201
|
Liu L, Lei B, Wang L, Chang C, Yang H, Liu J, Huang G, Xie W. Protein kinase C-iota-mediated glycolysis promotes non-small-cell lung cancer progression. Onco Targets Ther 2019; 12:5835-5848. [PMID: 31410027 PMCID: PMC6646854 DOI: 10.2147/ott.s207211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/18/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine whether protein kinase C-iota (PKC-iota) is associated with glucose metabolism in non-small-cell lung cancer (NSCLC) and whether its regulatory effect on metabolic and biological changes observed in NSCLC can be mediated by glucose transporter 1 (GLUT1). Patients and methods Forty-five NSCLC patients underwent combined 18F-fludeoxyglucose (18F-FDG) positron emission tomography and computed tomography (PET/CT) before surgery, and another eighty-one NSCLC patients were followed-up for 1–91 months after tumor resection. The rate of glucose metabolism in NSCLC was quantified by measuring the maximum standardized uptake value (SUVmax) by 18F-FDG PET/CT. PKC-iota and GLUT1 in NSCLC were detected by immunostaining. In vitro, PKC-iota was knocked down, whereas GLUT1 was silenced with or without PKC-iota overexpression to identify the role of PKC-iota in glycolysis. Spearman’s rank correlation coefficient was used in the correlation analysis. Kaplan-Meier analysis was used to assess survival duration. Results There was a positive relationship between PKC-iota expression and SUVmax in NSCLC (r=0.649, P<0.001). PKC-iota expression also showed a positive relationship with GLUT1 in NSCLC tissues (r=0.686, P<0.001). Patients whose NSCLC tissues highly co-expressed PKC-iota and GLUT1 had worse prognosis compared with patients without high co-expression of PKC-iota and GLUT1. In vitro, PKC-iota silencing significantly decreased the expression of GLUT1 and inhibited glucose uptake and glycolysis; c-Myc silencing restrained PKC-iota-mediated GLUT1 elevation; GLUT1 knockdown remarkably suppressed PKC-iota-mediated glycolysis and cell growth. Conclusion In NSCLC, the rate of glucose metabolism was positively correlated with PKC-iota expression. PKC-iota increased glucose accumulation and glycolysis by upregulating c-Myc/GLUT1 signaling and is thus involved in tumor progression.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Yang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gang Huang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
202
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|
203
|
Taylor SS, Meharena HS, Kornev AP. Evolution of a dynamic molecular switch. IUBMB Life 2019; 71:672-684. [PMID: 31059206 DOI: 10.1002/iub.2059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinases (EPKs) regulate almost every biological process and have evolved to be dynamic molecular switches; this is in stark contrast to metabolic enzymes, which have evolved to be efficient catalysts. In particular, the highly conserved active site of every EPK is dynamically and transiently assembled by a process that is highly regulated and unique for every protein kinase. We review here the essential features of the kinase core, focusing on the conserved motifs and residues that are embedded in every kinase. We explore, in particular, how the hydrophobic core architecture specifically drives the dynamic assembly of the regulatory spine and consequently the organization of the active site where the γ-phosphate of ATP is positioned by a convergence of conserved motifs including a conserved regulatory triad for transfer to a protein substrate. In conclusion, we show how the flanking N- and C-terminal tails often classified as intrinsically disordered regions, as well as flanking domains, contribute in a highly kinase-specific manner to the regulation of the conserved kinase core. Understanding this process as well as how one kinase activates another remains as two of the big challenges for the kinase signaling community. © 2019 IUBMB Life, 71(6):672-684, 2019.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
204
|
Chatterjee B, Ghosh K, Suresh L, Kanade SR. Curcumin ameliorates PRMT5-MEP50 arginine methyltransferase expression by decreasing the Sp1 and NF-YA transcription factors in the A549 and MCF-7 cells. Mol Cell Biochem 2019; 455:73-90. [PMID: 30392062 DOI: 10.1007/s11010-018-3471-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
The protein arginine methyltransferase 5 (PRMT5) and its catalytic partner methylosome protein MEP50 (WDR77) catalyse the mono- and symmetric di-methylation of selective arginines in various histones and non-histone target proteins. It has emerged as a crucial epigenetic regulator in cell proliferation and differentiation; which also reported to be overexpressed in many forms of cancers in humans. In this study, we aimed to assess the modulations in the expression of this enzyme upon exposure to the well-studied natural compound from the spice turmeric, curcumin. We exposed the lung and breast cancer cell lines (A549 and MCF-7) to curcumin (2 and 20 μM) and observed a highly significant inhibitory effect on the expression of both PRMT5 and MEP50. The level of symmetrical dimethylarginine (SDMA) in multiple proteins, and more specifically, the H4R3me2s mark (which predominates in GC-rich motifs in nucleosomal DNA) was also diminished significantly. We also found that curcumin significantly reduced the level and enrichment of the transcription factors Sp1 and NF-YA which shares their binding sites within the GC-rich region of the PRMT5 proximal promoter. Furthermore, the involvement of both PKC-p38-ERK-cFos and AKT-mTOR signalling was observed in reducing the Sp1 and NF-YA expression by curcumin. Therefore, we propose curcumin decreased the expression of PRMT5 in these cells by affecting at least these two transcription factors. Altogether, we report a new molecular target of curcumin and further elucidation of this proposed mechanism through which curcumin affects the PRMT5-MEP50 methyltransferase expression might be explored for its therapeutic application.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Lavanya Suresh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Telangana, 500046, India.
| |
Collapse
|
205
|
Experiments with Snails Add to Our Knowledge about the Role of aPKC Subfamily Kinases in Learning. Int J Mol Sci 2019; 20:ijms20092117. [PMID: 31035721 PMCID: PMC6539039 DOI: 10.3390/ijms20092117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Protein kinase Mζ is considered important for memory formation and maintenance in different species, including invertebrates. PKMζ participates in multiple molecular pathways in neurons, regulating translation initiation rate, AMPA receptors turnover, synaptic scaffolding assembly, and other processes. Here, for the first time, we established the sequence of mRNA encoding PKMζ homolog in land snail Helix lucorum. We annotated important features of this mRNA: domains, putative capping sites, translation starts, and splicing sites. We discovered that this mRNA has at least two isoforms, and one of them lacks sequence encoding C1 domain. C1 deletion may be unique for snail because it has not been previously found in other species. We performed behavioral experiments with snails, measured expression levels of identified isoforms, and confirmed that their expression correlates with one type of learning.
Collapse
|
206
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
207
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
208
|
Rath NC, Gupta A, Liyanage R, Lay JO. Phorbol 12-Myristate 13-Acetate-Induced Changes in Chicken Enterocytes. PROTEOMICS INSIGHTS 2019; 10:1178641819840369. [PMID: 31019367 PMCID: PMC6463336 DOI: 10.1177/1178641819840369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Increased intestinal epithelial permeability has been linked to many enteric diseases because it allows easy access of microbial pathogens and toxins into the system. In poultry production, the restrictions in the use of antibiotic growth promoters have increased the chances of birds being susceptible to different enteric diseases. Thus, understanding the mechanisms which compromise intestinal function is pertinent. Based on our previous observation which showed the primary chicken enterocytes in culture undergoing dystrophic changes on treatment with phorbol myristate acetate (PMA), we surmised that this model, which appeared to mimic increased intestinal permeability, may help to understand the mechanisms of this problem. As genomic and proteomic changes are associated with many physiological and pathological problems, we were interested to find whether certain proteomic changes underlie the morphological alterations in the enterocytes induced by PMA. We exposed primary enterocyte cultures to a sub-lethal concentration of PMA, extracted the proteins, and analyzed by mass spectrometry for differentially regulated proteins. Our results showed that PMA affected several biological processes which negatively affected their energy metabolism, nuclear activities, and differentially regulated the levels of several stress proteins, chaperon, cytoskeletal, and signal transduction proteins that appear to be relevant in the cause of enterocyte dystrophy. Phorbol myristate acetate-affected signal transduction activities also raise the possibilities of their increased susceptibility to pathogens. The changes in enterocyte integrity can make intestine vulnerable to invasion by microbial pathogens and disrupt gut homeostasis.
Collapse
Affiliation(s)
- Narayan C Rath
- USDA, Agricultural Research Service, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Anamika Gupta
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Statewide Mass Spectrometry Facility, Department of Chemistry Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Statewide Mass Spectrometry Facility, Department of Chemistry Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
209
|
Caballero A, Mahn SA, Ali MS, Rogers MR, Marchese A. Heterologous regulation of CXCR4 lysosomal trafficking. J Biol Chem 2019; 294:8023-8036. [PMID: 30936203 DOI: 10.1074/jbc.ra118.005991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mudassir S Ali
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - M Rose Rogers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
210
|
Baffi TR, Van AAN, Zhao W, Mills GB, Newton AC. Protein Kinase C Quality Control by Phosphatase PHLPP1 Unveils Loss-of-Function Mechanism in Cancer. Mol Cell 2019; 74:378-392.e5. [PMID: 30904392 DOI: 10.1016/j.molcel.2019.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/26/2018] [Accepted: 02/12/2019] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) isozymes function as tumor suppressors in increasing contexts. In contrast to oncogenic kinases, whose function is acutely regulated by transient phosphorylation, PKC is constitutively phosphorylated following biosynthesis to yield a stable, autoinhibited enzyme that is reversibly activated by second messengers. Here, we report that the phosphatase PHLPP1 opposes PKC phosphorylation during maturation, leading to the degradation of aberrantly active species that do not become autoinhibited. Cancer-associated hotspot mutations in the pseudosubstrate of PKCβ that impair autoinhibition result in dephosphorylated and unstable enzymes. Protein-level analysis reveals that PKCα is fully phosphorylated at the PHLPP site in over 5,000 patient tumors, with higher PKC levels correlating (1) inversely with PHLPP1 levels and (2) positively with improved survival in pancreatic adenocarcinoma. Thus, PHLPP1 provides a proofreading step that maintains the fidelity of PKC autoinhibition and reveals a prominent loss-of-function mechanism in cancer by suppressing the steady-state levels of PKC.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Wei Zhao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
211
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
212
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
213
|
Kikkawa U. The story of PKC: A discovery marked by unexpected twists and turns. IUBMB Life 2018; 71:697-705. [PMID: 30393952 DOI: 10.1002/iub.1963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/11/2022]
Abstract
Protein kinase C (PKC) is activated by 1,2-diacylglycerol as a second messenger in the signaling mechanism coupled with the hydrolysis of membrane inositol phospholipids, although it was not found by screening for a 1,2-diacylglycerol-dependent enzyme. PKC is also a receptor for the tumor-promoting phorbol esters, but it was not identified by its property of binding phorbol esters, either. Instead, the discovery and characterization of PKC, now known to comprise a family with multiple isoforms, was through a circuitous voyage filled with unexpected twists and turns. This review summarizes the discovery and the initial experiments of PKC as a historical perspective of the enzyme family in the context of the progress in the studies on protein phosphorylation. © 2018 IUBMB Life, 71(6):697-705, 2019.
Collapse
Affiliation(s)
- Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
214
|
Moine H, Vitale N. Of local translation control and lipid signaling in neurons. Adv Biol Regul 2018; 71:194-205. [PMID: 30262213 DOI: 10.1016/j.jbior.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Fine-tuned regulation of new proteins synthesis is key to the fast adaptation of cells to their changing environment and their response to external cues. Protein synthesis regulation is particularly refined and important in the case of highly polarized cells like neurons where translation occurs in the subcellular dendritic compartment to produce long-lasting changes that enable the formation, strengthening and weakening of inter-neuronal connection, constituting synaptic plasticity. The changes in local synaptic proteome of neurons underlie several aspects of synaptic plasticity and new protein synthesis is necessary for long-term memory formation. Details of how neuronal translation is locally controlled only start to be unraveled. A generally accepted view is that mRNAs are transported in a repressed state and are translated locally upon externally cued triggering signaling cascades that derepress or activate translation machinery at specific sites. Some important yet poorly considered intermediates in these cascades of events are signaling lipids such as diacylglycerol and its balancing partner phosphatidic acid. A link between these signaling lipids and the most common inherited cause of intellectual disability, Fragile X syndrome, is emphasizing the important role of these secondary messages in synaptically controlled translation.
Collapse
Affiliation(s)
- Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France; Université de Strasbourg, 67084, Strasbourg, France.
| | - Nicolas Vitale
- Université de Strasbourg, 67084, Strasbourg, France; Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, 67084, Strasbourg, France
| |
Collapse
|