201
|
Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 2013; 1277:127-38. [PMID: 23302022 DOI: 10.1111/nyas.12005] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous host defense peptides (HDPs) are among the most ancient immune mediators, constituting a first line of defense against invading pathogens across the evolutionary continuum. Generally, HDPs are small (<10 kDa), cationic, and amphipathic polypeptides, often broadly classified based on structure. In eukaryotes, major HDP classes include disulfide-stabilized (e.g., defensins), and α-helical or extended (e.g., cathelicidins) peptides. Prokaryote HDPs are generally referred to as bacteriocins, colicins, or lantibiotics, many of which undergo extensive posttranslational modifications. One target for prokaryotic and eukaryotic HDPs is the bacterial cell wall, an essential structural feature conserved among broad classes of bacteria. A primary building block of the cell wall is peptidoglycan, a macromolecular complex that arises through a series of reactions including membrane translocation, extracellular anchoring, and side chain cross-linking. Each of these steps represents a potential target for HDP inhibition, leading to bacteriostatic or bactericidal outcomes. Thus, understanding the relationships between HDPs and cell wall targets may shed light on new peptide antimicrobial agents and strategies to meet the daunting challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Nannette Y Yount
- Division of Infectious Diseases, Los Angeles County, California, USA
| | | |
Collapse
|
202
|
Saar-Dover R, Shai Y. CAMP-Membrane Interactions Using Fluorescence Spectroscopy. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
203
|
Leonor Sánchez M, María Belén Martínez M, César Maffia P. Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.24023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
204
|
Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 2012; 97:3395-408. [PMID: 23229569 DOI: 10.1007/s00253-012-4588-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022]
Abstract
β-Defensins are cationic, antimicrobial peptides that participate in antimicrobial defense as well as the regulation of innate and adaptive immunity. Human β-defensin 126 (DEFB126) is a multifunctional glycoprotein consisting of a conserved β-defensin core and a unique long glycosylated peptide tail. The long glycosylated peptide tail has been proven to be critical for efficient transport of sperm in the female reproductive tract, preventing their immune recognition, and efficient delivery of capacitated sperm to the site of fertilization. However, the functions of the conserved β-defensin core remain to be fully elucidated. In the present work, the conserved β-defensin core of the DEFB126 was expressed to explore its potential antimicrobial and anti-inflammatory activities. The DEFB126 core peptide exhibited both high potency for binding and neutralizing lipopolysaccharide (LPS) in vitro, and potent anti-inflammatory ability by down-regulating the mRNA expression of pro-inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in a murine macrophage cell line RAW264.7. The treatment with the DEFB126 core peptide also led to correspondingly decreased secretion of IL-6 and TNF-α. The blockade of LPS-induced p42/44 and p38 MAPK signal pathway might contribute to the anti-inflammation effects of the DEFB126 core peptide. Furthermore, fluorescence-labeled DEFB126 could enter RAW 264.7 cells and reduce the production of LPS-stimulated inflammatory factors, implying that DEFB126 might also participate in intracellular regulation beyond its direct LPS neutralization. In summary, our results demonstrate that the DEFB 126 core peptide has critical functions in parallel to its C-terminal tail by showing LPS-binding activity, anti-inflammatory effects and intracellular regulatory function.
Collapse
|
205
|
Abstract
Actin exists as a monomer (G-actin) which can be polymerized to filaments) F-actin) that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.
Collapse
|
206
|
Novel antibacterial activity of β(2)-microglobulin in human amniotic fluid. PLoS One 2012; 7:e47642. [PMID: 23144825 PMCID: PMC3492387 DOI: 10.1371/journal.pone.0047642] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
An antibacterial protein (about 12 kDa) was isolated from human amniotic fluid through dialysis, ultrafiltration and C18 reversed-phase HPLC steps. Automated Edman degradation showed that the N-terminal sequence of the antibacterial protein was NH(2)-Ile-Gln-Arg-Thr-Pro-Lys-Ile-Gln-Val-Tyr-Ser-Arg-His-Pro-Ala-Glu-Asn-Gly-. The N-terminal sequence of the antibacterial protein was found to be identical to that of β(2)-microglobulin, a component of MHC class I molecules, which are present on all nucleated cells. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) revealed that the molecular mass of the antibacterial protein was 11,631 Da. This antibacterial protein, β(2)M, possessed potent antibacterial activity against pathogenic bacteria. Specially, antibacterial activity was observed in potassium buffer, and potassium ion was found to be critical for the antibacterial activity. Interestingly, the antibacterial action of β(2)M was associated with dissipation of the transmembrane potential, but the protein did not cause damage to the membrane that would result in SYTOX green uptake. In addition, stimulation of WISH amniotic epithelial cells with the bacterial endotoxin lipopolysaccharide (LPS) induced dose-dependent upregulation of β(2)M mRNA expression. These results suggest that β(2)M contributes to a self-defense response when amniotic cells are exposed to pathogens.
Collapse
|
207
|
Bradykinin- and lipopolysaccharide-induced bradykinin B2 receptor expression, interleukin 8 release and “nitrosative stress” in bronchial epithelial cells BEAS-2B: Role for neutrophils. Eur J Pharmacol 2012; 694:30-8. [DOI: 10.1016/j.ejphar.2012.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022]
|
208
|
Hai Nan Y, Jacob B, Kim Y, Yub Shin S. Linear bactenecin analogs with cell selectivity and anti-endotoxic activity. J Pept Sci 2012; 18:740-7. [PMID: 23109411 DOI: 10.1002/psc.2460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/29/2012] [Accepted: 09/21/2012] [Indexed: 11/09/2022]
Abstract
Bactenecin (Bac) is a 12-residue disulfide-linked antimicrobial peptide isolated from the granules of bovine neutrophils. In this study, to develop novel linear Bac analogs with cell selectivity and anti-endotoxic activity, we designed and synthesized a series of linear Bac analogs with amino acid substitution in Cys3,11 and/or Val6,7 of Bac. Among Bac analogs, some analogs (Bac-W, Bac-KW, Bac-L, Bac-KL, Bac-LW, and Bac-KLW) with higher hydrophobicity showed the amalgamated property of cell selectivity and anti-endotoxic activity. Furthermore, Bac-W, Bac-KW, Bac-LW, and Bac-KLW showed serum stability comparable with that of disulfide-bonded Bac. Therefore, these Bac analogs (Bac-W, Bac-KW, Bac-LW, and Bac-KLW) can serve as promising antibiotics for the development of therapeutic agents for treatment against endotoxic shock and bacterial infection. In addition, our results suggest that a little increase in hydrophobicity may be responsible for the decreased cell selectivity of the multiple Arg-containing peptides (Bac-W, Bac-L, and Bac-LW) over the multiple Lys-containing peptides (Bac-KW, Bac-KL, and Bac-KLW).
Collapse
Affiliation(s)
- Yong Hai Nan
- Department of Bio-Materials, Graduate School, Chosun University, Gwangju, 501-759, Korea
| | | | | | | |
Collapse
|
209
|
Pro-Inflammatory Cytokine Responses of A549 Epithelial Cells to Antimicrobial Peptide Brevinin-2R. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9328-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
210
|
Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 2012; 8:e1002891. [PMID: 22969424 PMCID: PMC3435245 DOI: 10.1371/journal.ppat.1002891] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
Collapse
Affiliation(s)
- Ron Saar-Dover
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Ravit Nezer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Eyal Shimoni
- Electron Microscopy Unit, The Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
211
|
Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1784-91. [PMID: 22956655 DOI: 10.1128/cvi.00291-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response to Staphylococcus aureus and the S. aureus component lipoteichoic acid (LTA), a TLR2 agonist. Anti-inflammatory SMAMPs prevented the induction of tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-10 in response to S. aureus or LTA, but no other TLR2 ligands. We show that these SMAMPs bind specifically to LTA in vitro and prevent its interaction with TLR2. Importantly, the SMAMP greatly reduced the induction of TNF and IL-6 in vivo in mice acutely infected with S. aureus while simultaneously reducing bacterial loads dramatically (4 log(10)). Thus, these SMAMPs can eliminate the damage induced by pathogen-associated molecular patterns (PAMPs) while simultaneously eliminating infection in vivo. They are the first known SMAMPs to demonstrate anti-inflammatory and antibacterial activities in vivo.
Collapse
|
212
|
Singh S, Kasetty G, Schmidtchen A, Malmsten M. Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2244-51. [DOI: 10.1016/j.bbamem.2012.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
213
|
Liu F, Soh Yan Ni A, Lim Y, Mohanram H, Bhattacharjya S, Xing B. Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of gram-negative bacteria strains. Bioconjug Chem 2012; 23:1639-47. [PMID: 22769015 DOI: 10.1021/bc300203d] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and specific strategy based on the bioconjugation of a photosensitizer protophophyrin IX (PpIX) with a lipopolysaccharide (LPS) binding antimicrobial peptide YI13WF (YVLWKRKRKFCFI-Amide) has been developed for the effective fluorescent imaging and photodynamic inactivation of Gram-negative bacterial strains. The intracellular fluorescent imaging and photodynamic antimicrobial chemotherapy (PACT) studies supported our hypothesis that the PpIX-YI13WF conjugates could serve as efficient probes to image the bacterial strains and meanwhile indicated the potent activities against Gram-negative bacterial pathogens especially for those with antibiotics resistance when exposed to the white light irradiation. Compared to the monomeric PpIX-YI13WF conjugate, the dimeric conjugate indicated the stronger fluorescent imaging signals and higher photoinactivation toward the Gram-negative bacterial pathogens throughout the whole concentration range. In addition, the photodynamic bacterial inactivation also demonstrated more potent activity than the minimum inhibitory concentration (MIC) values of dimeric PpIX-YI13WF conjugate itself observed for E. coli DH5a (~4 times), S. enterica (~8 times), and other Gram-negative strains including antibiotic-resistant E. coli BL21 (~8 times) and K. pneumoniae (~16 times). Moreover, both fluorescent imaging and photoinactivation measurements also demonstrated that the dimeric PpIX-YI13WF conjugate could selectively recognize bacterial strains over mammalian cells and generate less photo damage to mammalian cells. We believed that the enhanced fluorescence and bacterial inactivation were probably attributed to the higher binding affinity between dimeric photosensitizer peptide conjugate and LPS components on the surface of bacterial strains, which were the results of efficient multivalent interactions.
Collapse
Affiliation(s)
- Fang Liu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | | | | | | | |
Collapse
|
214
|
Effects of deoxynivalenol and lipopolysaccharide on electrophysiological parameters in growing pigs. Mycotoxin Res 2012; 28:243-52. [PMID: 23606196 DOI: 10.1007/s12550-012-0135-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Deoxynivalenol (DON) is a major B-trichothecene that draws importance from its natural occurrence in cereals worldwide. It has many effects on rapidly dividing cells. Lipopolysaccharide (LPS) is an endotoxin released from most Gram-negative bacteria, which plays a major role in induction of inflammation and sepsis under certain conditions. In our experiments we aimed to study the effects of different concentrations of DON (up to 8,000 ng/ml) on the electrogenic transport of nutrients and on tissue conductances in growing pigs using the Ussing chamber technique. The effect of DON-contaminated feed (2.9 mg/kg feed) on the respective parameters, as well as the interactions between DON and intraperitoneal (i.p.) LPS were assessed using porcine jejunal tissues. In vitro DON inhibited the absorption of alanine and glucose across the pig jejunum at concentrations of 4,000 and 8,000 ng/ml, suggesting that DON had an inhibitory effect on the electrogenic transport of nutrients across porcine small intestines. Electrogenic transport of alanine and glucose across porcine small intestines varied regionally among intestinal segments with higher response in ileal tissues. A synergistic effect was observed between DON in feed and injected LPS on tissue conductance. In response, glucose with higher short circuit currents was observed across porcine jejunal mucosa in nutrient stimulated conditions.
Collapse
|
215
|
Thaker HD, Som A, Ayaz F, Lui D, Pan W, Scott RW, Anguita J, Tew GN. Synthetic mimics of antimicrobial peptides with immunomodulatory responses. J Am Chem Soc 2012; 134:11088-91. [PMID: 22697149 DOI: 10.1021/ja303304j] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of aryl-based synthetic mimics of antimicrobial peptides (SMAMPs) with antimicrobial activity and selectivity have been developed via systematic tuning of the aromatic groups and charge. The addition of a pendant aromatic group improved the antimicrobial activity against Gram-negative bacteria, while the addition of charge improved the selectivity. SMAMP 4 with six charges and a naphthalene central ring demonstrated a selectivity of 200 against both Staphylococcus aureus and Escherichia coli , compared with a selectivity of 8 for the peptide MSI-78. In addition to the direct antimicrobial activity, SMAMP 4 exhibited specific immunomodulatory activities in macrophages both in the presence and in the absence of lipopolysaccharide, a TLR agonist. SMAMP 4 also induced the production of a neutrophil chemoattractant, murine KC, in mouse primary cells. This is the first nonpeptidic SMAMP demonstrating both good antimicrobial and immunomodulatory activities.
Collapse
Affiliation(s)
- Hitesh D Thaker
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Nan YH, Bang JK, Jacob B, Park IS, Shin SY. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides 2012; 35:239-47. [PMID: 22521196 DOI: 10.1016/j.peptides.2012.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 11/30/2022]
Abstract
To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity, but much lower LPS-neutralizing activity compared to parental LL-37. The analogs, a5, a6, a7 and a8 with higher hydrophobicity displayed LPS-neutralizing activity comparable to that of LL-37, but much lesser prokaryotic selectivity. These results indicate that the proper hydrophobicity of the peptides is crucial to exert the amalgamated property of LPS-neutralizing activity and prokaryotic selectivity. Furthermore, to increase LPS-neutralizing activity of the analog a4 without a remarkable decrease in prokaryotic selectivity, we synthesized Trp-substituted analogs (a4-W1 and a4-W2), in which Phe(5) or Phe(15) of a4 is replaced by Trp. Despite their same prokaryotic selectivity, a4-W2 displayed much higher LPS-neutralizing activity compared to a4-W1. When compared with parental LL-37, a4-W2 showed retained LPS-neutralizing activity and 2.8-fold enhanced prokaryotic selectivity. These results suggest that the effective site for Trp-substitution when designing novel AMPs with higher LPS-neutralizing activity, without a remarkable reduction in prokaryotic selectivity, is the amphipathic interface between the end of the hydrophilic side and the start of the hydrophobic side rather than the central position of the hydrophobic side in their α-helical wheel projection. Taken together, the analog a4-W2 can serve as a promising template for the development of therapeutic agents for the treatment of endotoxic shock and bacterial infection.
Collapse
Affiliation(s)
- Yong Hai Nan
- Department of Bio-Materials, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | | | |
Collapse
|
217
|
Huang YH, Yang YL, Tiao MM, Kuo HC, Huang LT, Chuang JH. Hepcidin protects against lipopolysaccharide-induced liver injury in a mouse model of obstructive jaundice. Peptides 2012; 35:212-7. [PMID: 22504010 DOI: 10.1016/j.peptides.2012.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 01/11/2023]
Abstract
Obstructive jaundice (OJ) increases the risk of liver injury and sepsis, leading to increased mortality. Cholestatic liver injury is associated with a downregulation of hepcidin expression levels. In fact, hepcidin has an important antimicrobial effect, especially against Escherichia coli. It is unknown whether supplementing recombinant hepcidin is effective in alleviating cholestasis-induced liver injury and mortality in mice with superimposed sepsis. A mouse model of cholestasis was developed using extrahepatic bile duct ligation for 3 days. In addition, sepsis due to E. coli 0111:B4 lipopolysaccharide (LPS) was induced in the model. The serum levels of total bilirubin, AST, ALT, and LDH and the mRNA levels of IL-1β, TNF-α, and MCP-1 in the liver were significantly higher in the OJ mice receiving LPS than in the sham-operated mice receiving LPS. Compared to the OJ mice receiving LPS, the hepcidin-pretreated OJ mice receiving LPS showed a significant decrease in the above mentioned parameters, as well as a reversal in the downregulation of LC3B-II and upregulation of cleaved caspase-3; this, in turn, led to significantly decreased lethality in 24h. In conclusion, these results indicate that hepcidin pretreatment significantly reduced hepatic proinflammatory cytokine expression and liver injury, leading to reduced early lethality in OJ mice receiving LPS. Enhanced autophagy and reduced apoptosis may account for the protective effects of hepcidin.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung District, Kaohsiung 833, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
218
|
Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 2012; 84:256-64. [PMID: 22443521 DOI: 10.1902/jop.2012.110652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The antimicrobial peptide LL-37 is known to have a potent lipopolysaccharide (LPS)-neutralizing activity in various cell types. Because of observed heterogeneity within periodontopathogenic LPS, the authors hypothesized that LL-37 had specificity to neutralize such LPS activity. The present study, therefore, aims to investigate the LPS-neutralizing activity of LL-37 to various periodontopathogenic LPS in interleukin-8 (IL-8) production after challenging them in human oral fibroblasts. METHODS Human periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) were cultured from biopsies of periodontal ligament and gingival tissues. After cell confluence in 24-well plates, LPS (10 μg/mL) from Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans were added with or without LL-37 (10 μg/mL). After 18 hours, the supernatant was collected and analyzed in IL-8 production by enzyme-linked immunosorbent assay. RESULTS All periodontopathogenic LPS statistically significantly induced IL-8 production in both PDLF and GF (P <0.01). After neutralization with LL-37, both PDLF and GF showed a statistically significant reduction in IL-8 production compared with LPS-treated groups without LL-37 (P <0.01), and the percentage of reduction in IL-8 production in PDLF appeared to be higher than in GF. In addition, the percentage of reduction in IL-8 production varied considerably according to each periodontopathogenic LPS. CONCLUSIONS The antimicrobial peptide LL-37 had an ability to suppress periodontopathogenic LPS-induced IL-8 production in both PDLF and GF. Its LPS-neutralizing activity revealed specificity to periodontopathogenic LPS and seemed to be dependent on the heterogeneity within LPS between different genera.
Collapse
Affiliation(s)
- Wiroj Suphasiriroj
- Department of Periodontology, The Nippon Dental University, School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan.
| | | | | | | |
Collapse
|
219
|
Tai EKK, Wu WKK, Wang XJ, Wong HPS, Yu L, Li ZJ, Lee CW, Wong CCM, Yu J, Sung JJY, Gallo RL, Cho CH. Intrarectal administration of mCRAMP-encoding plasmid reverses exacerbated colitis in Cnlp(-/-) mice. Gene Ther 2012; 20:187-93. [PMID: 22378344 DOI: 10.1038/gt.2012.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cathelicidin is a pleiotropic host defense peptide secreted by epithelial and immune cells. Whether endogenous cathelicidin is protective against ulcerative colitis, however, is unclear. Here we sought to delineate the role of endogenous murine cathelicidin (mCRAMP) and the therapeutic efficacy of intrarectal administration of mCRAMP-encoding plasmid in ulcerative colitis using dextran sulfate sodium (DSS)-challenged cathelicidin-knockout (Cnlp(-/-)) mice as a model. Cnlp(-/-) mice had more severe symptoms and mucosal disruption than the wild-type mice in response to DSS challenge. The tissue levels of interleukin-1β and tumor necrosis factor-α, myeloperoxidase activity and the number of apoptotic cells were increased in the colon of DSS-challenged Cnlp(-/-) mice. Moreover, mucus secretion and mucin gene expression were impaired in Cnlp(-/-) mice. All these abnormalities were reversed by the intrarectal administration of mCRAMP or mCRAMP-encoding plasmid. Taken together, endogenous cathelicidin may protect against ulcerative colitis through modulation of inflammation and mucus secretion.
Collapse
Affiliation(s)
- E K K Tai
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Gursoy UK, Könönen E. Understanding the roles of gingival beta-defensins. J Oral Microbiol 2012; 4:JOM-4-15127. [PMID: 22389759 PMCID: PMC3290911 DOI: 10.3402/jom.v4i0.15127] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022] Open
Abstract
Gingival epithelium produces β-defensins, small cationic peptides, as part of its contribution to the innate host defense against the bacterial challenge that is constantly present in the oral cavity. Besides their functions in healthy gingival tissues, β-defensins are involved in the initiation and progression, as well as restriction of periodontal tissue destruction, by acting as antimicrobial, chemotactic, and anti-inflammatory agents. In this article, we review the common knowledge about β-defensins, coming from in vivo and in vitro monolayer studies, and present new aspects, based on the experience on three-dimensional organotypic culture models, to the important role of gingival β-defensins in homeostasis of the periodontium.
Collapse
Affiliation(s)
- Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | |
Collapse
|
221
|
Wang G, Elliott M, Cogen AL, Ezell EL, Gallo RL, Hancock REW. Structure, dynamics, and antimicrobial and immune modulatory activities of human LL-23 and its single-residue variants mutated on the basis of homologous primate cathelicidins. Biochemistry 2012; 51:653-64. [PMID: 22185690 DOI: 10.1021/bi2016266] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LL-23 is a natural peptide corresponding to the 23 N-terminal amino acid residues of human host defense cathelicidin LL-37. LL-23 demonstrated, compared to LL-37, a conserved ability to induce the chemokine MCP-1 in human peripheral blood mononuclear cells, a lack of ability to suppress induction of the pro-inflammatory cytokine TNF-α in response to bacterial lipopolysaccharides (LPS), and reduced antimicrobial activity. Heteronuclear multidimensional nuclear magnetic resonance (NMR) characterization of LL-23 revealed similar secondary structures and backbone dynamics in three membrane-mimetic micelles: SDS, dodecylphosphocholine (DPC), and dioctanoylphosphatidylglycerol. The NMR structure of LL-23 determined in perdeuterated DPC contained a unique serine that segregated the hydrophobic surface of the amphipathic helix into two domains. To improve our understanding, Ser9 of LL-23was changed to either Ala or Val on the basis of homologous primate cathelicidins. These changes made the hydrophobic surface of LL-23 continuous and enhanced antibacterial activity. While identical helical structures did not explain the altered activities, a reduced rate of hydrogen-deuterium exchange from LL-23 to LL-23A9 to LL-23V9 suggested a deeper penetration of LL-23V9 into the interior of the micelles, which correlated with enhanced activities. Moreover, these LL-23 variants had discrete immunomodulatory activities. Both restored the TNF-α dampening activity to the level of LL-37. Furthermore, LL-23A9, like LL-23, maintained superior protective MCP-1 production, while LL-23V9 was strongly immunosuppressive, preventing baseline MCP-1 induction and substantially reducing LPS-stimulated MCP-1 production. Thus, these LL-23 variants, designed on the basis of a structural hot spot, are promising immune modulators that are easier to synthesize and less toxic to mammalian cells than the parent peptide LL-37.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, Nebraska 68198-6495, United States.
| | | | | | | | | | | |
Collapse
|
222
|
Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, Kim SH, Lee J, Kim SR, Lee DG, Hwang JS, Kim Y. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J Biol Chem 2011; 286:41296-41311. [PMID: 21965682 PMCID: PMC3308842 DOI: 10.1074/jbc.m111.269225] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/29/2011] [Indexed: 02/02/2023] Open
Abstract
Papiliocin is a novel 37-residue cecropin-like peptide isolated recently from the swallowtail butterfly, Papilio xuthus. With the aim of identifying a potent antimicrobial peptide, we tested papiliocin in a variety of biological and biophysical assays, demonstrating that the peptide possesses very low cytotoxicity against mammalian cells and high bacterial cell selectivity, particularly against Gram-negative bacteria as well as high anti-inflammatory activity. Using LPS-stimulated macrophage RAW264.7 cells, we found that papiliocin exerted its anti-inflammatory activities by inhibiting nitric oxide (NO) production and secretion of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2, producing effects comparable with those of the antimicrobial peptide LL-37. We also showed that the innate defense response mechanisms engaged by papiliocin involve Toll-like receptor pathways that culminate in the nuclear translocation of NF-κB. Fluorescent dye leakage experiments showed that papiliocin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of papiliocin in 300 mm dodecylphosphocholine micelles by NMR spectroscopy, showing that papiliocin has an α-helical structure from Lys(3) to Lys(21) and from Ala(25) to Val(36), linked by a hinge region. Interactions between the papiliocin and LPS studied using tryptophan blue-shift data, and saturation transfer difference-NMR experiments revealed that Trp(2) and Phe(5) at the N-terminal helix play an important role in attracting papiliocin to the cell membrane of Gram-negative bacteria. In conclusion, we have demonstrated that papiliocin is a potent peptide antibiotic with both anti-inflammatory and antibacterial activities, and we have laid the groundwork for future studies of its mechanism of action.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Eunjung Lee
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Soyoung Shin
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Ki-Woong Jeong
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Jee-Young Lee
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701
| | - Su-Young Bae
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul 143-701
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, College of Medicine, Konkuk University, Seoul 143-701
| | - Juneyoung Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701
| | - Seong Ryul Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-100, South Korea
| | - Dong Gun Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701
| | - Jae-Sam Hwang
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-100, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701.
| |
Collapse
|
223
|
Nan YH, Shin SY. Effect of disulphide bond position on salt resistance and LPS-neutralizing activity of α-helical homo-dimeric model antimicrobial peptides. BMB Rep 2011; 44:747-52. [DOI: 10.5483/bmbrep.2011.44.11.747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
224
|
Srivastava RM, Srivastava S, Singh M, Bajpai VK, Ghosh JK. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. J Biol Chem 2011; 287:1980-95. [PMID: 22128186 DOI: 10.1074/jbc.m111.302893] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Molecular and Structural Biology Division, Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, P. O. Box 173, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
225
|
Campbell EL, Serhan CN, Colgan SP. Antimicrobial aspects of inflammatory resolution in the mucosa: a role for proresolving mediators. THE JOURNAL OF IMMUNOLOGY 2011; 187:3475-81. [PMID: 21934099 DOI: 10.4049/jimmunol.1100150] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial Ags, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier; in recent years, numerous findings implicate an active role of the epithelium with proresolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and proresolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression, and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosal homeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to proresolving lipid mediators.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
226
|
Nan YH, Bang JK, Shin SY. Effects of Lys-linked Dimerization of an α-Helical Leu/Lys-rich Model Antimicrobial Peptide on Salt Resistance and LPS-neutralizing Activity. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
227
|
Byfield FJ, Kowalski M, Cruz K, Leszczyńska K, Namiot A, Savage PB, Bucki R, Janmey PA. Cathelicidin LL-37 Increases Lung Epithelial Cell Stiffness, Decreases Transepithelial Permeability, and Prevents Epithelial Invasion byPseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2011; 187:6402-9. [DOI: 10.4049/jimmunol.1102185] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
228
|
Scott A, Weldon S, Buchanan PJ, Schock B, Ernst RK, McAuley DF, Tunney MM, Irwin CR, Elborn JS, Taggart CC. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 2011; 6:e26525. [PMID: 22028895 PMCID: PMC3196584 DOI: 10.1371/journal.pone.0026525] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/28/2011] [Indexed: 11/26/2022] Open
Abstract
Background Human cathelicidin LL-37 is a cationic antimicrobial peptide (AMP) which possesses a variety of activities including the ability to neutralise endotoxin. In this study, we investigated the role of LPS neutralisation in mediating LL-37's ability to inhibit Pseudomonas aeruginosa LPS signalling in human monocytic cells. Methodology/Principal Findings Pre-treatment of monocytes with LL-37 significantly inhibited LPS-induced IL-8 production and the signalling pathway of associated transcription factors such as NF-κB. However, upon removal of LL-37 from the media prior to LPS stimulation, these inhibitory effects were abolished. These findings suggest that the ability of LL-37 to inhibit LPS signalling is largely dependent on extracellular LPS neutralisation. In addition, LL-37 potently inhibited cytokine production induced by LPS extracted from P. aeruginosa isolated from the lungs of cystic fibrosis (CF) patients. In the CF lung, polyanionic molecules such as glycosaminoglycans (GAGs) and DNA bind LL-37 and impact negatively on its antibacterial activity. In order to determine whether such interactions interfere with the LPS neutralising ability of LL-37, the status of LL-37 and its ability to bind LPS in CF sputum were investigated. Overall our findings suggest that in the CF lung, the ability of LL-37 to bind LPS and inhibit LPS-induced IL-8 production is attenuated as a result of binding to DNA and GAGs. However, LL-37 levels and its concomitant LPS-binding activity can be increased with a combination of DNase and GAG lyase (heparinase II) treatment. Conclusions/Significance Overall, these findings suggest that a deficiency in available LL-37 in the CF lung may contribute to greater LPS-induced inflammation during CF lung disease.
Collapse
Affiliation(s)
- Aaron Scott
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Sinéad Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
- * E-mail:
| | - Paul J. Buchanan
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Bettina Schock
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Danny F. McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Chris R. Irwin
- Centre for Dental Education, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - J. Stuart Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Clifford C. Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
229
|
Ultrashort peptide bioconjugates are exclusively antifungal agents and synergize with cyclodextrin and amphotericin B. Antimicrob Agents Chemother 2011; 56:1-9. [PMID: 22006001 DOI: 10.1128/aac.00468-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many natural broad-spectrum cationic antimicrobial peptides (AMPs) possess a general mode of action that is dependent on lipophilicity and charge. Modulating the lipophilicity of AMPs by the addition of a fatty acid has been an effective strategy to increase the lytic activity and can further broaden the spectrum of AMPs. However, lipophilic modifications that narrow the spectrum of activity and exclusively direct peptides to fungi are less common. Here, we show that short peptide sequences can be targeted to fungi with structured lipophilic biomolecules, such as vitamin E and cholesterol. The conjugates were active against Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans but not against bacteria and were observed to cause membrane perturbation by transmission electron microscopy and in membrane permeability studies. However, for C. albicans, selected compounds were effective without the perturbation of the cell membrane, and synergism was seen with a vitamin E conjugate and amphotericin B. Moreover, in combination with β-cyclodextrin, antibacterial activity emerged in selected compounds. Biocompatibility for selected active compounds was tested in vitro and in vivo using toxicity assays on erythrocytes, macrophages, and mice. In vitro cytotoxicity experiments led to selective toxicity ratios (50% lethal concentration/MIC) of up to 64 for highly active antifungal compounds, and no in vivo murine toxicity was seen. Taken together, these results highlight the importance of the conjugated lipophilic structure and suggest that the modulation of other biologically relevant peptides with hydrophobic moieties, such as cholesterol and vitamin E, generate compounds with unique bioactivity.
Collapse
|
230
|
Esparza GA, Teghanemt A, Zhang D, Gioannini TL, Weiss JP. Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immun 2011; 18:478-91. [PMID: 21994253 DOI: 10.1177/1753425911422723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Response to Gram-negative bacteria (GNB) is partially mediated by the recognition of GNB-derived endotoxin by host cells. Potent host response to endotoxin depends on the sequential interaction of endotoxin with lipopolysaccharide binding protein (LBP), CD14, MD-2 and TLR4. While CD14 facilitates the efficient transfer of endotoxin monomers to MD-2 and MD-2·TLR4, activation of MD-2·TLR4 can occur in the absence of CD14 through an unknown mechanism. Here, we show that incubation of purified endotoxin (E) aggregates (E(agg), M ( r ) ≥ 20 million) in PBS with ≥ 0.1% albumin in the absence of divalent cations Ca(2+) and Mg(2+), yields E·albumin complexes (M ( r ) ∼70,000). E·albumin transfers E monomers to sMD-2 or sMD-2·TLR4 ectodomain (TLR4(ecd)) with a 'K (d)' of ∼4 nM and induces MD-2·TLR4-dependent, CD14-independent cell activation with a potency only 10-fold less than that of monomeric E·CD14 complexes. Our findings demonstrate, for the first time, a mechanistic basis for delivery of endotoxin monomers to MD-2 and for activation of TLR4 that is independent of CD14.
Collapse
Affiliation(s)
- Gregory A Esparza
- Immunology Program, University of Iowa Graduate College, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
231
|
Kaconis Y, Kowalski I, Howe J, Brauser A, Richter W, Razquin-Olazarán I, Iñigo-Pestaña M, Garidel P, Rössle M, Martinez de Tejada G, Gutsmann T, Brandenburg K. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 2011; 100:2652-61. [PMID: 21641310 DOI: 10.1016/j.bpj.2011.04.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 11/25/2022] Open
Abstract
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.
Collapse
Affiliation(s)
- Yani Kaconis
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Lee E, Kim JK, Shin S, Jeong KW, Lee J, Lee DG, Hwang JS, Kim Y. Enantiomeric 9-mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti-inflammatory activities. J Pept Sci 2011; 17:675-82. [DOI: 10.1002/psc.1387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/11/2022]
|
233
|
Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 2011; 23:185-93. [PMID: 21393634 DOI: 10.1093/intimm/dxq471] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sepsis is a systemic disease resulting from harmful host response to bacterial infections. During the exacerbation of severe sepsis or septic shock, apoptosis of endothelial cells is induced in susceptible organs such as the lung and liver and triggers microcirculatory disorder and organ dysfunction. LPS, an outer membrane component of Gram-negative bacteria, is one of the major virulence factors for the pathogenesis. We previously reported that LL-37, a human anti-microbial cathelicidin peptide, potently neutralizes the biological activity of LPS and protects mice from lethal endotoxin shock. However, the effect of LL-37 on the LPS-induced endothelial cell apoptosis remains to be clarified. In this study, to further elucidate the action of LL-37 on severe sepsis/endotoxin shock, we investigated the effects of LL-37 on the LPS-induced endothelial cell apoptosis in vitro and in vivo using lung-derived normal human microvascular blood vessel endothelial cells (HMVEC-LBls) and D-galactosamine hydrochloride (D-GalN)-sensitized murine endotoxin shock model. LL-37 suppressed the LPS-induced apoptosis of HMVEC-LBls. In addition, LL-37 inhibited the binding of LPS possibly to the LPS receptors (CD14 and toll-like receptor 4) expressed on the cells. Thus, LL-37 can suppress the LPS-induced apoptosis of HMVEC-LBls via the inhibition of LPS binding to the cells. Furthermore, LL-37 drastically suppressed the apoptosis of hepatic endothelial cells as well as hepatocytes in the liver of murine endotoxin shock model. Together, these observations suggest that LL-37 could suppress the LPS-induced apoptosis of endothelial cells, thereby attenuating lethal sepsis/endotoxin shock.
Collapse
Affiliation(s)
- Kaori Suzuki
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | | | |
Collapse
|
234
|
Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M. Wound healing activity of the human antimicrobial peptide LL37. Peptides 2011; 32:1469-76. [PMID: 21693141 DOI: 10.1016/j.peptides.2011.06.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 01/14/2023]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune system and are generally defined as cationic, amphipathic peptides, with less than 50 amino acids, including multiple arginine and lysine residues. The human cathelicidin antimicrobial peptide LL37 can be found at different concentrations in many different cells, tissues and body fluids and has a broad spectrum of antimicrobial and immunomodulatory activities. The healing of wound is a complex process that involves different steps: hemostasis, inflammation, remodeling/granulation tissue formation and re-epithelialization. Inflammation and angiogenesis are two fundamental physiological conditions implicated in this process. We have recently developed a new method for the expression and purification of recombinant LL37. In this work, we show that the recombinant peptide P-LL37 with a N-terminus proline preserves its immunophysiological properties in vitro and in vivo. P-LL37 neutralized the activation of macrophages by lipopolysaccharide (LPS). Besides, the peptide induced proliferation, migration and tubule-like structures formation by endothelial cells. Wound healing experiments were performed in dexamethasone-treated mice to study the effect of LL37 on angiogenesis and wound regeneration. The topical application of synthetic and recombinant LL37 increased vascularization and re-epithelialization. Taken together, these results clearly demonstrate that LL37 may have a key role in wound regeneration through vascularization.
Collapse
Affiliation(s)
- Reinaldo Ramos
- IBB, Institute of Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Mangoni ML. Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 2011; 68:2157-9. [PMID: 21584810 PMCID: PMC11114633 DOI: 10.1007/s00018-011-0709-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Primitive innate defense mechanisms in the form of gene-encoded antimicrobial peptides are now considered as potential candidates for the development of new therapeutics. They are well known for their function as the first protective barrier of all organisms against microbial infections. In addition, emerging studies reveal that they assist in modulating the host immune system. The biological properties of these host-defense peptides, their role in human health, their cell selectivity and related molecular mechanisms are discussed in this multi-author review along with the strategies to transform them or their peptidomimetics into clinically usable drugs.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Department of Biochemical Sciences, La Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy,
| |
Collapse
|
236
|
Lee EK, Kim YC, Nan YH, Shin SY. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides 2011; 32:1123-30. [PMID: 21497177 DOI: 10.1016/j.peptides.2011.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 11/25/2022]
Abstract
To develop novel antimicrobial peptides (AMPs) with improved cell selectivity and potent LPS-neutralizing activity, we synthesized an 18 N-terminal residues peptide (BAMP-18) of bovine myeloid antimicrobial peptide-27 (BMAP-27) and its analogs (BMAP-18-W, BMAP-18-L, BMAP-18-I and BMAP-18-f). BMAP-18 and its analogs displayed much higher cell selectivity (about 4-97-fold increased) as compared to parental BMAP-27 because of their decreased hemolytic activity and retained antimicrobial activity. BMAP-27 caused near-complete dye leakage from bacterial-membrane-mimicking vesicles even at very low concentration of 0.5μM, whereas BMAP-18 and its analogs induced very little dye leakage (less than 40%) even at 16μM. These peptides induced near-complete membrane depolarization of Staphylococcus aureus cells under their MIC (4μM). These results suggests that BMAP-18 and its analogs exhibit lethality toward microbes due to their ability to form small channels that permit the transit of ions or protons, but not molecules as large as calcein, and not by the membrane-disruption/perturbation mode. BMAP-18 and its analogs significantly inhibited nitric oxide (NO) production or tumor necrosis factor-α (TNF-α) release in LPS-stimulated mouse macrophage RAW264.7 cells at 10μM. In particular, BMAP-18-W showed LPS-neutralizing activity comparable to that of BMAP-27. There was a significant linear correlation between the increase in the hydrophobicity of peptides and LPS-neutralizing activity. Although BMAP-18-W has lower hydrophobicity than BMAP-18-L, it showed higher LPS-neutralizing activity as compared to BMAP-18-L. This result suggests other important parameters of AMPs may be involved in their LPS-neutralizing activity, as well as positive charge and hydrophobicity.
Collapse
Affiliation(s)
- Eun Kyu Lee
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
237
|
Platonin Inhibits Endotoxin-Induced MAPK and AP-1 Up-Regulation. J Surg Res 2011; 167:e299-305. [DOI: 10.1016/j.jss.2009.11.738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/25/2009] [Accepted: 11/25/2009] [Indexed: 11/19/2022]
|
238
|
Wang H, Watanabe H, Ogita M, Ichinose S, Izumi Y. Effect of human beta-defensin-3 on the proliferation of fibroblasts on periodontally involved root surfaces. Peptides 2011; 32:888-94. [PMID: 21320561 DOI: 10.1016/j.peptides.2011.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/06/2011] [Accepted: 02/06/2011] [Indexed: 12/13/2022]
Abstract
Human beta-defensin-3 (HBD-3) has versatile antibacterial activity against oral bacteria and can promote the proliferation of fibroblasts. The goal of the present study was to investigate the effect of HBD-3 on attachment and proliferation of periodontal ligament cells (PDL) onto the periodontitis affected root surfaces. PDL cells were seeded onto healthy and diseased root specimens with scaling and root planing (SRP), SRP & HBD-3 (100 ng/ml), or SRP & HBD-3 (200 ng/ml) treatment for 1, 3, and 7 days incubation. The results showed that HBD-3, especially in the 200 ng/ml group, significantly promoted fibroblast attachment and proliferation onto the diseased root surfaces. The cell number in the HBD-3 group was much greater than in the group treated with SRP alone. On day 7, the cells in the HBD-3 were well-spread and formed a network similar to those on the surfaces of the healthy root specimens. These results suggest that HBD-3 could play an important role in antibacterial activity and fibroblast proliferation, thus promoting periodontal regeneration. Meanwhile, HBD-3 might act as a potent regeneration-promoter in infectious diseases.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Oral Mucous Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
239
|
Abstract
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces and inflammatory cells, which have broad-spectrum antimicrobial and immunomodulatory activities. They are known to be important in a number of infectious and inflammatory conditions and have been shown to be present in a number of sites throughout the female reproductive tract. Inflammation and infection are associated with a number of complications of pregnancy including preterm labor, and AMPs may play a key role in maintaining and protecting pregnancy. The aim of this review is to describe the expression and function of AMPs in the pregnant female reproductive tract and their relation to preterm labor.
Collapse
Affiliation(s)
- Lorraine Frew
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
240
|
Brown KL, Poon GFT, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock REW, Johnson P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. THE JOURNAL OF IMMUNOLOGY 2011; 186:5497-505. [DOI: 10.4049/jimmunol.1002508] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
241
|
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrob Agents Chemother 2011; 55:2880-90. [PMID: 21402837 DOI: 10.1128/aac.01515-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
Collapse
|
242
|
Wu G, Li X, Deng X, Fan X, Wang S, Shen Z, Xi T. Protective effects of antimicrobial peptide S-thanatin against endotoxic shock in mice introduced by LPS. Peptides 2011; 32:353-7. [PMID: 21050874 DOI: 10.1016/j.peptides.2010.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/25/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022]
Abstract
Sepsis continues to be a major unresolved medical challenge of the present. Severe sepsis and septic shock are the leading causes of multiple organ failure and mortality in noncoronary intensive care units (ICUs). The primary reason of septic shock is the activation of host effecter cells by endotoxin and lipopolysaccharide (LPS) associated with cell membranes of gram-negative bacteria. For these reasons, the key point of treatment is removing LPS. S-thanatin (Ts), an analog of thanatin, was synthesized by substituting the 15th amino acid of threonine with serine, which showed a broad antimicrobial activity against gram-negative and gram-positive bacteria. We have reported its LPS-binding and -neutralizing activity in vitro. The aim of this study is to examine the LPS-neutralizing activities and the protective effects of S-thanatin in vivo. Every mice was injected intraperitoneally with LPS (from Escherichia coli O111:B4) 150μg before injected intraperitoneally or vena caudalis with 3mg/kg, 6mg/kg and 12mg/kg, and measured endotoxin and tumor necrosis factor alpha (TNF-α) concentrations in plasma, as well as lethality. The results showed that S-thanatin can significantly reduce endotoxin and TNF-α level in plasma, at the same time resulting in the highest survival rates.
Collapse
Affiliation(s)
- Guoqiu Wu
- Southeast University, Nanjing, People's Republic of China. guoqiu
| | | | | | | | | | | | | |
Collapse
|
243
|
Duan W, Zhou J, Zhang S, Zhao K, Zhao L, Ogata K, Sakaue T, Mori A, Wei T. ESeroS-GS modulates lipopolysaccharide-induced macrophage activation by impairing the assembly of TLR-4 complexes in lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:772-83. [PMID: 21276822 DOI: 10.1016/j.bbamcr.2011.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/13/2011] [Accepted: 01/18/2011] [Indexed: 01/29/2023]
Abstract
The binding of lipopolysaccharides (LPS) to macrophages results in inflammatory responses. In extreme cases it can lead to endotoxic shock, often resulting in death. A broad range of antioxidants, including tocopherols, can reduce LPS activity in vitro and in vivo. To elucidate the underlying mechanisms of their action, we investigated the effect of the sodium salt of γ-L-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl]oxy]carbonyl]-3-[[2-(1H-indol-3-yl)ethyl]amino]-3-oxopropyl]-L-cysteinylglycine (ESeroS-GS), a novel α-tocopherol derivative, on LPS-induced inflammation in vitro and in vivo. ESeroS-GS reduced the transcription of TNF-α, IL-1β, IL-6 and iNOS genes in a dose-dependent manner in RAW264.7 macrophages, and inhibited the release of these inflammatory factors. In addition, ESeroS-GS inhibited LPS-induced mortality in a mouse sepsis model. Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that ESeroS-GS down-regulated the transcriptional activity of NF-κB. By analyzing the partitioning of CD14 and Toll-like receptor 4 (TLR-4) in cell membrane microdomains, we found that ESeroS-GS attenuates the binding of LPS to RAW264.7 cells via interfering with the relocation of CD14 and TLR-4 to lipid rafts, blocking the activation of interleukin-1 receptor-associated kinase 1 (IRAK-1), and inhibiting the consequent phosphorylation of TAK1 and IKKα/β, which together account for the suppression of NF-κB activation. Taken together, our data suggest that ESeroS-GS can modulate LPS signaling in macrophages by impairing TLR-4 complex assembly via a lipid raft dependent mechanism. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Wenjuan Duan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S. Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol 2011; 13:635-51. [DOI: 10.1111/j.1462-5822.2010.01563.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
245
|
Saravanan R, Bhattacharjya S. Oligomeric structure of a cathelicidin antimicrobial peptide in dodecylphosphocholine micelle determined by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:369-81. [PMID: 20933496 DOI: 10.1016/j.bbamem.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/24/2010] [Accepted: 10/04/2010] [Indexed: 01/05/2023]
Abstract
The broad spectrum of antibacterial activities of host defense cationic antimicrobial peptides (AMPs) arises from their ability to perturb membrane integrity of the microbes. The mechanisms are often thought to require assembly of AMPs on the membrane surface to form pores. However, three dimensional structures in the oligomeric form of AMPs in the context of lipid membranes are largely limited. Here, we demonstrate that a 22-residue antimicrobial peptide, termed VK22, derived from fowlicidin-1, a cathelicidin family of AMP from chicken oligomerizes into a predominantly tetrameric state in zwitterionic dodecylphosphocholine (DPC) micelles. An ensemble of NMR structures of VK22 determined in 200mM perdeuterated DPC, from 755 NOE constrains including 19 inter-helical NOEs, had revealed an assembly of four helices arranged in anti-parallel fashion. Hydrogen bonds, C(α)H-O=C types, and van der Waals interactions among the helical sub-units appear to be involved in the stabilization of the quaternary structures. The central region of the barrel shaped tetrameric bundle is non-polar with clusters of aromatic residues, whereas all the cationic residues are positioned at the termini. Paramagnetic spin labeled NMR experiments indicated that the tetrameric structure is embedded into micelles such that the non-polar region located inside the lipid acyl chains. Structure and micelle localization of a monomeric version, obtained from substitution of two Tyr residues with Ala, of the peptide is also compared. The mutated peptide VK22AA has been found be localized at the surface of the micelles. The tetrameric structure of VK22 delineates a small water pore that can be larger in the higher order oligomers. As these results provide structural insights, at atomic resolution, into the oligomeric states of a helical AMP in lipid environment, the structural details may be further utilized for the design of novel self-assembled membrane protein mimics.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|
246
|
Inomata M, Into T, Murakami Y. Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 2010; 118:574-81. [PMID: 21083618 DOI: 10.1111/j.1600-0722.2010.00775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Porphyromonas gingivalis is a major periodontogenic bacterium and possesses immunostimulatory components, such as lipopolysaccharides (LPS) and fimbriae. The host antimicrobial peptide, LL-37, suppresses proinflammatory responses of immune cells but its effect on human gingival fibroblasts (HGFs) is not known. In this study, we assessed the effect of LL-37 on the proinflammatory responses of HGFs stimulated with P. gingivalis cells and their components. Live P. gingivalis cells did not induce proinflammatory responses of HGFs, and LL-37 did not alter these responses. However, LL-37 was able to suppress the killed P. gingivalis cell-induced secretion of interleukin (IL)-6 and IL-8. LL-37 also suppressed the expression of IL6, IL8, and CXCL10 genes that was induced by P. gingivalis components, including phenol-water extracts, lipid A, and fimbriae, and the induction of phosphorylation of p38 and extracellular signal-regulated kinase (ERK) by P. gingivalis lipopolysaccharide (LPS). CAMP was found to be expressed in oral epithelial cells but not in HGFs, despite stimulation with P. gingivalis components. Therefore, LL-37 can exert a suppressive effect on P. gingivalis-induced proinflammatory responses of HGFs in a paracrine manner, suggesting that excess inflammatory responses to P. gingivalis in the gingival tissue are suppressed by LL-37 in vivo.
Collapse
Affiliation(s)
- Megumi Inomata
- Department of Oral Microbiology, Asahi University, School of Dentistry, Mizuho, Gifu, Japan
| | | | | |
Collapse
|
247
|
Walters SM, Dubey VS, Jeffrey NR, Dixon DR. Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 2010; 31:1649-53. [PMID: 20541574 DOI: 10.1016/j.peptides.2010.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
Abstract
Bacterial lipopolysaccharide (LPS) release during periodontal infection is a significant component of periodontal disease. We hypothesized that some bacterial LPS release results from bacterial exposure to antibiotics. Therefore, we examined the ability of various classes of antibiotics to induce LPS release from Porphyromonas gingivalis as well as the ability of antimicrobial peptides (AMPs) to inhibit purified LPS. All antibiotics tested against P. gingivalis were able to liberate 1.9-12.9 times more LPS as compared to untreated bacteria. Among the three AMPs tested, LL-37 was found to be the most potent inhibitor of cytokine (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6) production and completely neutralized purified P. ginigivalis LPS activity in the chromogenic limulus amebocyte lysate (LAL) and whole blood cytokine stimulation assays. These observations suggest that therapeutic approaches utilizing AMPs as adjuncts to neutralize released LPS should be considered.
Collapse
Affiliation(s)
- S M Walters
- Immunology and Microbiology Branch, US Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes Naval Training Center, Great Lakes, IL 60088, USA
| | | | | | | |
Collapse
|
248
|
Richter W, Vogel V, Howe J, Steiniger F, Brauser A, Koch MH, Roessle M, Gutsmann T, Garidel P, Mäntele W, Brandenburg K. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immun 2010; 17:427-38. [PMID: 20682588 DOI: 10.1177/1753425910372434] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipopolysaccharides (LPSs) from Gram-negative bacteria are strong elicitors of the human immune systems. There is strong evidence that aggregates and not monomers of LPS play a decisive role at least in the initial stages of cell activation of immune cells such as mononuclear cells. In previous reports, it was shown that the biologically most active part of enterobacterial LPS, hexa-acyl bisphosphorylated lipid A, adopts a particular supramolecular conformation, a cubic aggregate structure. However, little is known about the size and morphology of these aggregates, regarding the fact that LPS may have strong variations in the length of the saccharide chains (various rough mutant and smooth-form LPS). Thus, in the present paper, several techniques for the determination of details of the aggregate morphology such as freeze-fracture and cryo-electron microscopy, analytical ultracentrifugation, laser backscattering analysis, and small-angle X-ray scattering were applied for various endotoxin (lipid A and different LPS) preparations. The data show a variety of different morphologies not only for different endotoxins but also when comparing different applied techniques. The data are interpreted with respect to the suitability of the single techniques, in particular on the basis of available literature data.
Collapse
Affiliation(s)
- Walter Richter
- Elektronenmikroskopisches Zentrum, Friedrich-Schiller-Universität Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Lee YS, Kim YJ, Choi SH, Shin KH, Jang WS, Lee IH, Chung JW. Di-K19Hc, an antimicrobial peptide as new ototopical agent for treatment of otitis media. Acta Otolaryngol 2010; 130:897-903. [PMID: 20100130 DOI: 10.3109/00016480903536036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Di-K19Hc is a promising new ototopical antibiotic for treatment of middle ear infections associated with antibiotic-resistant bacteria. OBJECTIVES Di-K19Hc was previously shown to exert profound antimicrobial activity against a variety of antibiotic-resistant bacteria and fungi. In this study, we evaluated the potential use of di-K19Hc as a topical agent for the treatment of otitis media (OM) caused by a variety of microbial pathogens including bacteria resistant to conventional antibiotics. METHODS Antimicrobial activity of di-K19Hc was measured by colony count assay. Hearing threshold was determined by measurement of auditory brainstem response in mice treated with di-K19Hc. Mice treated with gentamicin were used as a control. RESULTS Di-K19Hc showed much stronger antimicrobial activity against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa associated with human OM than did ofloxacin. Also, it was shown that the peptide exhibited substantial dose-dependent antimicrobial activity against microbes from middle ear fluid of patients with OM. Topically applied di-K19Hc caused neither a decrease of hearing level nor loss of hair cells.
Collapse
Affiliation(s)
- Young Shin Lee
- Department of Biotechnology, Hoseo University, Asan, Chungnam-Do, Korea
| | | | | | | | | | | | | |
Collapse
|
250
|
Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 2010; 31:1459-67. [PMID: 20438783 DOI: 10.1016/j.peptides.2010.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding Escherichia coli and Pseudomonas aeruginosa LPS in vitro and counteracting its biological effects in RAW-Blue cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with P. aeruginosa LPS, the same was not seen when E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041-LPS interactions must be of complex nature.
Collapse
Affiliation(s)
- Michela Bruschi
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | | | | | | | | | | | | | | |
Collapse
|