCID: PMC548016 DOI: 10.1128/mcb.25.4.1238-1257.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.
Collapse
Affiliation(s)
- Suxia Bai
- Laboratories for Reproductive Biology, CB# 7500, Rm. 3340, Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
231
|
Zhang Y, Hamburger AW. Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling. Br J Cancer 2005; 92:140-6. [PMID: 15583694 PMCID: PMC2361729 DOI: 10.1038/sj.bjc.6602257] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although ErbB receptors have been implicated in the progression of prostate cancer, little is known about proteins that may mediate their interactions with the androgen receptor (AR). Ebp1, a protein cloned via its association with the ErbB3 receptor, binds the AR and inhibits androgen-regulated transactivation of wild-type AR in COS cells. As the complement of coregulators in different cells are important for AR activity, we determined the effect of Ebp1 on AR function in prostate cancer cell lines. In addition, we examined the regulation of Ebp1 function by the ErbB3/4 ligand heregulin (HRG). In this study, we demonstrate, using several natural AR-regulated promoters, that Ebp1 repressed transcriptional activation of wild-type AR in prostate cancer cell lines. Downregulation of Ebp1 expression in LNCaP cells using siRNA resulted in activation of AR in the absence of androgen. Ebp1 associated with ErbB3 in LNCaP cells in the absence of HRG, but HRG induced the dissociation of Ebp1 from ErbB3. In contrast, HRG treatment enhanced both the association of Ebp1 with AR and also the ability of Ebp1 to repress AR transactivation. These studies suggest that Ebp1 is an AR corepressor whose biological activity can be regulated by the ErbB3 ligand, HRG.
Collapse
Affiliation(s)
- Y Zhang
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A W Hamburger
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Cancer Center, Greenebaum Cancer Center, 655 W. Baltimore St, Rm 9-0046 BRB, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|
232
|
Bertin B, Sasorith S, Caby S, Oger F, Cornette J, Wurtz JM, Pierce R. Unique functional properties of a member of the Fushi Tarazu-Factor 1 family from Schistosoma mansoni. Biochem J 2005; 382:337-51. [PMID: 15104535 PMCID: PMC1133947 DOI: 10.1042/bj20040489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 04/16/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
SmFtz-F1 (Schistosoma mansoni Fushi Tarazu-Factor 1) belongs to the Ftz-F1 subfamily of nuclear receptors, but displays marked structural differences compared with its mammalian homologues SF-1 (steroidogenic factor-1) or liver receptor homologue-1. These include a long F domain (104 amino acids), an unusually large hinge region (133 amino acids) and a poorly conserved E-domain. Here, using Gal4 constructs and a mammalian two-hybrid assay, we have characterized the roles of these specific regions both in the transcriptional activity of the receptor and in its interactions with cofactors. Our results have shown that, although the AF-2 (activation function-2) region is the major activation function of the receptor, both the F and D domains are essential for AF-2-dependent activity. Modelling of SmFtz-F1 LBD (ligand-binding domain) and structure-guided mutagenesis allowed us to show the important role of helix H1 in maintaining the structural conformation of the LBD, and suggested that its autonomous transactivation activity, also observed with SF-1, is fortuitous. This strategy also allowed us to study an eventual ligand-dependence for this orphan receptor, the predicted three-dimensional models suggesting that the SmFtz-F1 LBD contains a large and well-defined ligand-binding pocket sealed by two arginine residues orientated towards the interior of the cavity. Mutation of these two residues provoked a loss of transcriptional activity of the receptor, and strongly reduced its interaction with SRC1 (steroid receptor cofactor-1), suggesting a ligand-dependent activity for SmFtz-F1. Taken together, our results argue for original and specific functional activities for this platyhelminth nuclear receptor.
Collapse
Affiliation(s)
- Benjamin Bertin
- *INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019-Lille, France
| | - Souphatta Sasorith
- †Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, B.P. 163, 67404-Illkirch, France
| | - Stéphanie Caby
- *INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019-Lille, France
| | - Frédérik Oger
- *INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019-Lille, France
| | - Jocelyne Cornette
- *INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019-Lille, France
| | - Jean-Marie Wurtz
- †Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, B.P. 163, 67404-Illkirch, France
| | - Raymond J. Pierce
- *INSERM U547, Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59019-Lille, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
233
|
Robins DM. Multiple mechanisms of male-specific gene expression: lessons from the mouse sex-limited protein (Slp) gene. ACTA ACUST UNITED AC 2005; 78:1-36. [PMID: 15210327 DOI: 10.1016/s0079-6603(04)78001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Diane M Robins
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| |
Collapse
|
234
|
Estébanez-Perpiñá E, Moore JMR, Mar E, Delgado-Rodrigues E, Nguyen P, Baxter JD, Buehrer BM, Webb P, Fletterick RJ, Guy RK. The Molecular Mechanisms of Coactivator Utilization in Ligand-dependent Transactivation by the Androgen Receptor. J Biol Chem 2005; 280:8060-8. [PMID: 15563469 DOI: 10.1074/jbc.m407046200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Androgens drive sex differentiation, bone and muscle development, and promote growth of hormone-dependent cancers by binding the nuclear androgen receptor (AR), which recruits coactivators to responsive genes. Most nuclear receptors recruit steroid receptor coactivators (SRCs) to their ligand binding domain (LBD) using a leucine-rich motif (LXXLL). AR is believed to recruit unique coactivators to its LBD using an aromatic-rich motif (FXXLF) while recruiting SRCs to its N-terminal domain (NTD) through an alternate mechanism. Here, we report that the AR-LBD interacts with both FXXLF motifs and a subset of LXXLL motifs and that contacts with these LXXLL motifs are both necessary and sufficient for SRC-mediated AR regulation of transcription. Crystal structures of the activated AR in complex with both recruitment motifs reveal that side chains unique to the AR-LBD rearrange to bind either the bulky FXXLF motifs or the more compact LXXLL motifs and that AR utilizes subsidiary contacts with LXXLL flanking sequences to discriminate between LXXLL motifs.
Collapse
Affiliation(s)
- Eva Estébanez-Perpiñá
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Ortlund EA, Lee Y, Solomon IH, Hager JM, Safi R, Choi Y, Guan Z, Tripathy A, Raetz CRH, McDonnell DP, Moore DD, Redinbo MR. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat Struct Mol Biol 2005; 12:357-63. [PMID: 15723037 DOI: 10.1038/nsmb910] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/15/2005] [Indexed: 11/08/2022]
Abstract
The human nuclear receptor liver receptor homolog 1 (hLRH-1) plays an important role in the development of breast carcinomas. This orphan receptor is efficiently downregulated by the unusual co-repressor SHP and has been thought to be ligand-independent. We present the crystal structure at a resolution of 1.9 A of the ligand-binding domain of hLRH-1 in complex with the NR box 1 motif of human SHP, which we find contacts the AF-2 region of hLRH-1 using selective structural motifs. Electron density indicates phospholipid bound within the ligand-binding pocket, which we confirm using mass spectrometry of solvent-extracted samples. We further show that pocket mutations reduce phospholipid binding and receptor activity in vivo. Our results indicate that hLRH-1's control of gene expression is mediated by phospholipid binding, and establish hLRH-1 as a novel target for compounds designed to slow breast cancer development.
Collapse
Affiliation(s)
- Eric A Ortlund
- Department of Chemistry, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yang CS, Vitto MJ, Busby SA, Garcia BA, Kesler CT, Gioeli D, Shabanowitz J, Hunt DF, Rundell K, Brautigan DL, Paschal BM. Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol 2005; 25:1298-308. [PMID: 15684382 PMCID: PMC548022 DOI: 10.1128/mcb.25.4.1298-1308.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 10/27/2004] [Accepted: 11/11/2004] [Indexed: 01/21/2023] Open
Abstract
The tumor antigens simian virus 40 small t antigen (ST) and polyomavirus small and medium T antigens mediate cell transformation in part by binding to the structural A subunit of protein phosphatase 2A (PP2A). The replacement of B subunits by tumor antigens inhibits PP2A activity and prolongs phosphorylation-dependent signaling. Here we show that ST mediates PP2A A/C heterodimer transfer onto the ligand-activated androgen receptor (AR). Transfer by ST is strictly dependent on the agonist-activated conformation of AR, occurs within minutes of the addition of androgen to cells, and can occur in either the cytoplasm or the nucleus. The binding of ST changes the conformation of the A subunit, and ST rapidly dissociates from the complex upon PP2A A/C heterodimer binding to AR. PP2A is transferred onto the carboxyl-terminal half of AR, and the phosphatase activity is directed to five phosphoserines in the amino-terminal activation function region 1, with a corresponding reduction in transactivation. Thus, ST functions as a transfer factor to specify PP2A targeting in the cell and modulates the transcriptional activity of AR.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Box 800577 Health Systems, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Klein FAC, Atkinson RA, Potier N, Moras D, Cavarelli J. Biochemical and NMR Mapping of the Interface between CREB-binding Protein and Ligand Binding Domains of Nuclear Receptor. J Biol Chem 2005; 280:5682-92. [PMID: 15542861 DOI: 10.1074/jbc.m411697200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CBP, cAMP-response element-binding protein (CREB)-binding protein, plays an important role as a general cointegrator of various signaling pathways and interacts with a large number of transcription factors. Interactions of CBP with ligand binding domains (LBDs) of nuclear receptors are mediated by LXXLL motifs, as are those of p160 proteins, although the number, distribution, and precise sequences of the motifs differ. We used a large N-terminal fragment of murine CBP to map by biochemical methods and NMR spectroscopy the interaction domain of CBP with the LBDs of several nuclear receptors. We show that distinct zones of that fragment are involved in the interactions: a 20-residue segment containing the LXXLL motif (residues 61-80) is implicated in the interaction with all three domains tested (peroxisome proliferator-activated receptor gamma-LBD, retinoid X receptor alpha-LBD, and estrogen-related receptor gamma-LBD), whereas a second N-terminal well conserved block of around 25 residues centered on a consensus L(40)PDEL(44) motif constitutes a secondary motif of interaction with peroxisome proliferator-activated receptor gamma-LBD. Sequence analysis reveals that both zones are well conserved in all vertebrate p300/CBP proteins, suggesting their functional importance. Interactions of p300/CBP coactivators with the LBDs of nuclear receptors are not limited to the canonical LXXLL motifs, involving both a longer contiguous segment around the motif and, for certain domains, an additional zone.
Collapse
Affiliation(s)
- Fabrice A C Klein
- Département de Biologie et Génomique Structurales, UMR 7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP Strasbourg, 1 rue Laurent Fries Illkirch 67404, France
| | | | | | | | | |
Collapse
|
238
|
Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res 2005; 33:13-26. [PMID: 15640443 PMCID: PMC546130 DOI: 10.1093/nar/gki141] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.
Collapse
Affiliation(s)
| | | | - David E. Neal
- MRC Cancer Cell Unit, University of CambridgeCambridge CB2 2X2, UK
| | - Craig N. Robson
- To whom correspondence should be addressed. Tel: +44 191 222 4266; Fax: +44 191 222 4301;
| |
Collapse
|
239
|
Shen HC, Coetzee GA. The Androgen Receptor: Unlocking the Secrets of Its Unique Transactivation Domain. VITAMINS & HORMONES 2005; 71:301-19. [PMID: 16112272 DOI: 10.1016/s0083-6729(05)71010-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whereas the androgen receptor (AR) protein shares similarities in the structure of its DNA- and hormone-binding domains with other members of the steroid nuclear receptor family, the molecule in its unliganded form has a seemingly unordered amino-terminal transactivation domain unique to the AR. A comprehensive understanding of the specific sub-structures and protein-protein interactions inherent to this domain in both its inactive and activated states remains un-achieved. Therefore, the malleability of this peptide region in accommodating the diverse repertoire of transcription-modulating AR cofactors creates a great challenge for those intent on generating relevant three-dimensional molecular models. The AR transactivation domain achieves this flexibility through a series of conformational steps dependent on the presence of cofactors that induce allosteric changes, and thus has evolved several conserved peptide motifs representing key protein-protein interaction surfaces. Elucidation of these signaling regions, including their involvement in inducing AR transactivation domain structural changes, is of foremost interest in understanding how the AR achieves its pivotal role in regulating the androgen signaling axis particularly during the progression of prostate cancer.
Collapse
Affiliation(s)
- Howard C Shen
- Department of Urology and Preventive Medicine, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | | |
Collapse
|
240
|
He B, Gampe RT, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM. Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 2004; 16:425-38. [PMID: 15525515 DOI: 10.1016/j.molcel.2004.09.036] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/26/2004] [Accepted: 08/26/2004] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.
Collapse
Affiliation(s)
- Bin He
- Laboratories for Reproductive Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E, Balk SP, Hollenberg AN. The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 2004; 280:6511-9. [PMID: 15598662 DOI: 10.1074/jbc.m408972200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) activates target gene expression in the presence of agonist ligands via the recruitment of transcriptional coactivators, but recent work shows that overexpression of the nuclear corepressors NCoR and SMRT attenuates this agonist-mediated AR activation. Here we demonstrate using NCoR siRNA and chromatin immunoprecipitation that endogenous NCoR is recruited to and represses the dihydrotestosterone (DHT)-liganded AR. Furthermore this study shows that NCoR and coactivators compete for AR in the presence of DHT. AR antagonists such as bicalutamide that are currently in use for prostate cancer treatment can also mediate NCoR recruitment, but mifepristone (RU486) at nanomolar concentrations is unique in its ability to markedly enhance the AR-NCoR interaction. The RU486-liganded AR interacted with a C-terminal fragment of NCoR, and this interaction was mediated by the two most C-terminal nuclear receptor interacting domains (RIDs) present in NCoR. Significantly, in addition to the AR ligand binding domain, the AR N terminus was also required for this interaction. Mutagenesis studies demonstrate that the N-terminal surface of the AR-mediating NCoR recruitment was distinct from tau5 and from the FXXLF motif that mediates agonist-induced N-C-terminal interaction. Taken together these data demonstrate that NCoR is a physiological regulator of the AR and reveal a new mechanism for AR antagonism that may be exploited for the development of more potent AR antagonists.
Collapse
Affiliation(s)
- Myles C Hodgson
- Division of Hematology/Oncology and Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Brown TR. Nonsteroidal selective androgen receptors modulators (SARMs): designer androgens with flexible structures provide clinical promise. Endocrinology 2004; 145:5417-9. [PMID: 15545403 DOI: 10.1210/en.2004-1207] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
243
|
Burd CJ, Petre CE, Moghadam H, Wilson EM, Knudsen KE. Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol 2004; 19:607-20. [PMID: 15539430 DOI: 10.1210/me.2004-0266] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily, the activity of which is critical for the development and progression of prostate cancer. We and others have previously demonstrated that cyclin D1 is a potent corepressor of the AR. Although cyclin D1 is suspected to recruit histone deacetylases to the AR complex, previous studies have demonstrated that this activity alone is insufficient for cyclin D1 function. Here, we uncover a novel, secondary means of cyclin D1-mediated repression, through modulation of AR amino-carboxy terminal interactions. We show that cyclin D1 predominantly binds the N-terminal domain of the AR, dependent on the AR 23FxxLF27 motif. Through this motif, cyclin D1 abrogates the ability of the AR N-terminal domain to interact with the C terminus. Secondary amino-terminal domain sites capable of fostering interaction with the C terminus were refractory to cyclin D1 action, indicating that the ability of cyclin D1 to modulate AR amino-carboxy terminal interactions is specific to 23FxxLF27. Deletion of the N-terminal cyclin D1 binding site severely compromised AR activity (due to loss of FxxLF) but unmasked a repressor action through interaction with the AR C terminus. In summary, these data reveal novel, unexpected mechanisms of cyclin D1 activity and demonstrate that this function of cyclin D1 is critical for AR modulation.
Collapse
Affiliation(s)
- C J Burd
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521, 3125 Eden Avenue, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
244
|
Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C. Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol 2004; 19:350-61. [PMID: 15514032 DOI: 10.1210/me.2004-0190] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Early reports showed that androgen receptor (AR) NH2- and COOH-terminal (N-C) interaction was important for full AR function. However, the influence of these interactions on the AR in vivo effects remains unclear. Here we tested some AR-associated peptides and coregulators to determine their influences on AR N-C interaction, AR transactivation, and AR coregulator function. The results showed that AR coactivators such as ARA70N, gelsolin, ARA54, and SRC-1 can enhance AR transactivation but showed differential influences on the N-C interaction. In contrast, AR corepressors ARA67 and Rad9 can suppress AR transactivation, with ARA67 enhancing and Rad9 suppressing AR N-C interaction. Furthermore, liganded AR C terminus-associated peptides can block AR N-C interaction, but only selective peptides can block AR transactivation and coregulator function. We found all the tested peptides can suppress prostate cancer LNCaP cell growth at different levels in the presence of 5alpha-dihydrotestosterone, but only the tested FXXLF-containing peptides, not FXXMF-containing peptides, can suppress prostate cancer CWR22R cell growth. Together, these results suggest that the effects of AR N-C interactions may not always correlate with similar effects on AR-mediated transactivation and/or AR-mediated cell growth. Therefore, drugs designed by targeting AR N-C interaction as a therapeutic intervention for prostate cancer treatment may face unpredictable in vivo effects.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- The George H. Whipple Laboratory for Cancer Research, Department of Pathology, and the Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Hur E, Pfaff SJ, Payne ES, Grøn H, Buehrer BM, Fletterick RJ. Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2004; 2:E274. [PMID: 15328534 PMCID: PMC509409 DOI: 10.1371/journal.pbio.0020274] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/16/2004] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich "NR box" motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists.
Collapse
Affiliation(s)
- Eugene Hur
- 1Graduate Group in Biophysics, University of CaliforniaSan Francisco, California, United States of America
| | - Samuel J Pfaff
- 1Graduate Group in Biophysics, University of CaliforniaSan Francisco, California, United States of America
| | | | - Hanne Grøn
- 2Karo Bio, DurhamNorth Carolina, United States of America
| | | | - Robert J Fletterick
- 3Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| |
Collapse
|
246
|
Powzaniuk M, McElwee-Witmer S, Vogel RL, Hayami T, Rutledge SJ, Chen F, Harada SI, Schmidt A, Rodan GA, Freedman LP, Bai C. The LATS2/KPM Tumor Suppressor Is a Negative Regulator of the Androgen Receptor. Mol Endocrinol 2004; 18:2011-23. [PMID: 15131260 DOI: 10.1210/me.2004-0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid receptor superfamily that plays critical roles in the development and maintenance of the male reproductive system and in prostate cancer. Actions of AR are controlled by interaction with several classes of coregulators. In this study, we have identified LATS2/KPM as a novel AR-interacting protein. Human LATS1 and LATS2 are tumor suppressors that are homologs of Drosophila warts/lats. The interaction surface of LATS2 is mapped to the central region of the protein, whereas the AR ligand binding domain is sufficient for this interaction. LATS2 functions as a modulator of AR by inhibiting androgen-regulated gene expression. The mechanism of LATS2-mediated repression of AR activity appears to involve the inhibition of AR NH2- and COOH-terminal interaction. Chromatin immunoprecipitation assays in human prostate carcinoma cells reveal that LATS2 and AR are present in the protein complex that binds at the promoter and enhancer regions of prostate-specific antigen, and overexpression of LATS2 results in a reduction in androgen-induced expression of endogenous prostate-specific antigen mRNA. Immunohistochemistry shows that LATS2 and AR are localized within the prostate epithelium and that LATS2 expression is lower in human prostate tumor samples than in normal prostate. The results suggest that LATS2 may play a role in AR-mediated transcription and contribute to the development of prostate cancer.
Collapse
Affiliation(s)
- Mark Powzaniuk
- Department of Molecular Endocrinology, Merck Research Laboratories, West Point, Pennsylvania 19486-0004, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN, Balk SP. Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells. Mol Endocrinol 2004; 18:2388-401. [PMID: 15256534 DOI: 10.1210/me.2003-0436] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prostate cancers respond to treatments that suppress androgen receptor (AR) function, with bicalutamide, flutamide, and cyproterone acetate (CPA) being AR antagonists in clinical use. As CPA has substantial agonist activity, it was examined to identify AR coactivator/corepressor interactions that may mediate androgen-stimulated prostate cancer growth. The CPA-liganded AR was coactivated by steroid receptor coactivator-1 (SRC-1) but did not mediate N-C terminal interactions or recruit beta-catenin, indicating a nonagonist conformation. Nonetheless, CPA did not enhance AR interaction with nuclear receptor corepressor, whereas the AR antagonist RU486 (mifepristone) strongly stimulated AR-nuclear receptor corepressor binding. The role of coactivators was further assessed with a T877A AR mutation, found in LNCaP prostate cancer cells, which converts hydroxyflutamide (HF, the active flutamide metabolite) into an agonist that stimulates LNCaP cell growth. The HF and CPA-liganded T877A ARs were coactivated by SRC-1, but only the HF-liganded T877A AR was coactivated by beta-catenin. L-39, a novel AR antagonist that transcriptionally activates the T877A AR, but still inhibits LNCaP growth, similarly mediated recruitment of SRC-1 and not beta-catenin. In contrast, beta-catenin coactivated a bicalutamide-responsive mutant AR (W741C) isolated from a bicalutamide-stimulated LNCaP subline, further implicating beta-catenin recruitment in AR-stimulated growth. Androgen-stimulated prostate-specific antigen gene expression in LNCaP cells could be modulated by beta-catenin, and endogenous c-myc expression was repressed by dihydrotestosterone, but not CPA. These results indicate that interactions between AR and beta-catenin contribute to prostate cell growth in vivo, although specific growth promoting genes positively regulated by AR recruitment of beta-catenin remain to be identified.
Collapse
Affiliation(s)
- David Masiello
- Cancer Biology Program/Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
248
|
He B, Bai S, Hnat AT, Kalman RI, Minges JT, Patterson C, Wilson EM. An Androgen Receptor NH2-terminal Conserved Motif Interacts with the COOH Terminus of the Hsp70-interacting Protein (CHIP). J Biol Chem 2004; 279:30643-53. [PMID: 15107424 DOI: 10.1074/jbc.m403117200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The NH2-terminal sequence of steroid receptors is highly variable between different receptors and in the same receptor from different species. In this study, a primary sequence homology comparison identified a 14-amino acid NH2-terminal motif of the human androgen receptor (AR) that is common to AR from all species reported, including the lower vertebrates. The evolutionarily conserved motif is unique to AR, with the exception of a partial sequence in the glucocorticoid receptor of higher species. The presence of the conserved motif in AR and the glucocorticoid receptor and its absence in other steroid receptors suggests convergent evolution. The function of the AR NH2-terminal conserved motif was suggested from a yeast two-hybrid screen that identified the COOH terminus of the Hsp70-interacting protein (CHIP) as a binding partner. We found that CHIP functions as a negative regulator of AR transcriptional activity by promoting AR degradation. In support of this, two mutations in the AR NH2-terminal conserved motif previously identified in the transgenic adenocarcinoma of mouse prostate model reduced the interaction between CHIP and AR. Our results suggest that the AR NH2-terminal domain contains an evolutionarily conserved motif that functions to limit AR transcriptional activity. Moreover, we demonstrate that the combination of comparative sequence alignment and yeast two-hybrid screening using short conserved peptides as bait provides an effective strategy to probe the structure-function relationships of steroid receptor NH2-terminal domains and other intrinsically unstructured transcriptional regulatory proteins.
Collapse
Affiliation(s)
- Bin He
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Dubbink HJ, Hersmus R, Verma CS, van der Korput HAGM, Berrevoets CA, van Tol J, Ziel-van der Made ACJ, Brinkmann AO, Pike ACW, Trapman J. Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol Endocrinol 2004; 18:2132-50. [PMID: 15178743 DOI: 10.1210/me.2003-0375] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among nuclear receptors, the androgen receptor (AR) is unique in that its ligand-binding domain (LBD) interacts with the FXXLF motif in the N-terminal domain, resembling coactivator LXXLL motifs. We compared AR- and estrogen receptor alpha-LBD interactions of the wild-type AR FXXLF motif and coactivator transcriptional intermediary factor 2 LXXLL motifs and variants of these motifs. Random mutagenesis revealed a key role for the F residues in FXXLF motifs in high-affinity and selective AR LBD interaction. The FXXLF motif in full-length AR and transcriptional intermediary factor 2 LXXLL motifs competed for an overlapping binding site. A computer model of the AR LBD/AR FXXLF complex showed that the bulky F residues are buried in a deep coactivator-binding groove. The corresponding groove in estrogen receptor alpha LBD is considerably shallower, explaining lack of binding of any of the FXXLF motifs tested. FXXLF and LXXLL motif interaction depended on different charged amino acid residues in the AR LBD present at opposite ends of the coactivator groove. In conclusion, our data demonstrate the importance of a deep hydrophobic groove and alternative usage of charged amino acids in specifying peptide binding to the AR LBD.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Liu Y, Kim BO, Kao C, Jung C, Dalton JT, He JJ. Tip110, the Human Immunodeficiency Virus Type 1 (HIV-1) Tat-interacting Protein of 110 kDa as a Negative Regulator of Androgen Receptor (AR) Transcriptional Activation. J Biol Chem 2004; 279:21766-73. [PMID: 15031286 DOI: 10.1074/jbc.m314321200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon binding to androgen, androgen receptor (AR) can activate expression of target genes through its direct binding to the androgen-responsive elements (AREs), which are located within the target gene promoters and/or enhancers. A number of cellular proteins have been identified as co-regulators to regulate this transactivation process. One common structural feature among these co-regulators is the presence of the LXXLL motif (X, any amino acid), the so-called nuclear receptor (NR) box, through which binding of these regulatory proteins to AR occurs. We have recently shown that Tip110 functions to potentiate the transactivation activity of human immunodeficiency virus type I (HIV-1) Tat protein. In this study, we report that Tip110 is a potent AR-binding protein that can suppress AR activity. Tip110 bound to AR in an NR box-dependent manner and inhibited AREs-mediated reporter gene expression. The inhibitory effects were abolished by removal of the NR box. Moreover, knock-down of the constitutive Tip110 expression significantly augmented AR transcriptional activation. In agreement with these findings, Tip110 overexpression blocked the prostate-specific antigen (PSA) gene, a well characterized target gene of AR from expression in LNCaP cells. Further analysis revealed that Tip110 prevented the complex formation between AR and AREs. Taken together, these results indicate that Tip110 is a negative regulator of AR transcriptional activation, and may be directly involved in AR-related developmental, physiological, and pathological processes.
Collapse
MESH Headings
- Amino Acid Motifs
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/physiology
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Glutathione Transferase/metabolism
- Humans
- Mutation
- Plasmids/metabolism
- Precipitin Tests
- Prostate-Specific Antigen/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Transcriptional Activation
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|