201
|
Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:680-692. [PMID: 34225591 DOI: 10.1134/s0006297921060067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPβ produced by β-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic β-secretase pathway and accumulation of the neurotoxic Aβ peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Collapse
Affiliation(s)
- Eva Babusikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Dusan Dobrota
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
202
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
203
|
Talha M, Mir AR, Habib S, Abidi M, Warsi MS, Islam S, Moinuddin. Hydroxyl radical induced structural perturbations make insulin highly immunogenic and generate an auto-immune response in type 2 diabetes mellitus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119640. [PMID: 33744841 DOI: 10.1016/j.saa.2021.119640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) cause oxidative damage to proteins and generate deleterious by-products which induce a breakdown of immune tolerance and produce antibodies against host macromolecules with implication in human diseases. This study characterizes the hydroxyl radical (OH) modifications of insulin, evaluates its cytotoxicity and immunogenicity, and probes its role in type 2 diabetes (T2DM) autoimmunity. The results demonstrate susceptibility of insulin to modifications induced by OH, causing exposure of its chromophoric aromatic amino acid residues, quenching of tyrosine fluorescence intensity, loss of α-helix and gain in β content. Modification causes re-arrangement of native interactions of the aromatic residues in insulin. It enhanced the carbonyl content in insulin, exposed its hydrophobic patches and generated non-fibrillar, amorphous type of aggregates that are cytotoxic in nature. Native insulin induced low titre antibodies in immunized rabbits, whereas OH modified insulin generated a strong immune response. Competitive ELISA studies showed high specificity of antibodies generated against OH modified insulin towards the modified protein. Cross reaction studies showed the presence of common antigenic determinants on various oxidised proteins. Since T2DM patients show increased ROS production, oxidation of insulin is expected to occur, which might amplify autoimmune reactions against insulin. True to the assumption, direct binding ELISA showed the presence of anti-OH insulin circulating antibodies in T2DM patients which are specific for the oxidized insulin. In conclusion, insulin loses structural integrity to OH, forms cytotoxic amorphous aggregates, turns highly immunogenic and elicits humoral response in T2DM patients.
Collapse
Affiliation(s)
- Mohd Talha
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
204
|
Georgescu SR, Mitran CI, Mitran MI, Nicolae I, Matei C, Ene CD, Popa GL, Tampa M. Oxidative Stress in Cutaneous Lichen Planus-A Narrative Review. J Clin Med 2021; 10:2692. [PMID: 34207416 PMCID: PMC8234860 DOI: 10.3390/jcm10122692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Lichen planus (LP) is a chronic, immune-mediated inflammatory skin condition that mainly affects the skin (cutaneous LP, CLP) and oral mucosa (oral LP, OLP). However, the mechanisms involved in the pathogenesis of the disease are not fully elucidated. Over time, several theories that could explain the appearance of LP lesions have been postulated. The key players in LP pathogenesis are the inflammatory infiltrate consisting of T cells and the proinflammatory cytokines. The cytokines stimulate the production of reactive oxygen species that induce cell apoptosis, a defining element encountered in LP. The lead inquiry triggered by this revolves around the role of oxidative stress in LP development. There are currently numerous studies showing the involvement of oxidative stress in OLP, but in terms of CLP, data are scarce. In this review, we analyze for the first time the currently existing studies on oxidative stress in CLP and summarize the results in order to assess the role of oxidative stress in skin lesions offering a fresher updated perspective.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Cantacuzino National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Cantacuzino National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
| | - Corina Daniela Ene
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Gabriela Loredana Popa
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (C.M.); (M.T.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
205
|
Sauerland M, Mertes R, Morozzi C, Eggler AL, Gamon LF, Davies MJ. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic Biol Med 2021; 169:1-11. [PMID: 33819622 DOI: 10.1016/j.freeradbiomed.2021.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Humans have extensive adverse exposure to alpha,beta-unsaturated carbonyl compounds (ABuCs) as these are major toxins in smoke and exhaust fumes, as well as products of lipid peroxidation. In contrast, another ABuC, dimethylfumarate, is used to treat psoriasis and multiple sclerosis. ABuCs undergo Michael adduction with amine, imidazole and thiol groups, with reaction at Cys residues predominating. Here we report rate constants, k2, for ABuCs (acrolein, crotonaldehyde, dimethylfumarate, cyclohex-1-en-2-one, cyclopent-1-en-2-one) with Cys residues present on N-Ac-Cys, GSH, bovine serum albumin, creatine kinase, papain, glyceraldehyde-3-phosphate dehydrogenase, and both wild-type and the C151S mutant of Keap-1. k2 values for N-Ac-Cys and GSH vary by > 250-fold, indicating a marked ABuC structure dependence, with acrolein the most reactive. There is also considerable variation in k2 between protein Cys groups, with these significantly greater than for GSH. A linear inverse correlation for acrolein with the thiol pKa indicates that the thiolate anion is the reactive species. The modest k2 for GSH rationalizes the detection of protein adducts of ABuCs in cells. The k2 values for dimethylfumarate also vary markedly, with the Cys151 residue on Keap-1 being particularly reactive, with the C151S mutant giving a much lower k2 value. The data for crotonaldehyde, dimethylfumarate, and cyclohex-1-en-2-one show little correlation with the Cys pKa values, indicating that steric/electronic interactions, rather than Cys ionization are important. These data indicate that protein Cys residues, and particularly Cys151 on Keap-1, react readily with dimethylfumarate, and this may help rationalize the use of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Max Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralf Mertes
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chiara Morozzi
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
206
|
Vahalová P, Červinková K, Cifra M. Biological autoluminescence for assessing oxidative processes in yeast cell cultures. Sci Rep 2021; 11:10852. [PMID: 34035342 PMCID: PMC8149683 DOI: 10.1038/s41598-021-89753-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 01/30/2023] Open
Abstract
Nowadays, modern medicine is looking for new, more gentle, and more efficient diagnostic methods. A pathological state of an organism is often closely connected with increased amount of reactive oxygen species. They can react with biomolecules and subsequent reactions can lead to very low endogenous light emission (biological autoluminescence—BAL). This phenomenon can be potentially used as a non-invasive and low-operational-cost tool for monitoring oxidative stress during diseases. To contribute to the understanding of the parameters affecting BAL, we analyzed the BAL from yeast Saccharomyces cerevisiae as a representative eukaryotic organism. The relationship between the BAL intensity and the amount of reactive oxygen species that originates as a result of the Fenton reaction as well as correlation between spontaneous BAL and selected physical and chemical parameters (pH, oxygen partial pressure, and cell concentration) during cell growth were established. Our results contribute to real-time non-invasive methodologies for monitoring oxidative processes in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
207
|
Functionalized Au 15 nanoclusters as luminescent probes for protein carbonylation detection. Commun Chem 2021; 4:69. [PMID: 36697618 PMCID: PMC9814629 DOI: 10.1038/s42004-021-00497-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Atomically precise, ligand-protected gold nanoclusters (AuNCs) attract considerable attention as contrast agents in the biosensing field. However, the control of their optical properties and functionalization of surface ligands remain challenging. Here we report a strategy to tailor AuNCs for the precise detection of protein carbonylation-a causal biomarker of ageing. We produce Au15SG13 (SG for glutathione) with atomic precision and functionalize it with a thiolated aminooxy moiety to impart protein carbonyl-binding properties. Mass spectrometry and molecular modelling reveal the key structural features of Au15SG12-Aminooxy and its reactivity towards carbonyls. Finally, we demonstrate that Au15SG12-Aminooxy detects protein carbonylation in gel-based 1D electrophoresis by one- and two-photon excited fluorescence. Importantly, to our knowledge, this is the first application of an AuNC that detects a post-translational modification as a nonlinear optical probe. The significance of post-translational modifications in life sciences may open avenues for the use of Au15SG13 and other nanoclusters as contrast agents with tailored surface functionalization and optical properties.
Collapse
|
208
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
209
|
Pędzinski T, Grzyb K, Skotnicki K, Filipiak P, Bobrowski K, Chatgilialoglu C, Marciniak B. Radiation- and Photo-Induced Oxidation Pathways of Methionine in Model Peptide Backbone under Anoxic Conditions. Int J Mol Sci 2021; 22:ijms22094773. [PMID: 33946289 PMCID: PMC8125225 DOI: 10.3390/ijms22094773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 01/31/2023] Open
Abstract
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO•) play an important role, being the most aggressive towards biomolecules. The reactions of HO• with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO• generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO•, and by CB triplets allowed for assigning transient species to the pathways of products formation.
Collapse
Affiliation(s)
- Tomasz Pędzinski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (T.P.); (P.F.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Katarzyna Grzyb
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Konrad Skotnicki
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Piotr Filipiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (T.P.); (P.F.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Correspondence: (K.B.); (C.C.); (B.M.); Tel.: +48-22-504-1336 (K.B.); +48-61-829-1885 (B.M.)
| | - Chryssostomos Chatgilialoglu
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (T.P.); (P.F.)
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Correspondence: (K.B.); (C.C.); (B.M.); Tel.: +48-22-504-1336 (K.B.); +48-61-829-1885 (B.M.)
| | - Bronislaw Marciniak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (T.P.); (P.F.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
- Correspondence: (K.B.); (C.C.); (B.M.); Tel.: +48-22-504-1336 (K.B.); +48-61-829-1885 (B.M.)
| |
Collapse
|
210
|
Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci 2021; 22:4642. [PMID: 33924958 PMCID: PMC8125527 DOI: 10.3390/ijms22094642] [Citation(s) in RCA: 1043] [Impact Index Per Article: 260.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.
Collapse
Affiliation(s)
- Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
211
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
212
|
Álvarez-González I, Camacho-Cantera S, Gómez-González P, Barrón MJR, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Madrigal-Bujaidar E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci Rep 2021; 11:6897. [PMID: 33767322 PMCID: PMC7994804 DOI: 10.1038/s41598-021-86366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
We evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Scarlett Camacho-Cantera
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Patricia Gómez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Michael J Rendón Barrón
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - José A Morales-González
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. México-Xochimilco 289, Ciudad de México, 14389, México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México.
| |
Collapse
|
213
|
Crosslinking of human plasma C-reactive protein to human serum albumin via disulfide bond oxidation. Redox Biol 2021; 41:101925. [PMID: 33714740 PMCID: PMC7966873 DOI: 10.1016/j.redox.2021.101925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023] Open
Abstract
Inter- and intra-molecular crosslinks can generate protein dysfunction, and are associated with protein aggregate accumulation in aged and diseased tissues. Crosslinks formed between multiple amino acid side chains can be reversible or irreversible. Disulfides formed either enzymatically, or as a result of oxidant-mediated reactions, are a major class of reversible crosslinks. Whilst these are commonly generated via oxidation of Cys thiol groups, they are also formed by ‘oxidant-mediated thiol-disulfide reactions’ via initial disulfide oxidation to a thiosulfinate or zwitterionic peroxide, and subsequent reaction with another thiol including those on other proteins. This generates new intermolecular protein-protein crosslinks. Here we demonstrate that photooxidation, or reaction with the biological oxidants HOCl and ONOOH, of the single disulfide present in the major human plasma inflammatory protein, C-reactive protein (CRP) can give rise to reversible disulfide bond formation with human serum albumin (HSA). This occurs in an oxidant dose-, or illumination-time-, dependent manner. These CRP-HSA crosslinks are formed both in isolated protein systems, and in fresh human plasma samples containing high, but not low, levels of CRP. The inter-protein crosslinks which involve Cys36 of CRP and Cys34 of HSA, have been detected by both immunoblotting and mass spectrometry (MS). The yield of protein-protein crosslinks depends on the nature and extent of oxidant exposure, and can be reversed by dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride. These data indicate that oxidation of disulfide bonds in proteins can be a source of novel inter-protein crosslinks, which may help rationalize the accumulation of crosslinked proteins in aged and diseased tissues. C-reactive protein (CRP) is a major acute phase inflammatory protein in human plasma. Oxidation of the single Cys36-Cys97 disulfide in CRP generates reactive intermediates. The oxidized disulfide reacts with Cys34 of human serum albumin to forms a new crosslink. The inter-protein CRP-HSA crosslink has been characterized by immunoblotting and LS-MS/MS. This novel crosslink may be a long-lived plasma marker of inflammation-induced damage.
Collapse
|
214
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
215
|
Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. Protein Lipoxidation: Basic Concepts and Emerging Roles. Antioxidants (Basel) 2021; 10:295. [PMID: 33669164 PMCID: PMC7919664 DOI: 10.3390/antiox10020295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Protein lipoxidation is a non-enzymatic post-translational modification that consists of the covalent addition of reactive lipid species to proteins. This occurs under basal conditions but increases in situations associated with oxidative stress. Protein targets for lipoxidation include metabolic and signalling enzymes, cytoskeletal proteins, and transcription factors, among others. There is strong evidence for the involvement of protein lipoxidation in disease, including atherosclerosis, neurodegeneration, and cancer. Nevertheless, the involvement of lipoxidation in cellular regulatory mechanisms is less understood. Here we review basic aspects of protein lipoxidation and discuss several features that could support its role in cell signalling, including its selectivity, reversibility, and possibilities for regulation at the levels of the generation and/or detoxification of reactive lipids. Moreover, given the great structural variety of electrophilic lipid species, protein lipoxidation can contribute to the generation of multiple structurally and functionally diverse protein species. Finally, the nature of the lipoxidised proteins and residues provides a frameshift for a complex interplay with other post-translational modifications, including redox and redox-regulated modifications, such as oxidative modifications and phosphorylation, thus strengthening the importance of detailed knowledge of this process.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Ophélie Langlois
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Idoia Company-Marín
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| |
Collapse
|
216
|
A conserved, buried cysteine near the P-site is accessible to cysteine modifications and increases ROS stability in the P-type plasma membrane H+-ATPase. Biochem J 2021; 478:619-632. [DOI: 10.1042/bcj20200559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.
Collapse
|
217
|
Bazurto JV, Riazi S, D’Alton S, Deatherage DE, Bruger EL, Barrick JE, Marx CJ. Global Transcriptional Response of Methylorubrum extorquens to Formaldehyde Stress Expands the Role of EfgA and Is Distinct from Antibiotic Translational Inhibition. Microorganisms 2021; 9:347. [PMID: 33578755 PMCID: PMC7916467 DOI: 10.3390/microorganisms9020347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The potency and indiscriminate nature of formaldehyde reactivity upon biological molecules make it a universal stressor. However, some organisms such as Methylorubrum extorquens possess means to rapidly and effectively mitigate formaldehyde-induced damage. EfgA is a recently identified formaldehyde sensor predicted to halt translation in response to elevated formaldehyde as a means to protect cells. Herein, we investigate growth and changes in gene expression to understand how M. extorquens responds to formaldehyde with and without the EfgA-formaldehyde-mediated translational response, and how this mechanism compares to antibiotic-mediated translation inhibition. These distinct mechanisms of translation inhibition have notable differences: they each involve different specific players and in addition, formaldehyde also acts as a general, multi-target stressor and a potential carbon source. We present findings demonstrating that in addition to its characterized impact on translation, functional EfgA allows for a rapid and robust transcriptional response to formaldehyde and that removal of EfgA leads to heightened proteotoxic and genotoxic stress in the presence of increased formaldehyde levels. We also found that many downstream consequences of translation inhibition were shared by EfgA-formaldehyde- and kanamycin-mediated translation inhibition. Our work uncovered additional layers of regulatory control enacted by functional EfgA upon experiencing formaldehyde stress, and further demonstrated the importance this protein plays at both transcriptional and translational levels in this model methylotroph.
Collapse
Affiliation(s)
- Jannell V. Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN 55108, USA
- Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Siavash Riazi
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Simon D’Alton
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Daniel E. Deatherage
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Eric L. Bruger
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Jeffrey E. Barrick
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (S.D.); (D.E.D.); (J.E.B.)
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (J.V.B.); (S.R.); (E.L.B.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
218
|
Galler KM, Weber M, Korkmaz Y, Widbiller M, Feuerer M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int J Mol Sci 2021; 22:ijms22031480. [PMID: 33540711 PMCID: PMC7867227 DOI: 10.3390/ijms22031480] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The macroscopic and microscopic anatomy of the oral cavity is complex and unique in the human body. Soft-tissue structures are in close interaction with mineralized bone, but also dentine, cementum and enamel of our teeth. These are exposed to intense mechanical and chemical stress as well as to dense microbiologic colonization. Teeth are susceptible to damage, most commonly to caries, where microorganisms from the oral cavity degrade the mineralized tissues of enamel and dentine and invade the soft connective tissue at the core, the dental pulp. However, the pulp is well-equipped to sense and fend off bacteria and their products and mounts various and intricate defense mechanisms. The front rank is formed by a layer of odontoblasts, which line the pulp chamber towards the dentine. These highly specialized cells not only form mineralized tissue but exert important functions as barrier cells. They recognize pathogens early in the process, secrete antibacterial compounds and neutralize bacterial toxins, initiate the immune response and alert other key players of the host defense. As bacteria get closer to the pulp, additional cell types of the pulp, including fibroblasts, stem and immune cells, but also vascular and neuronal networks, contribute with a variety of distinct defense mechanisms, and inflammatory response mechanisms are critical for tissue homeostasis. Still, without therapeutic intervention, a deep carious lesion may lead to tissue necrosis, which allows bacteria to populate the root canal system and invade the periradicular bone via the apical foramen at the root tip. The periodontal tissues and alveolar bone react to the insult with an inflammatory response, most commonly by the formation of an apical granuloma. Healing can occur after pathogen removal, which is achieved by disinfection and obturation of the pulp space by root canal treatment. This review highlights the various mechanisms of pathogen recognition and defense of dental pulp cells and periradicular tissues, explains the different cell types involved in the immune response and discusses the mechanisms of healing and repair, pointing out the close links between inflammation and regeneration as well as between inflammation and potential malignant transformation.
Collapse
Affiliation(s)
- Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
- Correspondence:
| | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93093 Regensburg, Germany;
| | - Markus Feuerer
- Department for Immunology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
219
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|
220
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
221
|
Rudyk O, Aaronson PI. Redox Regulation, Oxidative Stress, and Inflammation in Group 3 Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:209-241. [PMID: 33788196 DOI: 10.1007/978-3-030-63046-1_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group 3 pulmonary hypertension (PH), which occurs secondary to hypoxia lung diseases, is one of the most common causes of PH worldwide and has a high unmet clinical need. A deeper understanding of the integrative pathological and adaptive molecular mechanisms within this group is required to inform the development of novel drug targets and effective treatments. The production of oxidants is increased in PH Group 3, and their pleiotropic roles include contributing to disease progression by promoting prolonged hypoxic pulmonary vasoconstriction and pathological pulmonary vascular remodeling, but also stimulating adaptation to pathological stress that limits the severity of this disease. Inflammation, which is increasingly being viewed as a key pathological feature of Group 3 PH, is subject to complex regulation by redox mechanisms and is exacerbated by, but also augments oxidative stress. In this review, we investigate aspects of this complex crosstalk between inflammation and oxidative stress in Group 3 PH, focusing on the redox-regulated transcription factor NF-κB and its upstream regulators toll-like receptor 4 and high mobility group box protein 1. Ultimately, we propose that the development of specific therapeutic interventions targeting redox-regulated signaling pathways related to inflammation could be explored as novel treatments for Group 3 PH.
Collapse
Affiliation(s)
- Olena Rudyk
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre of Research Excellence, London, UK.
| | - Philip I Aaronson
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
222
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
223
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
224
|
Spiering MJ. Melding the best of two worlds: Cecil Pickett's work on cellular oxidative stress and in drug discovery and development. J Biol Chem 2020; 295:3929-3931. [PMID: 32198188 DOI: 10.1074/jbc.cl120.013048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
225
|
Reading patterns of proteome damage by glycation, oxidation and nitration: quantitation by stable isotopic dilution analysis LC-MS/MS. Essays Biochem 2020; 64:169-183. [PMID: 32065835 DOI: 10.1042/ebc20190047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides a high sensitivity, high specificity multiplexed method for concurrent detection of adducts formed by protein glycation, oxidation and nitration, also called AGEomics. Combined with stable isotopic dilution analysis, it provides for robust quantitation of protein glycation, oxidation and nitration adduct analytes. It is the reference method for such measurements. LC-MS/MS has been used to measure glycated, oxidized and nitrated amino acids - also called glycation, oxidation and nitration free adducts, with a concurrent quantitation of the amino acid metabolome in physiological fluids. Similar adduct residues in proteins may be quantitated with prior exhaustive enzymatic hydrolysis. It has also been applied to quantitation of other post-translation modifications, such as citrullination and formation of Nε-(γ-glutamyl)lysine crosslink by transglutaminases. Application to cellular and extracellular proteins gives estimates of the steady-state levels of protein modification by glycation, oxidation and nitration, and measurement of the accumulation of glycation, oxidation and nitration adducts in cell culture medium and urinary excretion gives an indication of flux of adduct formation. Measurement of glycation, oxidation and nitration free adducts in plasma and urine provides for estimates of renal clearance of free adducts. Diagnostic potential in clinical studies has been enhanced by the combination of estimates of multiple adducts in optimized diagnostic algorithms by machine learning. Recent applications have been in early-stage detection of metabolic, vascular and renal disease, and arthritis, metabolic control and risk of developing vascular complication in diabetes, and a blood test for autism.
Collapse
|
226
|
Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates. Essays Biochem 2020; 64:55-66. [PMID: 31919496 DOI: 10.1042/ebc20190053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Thiol groups in protein cysteine (Cys) residues can undergo one- and two-electron oxidation reactions leading to the formation of thiyl radicals or sulfenic acids, respectively. In this mini-review we summarize the mechanisms and kinetics of the formation of these species by biologically relevant oxidants. Most of the latter react with the deprotonated form of the thiol. Since the pKa of the thiols in protein cysteines are usually close to physiological pH, the thermodynamics and the kinetics of their oxidation in vivo are affected by the acidity of the thiol. Moreover, the protein microenvironment has pronounced effects on cysteine residue reactivity, which in the case of the oxidation mediated by hydroperoxides, is known to confer specificity to particular protein cysteines. Despite their elusive nature, both thiyl radicals and sulfenic acids are involved in the catalytic mechanism of several enzymes and in the redox regulation of protein function and/or signaling pathways. They are usually short-lived species that undergo further reactions that converge in the formation of different stable products, resulting in several post-translational modifications of the protein. Some of these can be reversed through the action of specific cellular reduction systems. Others damage the proteins irreversibly, and can make them more prone to aggregation or degradation.
Collapse
|
227
|
Zhang T, Gaffrey MJ, Li X, Qian WJ. Characterization of cellular oxidative stress response by stoichiometric redox proteomics. Am J Physiol Cell Physiol 2020; 320:C182-C194. [PMID: 33264075 DOI: 10.1152/ajpcell.00040.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein, we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives toward a better understanding of cellular redox regulatory networks in cells and tissues.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xiaolu Li
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.,Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
228
|
Wang H, Leeming MG, Cochran BJ, Hook JM, Ho J, Nguyen GTH, Zhong L, Supuran CT, Donald WA. Nontargeted Identification of Plasma Proteins O-, N-, and S-Transmethylated by O-Methyl Organophosphates. Anal Chem 2020; 92:15420-15428. [PMID: 33200920 DOI: 10.1021/acs.analchem.0c03077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organophosphates (OPs) are used worldwide as pesticides. However, acute and chronic exposure to OPs can cause serious adverse health effects. The mechanism of delayed OP toxicity is thought to involve off-target inhibition of serine proteases, although the precise molecular details remain unclear owing to the lack of an analytical method for global detection of protein targets of OPs. Here, we report the development of a mass spectrometry method to identify OP-adducted proteins from complex mixtures in a nontargeted manner. Human plasma was incubated with the OP dichlorvos that was 50% isotopically labeled and 50% unlabeled. Proteins and protein adducts were extracted, digested, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect "twin ions" of peptides that were covalently modified by a chemical reaction with dichlorvos. The LC-MS/MS data were processed by a blended data analytics software (Xenophile) to detect the amino acid residue sites of proteins that were covalently modified by exposure to OPs. We discovered that OPs can transmethylate the N, S, and O side chains of His, Cys, Glu, Asp, and Lys residues. For model systems, such transmethylation reactions were confirmed by LC-MS, nuclear magnetic resonance (NMR), and rationalized using electronic structure calculations. Methylation of the ubiquitous antioxidant glutathione by dichlorvos can decrease the reducing/oxidizing equilibrium of glutathione in liver extracts, which has been implicated in diseases and pathological conditions associated with delayed OP toxicity.
Collapse
Affiliation(s)
- Huixin Wang
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Blake J Cochran
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - James M Hook
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ling Zhong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino 50019, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
229
|
Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases 2020; 15:061008. [PMID: 33238712 DOI: 10.1116/6.0000529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored. While the peptide backbone was kept intact, a significant introduction of oxidative PTMs was observed. The modifications cluster at aromatic (tyrosine, histidine, and phenylalanine) and neutral amino acids (isoleucine and proline) with the introduction of one, two, or three oxygen atoms, ring cleavages of histidine and tryptophan, and nitration/nitrosylation predominantly observed. Alkaline and acidic amino acid (arginine and aspartic acid) residues showed a high resilience, indicating that local charges and the chemical environment at large modulate the attack of the electron-rich ROS/RNS. Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.
Collapse
|
230
|
Hellwig M. Analysis of Protein Oxidation in Food and Feed Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12870-12885. [PMID: 32237708 DOI: 10.1021/acs.jafc.0c00711] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food and feed proteins are subject to oxidation reactions during production, processing, and storage. Several individual oxidized amino acids have been described in model systems and food; however, protein oxidation in food is still mostly assessed by the analysis of protein carbonylation. In the present review, the chemistry of protein oxidation and its implications for protein functionality, food flavor, and nutritional physiology are briefly summarized. Limitations of generic methods targeting redox-relevant functional groups and properties of typical reaction products, such as the determination of protein carbonyls and fluorescence spectroscopy, are presented. Methods for the quantitation of individual oxidation products of susceptible amino acids, such as cysteine, methionine, phenylalanine, tyrosine, and tryptophan, are reported. Special regard is paid to limitations resulting from the required hydrolysis procedures and unintended formation of the analytes during sample pretreatment. If available, results from food analysis obtained by different methods are compared. Suggestions and requirements for future works on protein oxidation in food and nutrition are given.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
231
|
Phospholamban and sarcolipin prevent thermal inactivation of sarco(endo)plasmic reticulum Ca2+-ATPases. Biochem J 2020; 477:4281-4294. [PMID: 33111944 DOI: 10.1042/bcj20200346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.
Collapse
|
232
|
Osikov MV, Simonyan EV, Ageeva AA, Ageev Y, Fedosov AA, Sinitsky AI. Local antioxidant effect of original dermal film with melatonin in thermal injury. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress (OS) escalation associated with thermal trauma (TT) and pleiotropic effects of melatonin (MT) suggest a study of protective properties of the latter when applied as part of a novel dermal film (DF) to skin burns. This work aimed to assess the content of OS markers in the skin subjected to experimental TT and treated with DF with MT. Third A degree TT (area of 3.5%) were modeled by immersing a patch of skin in boiling water. Twelve cm2 of DF with 5 mg/g of MT were applied daily for 5 days. The parameters calculated were wound's area and epithelializatiohon rate. The products monitored in the burn wound were lipid peroxidation (LPO) products in heptane and isopropanol phases of the lipid extract and protein oxidative modification (POM) products, the modification being spontaneous and metal-dependent. With TT in the wound, the content of secondary and end LPO products in heptane and isopropanol phases increased on the 5th and 10th days; the total content of POM products grew on the 5th day (primary products, neutral) and on the 10th day (primary and secondary products, neutral). Application of DF to a TT wound reduced the burn area, increased the epithelialization rate (by the 10th day, the median went from 1.90% to 6.57%; p < 0.05), reduced the content of secondary and end LPO products in isopropanol phase (by the 10th day, the median went from 0.007 to 0.004 u.o.i; p < 0.05), reduced the total content of OMP products, namely that of primary neutral products — on the 5th day, of primary and secondary neutral products — on the 10th day. With TT present in the context of MT application, the burn area showed presence of secondary LPO products in heptane and isopropanol phases, LPO end products in isopropanol phase, POM products in the wound (basic and neutral primary/secondary POM products).
Collapse
Affiliation(s)
- MV Osikov
- South Ural State Medical University, Chelyabinsk, Russia
| | - EV Simonyan
- South Ural State Medical University, Chelyabinsk, Russia
| | - AA Ageeva
- South Ural State Medical University, Chelyabinsk, Russia
| | - YuI Ageev
- South Ural State Medical University, Chelyabinsk, Russia
| | - AA Fedosov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - AI Sinitsky
- South Ural State Medical University, Chelyabinsk, Russia
| |
Collapse
|
233
|
Biswas P, Dellanoce C, Vezzoli A, Mrakic-Sposta S, Malnati M, Beretta A, Accinni R. Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Glutathione and Resveratrol Precursors. Nutrients 2020; 12:nu12113224. [PMID: 33105552 PMCID: PMC7690269 DOI: 10.3390/nu12113224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
The effects of two different dietary supplements on the redox status of healthy human participants were evaluated. The first supplement (GluS, Glutathione Synthesis) contains the precursors for the endogenous synthesis of glutathione and the second (GluReS, Glutathione and Resveratrol Synthesis) contains in addition polydatin, a precursor of resveratrol. To assess the influence of GluS and GluReS on the redox status, ten thiol species and three vitamins were measured before (t0) and after 8 weeks (t1) of dietary supplementation. An inflammatory marker, neopterin, was also assessed at the same time points. Both supplements were highly effective in improving the redox status by significantly increasing the reduced-glutathione (GSH) content and other reduced thiol species while significantly decreasing the oxidized species. The positive outcome of the redox status was most significant in the GluRes treatment group which also experienced a significant reduction in neopterin levels. Of note, the endogenous levels of vitamins C, E and A were significantly increased in both treatment groups, with best results in the GluReS group. While both dietary supplements significantly contributed to recognized antioxidant and anti-inflammatory outcomes, the effects of GluReS, the combination of glutathione and resveratrol precursors, were more pronounced. Thus, dietary supplementation with GluReS may represent a valuable strategy for maintaining a competent immune status and a healthy lifespan.
Collapse
Affiliation(s)
- Priscilla Biswas
- SoLongevity Research, 20121 Milan, Italy; (A.B.); (R.A.)
- Correspondence: ; Tel.: +39-02-26434903
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (C.D.); (A.V.); (S.M.-S.)
| | - Mauro Malnati
- Unit of Viral Evolution and Transmission, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | | | | |
Collapse
|
234
|
Vélez-Segarra V, González-Crespo S, Santiago-Cartagena E, Vázquez-Quiñones LE, Martínez-Matías N, Otero Y, Zayas JJ, Siaca R, Del Rosario J, Mejías I, Aponte JJ, Collazo NC, Lasso FJ, Snider J, Jessulat M, Aoki H, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Protein Interactions of the Mechanosensory Proteins Wsc2 and Wsc3 for Stress Resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2020; 10:3121-3135. [PMID: 32641451 PMCID: PMC7466973 DOI: 10.1534/g3.120.401468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
Antifungal drug discovery and design is very challenging because of the considerable similarities in genetic features and metabolic pathways between fungi and humans. However, cell wall composition represents a notable point of divergence. Therefore, a research strategy was designed to improve our understanding of the mechanisms for maintaining fungal cell wall integrity, and to identify potential targets for new drugs that modulate the underlying protein-protein interactions in Saccharomyces cerevisiae This study defines roles for Wsc2p and Wsc3p and their interacting protein partners in the cell wall integrity signaling and cell survival mechanisms that respond to treatments with fluconazole and hydrogen peroxide. By combined genetic and biochemical approaches, we report the discovery of 12 novel protein interactors of Wsc2p and Wsc3p Of these, Wsc2p interacting partners Gtt1p and Yck2p, have opposing roles in the resistance and sensitivity to fluconazole treatments respectively. The interaction of Wsc2p with Ras2p was confirmed by iMYTH and IP-MS approaches and is shown to play a dominant role in response to oxidative stress induced by hydrogen peroxide. Consistent with an earlier study, Ras2p was also identified as an interacting partner of Wsc1p and Mid2p cell wall integrity signaling proteins. Collectively, this study expands the interaction networks of the mechanosensory proteins of the Cell Wall Integrity pathway.
Collapse
Affiliation(s)
- Vladimir Vélez-Segarra
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Sahily González-Crespo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Ednalise Santiago-Cartagena
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Luis E Vázquez-Quiñones
- School of Science and Technology, University Ana G. Mendez, Cupey Campus, Ana G Mendez Ave, No.1399, San Juan, PR 00926
| | - Nelson Martínez-Matías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Yamirelis Otero
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Julián J Zayas
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Rafael Siaca
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jeanmadi Del Rosario
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Inoushka Mejías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - José J Aponte
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Noelani C Collazo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Francisco J Lasso
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jamie Snider
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Brian C Rymond
- Department of Biology, University of Kentucky, Lexington, KY 40506
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R Rodríguez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| |
Collapse
|
235
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
236
|
Chaikijurajai T, Tang WHW. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Expert Opin Ther Targets 2020; 24:695-705. [PMID: 32336171 PMCID: PMC7387188 DOI: 10.1080/14728222.2020.1762177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronary artery disease (CAD) poses significant morbidity and mortality globally. Despite significant advances in treatment interventions, residual cardiovascular risks remain unchecked. Recent clinical trials have shed light on the potential therapeutic benefits of targeting anti-inflammatory pathways. Myeloperoxidase (MPO) plays an important role in atherosclerotic plaque formation and destabilization of the fibrous cap; both increase the risk of atherosclerotic cardiovascular disease and especially CAD. AREAS COVERED This article examines the role of MPO in the pathogenesis of atherosclerotic CAD and the mechanistic data from several key therapeutic drug targets. There have been numerous interesting studies on prototype compounds that directly or indirectly attenuate the enzymatic activities of MPO, and subsequently exhibit atheroprotective effects; these include aminobenzoic acid hydrazide, ferulic acid derivative (INV-315), thiouracil derivatives (PF-1355 and PF-06282999), 2-thioxanthines derivative (AZM198), triazolopyrimidines, acetaminophen, N-acetyl lysyltyrosylcysteine (KYC), flavonoids, and alternative substrates such as thiocyanate and nitroxide radical. EXPERT OPINION Future investigations must determine if the cardiovascular benefits of direct systemic inhibition of MPO outweigh the risk of immune dysfunction, which may be less likely to arise with alternative substrates or MPO inhibitors that selectively attenuate atherogenic effects of MPO.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - W. H. Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
237
|
Abdelmouleh M, Lalande M, El Feghaly J, Vizcaino V, Rebelo A, Eden S, Schlathölter T, Poully JC. Mass Spectral Signatures of Complex Post-Translational Modifications in Proteins: A Proof-of-Principle Based on X-ray Irradiated Vancomycin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1738-1743. [PMID: 32551638 DOI: 10.1021/jasms.0c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterizing post-translational modifications (PTM) of proteins is of key relevance for the understanding of many biological processes, as these covalent modifications strongly influence or even determine protein function. Among the different analytical techniques available, mass spectrometry is attracting growing attention because recent instrumental and computational improvements have led to a massive rise of the number of PTM sites that can be identified and quantified. However, multiple PTM occurring at adjacent amino acid residues can lead to complex and dense chemical patterns that are a challenge to characterize. By means of X-ray synchrotron radiation coupled to mass spectrometry, and through the test-case of the glycopeptide antibiotic vancomycin, we show that such a pattern has a unique and robust signature in terms of photon energy and molecular environment. This highlights the potential of this technique in proteomics and its value as a tool to understand the biological roles of PTM.
Collapse
Affiliation(s)
- Marwa Abdelmouleh
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Mathieu Lalande
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Johnny El Feghaly
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - Violaine Vizcaino
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| | - André Rebelo
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, FCT - Universidade NOVA de Lisboa, P-2829-516 Caparica, Portugal
| | - Samuel Eden
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, U.K
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, Netherlands
| | - Jean-Christophe Poully
- CIMAP, UMR 6252 CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070 Caen, France
| |
Collapse
|
238
|
Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins. Int J Mol Sci 2020; 21:ijms21113926. [PMID: 32486253 PMCID: PMC7312639 DOI: 10.3390/ijms21113926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022] Open
Abstract
Brominated flame retardants (BFRs) have been using to reduce the flammability of plastics contained in many products, such as household articles, furniture, mattresses, textiles or insulation. Considering the fact that these compounds may be released into the environment leading to the exposure of living organisms, it is necessary to study their possible effects and mechanisms of action. Proteins play a crucial role in all biological processes. For this reason, a simple model of human serum albumin (HSA) was chosen to study the mechanism of BFRs’ effect on proteins. The study determined interactions between selected BFRs, i.e., tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP), and HSA by measurement of fluorescence of intrinsic tryptophan and absorbance of circular dichroism (CD). In addition, in order to understand the possible effect of these compounds in their native environment, the effect of BFRs on membrane proteins of human erythrocytes (red blood cells, RBCs) was also assessed. Among bromophenols, PBP had the strongest oxidative effect on RBC membrane, and 2,4-DBP demonstrated the weakest fluorescence-quenching effect of both membrane tryptophan and HSA. By contrast to PBP, 2,4-DBP and 2,4,6-TBP caused spatial changes of HSA. We have observed that among all analyzed BFRs, TBBPA caused the strongest oxidation of RBC membrane proteins and the model HSA protein, causing reduction of fluorescence of tryptophan contained in them. TBBPA also changed albumin conformation properties, leading to impairment of the α-helix structure. However, TBBPS had the weakest oxidative effect on proteins among studied BFRs and did not affect the secondary structure of HSA.
Collapse
|
239
|
Gamon LF, Guo C, He J, Hägglund P, Hawkins CL, Davies MJ. Absolute quantitative analysis of intact and oxidized amino acids by LC-MS without prior derivatization. Redox Biol 2020; 36:101586. [PMID: 32505089 PMCID: PMC7276450 DOI: 10.1016/j.redox.2020.101586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The precise characterization and quantification of oxidative protein damage is a significant challenge due to the low abundance, large variety, and heterogeneity of modifications. Mass spectrometry (MS)-based techniques at the peptide level (proteomics) provide a detailed but limited picture due to incomplete sequence coverage and imperfect enzymatic digestion. This is particularly problematic with oxidatively modified and cross-linked/aggregated proteins. There is a pressing need for methods that can quantify large numbers of modified amino acids, which are often present in low abundance compared to the high background of non-damaged amino acids, in a rapid and reliable fashion. We have developed a protocol using zwitterionic ion-exchange chromatography coupled with LC-MS to simultaneously quantify both parent amino acids and their respective oxidation products. Proteins are hydrolyzed with methanesulfonic acid in the presence of tryptamine and purified by strong cation exchange solid phase extraction. The method was validated for the common amino acids (excluding Gln, Asn, Cys) and the oxidation products 3-chlorotyrosine (3-ClTyr), 3-nitrotyrosine (3-NO2Tyr), di-tyrosine, Nε-(1-carboxymethyl)-l-lysine, o,o’-di-tyrosine, 3,4,-dihydroxyphenylalanine, hydroxy-tryptophan and kynurenine. Linear standard curves were observed over ~3 orders of magnitude dynamic range (2–1000 pmol for parent amino acids, 80 fmol–20 pmol for oxidation products) with limit-of-quantification values as low as 200 fmol (o,o’-di-tyrosine). The validated method was used to quantify Tyr and Trp loss, and formation of 3-NO2Tyr on the isolated protein anastellin treated with peroxynitrous acid, and for 3-ClTyr formation (over a 2 orders of magnitude range) in cell lysates and complex protein mixtures treated with hypochlorous acid. Identification and quantification of oxidative protein damage is a major challenge. A versatile LC-MS assay is reported that involves hydrolysis to free amino acids. Quantification is possible for both parent amino acids and products in single runs. A dynamic range of 2-3 orders of magnitude is available for most analytes. Example of use with pure proteins, extracellular matrix and cell lysates are given.
Collapse
Affiliation(s)
- Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chaorui Guo
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianfei He
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clare L Hawkins
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
240
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
241
|
Gammelgaard S, Petersen SB, Haselmann KF, Nielsen PK. Direct Ultraviolet Laser-Induced Reduction of Disulfide Bonds in Insulin and Vasopressin. ACS OMEGA 2020; 5:7962-7968. [PMID: 32309706 PMCID: PMC7161042 DOI: 10.1021/acsomega.9b04375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
Ultraviolet (UV) light has been shown to induce reduction of disulfide bonds in proteins in solution. The photoreduction is proposed to be a result of electron donation from excited Tyr or Trp residues. In this work, a powerful UV femtosecond laser was used to generate photoreduced products, while the hypothesis of Tyr/Trp mediation was studied with spectroscopy and mass spectrometry. With limited irradiation times of 3 min or less at 280 nm, the laser-induced reduction in arginine vasopressin and human insulin led to significant yields of ∼3% stable reduced product. The photogenerated thiols required acidic pH for stabilization, while neutral pH primarily caused scrambling and trisulfide formation. Interestingly, there was no direct evidence that Tyr/Trp mediation was a required criterion for the photoreduction of disulfide bonds. Intermolecular electron transfer remained a possibility for insulin but was ruled out for vasopressin. We propose that an additional mechanism should be increasingly considered in UV light-induced reduction of disulfide bonds in solution, in which a single UV photon is directly absorbed by the disulfide bond.
Collapse
Affiliation(s)
- Simon
K. Gammelgaard
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen B. Petersen
- Department
of Health Science and Technology, Aalborg
University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Kim F. Haselmann
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Peter Kresten Nielsen
- Global
Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- . Tel: (+45) 3079 0375
| |
Collapse
|
242
|
Sharebiani H, Fazeli B, Maniscalco R, Ligi D, Mannello F. The Imbalance among Oxidative Biomarkers and Antioxidant Defense Systems in Thromboangiitis Obliterans (Winiwarter-Buerger Disease). J Clin Med 2020; 9:E1036. [PMID: 32272606 PMCID: PMC7231233 DOI: 10.3390/jcm9041036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Thromboangiitis obliterans or Winiwarter-Buerger disease (WBD), is an inflammatory, thrombotic occlusive, peripheral vascular disease, usually occurring in young smokers. The pathophysiological mechanisms underlying the disease are not clearly understood. The aim of this study is to investigate the imbalance between oxidants and antioxidants occurring in these patients. (2) Patients and Methods: In this cross-sectional study, 22 male patients with WBD and 20 healthy male smoking habit matched control group were included. To evaluate the possible sources of oxidative stress, the antioxidant biomarkers, and the markers of lipid peroxidation and protein oxidation, serum samples were analyzed for total oxidative status (TOS), total antioxidant capacity (TAC), myeloperoxidase (MPO), coenzyme Q10 (CoQ10), superoxide dismutase (SOD), glutathione reductase (GR), malondialdehyde (MDA), and protein carbonyl (PC) activity and/or content. (3) Results: The circulating levels of TOS, TAC, and CoQ10 were significantly higher in WBD patients, with respect to healthy smokers as controls. No significant difference was found among the serum level of PC, total cholesterol, MPO, and GR activity in WBD patients and healthy smoker controls. The activity of SOD and the mean serum level of MDA were significantly lower in WBD patients, with respect to healthy smoker controls. (4) Conclusion: Considerably high levels of oxidative stress were detected in WBD patients, which were greater than the antioxidant capacity. The low level of MDA may be associated with the enzymatic degradation of lipid peroxidation products. High levels of CoQ10 and low levels of SOD may be related to a harmful oxidative cooperation, leading to the vasoconstriction of WBD, representing a promising tool to discern possible different clinical risks of this poorly understood peripheral occlusive disease.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
| | - Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (H.S.); or (B.F.)
- Vascular Independent Research and Education, European Organization, 20157 Milan, Italy
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University “Carlo Bo” of Urbino, 61029 Urbino (PU), Italy; (R.M.); (D.L.)
| |
Collapse
|
243
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
244
|
Wartenberg M, Andrault PM, Saidi A, Bigot P, Nadal-Desbarats L, Lecaille F, Lalmanach G. Oxidation of cathepsin S by major chemicals of cigarette smoke. Free Radic Biol Med 2020; 150:53-65. [PMID: 32084513 DOI: 10.1016/j.freeradbiomed.2020.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/04/2023]
Abstract
Lung cysteine cathepsin S (CatS) that is a potent elastase plays a deleterious role in alveolar remodeling during smoke-induced emphysema. Despite the presence of a reactive nucleophilic cysteine (Cys25) within its active site, most of its elastinolytic activity is preserved after exposure to cigarette smoke extract (CSE), a major source of sulfhydryl oxidants. This result led us to decipher CatS resistance to major and representative CSE oxidants: hydrogen peroxide, formaldehyde, acrolein and peroxynitrite. CatS was inactivated by hydrogen peroxide, peroxynitrite and acrolein in a time- and dose-dependent manner, while formaldehyde was a weaker oxidant. Hydrogen peroxide, but not CSE, formaldehyde, and peroxynitrite impaired the autocatalytic maturation of pro-CatS, whereas acrolein prevented the formation of mature CatS without hindering the initial step of the two-step autocatalytic process. Far-UV CD spectra analysis supported that oxidation by CSE and hydrogen peroxide did not led to a structural alteration of CatS, despite a notable increase of protein carbonylation, a major hallmark of oxidative damage. Evaluation of the oxidation status of Cys25 by specific biotinylated redox sensing probes suggested the formation of sulfenic acid followed by a slower conversion to sulfinic acid after incubation with hydrogen peroxide. Addition of reducing reagents (dithiothreitol, glutathione and N-acetyl cysteine) led to a partial recovery of CatS activity following incubation with CSE, hydrogen peroxide and peroxynitrite. Current results provide some mechanistic evidence of CatS stability and activity in the presence of CSE, supporting its harmful contribution to the pathophysiology of emphysema.
Collapse
Affiliation(s)
- Mylène Wartenberg
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France
| | - Pierre-Marie Andrault
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France
| | - Paul Bigot
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France
| | - Lydie Nadal-Desbarats
- Université de Tours, Tours, France; INSERM, UMR1253, Imagerie et Cerveau (iBrain), Team « Imageries, Biomarqueurs et Thérapies », Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team « Mécanismes Protéolytiques dans l'Inflammation », Tours, France.
| |
Collapse
|
245
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2687] [Impact Index Per Article: 537.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
246
|
Rios N, Radi R, Kalyanaraman B, Zielonka J. Tracking isotopically labeled oxidants using boronate-based redox probes. J Biol Chem 2020; 295:6665-6676. [PMID: 32217693 DOI: 10.1074/jbc.ra120.013402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18-labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
247
|
Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020; 21:ijms21061944. [PMID: 32178437 PMCID: PMC7139492 DOI: 10.3390/ijms21061944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress. Besides an introductory chapter and peculiar attention to lung cysteine cathepsins, the purpose of this review is to afford a concise update of the current knowledge on molecular mechanisms associated with the regulation of cysteine cathepsins by redox balance and by oxidants (e.g., Michael acceptors, reactive oxygen, and nitrogen species).
Collapse
|
248
|
Poole LB, Furdui CM, King SB. Introduction to approaches and tools for the evaluation of protein cysteine oxidation. Essays Biochem 2020; 64:1-17. [PMID: 32031597 PMCID: PMC7477960 DOI: 10.1042/ebc20190050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
Oxidative modifications of cysteine thiols in cellular proteins are pivotal to the way signal-stimulated reactive oxygen species are sensed and elicit appropriate or sometimes pathological responses, but the dynamic and often transitory nature of these modifications offer a challenge to the investigator trying to identify such sites and the responses they elicit. A number of reagents and workflows have been developed to identify proteins undergoing oxidation and to query the timing, extent and location of such modifications, as described in this minireview. While no approach is perfect to capture all the redox information in a functioning cell, best practices described herein can enable considerable insights into the "redox world" of cells and organisms.
Collapse
Affiliation(s)
- Leslie B. Poole
- Department of Biochemistry, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
- Center for Redox Biology and Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Cristina M. Furdui
- Center for Redox Biology and Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - S. Bruce King
- Center for Redox Biology and Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, U.S.A
| |
Collapse
|
249
|
Figueroa JD, Zárate AM, Fuentes-Lemus E, Davies MJ, López-Alarcón C. Formation and characterization of crosslinks, including Tyr–Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion. RSC Adv 2020; 10:25786-25800. [PMID: 35518626 PMCID: PMC9055361 DOI: 10.1039/d0ra04051g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
Dityrosine and ditryptophan bonds have been implied in protein crosslinking. This is associated with oxidative stress conditions including those involved in neurodegenerative pathologies and age-related processes. Formation of dityrosine and ditryptophan derives from radical–radical reactions involving Tyr˙ and Trp˙ radicals. However, cross reactions of Tyr˙ and Trp˙ leading to Tyr–Trp crosslinks and their biological consequences have been less explored. In the present work we hypothesized that exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, would result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks. Here we report a simple experimental procedure, employing CO3˙− generated photochemically by illumination of a Co(iii) complex at 254 nm, that produces micromolar concentrations of Tyr–Trp crosslinks. Analysis by mass spectrometry of solutions containing only the individual amino acids, and the Co(iii) complex, provided evidence for the formation of o,o′-dityrosine and isodityrosine from Tyr, and three ditryptophan dimers from Trp. When mixtures of Tyr and Trp were illuminated in an identical manner, Tyr–Trp crosslinks were detected together with dityrosine and ditryptophan dimers. These results indicate that there is a balance between the formation of these three classes of crosslinks, which is dependent on the Tyr and Trp concentrations. The methods reported here allow the generation of significant yields of isolated Tyr–Trp adducts and their characterization. This technology should facilitate the detection, and examination of the biological consequences of Tyr–Trp crosslink formation in complex systems in future investigations. Exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks.![]()
Collapse
Affiliation(s)
- Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Ana María Zárate
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Eduardo Fuentes-Lemus
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Michael J. Davies
- University of Copenhagen
- Department of Biomedical Sciences
- Copenhagen
- Denmark
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| |
Collapse
|