201
|
Sonveaux P, Copetti T, De Saedeleer CJ, Végran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frérart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 2012; 7:e33418. [PMID: 22428047 PMCID: PMC3302812 DOI: 10.1371/journal.pone.0033418] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/08/2012] [Indexed: 01/20/2023] Open
Abstract
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.
Collapse
Affiliation(s)
- Pierre Sonveaux
- Pole of Pharmacology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Kim HS, Masko EM, Poulton SL, Kennedy KM, Pizzo SV, Dewhirst MW, Freedland SJ. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int 2012; 110:1062-9. [PMID: 22394625 DOI: 10.1111/j.1464-410x.2012.10971.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED What's known on the subject? and What does the study add? It is known that both lactate inhibition and carbohydrate restriction inhibit tumour growth. What is unknown is whether the two work synergistically together. This study adds that though the combination of lactate inhibition and carbohydrate restriction did not synergistically slow tumour growth in our model, we confirmed that carbohydrate restriction started after tumour inoculation slowed tumour growth. Moreover, lactate inhibition resulted in changes in the tumour microenvironment that may have implications for future metabolic targeting of prostate cancer growth. OBJECTIVE To determine if a no-carbohydrate ketogenic diet (NCKD) and lactate transporter inhibition can exert a synergistic effect on delaying prostate tumour growth in a xenograft mouse model of human prostate cancer. MATERIALS AND METHODS 120 nude athymic male mice (aged 6-8 weeks) were injected s.c. in the flank with 1.0 × 10(5) LAPC-4 prostate cancer cells. • Mice were randomized to one of four treatment groups: Western diet (WD, 35% fat, 16% protein, 49% carbohydrate) and vehicle (Veh) treatment; WD and mono-carboxylate transporter-1 (MCT1) inhibition via α-cyano-4-hydroxycinnamate (CHC) delivered through a mini osmotic pump; NCKD (84% fat, 16% protein, 0% carbohydrate) plus Veh; or NCKD and MCT1 inhibition. • Mice were fed and weighed three times per week and feed was adjusted to maintain similar body weights. • Tumour size was measured twice weekly and the combined effect of treatment was tested via Kruskal-Wallis analysis of all four groups. Independent effects of treatment (NCKD vs WD and CHC vs Veh) on tumour volume were tested using linear regression analysis. • All mice were killed on Day 53 (conclusion of pump ejection), and serum and tumour sections were analysed for various markers. Again, combined and independent effects of treatment were tested using Kruskal-Wallis and linear regression analysis, respectively. RESULTS There were no significant differences in tumour volumes among the four groups (P= 0.09). • When testing the independent effects of treatment, NCKD was significantly associated with lower tumour volumes at the end of the experiment (P= 0.026), while CHC administration was not (P= 0.981). However, CHC was associated with increased necrotic fraction (P < 0.001). CONCLUSIONS Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. • MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction.
Collapse
Affiliation(s)
- Howard S Kim
- Division of Urologic Surgery, Department of Surgery and the Duke Prostate Center, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:852-61. [PMID: 22349311 DOI: 10.1016/j.bbadis.2012.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 01/19/2023]
Abstract
Cigarette smoking is not only a documented risk for lung carcinogenesis but also promotes lung cancer development. Nicotine, a major component of cigarette smoke but not a carcinogen by itself, has been found to induce proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC). Here we reported that proinvasive effect of nicotine is analogous to that of hypoxia and involves stabilization and activation of hypoxia-inducible factor (HIF)-1α, a key factor in determining the presence of HIF-1 and expression of its downstream metastasis-associated genes. Furthermore, nicotine-induced upregulation of HIF-1α was dependent on mitochondria-derived reactive oxygen species (ROS). Ecotopic expression of mitochondrial targeted catalase effectively prevented nicotine-induced accumulation of HIF-1α protein. In addition, we demonstrated that the effect of nicotine in upregulation of HIF-1α was mediated by Dihydro-β-erythroidine (DhβE)-sensitive nicotine acetylcholine receptors (nAChRs) and required synergistic cooperation of Akt and mitogen-activated protein kinase (MAPK) pathways. These results suggest that exposure to nicotine could mimic effects of hypoxia to stimulate HIF-1α accumulation and activity that might underlie the high metastatic potential of lung cancer.
Collapse
|
204
|
Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH. Pyruvate protects the brain against ischemia-reperfusion injury by activating the erythropoietin signaling pathway. Stroke 2012; 43:1101-7. [PMID: 22282883 DOI: 10.1161/strokeaha.111.620088] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Pyruvate is known to be cytoprotective through antioxidant and anti-inflammatory mechanisms. We tested the hypothesis that pyruvate protects the brain against ischemia-reperfusion injury by inducing endogenous erythropoietin (EPO) expression. METHODS Pyruvate's protective effect was evaluated in C6 glioma cells and HT22 neuronal cells subjected to transient oxygen glucose deprivation. Cell viability (calcein AM assay) and expression of hypoxia-inducible factor-1α, EPO, Akt and Erk (immunoblot), and EPO receptor (reverse transcription-polymerase chain reaction) were analyzed. Transient focal cerebral ischemia in rats was induced by 2 hours middle cerebral artery occlusion followed by 24 hours reperfusion. Pyruvate or saline was infused from 60 minutes occlusion until 30 minutes reperfusion. Lesion volume and DNA fragmentation were assessed by 2,3,5-triphenyltetrazolium staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, respectively. Immunoblots were conducted to determine cerebral EPO contents. RESULTS Pyruvate increased cell viability, hypoxia-inducible factor-1α, EPO, and Akt phosphorylation. Small interfering RNA suppression of hypoxia-inducible factor-1α and EPO abolished pyruvate-induced cytoprotection. In the rat stroke model, pyruvate reduced lesion volume by 84% and DNA fragmentation by 77% versus controls; increased EPO content paralleled these cerebroprotective actions of pyruvate. CONCLUSIONS Pyruvate activation of the hypoxia-inducible factor-1α-EPO signaling cascade in neurons and glia could protect the brain from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
205
|
Lenaz G, Genova ML. Supramolecular Organisation of the Mitochondrial Respiratory Chain: A New Challenge for the Mechanism and Control of Oxidative Phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:107-44. [DOI: 10.1007/978-1-4614-3573-0_5] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
206
|
Abstract
When considering the history of vitamin C, and the names given to this molecule in early days, the Latin proverb nomen est omen suddenly comes to mind. Around 1920, when Casimir Funk introduced the term Vitamin C to indicate the nutritional factor necessary to prevent the pathological state known as scurvy, the nature of the active molecule was still unknown (Davies MB, Austin J, Partridge DA (1991) Vitamin C: Its chemistry and biochemistry. The Royal Society of Chemistry, Cambridge UK). Almost in the same years, Albert Szent-Giörgyi was striving to identify a new 6-carbon sugar he had obtained in crystal form from oranges, lemons, cabbage and adrenal glands. As humorously described by Szent-Giörgyi himself (Szent-Giörgyi A (1963) Lost in the twentieth century. Annu Rev Biochem 36:1-15), he intended to name this yet unknown carbohydrate "ignose". When this name was rejected by Sir Arthur Harden, editor of the Biochemical Journal, he suggested to name it "godnose", meaning that only God could know the real identity of the molecule. Obviously, also this choice was considered inappropriate by Harden, who suggested the plain name "hexuronic acid". Only later, when the structure of "hexuronic acid" had been completely elucidated, and biological tests performed by Swirbely identified this molecule as the anti-scurvy factor vitamin C, Szent-Giörgyi and Walter Norman Haworth decided to eventually name it ascorbic acid (Szent-Giörgyi A (1963) Lost in the twentieth century. Annu Rev Biochem 36:1-15). "Ascorbic" literally means "against scurvy", and scurvy is known to be mainly due to the inactivation of some important dioxygenases involved in the synthesis of a few key molecules, including different collagen forms (De Tullio MC (2004) How does ascorbic acid prevent scurvy? A survey of the nonantioxidant functions of vitamin C. In: Asard H, May J, Smirnoff N (eds) Vitamin C, its functions and biochemistry in animals and plants. Bios Scientific Publishers, Oxford, UK, pp. 159-172). All this has very little to do with the celebrated role of ascorbic acid (ASC) as an antioxidant. So, if the fate of ASC had to be found in its name, its role in the prevention of scurvy (i.e. beyond the antioxidant function) should be considered its main feature. But, in spite of more than 80 years of extensive research (34,424 hits in a PubMed query on January 6 2007), an unprecedented popularity among the general public, an estimated market of several billion dollars (Hancock RD, Viola R (2005) Improving the nutritional value of crops through enhancement of l-ascorbic acid (vitamin C) content: Rationale and biotechnological opportunities. J Agr Food Chem 53:5248-5257), we should honestly conclude that the fate of vitamin C is still in the first name it received, many years ago: we still ignore much of its actual relevance in cell metabolism, although we are progressively getting aware of the many facets of this fascinating molecule, and its direct involvement in the regulation of apparently unrelated pathways (Arrigoni O, De Tullio MC (2002) Ascorbic acid, much more than just an antioxidant. Biochim Biophys Acta 1569:1-9; De Tullio MC, Arrigoni O (2004) Hopes, disillusions and more hopes from vitamin C. Cell Mol Life Sci 61:209-219; Duarte TL, Lunec J (2005) When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Rad Res 39:671-686). Recent data on ASC involvement in cell signalling and gene expression open new perspectives, that will be presented and discussed in this chapter.
Collapse
Affiliation(s)
- Mario C De Tullio
- Dipartimento di Biologia e Patologia Vegetale, Universita' di Bari, 70125, Bari, Italia,
| |
Collapse
|
207
|
Abstract
Bacterial bloodstream infection causes septic syndromes that range from systemic inflammatory response syndrome (SIRS) and encephalopathy to severe sepsis and septic shock. Microvascular dysfunction, comprising impaired capillary blood flow and arteriolar responsiveness, precedes multiple organ failure. Vitamin C (ascorbate) levels are low in critically ill patients. The impact of ascorbate administered orally is moderate because of its limited bioavailability. However, intravenous injection of ascorbate raises plasma and tissue concentrations of the vitamin and may decrease morbidity. In animal models of polymicrobial sepsis, intravenous ascorbate injection restores microvascular function and increases survival. The protection of capillary blood flow and arteriolar responsiveness by ascorbate may be mediated by inhibition of oxidative stress, modulation of intracellular signaling pathways, and maintenance of homeostatic levels of nitric oxide. Ascorbate scavenges reactive oxygen species (ROS) and also inhibits the NADPH oxidase that synthesizes superoxide in microvascular endothelial cells. The resulting changes in redox-sensitive signaling pathways may diminish endothelial expression of inducible nitric oxide synthase (iNOS), tissue factor and adhesion molecules. Ascorbate also regulates nitric oxide concentration by releasing nitric oxide from adducts and by acting through tetrahydrobiopterin (BH4) to stimulate endothelial nitric oxide synthase (eNOS). Therefore, it may be possible to improve microvascular function in sepsis by using intravenous vitamin C as an adjunct therapy.
Collapse
Affiliation(s)
- John X Wilson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, 14214-8028, USA,
| | | |
Collapse
|
208
|
Raimundo N, Baysal BE, Shadel GS. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 2011; 17:641-9. [PMID: 21764377 PMCID: PMC3205302 DOI: 10.1016/j.molmed.2011.06.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/17/2022]
Abstract
A role for mitochondria in tumor formation is suggested by mutations in enzymes of the TCA cycle: isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and fumarate hydratase (FH). Although they are all components of the TCA cycle, the resulting clinical presentations do not overlap. Activation of the hypoxia pathway can explain SDH phenotypes, but recent data suggest that FH and IDH mutations lead to tumor formation by repressing cellular differentiation. In this review, we discuss recent findings in the context of both mitochondrial and cytoplasmic components of the TCA cycle, and we propose that extrametabolic roles of TCA cycle metabolites result in reduced cellular differentiation. Furthermore, activation of the pseudohypoxia pathway likely promotes the growth of these neoplasias into tumors.
Collapse
Affiliation(s)
- Nuno Raimundo
- Department of Pathology, Yale University School of Medicine, BML 369, 310 Cedar St, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
209
|
Glushakova LG, Judge S, Cruz A, Pourang D, Mathews CE, Stacpoole PW. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts. Mol Genet Metab 2011; 104:255-60. [PMID: 21846590 PMCID: PMC3205311 DOI: 10.1016/j.ymgme.2011.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/13/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit.
Collapse
Affiliation(s)
- Lyudmyla G. Glushakova
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Sharon Judge
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Alex Cruz
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Deena Pourang
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32611
| |
Collapse
|
210
|
|
211
|
Diaz-Moralli S, Tarrado-Castellarnau M, Alenda C, Castells A, Cascante M. Transketolase-like 1 expression is modulated during colorectal cancer progression and metastasis formation. PLoS One 2011; 6:e25323. [PMID: 21980427 PMCID: PMC3181277 DOI: 10.1371/journal.pone.0025323] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/01/2011] [Indexed: 12/19/2022] Open
Abstract
Background Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients. Methodolody/Principal Findings Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004). Conclusions/Significance To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina at Universitat de Barcelona IBUB and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Miriam Tarrado-Castellarnau
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina at Universitat de Barcelona IBUB and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Cristina Alenda
- Pathology Department, Hospital General Universitario de Alicante, Alicante, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Marta Cascante
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina at Universitat de Barcelona IBUB and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
212
|
Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 2011; 28:2695-730. [PMID: 21863476 DOI: 10.1007/s11095-011-0566-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022]
Abstract
Succinate:quinone reductase (SQR) of Complex II occupies a unique central point in the mitochondrial respiratory system as a major source of electrons driving reactive oxygen species (ROS) production. It is an ideal pharmaceutical target for modulating ROS levels in normal cells to prevent oxidative stress-induced damage or alternatively,increase ROS in cancer cells, inducing cell death.The value of drugs like diazoxide to prevent ROS production,protecting normal cells, whereas vitamin E analogues promote ROS in cancer cells to kill them is highlighted. As pharmaceuticals these agents may prevent degenerative disease and their modes of action are presently being fully explored. The evidence that SDH/Complex II is tightly coupled to the NADH/NAD+ ratio in all cells,impacted by the available supplies of Krebs cycle intermediates as essential NAD-linked substrates, and the NAD+-dependent regulation of SDH/Complex II are reviewed, as are links to the NAD+-dependent dehydrogenases, Complex I and the E3 dihiydrolipoamide dehydrogenase to produce ROS. This review collates and discusses diverse sources of information relating to ROS production in different biological systems, focussing on evidence for SQR as the main source of ROS production in mitochondria, particularly its relevance to protection from oxidative stress and to the mitochondrial-targeted anti cancer drugs (mitocans) as novel cancer therapies [corrected].
Collapse
|
213
|
Palmitoyl ascorbate liposomes and free ascorbic acid: comparison of anticancer therapeutic effects upon parenteral administration. Pharm Res 2011; 29:375-83. [PMID: 21845505 DOI: 10.1007/s11095-011-0557-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To evaluate and compare anticancer therapeutic effect of palmitoyl ascorbate liposomes (PAL) and free ascorbic acid (AA). METHODS Liposomes incorporating palmitoyl ascorbate (PA) were prepared and evaluated for PA content by HPLC. To elucidate mechanism of action of cell death in vitro, effect of various H(2)O(2) scavengers and metal chelators on PA-mediated cytotoxicity was studied. Effect of various combinations of PAL and free AA on in vitro cytotoxicity was evaluated on 4T1 cells. In vivo, PAL formulation was modified with polyethylene glycol; effect of PEGylation on in vitro cytotoxicity was evaluated. Biodistribution of PEG-PAL formulation was investigated in female Balb/c mice bearing murine mammary carcinoma (4T1 cells). In vivo anticancer activity of PEG-PAL (PEG-PAL equivalent to 20 mg/kg of PA injected intravenously on alternate days) was compared with free AA therapy in same model. RESULTS PEG-PAL treatment was significantly more effective than free AA treatment in slowing tumor growth. CONCLUSIONS Nanoparticle formulations incorporating PA can kill cancer cells in vitro. The mechanism of PA cytotoxicity is based on production of extracellular reactive oxygen species and involves intracellular transition metals.
Collapse
|
214
|
Vascular cell-adhesion molecule-1 plays a central role in the proangiogenic effects of oxidative stress. Proc Natl Acad Sci U S A 2011; 108:14614-9. [PMID: 21844360 DOI: 10.1073/pnas.1012859108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress exacerbates neovascularization (NV) in many disease processes. In this study we investigated the mechanism of that effect. Mice deficient in superoxide dismutase 1 (Sod1(-/-) mice) have increased oxidative stress and show severe ocular NV that is reduced to baseline by antioxidants. Compared with wild-type mice with ischemic retinopathy, Sod1(-/-) mice with ischemic retinopathy had increased expression of several NF-κB-responsive genes, but expression of vascular cell-adhesion molecule-1 (Vcam1) was particularly high. Intraocular injection of anti-VCAM-1 antibody eliminated the excessive ischemia-induced retinal NV. Elements that contributed to oxidative stress-induced worsening of retinal NV that were abrogated by blockade of VCAM-1 included increases in leukostasis, influx of bone marrow-derived cells, and capillary closure. Compared with ischemia alone, ischemia plus oxidative stress resulted in increased expression of several HIF-1-responsive genes caused in part by VCAM-1-induced worsening of nonperfusion and, hence, ischemia, because anti-VCAM-1 significantly reduced the increased expression of all but one of the genes. These data explain why oxidative stress worsens ischemia-induced retinal NV and may be relevant to other neovascular diseases in which oxidative stress has been implicated. The data also suggest that antagonism of VCAM-1 provides a potential therapy to combat worsening of neovascular diseases by oxidative stress.
Collapse
|
215
|
Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, Migliore C, Giordano S, Chiarugi P. HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 2011; 51:893-904. [PMID: 21703345 DOI: 10.1016/j.freeradbiomed.2011.05.042] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/09/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023]
Abstract
The "angiogenic switch" during tumor progression is increasingly recognized as a milestone event in tumorigenesis, although the surprising prometastatic effect of antiangiogenic therapies has recently shaken the scientific community. Tumor hypoxia has been singled out as a possible responsible factor in this prometastatic effect, although the molecular pathways are completely unknown. We report herein that human melanoma cells respond to hypoxia through a deregulation of the mitochondrial release of reactive oxygen species (ROS) by the electron transfer chain complex III. These ROS are mandatory to stabilize hypoxia-inducible factor-1α (HIF-1α), the master transcriptional regulator of the hypoxic response. We found that melanoma cells sense hypoxia-enhancing expression/activation of the Met proto-oncogene, which drives a motogenic escape program. Silencing analyses revealed a definite hierarchy of this process, in which mitochondrial ROS drive HIF-1α stabilization, which in turn activates the Met proto-oncogene. This pathway elicits a clear metastatic program of melanoma cells, enhancing spreading on extracellular matrix, motility, and invasion of 3D matrices, as well as growth of metastatic colonies and the ability to form capillary-like structures by vasculogenic mimicry. Both pharmacological and genetic interference with mitochondrial ROS delivery or Met expression block the hypoxia-driven metastatic program. Hence, we propose that hypoxia-driven ROS act as a primary driving force to elicit an invasive program exploited by aggressive melanoma cells to escape from a hypoxic hostile environment.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Biochemical Sciences, University of Florence, 50134 Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Miró-Murillo M, Elorza A, Soro-Arnáiz I, Albacete-Albacete L, Ordoñez A, Balsa E, Vara-Vega A, Vázquez S, Fuertes E, Fernández-Criado C, Landázuri MO, Aragonés J. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression. PLoS One 2011; 6:e22589. [PMID: 21811636 PMCID: PMC3141062 DOI: 10.1371/journal.pone.0022589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/29/2011] [Indexed: 01/01/2023] Open
Abstract
Von Hippel Lindau (Vhl) gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs), have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquous tamoxifen-inducible recombinase Cre-ERT2. Here, we characterize a widespread reduction in Vhl gene expression in Vhlfloxed-UBC-Cre-ERT2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo) gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ERT2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.
Collapse
Affiliation(s)
| | - Ainara Elorza
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Inés Soro-Arnáiz
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Lucas Albacete-Albacete
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Angel Ordoñez
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Eduardo Balsa
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Alicia Vara-Vega
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Silvia Vázquez
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Esther Fuertes
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | | | - Manuel O. Landázuri
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Julián Aragonés
- Department of Immunology, Hospital of La Princesa, Sanitary Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
217
|
Wahl P, Hägele M, Zinner C, Bloch W, Mester J. [High intensity training (HIT) for the improvement of endurance capacity of recreationally active people and in prevention & rehabilitation]. Wien Med Wochenschr 2011; 160:627-36. [PMID: 21221914 DOI: 10.1007/s10354-010-0857-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Although intensive exercise protocols are commonly used in practical training and scientific studies, there is recently a great scientific discussion about "high intensity (interval) training" (HIT). New are the large amounts of studies and the more detailed knowledge about the physiological responses and adaptations to HIT in comparison to the classic high volume, low intensity endurance training. The present article summarizes the current knowledge about HIT in endurance exercise for clinical applications. In the first part, molecular and cellular adaptations to HIT are discussed in comparison to low intensity high volume training. Furthermore, studies are summarized which compare HIT vs. HVT in the field of prevention and rehabilitation. Terminally the differences in physiological stimuli of both training interventions are considered.
Collapse
Affiliation(s)
- Patrick Wahl
- Institut für Trainingswissenschaft und Sportinformatik, Deutsche Sporthochschule Köln, Köln, Germany.
| | | | | | | | | |
Collapse
|
218
|
Brockmeier U, Platzek C, Schneider K, Patak P, Bernardini A, Fandrey J, Metzen E. The function of hypoxia-inducible factor (HIF) is independent of the endoplasmic reticulum protein OS-9. PLoS One 2011; 6:e19151. [PMID: 21559462 PMCID: PMC3084761 DOI: 10.1371/journal.pone.0019151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/18/2011] [Indexed: 11/27/2022] Open
Abstract
The protein “amplified in osteosarcoma-9” (OS-9) has been shown previously to interact with the prolyl hydroxylases PHD2 and PHD3. These enzymes initiate oxygen-dependent degradation of the α-subunit of hypoxia-inducible factor (HIF), a transcription factor that adapts cells to insufficient oxygen supply (hypoxia). A new model has been proposed where OS-9 triggers PHD dependent degradation of HIF-α. It was the aim of our study to define the molecular mode of action of OS-9 in the regulation of PHD and HIF activity. Although initial co-immunoprecipitation experiments confirmed physical interaction between OS-9 and PHD2, neither overexpression nor lentiviral inhibition of OS-9 expression affected HIF regulation. Subcellular localization experiments revealed a distinct reticular staining pattern for OS-9 while PHD2 was mainly localized in the cytoplasm. Further cell fractionation experiments and glycosylation tests indicated that OS-9 is a luminal ER protein. In vivo protein interaction analysis by fluorescence resonance energy transfer (FRET) showed no significant physical interaction of overexpressed PHD2-CFP and OS-9-YFP. We conclude that OS-9 plays no direct functional role in HIF degradation since physical interaction of OS-9 with oxygen sensing HIF prolyl hydroxylases cannot occur in vivo due to their different subcellular localization.
Collapse
Affiliation(s)
- Ulf Brockmeier
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Corinna Platzek
- Institute of Physiology, University of Lübeck, Lübeck, Germany
| | - Kirsten Schneider
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Pauline Patak
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - André Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
219
|
Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 2011; 43:346-55. [PMID: 21530659 DOI: 10.1016/j.nbd.2011.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/23/2011] [Accepted: 04/07/2011] [Indexed: 12/20/2022] Open
Abstract
Impairment of mitochondrial function might contribute to oxidative stress associated with neurodegeneration in amyotrophic lateral sclerosis (ALS). Glutamate levels in tissues of ALS patients are sometimes altered. In neurons, mitochondrial metabolism of exogenous glutamine is mainly responsible for the net synthesis of glutamate, which is a neurotransmitter, but it is also necessary for the synthesis of glutathione, the main endogenous antioxidant. We investigated glutathione synthesis and glutamine/glutamate metabolism in a motor neuronal model of familial ALS. In standard culture conditions (with glutamine) or restricting glutamine or cystine, the level of glutathione was always lower in the cell line expressing the mutant (G93A) human Cu, Zn superoxide dismutase (G93ASOD1) than in the line expressing wild-type SOD1. With glutamine the difference in glutathione was associated with a lower glutamate and impairment of the glutamine/glutamate metabolism as evidenced by lower glutaminase and cytosolic malate dehydrogenase activity. d-β-hydroxybutyrate, as an alternative to glutamine as energy substrate in addition to glucose, reversed the decreases of cytosolic malate dehydrogenase activity and glutamate and glutathione. However, in the G93ASOD1 cell line, in all culture conditions the expression of pyruvate dehydrogenase kinase l protein, which down-regulates pyruvate dehydrogenase activity, was induced, together with an increase in lactate release in the medium. These findings suggest that the glutathione decrease associated with mutant SOD1 expression is due to mitochondrial dysfunction caused by the reduction of the flow of glucose-derived pyruvate through the TCA cycle; it implies altered glutamate metabolism and depends on the different mitochondrial energy substrates.
Collapse
|
220
|
Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011; 71:2550-60. [PMID: 21300765 DOI: 10.1158/0008-5472.can-10-2828] [Citation(s) in RCA: 608] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactate generated from pyruvate fuels production of intracellular NAD(+) as an end result of the glycolytic process in tumors. Elevated lactate concentration represents a good indicator of the metabolic adaptation of tumors and is actually correlated to clinical outcome in a variety of human cancers. In this study, we investigated whether lactate could directly modulate the endothelial phenotype and thereby tumor vascular morphogenesis and perfusion. We found that lactate could enter endothelial cells through the monocarboxylate transporter MCT-1, trigger the phosphorylation/degradation of IκBα, and then stimulate an autocrine NF-κB/IL-8 (CXCL8) pathway driving cell migration and tube formation. These effects were prevented by 2-oxoglutarate and reactive oxygen species (ROS) inhibitors, pointing to a role for prolyl-hydroxylase and ROS in the integration of lactate signaling in endothelial cells. PHD2 silencing in endothelial cells recapitulated the proangiogenic effects of lactate, whereas a blocking IL-8 antibody or IL-8-targeting siRNA prevented them. Finally, we documented in mouse xenograft models of human colorectal and breast cancer that lactate release from tumor cells through the MCT4 (and not MCT1) transporter is sufficient to stimulate IL-8-dependent angiogenesis and tumor growth. In conclusion, our findings establish a signaling role for lactate in endothelial cells and they identify the lactate/NF-κB/IL-8 pathway as an important link between tumor metabolism and angiogenesis.
Collapse
Affiliation(s)
- Frédérique Végran
- Université catholique de Louvain, Pole of Pharmacology & Therapeutics (UCL-FATH), Angiogenesis & Cancer Research Laboratory, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | | | | | | | | |
Collapse
|
221
|
|
222
|
Abstract
Prolyl-4-hydroxylation is necessary for proper structural assembly of collagens and oxygen-dependent protein stability of hypoxia-inducible transcription factors (HIFs). In vitro function of HIF prolyl-4-hydroxylase domain (PHD) enzymes requires oxygen and 2-oxoglutarate as cosubstrates with iron(II) and vitamin C serving as cofactors. Although vitamin C deficiency is known to cause the collagen-disassembly disease scurvy, it is unclear whether cellular oxygen sensing is similarly affected. Here, we report that vitamin C-deprived Gulo(-/-) knockout mice show normal HIF-dependent gene expression. The systemic response of Gulo(-/-) animals to inspiratory hypoxia, as measured by plasma erythropoietin levels, was similar to that of animals supplemented with vitamin C. Hypoxic HIF induction was also essentially normal under serum- and vitamin C-free cell-culture conditions, suggesting that vitamin C is not required for oxygen sensing in vivo. Glutathione was found to fully substitute for vitamin C requirement of all 3 PHD isoforms in vitro. Consistently, glutathione also reduced HIF-1α protein levels, transactivation activity, and endogenous target gene expression in cells exposed to CoCl(2). A Cys201Ser mutation in PHD2 increased basal hydroxylation rates and conferred resistance to oxidative damage in vitro, suggesting that this surface-accessible PHD2 cysteine residue is a target of antioxidative protection by vitamin C and glutathione.
Collapse
|
223
|
Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL, Li N. Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 2011; 79:300-10. [PMID: 20881940 PMCID: PMC3107572 DOI: 10.1038/ki.2010.326] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To examine whether hypoxia-inducible factor (HIF)-1α mediates the profibrotic effects of angiotensin II, we treated cultured renal medullary interstitial cells with angiotensin II and found that it increased HIF-1α levels. This was accompanied by a significant upregulation of collagen I/III, the tissue inhibitor of metalloproteinase-1, elevation of the proliferation marker proliferating cell nuclear antigen, and a transdifferentiation marker vimentin. All these effects of angiotensin II were completely blocked by siRNA for HIF-1α but not HIF-2α. Overexpression of a prolyl-hydroxylase domain-containing protein 2 (PHD2) transgene, the predominant renal HIF prolyl-hydroxylase, attenuated the effects of angiotensin II and its gene silencing enhanced the effects of angiotensin II. Removal of hydrogen peroxide eliminated angiotensin II-induced profibrotic effects. A 2-week infusion of rats with angiotensin II increased the expression of HIF-1α and α-smooth muscle actin, another marker of transdifferentiation, in renal medullary interstitial cells in vivo. Thus, our study suggests that HIF-1α mediates angiotensin II-induced profibrotic effects through activation of cell transdifferentiation. We propose that redox regulation of prolyl-PHD2 plays a critical role in angiotensin II-induced activation of HIF-1α in renal cells.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
224
|
Sun W, Chang SS, Fu Y, Liu Y, Califano JA. Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization. PLoS One 2011; 6:e16207. [PMID: 21283817 PMCID: PMC3023770 DOI: 10.1371/journal.pone.0016207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/08/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells. CONCLUSIONS/SIGNIFICANCE Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Steven S. Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Yumei Fu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Yan Liu
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Joseph A. Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
| |
Collapse
|
225
|
Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Chawla K, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H. Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ Res 2011; 108:60-9. [PMID: 21071708 PMCID: PMC3017633 DOI: 10.1161/circresaha.110.223115] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/29/2010] [Indexed: 01/10/2023]
Abstract
RATIONALE Cardiomyocytes switch substrate utilization from fatty acid to glucose under ischemic conditions; however, it is unknown how perturbations in glycolytic enzymes affect cardiac response to ischemia/reperfusion (I/R). Hexokinase (HK)II is a HK isoform that is expressed in the heart and can bind to the mitochondrial outer membrane. OBJECTIVE We sought to define how HKII and its binding to mitochondria play a role in cardiac response and remodeling after I/R. METHODS AND RESULTS We first showed that HKII levels and its binding to mitochondria are reduced 2 days after I/R. We then subjected the hearts of wild-type and heterozygote HKII knockout (HKII(+/)⁻) mice to I/R by coronary ligation. At baseline, HKII(+/)⁻ mice have normal cardiac function; however, they display lower systolic function after I/R compared to wild-type animals. The mechanism appears to be through an increase in cardiomyocyte death and fibrosis and a reduction in angiogenesis; the latter is through a decrease in hypoxia-inducible factor-dependent pathway signaling in cardiomyocytes. HKII mitochondrial binding is also critical for cardiomyocyte survival, because its displacement in tissue culture with a synthetic peptide increases cell death. Our results also suggest that HKII may be important for the remodeling of the viable cardiac tissue because its modulation in vitro alters cellular energy levels, O₂ consumption, and contractility. CONCLUSIONS These results suggest that reduction in HKII levels causes altered remodeling of the heart in I/R by increasing cell death and fibrosis and reducing angiogenesis and that mitochondrial binding is needed for protection of cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Eugene Wyatt
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Yoshihiko Ichikawa
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Otto Eerbeek
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Lin Sun
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Kusum Chawla
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Markus W. Hollmann
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Varun Nagpal
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Sami Heikkinen
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Markku Laakso
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - Kentaro Jujo
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | - J. Andrew Wasserstrom
- Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (R.W., E.W., L.S., V.P., V.N., K.J., J.A.W., H.A.) Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (K.M.S., M.W.H., C.J.Z.), and Department of Physiology (O.E.), Academic Medical Center, Amsterdam, The Netherlands. Department of Medicine, University of Kuopio and Kuopio University Hospital, 70210 Kuopio, Finland (S.H., M.L.)
| | | | | |
Collapse
|
226
|
Effects of polynitrogen compounds on the activity of recombinant human HIF-1α prolyl hydroxylase 3 in E. coli. J Inorg Biochem 2010; 105:391-9. [PMID: 21421125 DOI: 10.1016/j.jinorgbio.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 12/04/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022]
Abstract
Hypoxia inducible factor 1α (HIF-1α) becomes an important regulation factor within the histiocyte when it is under the hypoxia condition. Recently, prolyl hydroxylases (PHDs) have been identified to inactivation HIF-lα by hydroxylation. In this study, polynitrogen compounds were screened as HIF-1α PHD3 inhibitors. The coding region of human PHD3 DNA was optimized by using synonymous codons according to the code bias of Escherichia coli. Soluble and active human PHD3 was expressed in the E. coli with a Trx fusion tag under a lower induction temperature of 25°C. Mass spectrometry analysis of the resultant peptide product indicated a mass increase of 16 daltons, consistent with hydroxylation of the proline residue in the HIF-1α (556-574) peptide substrate. Polynitrogen compounds (1-4) inhibited the enzymatic hydroxylation of HIF-1α peptide in a concentration-dependent manner, and the apparent IC(50) values were 29.5, 16.0, 12.8 and 60.4 μM respectively. Double reciprocal (1/V versus 1/[HIF-1α peptide]) plots showed that these compounds are noncompetitive inhibitors of the hydroxylation by recombinant human PHD3 with K(i) values of 67.0, 25.3, 67.3, and 82.1 μM respectively. On the other hand, the metal complexes of these polynitrogen compounds (1-4) cannot inhibit the catalytical activity of PHD3. We hypothesized that the inhibitory mechanism of PHD3 activity by polynitrogen compounds is due to their binding to iron to form stable coordination complexes. Our results in this study indicated that polynitrogen compounds (1-4) could be potential inhibitors of PHD3 to regulate the transcriptional activity of HIF-1α.
Collapse
|
227
|
Abstract
Proline, the only proteinogenic secondary amino acid, is metabolized by its own family of enzymes responding to metabolic stress and participating in metabolic signaling. Collagen in extracellular matrix, connective tissue, and bone is an abundant reservoir for proline. Matrix metalloproteinases degrading collagen are activated during stress to make proline available, and proline oxidase, the first enzyme in proline degradation, is induced by p53, peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands, and by AMP-activated protein kinase downregulating mTOR. Metabolism of proline generates electrons to produce ROS and initiates a variety of downstream effects, including blockade of the cell cycle, autophagy, and apoptosis. The electrons can also enter the electron transport chain to produce adenosine triphosphate for survival under nutrient stress. Pyrroline-5-carboxylate, the product of proline oxidation, is recycled back to proline with redox transfers or is sequentially converted to glutamate and alpha-ketoglutarate. The latter augments the prolyl hydroxylation of hypoxia-inducible factor-1alpha and its proteasomal degradation. These effects of proline oxidase, as well as its decreased levels in tumors, support its role as a tumor suppressor. The mechanism for its decrease is mediated by a specific microRNA. The metabolic signaling by proline oxidase between oxidized low-density lipoproteins and autophagy provides a functional link between obesity and increased cancer risk.
Collapse
Affiliation(s)
- James M Phang
- Metabolism and Cancer Susceptibility Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, NCI at Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
228
|
Abstract
According to a "canonical" view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This "heresy" has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and metastasis.
Collapse
Affiliation(s)
- Giovambattista Pani
- Institute of General Pathology, Catholic University Medical School, Rome, Italy.
| | | | | |
Collapse
|
229
|
Complex role of the HIF system in cardiovascular biology. J Mol Med (Berl) 2010; 88:1101-11. [DOI: 10.1007/s00109-010-0646-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 05/17/2010] [Accepted: 06/11/2010] [Indexed: 12/18/2022]
|
230
|
Abstract
This article focuses on the latest data about the role of the gene for phosphatase and tensin homologue located on chromosome 10 (PTEN) in malignant gliomas. PTEN acts as a tumour suppressor gene and plays a critical role in cell cycle progression, angiogenesis, migration, invasions and stem cell regulation. Furthermore, there is an interaction with other tumour suppressor genes. We discuss the role of miRNAs in modulating PTEN expression and also PTEN's role in the nucleus.
Collapse
Affiliation(s)
- George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannia, Ioannina, Greece.
| | | |
Collapse
|
231
|
Abstract
Deregulated c-Myc occurs in approximately 30% of human cancers. Similarly, hypoxia-inducible factor (HIF) is commonly overexpressed in a variety of human malignancies. Under physiologic conditions, HIF inhibits c-Myc activity; however, when deregulated oncogenic c-Myc collaborates with HIF in inducing the expression of VEGF, PDK1 and hexokinase 2. Most of the knowledge of HIF derives from studies investigating a role of HIF under hypoxic conditions, however, HIF-1alpha stabilization is also found in normoxic conditions. Specifically, under hypoxic conditions HIF-1-mediated regulation of oncogenic c-Myc plays a pivotal role in conferring metabolic advantages to tumor cells as well as adaptation to the tumorigenic micromilieu. In addition, our own results show that under normoxic conditions oncogenic c-Myc is required for constitutive high HIF-1 protein levels and activity in Multiple Myeloma (MM) cells, thereby influencing VEGF secretion and angiogenic activity within the bone marrow microenvironment. Further studies are needed to delineate the functional relevance of HIF, MYC, and the HIF-MYC collaboration in MM and other malignancies, also integrating the tumor microenvironment and the cellular context. Importantly, early studies already demonstrate promising preclinical of novel agents, predominantly small molecules, which target c-Myc, HIF or both.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
232
|
Illsley NP, Caniggia I, Zamudio S. Placental metabolic reprogramming: do changes in the mix of energy-generating substrates modulate fetal growth? THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:409-19. [PMID: 19924633 DOI: 10.1387/ijdb.082798ni] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insufficient oxygen leads to the cessation of growth in favor of cellular survival. Our unique model of high-altitude human pregnancy indicates that hypoxia-induced reductions in fetal growth occur at higher levels of oxygen than previously described. Fetal PO(2) is surprisingly high and fetal oxygen consumption unaffected by high altitude, whereas fetal glucose delivery and consumption decrease. Placental delivery of energy-generating substrates to the fetus is thus altered by mild hypoxia, resulting in maintained fetal oxygenation but a relative fetal hypoglycemia. Our data point to this altered mix of substrates as a potential initiating factor in reduced fetal growth, since oxygen delivery is adequate. These data support the existence, in the placenta, of metabolic reprogramming mechanisms, previously documented in tumor cells, whereby HIF-1 stimulates reductions in mitochondrial oxygen consumption at the cost of increased glucose consumption. Decreased oxygen consumption is not due to substrate (oxygen) limitation but rather results from active inhibition of mitochondrial oxygen utilization. We suggest that under hypoxic conditions, metabolic reprogramming in the placenta decreases mitochondrial oxygen consumption and increases anerobic glucose consumption, altering the mix of energy-generating substrates available for transfer to the fetus. Increased oxygen is available to support the fetus, but at the cost of less glucose availability, leading to a hypoglycemia-mediated decrease in fetal growth. Our data suggest that metabolic reprogramming may be an initiating step in the progression to more severe forms of fetal growth restriction and points to the placenta as the pivotal source of fetal programming in response to an adverse intrauterine environment.
Collapse
Affiliation(s)
- Nicholas P Illsley
- Department of Obstetrics, Gynecology and Womens Health, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | | | |
Collapse
|
233
|
Kim SY, Choi JS, Park C, Jeong JW. Ethyl pyruvate stabilizes hypoxia-inducible factor 1 alpha via stimulation of the TCA cycle. Cancer Lett 2010; 295:236-41. [PMID: 20338685 DOI: 10.1016/j.canlet.2010.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Ethyl pyruvate is a simple derivative of the endogenous metabolite pyruvate. Pyruvate is the starting substrate for the tricarboxylic acid (TCA) cycle and plays a central role in intermediary metabolism. The present study was to determine whether ethyl pyruvate affects the expression of hypoxia-inducible factor 1 alpha (HIF-1alpha) and to explore the mechanism of HIF-1alpha regulation. We found that ethyl pyruvate increased HIF-1alpha stability via inhibition of pVHL-mediated degradation. Furthermore, ethyl pyruvate enhanced the reactive oxygen species (ROS) generated through the TCA cycle in mitochondria. Taken together, our results support a novel role for ethyl pyruvate in HIF-1alpha stabilization by which high rates of the TCA cycle can promote ROS production.
Collapse
Affiliation(s)
- Seon-Ye Kim
- Department of Anatomy and Neurobiology, Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
234
|
Wenger RH, Hoogewijs D. Regulated oxygen sensing by protein hydroxylation in renal erythropoietin-producing cells. Am J Physiol Renal Physiol 2010; 298:F1287-96. [PMID: 20219824 DOI: 10.1152/ajprenal.00736.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The kidney is a major site of systemic oxygen sensing, regulating blood erythrocyte and hence oxygen content by hypoxia-inducible erythropoietin (Epo) expression. A constant ratio between blood perfusion and oxygen consumption, a stable corticomedullary oxygen gradient, and a relatively low tissue Po(2) are the prerequisites for the function of renal Epo-producing and oxygen-sensing (REPOS) cells, which are located in the juxtamedullary cortex. In kidney disease, renal oxygen consumption is decreased, leading to an increase in Po(2), dysfunction of REPOS cells, and anemia. The molecular principles of cellular oxygen sensing have been elucidated in the last few years, and genetically altered mouse models as well as hereditary diseases causing erythrocytosis have clarified the oxygen-signaling cascade leading to increased Epo expression in REPOS cells. However, the consequences of a number of recently discovered factors for the regulation of oxygen signaling in REPOS cells are unclear, asking for novel cell culture models which might be hampered by the putative neuron-like nature of this enigmatic cell type.
Collapse
Affiliation(s)
- Roland H Wenger
- Institute of Physiology and Zürich Center for Integrative Human Physiology ZIHP, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
235
|
Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J. Oxygen-sensing under the influence of nitric oxide. Cell Signal 2010; 22:349-56. [PMID: 19861159 DOI: 10.1016/j.cellsig.2009.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 11/27/2022]
Abstract
The transcription factor complex Hypoxia inducible factor 1 (HIF-1) controls the expression of most genes involved in adaptation to hypoxic conditions. Oxygen-dependency is maintained by prolyl- and asparagyl-4-hydroxylases (PHDs/FIH-1) belonging to the superfamily of iron(II) and 2-oxoglutarate dependent dioxygenases. Hydroxylation of the HIF-1alpha subunit by PHDs and FIH-1 leads to its degradation and inactivation. By hydroxylating HIF-1alpha in an oxygen-dependent manner PHDs and FIH-1 function as oxygen-sensing enzymes of HIF signalling. Besides molecular oxygen nitric oxide (NO), a mediator of the inflammatory response, can regulate HIF-1alpha accumulation, HIF-1 activity and HIF-1 dependent target gene expression. Recent studies addressing regulation of HIF-1 by NO revealed a complex and paradoxical picture. Acute exposure of cells to high doses of NO increased HIF-1alpha levels irrespective of the residing oxygen concentration whereas prolonged exposure to NO or low doses of this radical reduced HIF-1alpha accumulation even under hypoxic conditions. Several mechanisms were found to contribute to this paradoxical role of NO in regulating HIF-1. More recent studies support the view that NO regulates HIF-1 by modulating the activity of the oxygen-sensor enzymes PHDs and FIH-1. NO dependent HIF-1alpha accumulation under normoxia was due to direct inhibition of PHDs and FIH-1 most likely by competitive binding of NO to the ferrous iron in the catalytically active center of the enzymes. In contrast, reduced HIF-1alpha accumulation by NO under hypoxia was mainly due to enhanced HIF-1alpha degradation by induction of PHD activity. Three major mechanisms are discussed to be involved in enhancing the PHD activity despite the lack of oxygen: (1) NO mediated induction of a HIF-1 dependent feedback loop leading to newly expressed PHD2 and enhanced nuclear localization, (2) O2-redistribution towards PHDs after inhibition of mitochondrial respiration by NO, (3) reactivation of PHD activity by a NO mediated increase of iron and 2-oxoglutarate and/or involvement of reactive oxygen and/or nitrogen species.
Collapse
|
236
|
Dehne N, Hintereder G, Brüne B. High glucose concentrations attenuate hypoxia-inducible factor-1alpha expression and signaling in non-tumor cells. Exp Cell Res 2010; 316:1179-89. [PMID: 20184881 DOI: 10.1016/j.yexcr.2010.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/15/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
Hypoxia-inducible factor (HIF) is the major transcription factor mediating adaption to hypoxia e.g. by enhancing glycolysis. In tumor cells, high glucose concentrations are known to increase HIF-1alpha expression even under normoxia, presumably by enhancing the concentration of tricarboxylic acid cycle intermediates, while reactions of non-tumor cells are not well defined. Therefore, we analyzed cellular responses to different glucose concentrations in respect to HIF activation comparing tumor to non-tumor cells. Using cells derived from non-tumor origin, we show that HIF-1alpha accumulation was higher under low compared to high glucose concentrations. Low glucose allowed mRNA expression of HIF-1 target genes like adrenomedullin. Transfection of C(2)C(12) cells with a HIF-1alpha oxygen-dependent degradation domaine-GFP fusion protein revealed that prolyl hydroxylase (PHD) activity is impaired at low glucose concentrations, thus stabilizing the fusion protein. Mechanistic considerations suggested that neither O(2) redistribution nor an altered redox state explains impaired PHD activity in the absence of glucose. In order to affect PHD activity, glucose needs to be metabolized. Amino acids present in the medium also diminished HIF-1alpha expression, while the addition of fatty acids did not. This suggests that glucose or amino acid metabolism increases oxoglutarate concentrations, which enhances PHD activity in non-tumor cells. Tumor cells deprived of glutamine showed HIF-1alpha accumulation in the absence of glucose, proposing that enhanced glutaminolysis observed in many tumors enables these cells to compensate reduced oxoglutarate production in the absence of glucose.
Collapse
Affiliation(s)
- Nathalie Dehne
- Institute of Biochemistry I/ZAFES, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
237
|
Abstract
Tumour hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. This involves multiple mechanisms of which the best-understood ones are mediated through transcriptional gene activation by the hypoxia-inducible factors (HIFs). HIFs in turn are regulated in response to oxygen availability by a family of iron- and 2-oxoglutarate-dependent dioxygenases, the HIF prolyl hydroxylases (PHDs). PHDs inactivate HIFs in normoxia by activating degradation of the HIF-α subunit but release HIF activation in poorly oxygenated conditions. The function of HIF in tumours is fairly well characterized but our understanding on the outcome of PHDs in tumours is much more limited. Here we review the function of PHDs on the HIF system, the expression of PHDs in human tumours as well as their putative function in cancer. The PHDs may have either tumour promoting or suppressing activity. Their outcome in cancer depends on the cell and cancer type-specific expression and on the availability of diverse natural PHD inhibitors in tumours. Moreover, besides the action of PHDs on HIF, recent data suggest PHD function in non-HIF signalling. Together the data illustrate a complex operation of the oxygen sensors in cancer.
Collapse
Affiliation(s)
- Terhi Jokilehto
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | |
Collapse
|
238
|
Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA. TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 2010; 16:857-66. [PMID: 20103683 DOI: 10.1158/1078-0432.ccr-09-2604] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aims to investigate the role of the aberrant expression of Transkelolase-like 1 (TKTL1) in head and neck squamous cell carcinoma (HNSCC) tumorigenesis and to characterize TKTL1 contribution to HNSCC tumorigenesis through aerobic glycolysis and HIF1alpha stabilization. EXPERIMENTAL DESIGN TKTL1 promoter hypomethylation and mRNA/protein aberrant expression were studied in human HNSCC tumor samples and normal mucosas. Oncogenic functions of TKTL1 were examined in HNSCC cell line panels and tumor xenograft models with TKTL1 expression construct. The metabolite levels of fructose-6-phosphate, glyceraldehydes-3-phosphate, pyruvate, lactate, and the levels of HIF1alpha protein and its downsteam glycolytic targets were compared between the TKTL1-expressing and vehicle-expressing HNSCC cells. Meanwhile, the effects of HIF1alpha/glycolytic inhibitors were evaluated on the TKTL1 transfectants. RESULTS TKTL1 exhibits high frequency of promoter hypomethylation in HNSCC tumors compared with the normal mucosas, correlating with its overexpression in HNSCC. Overexpression of TKTL1 in HNSCC cells promoted cellular proliferation and enhanced tumor growth in vitro and in vivo. Overexpression of TKTL1 increased the production of fructose-6-phosphate and glyceraldehyde-3-phosphate, in turn elevating the production of pyruvate and lactate, resulting in the normoxic stabilization of the malignancy-promoting transcription factor HIF1alpha and the upregulation of downstream glycolytic enzymes. Notably, the reduction of TKTL1 expression decreased HIF1alpha accumulation and inhibition with HIF1alpha and/or the glycolysis inhibitor could abrogate the growth effects mediated by TKTL1 overexpression. CONCLUSION TKTL1 is a novel candidate oncogene that is epigenetically activated by aberrant hypomethlation and contributes to a malignant phenotype through altered glycolytic metabolism and HIF1alpha accumulation.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of Otolaryngology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol 2010; 84:647-60. [PMID: 19846525 DOI: 10.1128/jvi.00769-09] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Collapse
|
240
|
McCarty MF, Barroso-Aranda J, Contreras F. Practical strategies for suppressing hypoxia-inducible factor activity in cancer therapy. Med Hypotheses 2010; 74:789-97. [PMID: 20089365 DOI: 10.1016/j.mehy.2009.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 12/18/2022]
Abstract
The utility of anti-angiogenic strategies for cancer control is strongly compromised by hypoxia-driven phenotypic changes in cancer cells, which make cancer cells more invasive and more prone to give rise to metastases. A key mediator of this phenotypic shift is the transcription factor hypoxia-inducible factor-1 (HIF-1), which acts directly and indirectly to promote the epidermal-mesenchymal transition, boost cancer invasiveness, increase production of angiogenic factors, and induce chemoresistance. In some cancers, HIF-1 activity is constitutively elevated even in aerobic environments, making the cancer harder to treat and control. Practical strategies for suppressing HIF-1 activation may include the following: inhibiting NF-kappaB activation with salicylic acid and/or silibinin, which should decrease transcription of the HIF-1alpha gene; suppressing translation of HIF-1alpha mRNA with drugs that inhibit mTOR or topoisomerase I; supporting the effective activity of prolyl hydroxylases - which promote proteasomal degradation of HIF-1alpha under aerobic conditions - with antioxidant measures, alpha-ketoglutarate, and possibly dichloroacetate; promoting the O(2)-independent proteasomal degradation of HIF-1alpha with agents that inhibit the chaperone protein Hsp90; and blocking HIF-1 binding to its DNA response elements with anthracyclines. The utility of various combinations of these strategies should be tested in cancer cell cultures and rodent xenograft models; initial efforts in this regard have yielded encouraging results. Comprehensive strategies for suppressing HIF-1 activity can be expected to complement the efficacy of cancer chemotherapy and of effective anti-angiogenic regimens.
Collapse
Affiliation(s)
- Mark F McCarty
- Oasis of Hope Hospital, Paseo Playas 19, Playas de Tijuana, Tijuana, B.C., Mexico.
| | | | | |
Collapse
|
241
|
Mikirova NA, Casciari JJ, Riordan NH. Ascorbate inhibition of angiogenesis in aortic rings ex vivo and subcutaneous Matrigel plugs in vivo. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:2. [PMID: 20150992 PMCID: PMC2820478 DOI: 10.1186/2040-2384-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 01/18/2010] [Indexed: 12/18/2022]
Abstract
Background Angiogenesis is critical to tumor growth and is therefore a potential target for cancer therapy. As many current inhibitors of angiogenesis exhibit host toxicity, natural alternatives are needed. At millimolar concentrations, ascorbate (vitamin C) inhibits migration and tubule formation by mature endothelial cells and endothelial progenitors. In the present study, we examined the effects of ascorbate, at levels relevant during intravenous infusion therapy, on angiogenesis using an ex vivo an in vivo assay. Methods Two assays were used to evaluate effect of high-doses ascorbic acid on angiogenesis: ex vivo rat aortic ring explant assay in Matrigel matrices and in vivo Matrigel plug assay. In aortic rings, we quantified microvessel growth, branching and vessel regression under different treatment conditions. In murine angiogenesis assay, male C57 mice 6-8 weeks old were treated by high-dose ascorbic acid and the number of microvessels was analyzed by histological method. To characterize the population of cells that formed capillary network and microvessels, the sections were stained by CD34 and CD31 antibodies. Results Results show that sprouting of endothelial tubules from aortic rings was reduced in a concentration-dependent fashion by ascorbate: while controls roughly tripled sprout densities during the study, ascorbate (1 mg/mL, 5.5 mM) actually reduced sprout density. In vivo, the ability of mice to vascularize subcutaneously implanted Matrigel plug was diminished if the mice were treated with 430 mg/kg vitamin C: numbers of vessels, and vessel densities, in plugs from treated mice were roughly 30% less than those in plugs from untreated mice. Conclusions We conclude that the inhibition of angiogenesis by ascorbate suggested in vitro is confirmed in vivo, and that angiogenesis inhibition may be one mechanism by which intravenous ascorbate therapy shows efficacy in animal experiments and clinical case studies.
Collapse
Affiliation(s)
| | | | - Neil H Riordan
- Bio-Communications Research Institute, Wichita, Kansas, USA
| |
Collapse
|
242
|
Hong SH, Roh SY, Ko YH, Won HS, Lee MA, Woo IS, Byun JH, Kang JH, Hong YS, Jung CK, Kim YS, Ju YH, Kim MS. Prognostic Significance of Glycolytic Metabolic Change Related to HIF-1α in Oral Squamous Cell Carcinomas. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.4.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sang Young Roh
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yoon Ho Ko
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Hye Sung Won
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jae Ho Byun
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Seon Hong
- Division of Medical Oncology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chan-Kwon Jung
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yeon Sil Kim
- Department of Radiation Oncology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Hoon Ju
- Department of Otorhinolaryngology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Min Sik Kim
- Department of Otorhinolaryngology, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
243
|
Ryou MG, Flaherty DC, Hoxha B, Sun J, Gurji H, Rodriguez S, Bell G, Olivencia-Yurvati AH, Mallet RT. Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass. Am J Physiol Heart Circ Physiol 2009; 297:H1914-22. [PMID: 19767525 DOI: 10.1152/ajpheart.01213.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyruvate-fortified cardioplegia protects myocardium and hastens postsurgical recovery of patients undergoing cardiopulmonary bypass (CPB). Pyruvate reportedly suppresses degradation of the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), an activator of the gene encoding the cardioprotective cytokine erythropoietin (EPO). This study tested the hypothesis that pyruvate-enriched cardioplegia evoked EPO expression and mobilized EPO signaling mechanisms in myocardium. Hearts of pigs maintained on CPB were arrested for 60 min with 4:1 blood-crystalloid cardioplegia. The crystalloid component contained 188 mM glucose + or - 24 mM pyruvate. After 30-min cardiac reperfusion with cardioplegia-free blood, the pigs were weaned from CPB. Left ventricular myocardium was sampled 4 h after CPB for immunoblot assessment of HIF-1alpha, EPO and its receptor, the signaling kinases Akt and ERK, and endothelial nitric oxide synthase (eNOS), an effector of EPO signaling. Pyruvate-fortified cardioplegia stabilized arterial pressure post-CPB, induced myocardial EPO mRNA expression, and increased HIF-1alpha, EPO, and EPO-R protein contents by 60, 58, and 123%, respectively, vs. control cardioplegia (P < 0.05). Pyruvate cardioplegia also increased ERK phosphorylation by 61 and 118%, respectively, vs. control cardioplegia-treated and non-CPB sham myocardium (P < 0.01), but did not alter Akt phosphorylation. Nitric oxide synthase (NOS) activity and eNOS content fell 32% following control CPB vs. sham, but pyruvate cardioplegia prevented these declines, yielding 49 and 80% greater NOS activity and eNOS content vs. respective control values (P < 0.01). Pyruvate-fortified cardioplegia induced myocardial EPO expression and mobilized the EPO-ERK-eNOS mechanism. By stabilizing HIF-1alpha, pyruvate-fortified cardioplegia may evoke sustained activation of EPO's cardioprotective signaling cascade in myocardium.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Integrative Physiology, University of North Texas, Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 2009; 28:4009-21. [PMID: 19718054 DOI: 10.1038/onc.2009.250] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells exposed to low-oxygen conditions (hypoxia) alter their metabolism to survive. This response, although vital during development and high-altitude survival, is now known to be a major factor in the selection of cells with a transformed metabolic phenotype during tumorigenesis. It is thought that hypoxia-selected cells have increased invasive capacity and resistance to both chemo- and radiotherapies, and therefore represent an attractive target for antitumor therapy. Hypoxia inducible factors (HIFs) are responsible for the majority of gene expression changes under hypoxia, and are themselves controlled by the oxygen-sensing HIF prolyl hydroxylases (PHDs). It was previously shown that mutations in succinate dehydrogenase lead to the inactivation PHDs under normoxic conditions, which can be overcome by treatment with alpha-ketoglutarate derivatives. Given that solid tumors contain large regions of hypoxia, the reactivation of PHDs in these conditions could induce metabolic catastrophe and therefore prove an effective antitumor therapy. In this report we demonstrate that derivatized alpha-ketoglutarate can be used as a strategy for maintaining PHD activity under hypoxia. By increasing intracellular alpha-ketoglutarate and activating PHDs we trigger PHD-dependent reversal of HIF1 activation, and PHD-dependent hypoxic cell death. We also show that derivatized alpha-ketoglutarate can permeate multiple layers of cells, reducing HIF1alpha levels and its target genes in vivo.
Collapse
|
245
|
Liu Y, Borchert GL, Donald S, Diwan B, Anver M, Phang JM. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 2009; 69:6414-22. [PMID: 19654292 PMCID: PMC4287397 DOI: 10.1158/0008-5472.can-09-1223] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumor metabolism and bioenergetics have become important topics for cancer research and are promising targets for anticancer therapy. Although glucose serves as the main source of energy, proline, an alternative substrate, is important, especially during nutrient stress. Proline oxidase (POX), catalyzing the first step in proline catabolism, is induced by p53 and can regulate cell survival as well as mediate programmed cell death. In a mouse xenograft tumor model, we found that POX greatly reduced tumor formation by causing G2 cell cycle arrest. Furthermore, immunohistochemical staining showed decreased POX expression in tumor tissues. Importantly, HIF-1alpha signaling was impaired with POX expression due to the increased production of alpha-ketoglutarate, a critical substrate for prolyl hydroxylation and degradation of HIF-1alpha. Combined with previous in vitro findings and reported clinical genetic associations, these new findings lead us to propose POX as a mitochondrial tumor suppressor and a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yongmin Liu
- Basic Science Program, SAIC-Frederick, Inc., Frederick, Maryland
| | | | - Steve Donald
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | | | - Miriam Anver
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, Maryland
| | - James M. Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
246
|
Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, Galindo C, Mollapour M, Scroggins B, Goode N, Lee MJ, Gourlay CW, Trepel J, Linehan WM, Neckers L. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 2009; 29:4080-90. [PMID: 19470762 PMCID: PMC2715796 DOI: 10.1128/mcb.00483-09] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/15/2009] [Indexed: 01/01/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer syndrome linked to biallelic inactivation of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH). Individuals with HLRCC are at risk to develop cutaneous and uterine leiomyomas and an aggressive form of kidney cancer. Pseudohypoxic drive-the aberrant activation of cellular hypoxia response pathways despite normal oxygen tension-is considered to be a likely mechanism underlying the etiology of this tumor. Pseudohypoxia requires the oxygen-independent stabilization of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1alpha). Under normoxic conditions, proline hydroxylation of HIF-1alpha permits VHL recognition and subsequent targeting for proteasomal degradation. Here, we demonstrate that inactivating mutations of FH in an HLRCC-derived cell line result in glucose-mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF-1alpha stabilization. Additionally, we demonstrate that stable knockdown of FH in immortalized renal epithelial cells results in ROS-dependent HIF-1alpha stabilization. These data reveal that the obligate glycolytic switch present in HLRCC is critical to HIF stabilization via ROS generation.
Collapse
Affiliation(s)
- Sunil Sudarshan
- Urologic Oncology Branch, National Cancer Institute/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 2009; 47:115-27. [PMID: 19362589 PMCID: PMC2728018 DOI: 10.1016/j.freeradbiomed.2009.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 12/18/2022]
Abstract
Cancer is a pathology that is associated with aberrant gene expression and an altered metabolism. Whereas changes in gene expression have historically been attributed to mutations, it has become apparent that epigenetic processes also play a critical role in controlling gene expression during carcinogenesis. Global changes in epigenetic processes, including DNA methylation and histone modifications, have been observed in cancer. These epigenetic alterations can aberrantly silence or activate gene expression during the formation of cancer; however, the process leading to this epigenetic switch in cancer remains unknown. Carcinogenesis is also associated with metabolic defects that increase mitochondrially derived reactive oxygen species, create an atypical redox state, and change the fundamental means by which cells produce energy. Here, we summarize the influence of these metabolic defects on epigenetic processes. Metabolic defects affect epigenetic enzymes by limiting the availability of cofactors like S-adenosylmethionine. Increased production of reactive oxygen species alters DNA methylation and histone modifications in tumor cells by oxidizing DNMTs and HMTs or through direct oxidation of nucleotide bases. Last, the Warburg effect and increased glutamine consumption in cancer influence histone acetylation and methylation by affecting the activity of sirtuins and histone demethylases.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
248
|
Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MH, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN. Mitochondria and energetic depression in cell pathophysiology. Int J Mol Sci 2009; 10:2252-2303. [PMID: 19564950 PMCID: PMC2695278 DOI: 10.3390/ijms10052252] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/25/2009] [Accepted: 05/14/2009] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of almost all diseases. Acquired or inherited mutations of the mitochondrial genome DNA may give rise to mitochondrial diseases. Another class of disorders, in which mitochondrial impairments are initiated by extramitochondrial factors, includes neurodegenerative diseases and syndromes resulting from typical pathological processes, such as hypoxia/ischemia, inflammation, intoxications, and carcinogenesis. Both classes of diseases lead to cellular energetic depression (CED), which is characterized by decreased cytosolic phosphorylation potential that suppresses the cell's ability to do work and control the intracellular Ca(2+) homeostasis and its redox state. If progressing, CED leads to cell death, whose type is linked to the functional status of the mitochondria. In the case of limited deterioration, when some amounts of ATP can still be generated due to oxidative phosphorylation (OXPHOS), mitochondria launch the apoptotic cell death program by release of cytochrome c. Following pronounced CED, cytoplasmic ATP levels fall below the thresholds required for processing the ATP-dependent apoptotic cascade and the cell dies from necrosis. Both types of death can be grouped together as a mitochondrial cell death (MCD). However, there exist multiple adaptive reactions aimed at protecting cells against CED. In this context, a metabolic shift characterized by suppression of OXPHOS combined with activation of aerobic glycolysis as the main pathway for ATP synthesis (Warburg effect) is of central importance. Whereas this type of adaptation is sufficiently effective to avoid CED and to control the cellular redox state, thereby ensuring the cell survival, it also favors the avoidance of apoptotic cell death. This scenario may underlie uncontrolled cellular proliferation and growth, eventually resulting in carcinogenesis.
Collapse
Affiliation(s)
- Enn Seppet
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Marju Gruno
- Department of Pathophysiology, University of Tartu, Tartu, Estonia; E-Mail:
(M.G.)
| | - Ants Peetsalu
- Department of Surgery, University of Tartu, Tartu, Estonia; E-Mail:
(A.P.)
| | - Zemfira Gizatullina
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany; E-Mail:
(H.P.N.)
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; E-Mail:
(S.V.)
| | - Manfred H.P. Wussling
- Bernstein Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(M.H.P.W.)
| | - Sonata Trumbeckaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Odeta Arandarcikaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania; E-Mails:
(S.T.);
(O.A.)
| | - Doreen Jerzembeck
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Maria Sonnabend
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Katharina Jegorov
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany; E-Mail:
(S.Z.)
| | - Frank Striggow
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| | - Frank N. Gellerich
- KeyNeurotek AG, ZENIT-Technology Park Magdeburg, Magdeburg, Germany; E-Mails:
(Z.G.);
(D.J.);
(M.S.);
(K.J.);
(F.S.);
(F.N.G.)
| |
Collapse
|
249
|
Qiao H, Li L, Qu ZC, May JM. Cobalt-induced oxidant stress in cultured endothelial cells: prevention by ascorbate in relation to HIF-1alpha. Biofactors 2009; 35:306-13. [PMID: 19396871 PMCID: PMC2714551 DOI: 10.1002/biof.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Endothelial cells respond to hypoxia by decreased degradation of hypoxia-inducible factor 1alpha (HIF-1alpha), accumulation of which leads to increased transcription of numerous proteins involved in cell growth and survival. Ascorbic acid prevents HIF-1alpha stabilization in many cell types, but the physiologic relevance of such effects is uncertain. Given their relevance for angiogenesis, endothelial cells in culture were used to evaluate the effects of ascorbate on HIF-1alpha expression induced by hypoxia and the hypoxia mimic cobalt. Although EA.hy926 cells in culture under oxygenated conditions did not contain ascorbate, HIF-1alpha expression was very low, showing that the vitamin is not necessary to suppress HIF-1alpha. On the other hand, hypoxia- or cobalt-induced HIF-1alpha expression/stabilization was almost completely suppressed by what are likely physiologic intracellular ascorbate concentrations. Increased HIF-1alpha expression was not associated with significant changes in expression of the SVCT2, the major transporter for ascorbate in these cells. Cobalt at concentrations sufficient to stabilize HIF-1alpha both oxidized intracellular ascorbate and induced an oxidant stress in the cells that was prevented by ascorbate. Whereas the interaction of ascorbate and cobalt is complex, the presence of physiologic low millimolar concentrations of ascorbate in endothelial cells effectively decreases HIF-1alpha expression and protects against cobalt-induced oxidant stress.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - Liying Li
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - Zhi-chao Qu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| |
Collapse
|
250
|
Schultz K, Murthy V, Tatro JB, Beasley D. Prolyl hydroxylase 2 deficiency limits proliferation of vascular smooth muscle cells by hypoxia-inducible factor-1{alpha}-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 2009; 296:L921-7. [PMID: 19304911 DOI: 10.1152/ajplung.90393.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial O(2) levels are thought to modulate vascular smooth muscle cell (VSMC) proliferation and vascular remodeling, but the mechanisms involved are poorly understood. Here, we tested the hypothesis that PHD2, a prolyl hydroxylase domain (PHD)-containing O(2) sensor, modulates growth factor-induced proliferative responses of human pulmonary artery SMC (HPASMC). We found that both PHD1 and PHD2 were robustly expressed by HPASMC, and inhibiting prolyl hydroxylase activity pharmacologically by using the nonselective dioxygenase inhibitor dimethyloxalylglycine (DMOG) inhibited proliferation and cyclin A expression induced by PDGF-AB or FGF-2. Specific knockdown of PHD2 using small interfering RNAs had similar effects. The inhibitory effects of DMOG and PHD2 knockdown on proliferation and cyclin A expression were seen under both normoxic (20% O(2)) and moderately hypoxic (5% O(2)) conditions, and PHD2 expression was not affected by O(2) level nor by stimulation with PDGF or FGF-2, indicating that the proproliferative influence of PHD2 does not involve alterations of its expression. Knockdown of PHD2 increased hypoxia-inducible factor (HIF)-1alpha expression, as expected, but we also found that HIF-1alpha knockdown abolished the inhibitory effect of PHD2 knockdown on PDGF-induced cyclin A expression. Therefore, we conclude that PHD2 promotes growth factor-induced responses of human VSMC, acting by HIF-1alpha-dependent mechanisms. Given the role of PHD2 as an oxygen sensor in mammalian cells, these results raise the possibility that PHD2 links VSMC proliferation to O(2) availability.
Collapse
Affiliation(s)
- Kelly Schultz
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|