201
|
Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006; 26:2736-45. [PMID: 16537916 PMCID: PMC1430317 DOI: 10.1128/mcb.26.7.2736-2745.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12(L)). A shorter isoform of CDK12, CDK12(S), that differs from CDK12(L) only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
202
|
Leoutsakou T, Talieri M, Scorilas A. Expression analysis and prognostic significance of the SRA1 gene, in ovarian cancer. Biochem Biophys Res Commun 2006; 344:667-74. [PMID: 16631123 DOI: 10.1016/j.bbrc.2006.03.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 11/24/2022]
Abstract
The SR-related-CTD-associated-factors (SCAFs) have the ability to interact with the C-terminal domain of the RNA polymerase II, linking this way transcription to splicing. SRA1 (SR-A1) gene, encoding for a human high-molecular weight SCAF protein, is located on chromosome 19, between the IRF3 and the R-RAS oncogene and it has been demonstrated from members of our group that SRA1 is constitutively expressed in most of the human tissues, while it is overexpressed in a subset of ovarian tumors. In this study, we examine the expression of SRA1 gene in 111 ovarian malignant tissues and in the human ovarian carcinoma cell lines OVCAR-3, TOV21-G, and ES-2, using a semi-quantitative RT-PCR method. SRA1 gene was overexpressed in 61/111 (55%) of ovarian carcinomas. This higher expression was positively associated to the size of the tumor (p<0.001), the grade and the stage of the disease (p=0.003 and p=0.006, respectively), and the debulking success (p<0.001). Kaplan-Meier survival analysis revealed that lower SRA1 expression increases the probability of both the longer overall and the progression free survival of the patients. Multivariate Cox regression analysis revealed that SRA1 may be used as an independent prognostic biomarker in ovarian cancer. Our results suggest that SRA1 is associated with cancer progression and may possibly be characterized as a new marker of unfavorable prognosis for ovarian cancer.
Collapse
Affiliation(s)
- Theoni Leoutsakou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, 15711 Panepistimioupoli, Athens, Greece
| | | | | |
Collapse
|
203
|
Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006. [PMID: 16537916 DOI: 10.1128/mcb.26.7.2736-27452006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12(L)). A shorter isoform of CDK12, CDK12(S), that differs from CDK12(L) only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | |
Collapse
|
204
|
Carrero G, Hendzel MJ, de Vries G. Modelling the compartmentalization of splicing factors. J Theor Biol 2006; 239:298-312. [PMID: 16162356 DOI: 10.1016/j.jtbi.2005.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/06/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022]
Abstract
Splicing factor (SF) compartments, also known as speckles, are heterogeneously distributed compartments within the nucleus of eukaryotic cells that are enriched in pre-mRNA SFs. We derive a fourth-order aggregation-diffusion model that describes a possible mechanism underlying the organization of SFs into speckles. The model incorporates two hypotheses, namely (1) that self-organization of dephosphorylated SFs, modulated by a phosphorylation-dephosphorylation cycle, is responsible for the formation and disappearance of speckles, and (2) that an underlying nuclear structure plays a major role in the organization of SFs. A linear stability analysis about homogeneous steady-state solutions of the model reveals how the self-interaction among dephosphorylated SFs can result in the onset of spatial patterns. A detailed bifurcation analysis of the model describes how phosphorylation and dephosphorylation modulate the onset of the compartmentalization of SFs.
Collapse
Affiliation(s)
- G Carrero
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G1
| | | | | |
Collapse
|
205
|
Renvoisé B, Khoobarry K, Gendron MC, Cibert C, Viollet L, Lefebvre S. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J Cell Sci 2006; 119:680-92. [PMID: 16449324 DOI: 10.1242/jcs.02782] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations of the survival motor neuron gene SMN1 cause the inherited disease spinal muscular atrophy (SMA). The ubiquitous SMN protein facilitates the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs). The protein is detected in the cytoplasm, nucleoplasm and enriched with snRNPs in nuclear Cajal bodies. It is structurally divided into at least an amino-terminal region rich in basic amino acid residues, a central Tudor domain, a self-association tyrosine-glycine-box and an exon7-encoded C-terminus. To examine the domains required for the intranuclear localization of SMN, we have used fluorescently tagged protein mutants transiently overexpressed in mammalian cells. The basic amino acid residues direct nucleolar localization of SMN mutants. The Tudor domain promotes localization of proteins in the nucleus and it cooperates with the basic amino acid residues and the tyrosine-glycine-box for protein localization in Cajal bodies. Moreover, the most frequent disease-linked mutant SMNΔex7 reduces accumulation of snRNPs in Cajal bodies, suggesting that the C-terminus of SMN participates in targeting to Cajal bodies. A reduced number of Cajal bodies in patient fibroblasts associates with the absence of snRNPs in Cajal bodies, revealing that intranuclear snRNA organization is modified in disease. These results indicate that direct and indirect mechanisms regulate localization of SMN in Cajal bodies.
Collapse
Affiliation(s)
- Benoît Renvoisé
- Laboratoire de Biologie Cellulaire des Membranes, Institut Jacques Monod (IJM), UMR 7592 CNRS/Universités Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
206
|
Cazalla D, Sanford JR, Cáceres JF. A rapid and efficient protocol to purify biologically active recombinant proteins from mammalian cells. Protein Expr Purif 2005; 42:54-8. [PMID: 15878828 DOI: 10.1016/j.pep.2005.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/24/2005] [Accepted: 03/30/2005] [Indexed: 11/15/2022]
Abstract
Here, we describe a simple and efficient method for the expression and purification of active recombinant proteins in mammalian cells. This method uses the expression of T7 epitope-tagged proteins in transiently transfected 293T cells grown in monolayer, followed by anti-T7-agarose affinity chromatography. This procedure yields approximately between 75 and 100 microg of biologically active protein/150 cm(2) flask that can be used for biochemical studies. We have tested this protocol for the expression of the prototype SR protein, SF2/ASF, which is a member of the SR protein family with a role in constitutive and alternative splicing. We show that SF2/ASF purified using this protocol is able to complement an S100 HeLa extract, demonstrating that is biologically active. Moreover, expression of a novel SR-related protein that it is required for the second step of pre-mRNA splicing also rendered an active protein. In summary, we present a protocol based on transient transfection of mammalian cells that results in easy purification of significant amounts of biologically active proteins.
Collapse
|
207
|
Blaustein M, Pelisch F, Tanos T, Muñoz MJ, Wengier D, Quadrana L, Sanford JR, Muschietti JP, Kornblihtt AR, Cáceres JF, Coso OA, Srebrow A. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 2005; 12:1037-44. [PMID: 16299516 DOI: 10.1038/nsmb1020] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 10/17/2005] [Indexed: 11/09/2022]
Abstract
Serine/arginine-rich (SR) proteins are important regulators of mRNA splicing. Several postsplicing activities have been described for a subset of shuttling SR proteins, including regulation of mRNA export and translation. Using the fibronectin gene to study the links between signal-transduction pathways and SR protein activity, we show that growth factors not only modify the alternative splicing pattern of the fibronectin gene but also alter translation of reporter messenger RNAs in an SR protein-dependent fashion, providing two coregulated levels of isoform-specific amplification. These effects are inhibited by specific small interfering RNAs against SR proteins and are mediated by the AKT kinase, which elicits opposite effects to those evoked by overexpressing SR protein kinases Clk and SRPK. These results show how SR protein activity is modified in response to extracellular stimulation, leading to a concerted regulation of splicing and translation.
Collapse
Affiliation(s)
- Matías Blaustein
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Fededa JP, Petrillo E, Gelfand MS, Neverov AD, Kadener S, Nogués G, Pelisch F, Baralle FE, Muro AF, Kornblihtt AR. A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol Cell 2005; 19:393-404. [PMID: 16061185 DOI: 10.1016/j.molcel.2005.06.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/14/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
Alternative splicing plays a key role in generating protein diversity. Transfections with minigenes revealed coordination between two distant, alternatively spliced exons in the same gene. Mutations that either inhibit or stimulate inclusion of the upstream alternative exon deeply affect inclusion of the downstream one. However, similar mutations at the downstream alternative exon have little effect on the upstream one. This polar effect is promoter specific and is enhanced by inhibition of transcriptional elongation. Consistently, cells from mutant mice with either constitutive or null inclusion of a fibronectin alternative exon revealed coordination with a second alternative splicing region, located far downstream. Using allele-specific RT-PCR, we demonstrate that this coordination occurs in cis and is also affected by transcriptional elongation rates. Bioinformatics supports the generality of these findings, indicating that 25% of human genes contain multiple alternative splicing regions and identifying several genes with nonrandom distribution of mRNA isoforms at two alternative regions.
Collapse
Affiliation(s)
- Juan P Fededa
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Mabon SA, Misteli T. Differential recruitment of pre-mRNA splicing factors to alternatively spliced transcripts in vivo. PLoS Biol 2005; 3:e374. [PMID: 16231974 PMCID: PMC1262628 DOI: 10.1371/journal.pbio.0030374] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 09/07/2005] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing factors to transcripts with distinct splicing fates is available. Here we have used quantitative single-cell imaging to test this key prediction in vivo. We show that distinct combinations of splicing factors are recruited to sites of alternatively spliced transcripts in intact cells. While a subset of serine/arginine protein splicing factors, including SF2/ASF, SC35, and SRp20, is efficiently recruited to the tau gene when exon 10 is included, these factors are less frequently associated with tau transcription sites when exon 10 is excluded. In contrast, the frequency of recruitment of several other splicing factors is independent of splicing outcome. Mutation analysis of SF2/ASF shows that both protein–protein as well as protein–RNA interactions are required for differential recruitment. The differential behavior of the various splicing factors provides the basis for combinatorial occupancy at pre-mRNAs. These observations represent the first in vivo evidence for differential association of pre-mRNA splicing factors with alternatively spliced transcripts. They confirm a key prediction of a stochastic model of alternative splicing, in which distinct combinatorial sets of generic pre-mRNA splicing factors contribute to splicing outcome. Quantitative single-cell imaging reveals distinct combinations of splicing factors recruited to sites of alternatively spliced transcripts in intact cells.
Collapse
Affiliation(s)
- Stephen A Mabon
- 1National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tom Misteli
- 1National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
210
|
Sanford JR, Ellis JD, Cazalla D, Cáceres JF. Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor. Proc Natl Acad Sci U S A 2005; 102:15042-7. [PMID: 16210245 PMCID: PMC1257746 DOI: 10.1073/pnas.0507827102] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Indexed: 11/18/2022] Open
Abstract
The Ser/Arg-rich (SR) proteins constitute a family of highly conserved nuclear phosphoproteins that are involved in many steps of mRNA metabolism. Previously, we demonstrated that shuttling SR proteins can associate with translating ribosomes and enhance translation of reporter mRNAs both in vivo and in vitro. Here, we show that endogenous, cytoplasmic splicing factor 2/alternative splicing factor (SF2/ASF) associated with the translation machinery is hypophosphorylated, suggesting that the phosphorylation state of the Arg-Ser-rich (RS) domain may influence the role of SF2/ASF in cytoplasmic RNA processing. In agreement, we show that mutations mimicking a hypophosphorylated RS domain strongly increased SF2/ASF binding to cytoplasmic mRNA and its activity in translation. We also demonstrate that, whereas the RS domain is not required for the function of SF2/ASF in mRNA translation in vivo or in vitro, its second RNA recognition motif (RRM)2 plays a critical role in this process. Taken together, these data suggest that RS-domain phosphorylation may influence the association of SF2/ASF with mRNA, whereas RRM2 may play an important role in mediating protein-protein interactions during translation. These data are consistent with a model whereby reversible protein phosphorylation differentially regulates the subcellular localization and activity of shuttling SR proteins.
Collapse
Affiliation(s)
- Jeremy R Sanford
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
211
|
Ngo JCK, Chakrabarti S, Ding JH, Velazquez-Dones A, Nolen B, Aubol BE, Adams JA, Fu XD, Ghosh G. Interplay between SRPK and Clk/Sty Kinases in Phosphorylation of the Splicing Factor ASF/SF2 Is Regulated by a Docking Motif in ASF/SF2. Mol Cell 2005; 20:77-89. [PMID: 16209947 DOI: 10.1016/j.molcel.2005.08.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/12/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The arginine-serine (RS)-rich domain of the SR protein ASF/SF2 is phosphorylated by SR protein kinases (SRPKs) and Clk/Sty kinases. However, the mode of phosphorylation by these kinases and their coordination in the biological regulation of ASF/SF2 is unknown. Here, we report the crystal structure of an active fragment of human SRPK1 bound to a peptide derived from an SR protein. This structure led us to identify a docking motif in ASF/SF2. We find that this docking motif restricts phosphorylation of ASF/SF2 by SRPK1 to the N-terminal part of the RS domain - a property essential for its assembly into nuclear speckles. We further show that Clk/Sty causes release of ASF/SF2 from speckles by phosphorylating the C-terminal part of its RS domain. These results suggest that the docking motif of ASF/SF2 is a key regulatory element for sequential phosphorylation by SRPK1 and Clk/Sty and, thus, is essential for its subcellular localization.
Collapse
Affiliation(s)
- Jacky Chi Ki Ngo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Lei H, Vorechovsky I. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression. Mol Cell Biol 2005; 25:6912-20. [PMID: 16055705 PMCID: PMC1190243 DOI: 10.1128/mcb.25.16.6912-6920.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Auxiliary splicing signals in introns play an important role in splice site selection, but these elements are poorly understood. We show that a subset of serine/arginine (SR)-rich proteins activate a cryptic 3' splice site in a sense Alu repeat located in intron 4 of the human LST1 gene. Utilization of this cryptic splice site is controlled by juxtaposed Alu-derived splicing silencers and enhancers between closely linked short tandem repeats TNFd and TNFe. Systematic mutagenesis of these elements showed that AG dinucleotides that were not preceded by purine residues were critical for repressing exon inclusion of a chimeric splicing reporter. Since the splice acceptor-like sequences are present in excess in exonic splicing silencers, these signals may contribute to inhibition of a large number of pseudosites in primate genomes.
Collapse
Affiliation(s)
- Haixin Lei
- University of Southampton School of Medicine, Division of Human Genetics, Duthie Building, UK
| | | |
Collapse
|
213
|
Sanford JR, Ellis J, Cáceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 2005; 33:443-6. [PMID: 15916537 DOI: 10.1042/bst0330443] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SR proteins (serine- and arginine-rich proteins) are an evolutionarily conserved family consisting of essential pre-mRNA splicing factors. Since their discovery and initial characterization, roles of SR proteins in pre-mRNA splicing and in subsequent steps of post-transcriptional gene expression have expanded significantly. The current hypotheses suggest that SR proteins are multifunctional adaptor molecules that may couple distinct steps of RNA metabolism. In the present study, we will provide an overview of the roles of SR proteins in different steps of post-transcriptional gene expression.
Collapse
Affiliation(s)
- J R Sanford
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, U.K
| | | | | |
Collapse
|
214
|
Kumar S, Lopez AJ. Negative feedback regulation among SR splicing factors encoded by Rbp1 and Rbp1-like in Drosophila. EMBO J 2005; 24:2646-55. [PMID: 15961996 PMCID: PMC1176452 DOI: 10.1038/sj.emboj.7600723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/31/2005] [Indexed: 01/08/2023] Open
Abstract
SR proteins constitute a widely conserved family of splicing regulators. Negative autoregulation of SR proteins has been proposed to exert homeostatic control on the splicing environment, but few examples have been studied and the role of isoforms that lack the RS domain is unclear. We show that genes Rbp1 and Rbp1-like, which encode Drosophila homologs of mammalian SRp20, negatively autoregulate and crossregulate at the level of alternative 3' splice site selection. This adjusts the relative expression of isoforms with either an RS domain or unrelated C-terminal domains (ALT) that are rich in serine and threonine. The effects of RBP1-ALT on splicing of doublesex and Rbp1-like are opposite to those of RBP1-RS and RBP1L-RS. RBP1-ALT and -RS exert opposing negative feedback on the ALT/RS ratio. However, RBP1-ALT inhibits the expression of RBP1-RS while stimulating that of RBP1L-RS. This asymmetry may contribute to changes in the RBP1-RS/RBP1L-RS ratio that are observed during development. These results provide the first example of a feedback-regulated SR protein network with evidence of an active homeostatic role for alternative isoforms.
Collapse
Affiliation(s)
- Supriya Kumar
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A Javier Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA. Tel.: +1 412 268 3400; Fax: +1 412 268 7129; E-mail:
| |
Collapse
|
215
|
Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D, Nguyen CH, Jeanteur P, Tazi J. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 2005; 102:8764-9. [PMID: 15939885 PMCID: PMC1150812 DOI: 10.1073/pnas.0409829102] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of alternative splicing as a target for alterations leading to human genetic disorders makes it highly relevant for therapy. Here we have used in vitro splicing reactions with different splicing reporter constructs to screen 4,000 chemical compounds for their ability to selectively inhibit spliceosome assembly and splicing. We discovered indole derivatives as potent inhibitors of the splicing reaction. Importantly, compounds of this family specifically inhibit exonic splicing enhancer (ESE)-dependent splicing, because they interact directly and selectively with members of the serine-arginine-rich protein family. Treatment of cells expressing reporter constructs with ESE sequences demonstrated that selected indole derivatives mediate inhibition of ESE usage in vivo and prevent early splicing events required for HIV replication. This discovery opens the exciting possibility of a causal pharmacological treatment of aberrant splicing in human genetic disorders and development of new antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Johann Soret
- Institut de Génétique Moléculaire de Montpellier, Unité Mixte de Recherche 5535, Centre National de Recherche Scientifique, 1919, Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Cazalla D, Newton K, Cáceres JF. A novel SR-related protein is required for the second step of Pre-mRNA splicing. Mol Cell Biol 2005; 25:2969-80. [PMID: 15798186 PMCID: PMC1069619 DOI: 10.1128/mcb.25.8.2969-2980.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.
Collapse
Affiliation(s)
- Demian Cazalla
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd., Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | |
Collapse
|
217
|
Metz A, Soret J, Vourc'h C, Tazi J, Jolly C. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 2005; 117:4551-8. [PMID: 15331664 DOI: 10.1242/jcs.01329] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exposure of cells to stressful conditions results in the rapid synthesis of a subset of specialized proteins termed heat shock proteins (HSPs) which function in protecting the cell against damage. The stress-induced activation of hsp genes is controlled by the heat shock transcription factor 1 (HSF1). At the cellular level, one of the most striking effects of stress is the rapid and reversible redistribution of HSF1 into a few nuclear structures termed nuclear stress granules which form primarily on the 9q12 locus in humans. Within these structures, HSF1 binds to satellite III repeated elements and drives the RNA polymerase II-dependent transcription of these sequences into stable RNAs which remain associated with the 9q12 locus for a certain time after synthesis. Other proteins, in particular splicing factors, were also shown to relocalize to the granules upon stress. Here, we investigated the role of stress-induced satellite III transcripts in the relocalization of splicing factors to the granules. We show that the recruitment of the two serine/arginine-rich (SR) proteins SF2/ASF and SRp30c requires the presence of stress-induced satellite III transcripts. In agreement with these findings, we identified the second RNA-recognition motif (RRM2) of hSF2/ASF as the motif required for the targeting to the granules, and we showed by immunoprecipitation that the endogenous hSF2/ASF protein is present in a complex with satellite III transcripts in stressed cells in vivo. Interestingly, satellite III transcripts also immunoprecipitate together with small nuclear ribonucleoproteins (snRNPs) in vivo whereas the intronless hsp70 transcripts do not, supporting the proposal that these transcripts are subject to splicing. Altogether, these data highlight the central role for satellite III transcripts in the targeting and/or retention of splicing factors into the granules upon stress.
Collapse
Affiliation(s)
- Alexandra Metz
- INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche CEDEX, France
| | | | | | | | | |
Collapse
|
218
|
Kavanagh SJ, Schulz TC, Davey P, Claudianos C, Russell C, Rathjen PD. A family of RS domain proteins with novel subcellular localization and trafficking. Nucleic Acids Res 2005; 33:1309-22. [PMID: 15741184 PMCID: PMC552957 DOI: 10.1093/nar/gki269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.
Collapse
Affiliation(s)
- Steven J. Kavanagh
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Thomas C. Schulz
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Philippa Davey
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Charles Claudianos
- Molecular Genetics and Evolution, Research School of Biological Sciences, Australian National UniversityACT 2601, Australia
| | - Carrie Russell
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
- National Stem Cell CentreNotting Hill, VIC 3168, Australia
- To whom correspondence should be addressed. Tel: +61 8 8303 5650; Fax: +61 8 8303 4348;
| |
Collapse
|
219
|
Allemand E, Guil S, Myers M, Moscat J, Cáceres JF, Krainer AR. Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc Natl Acad Sci U S A 2005; 102:3605-10. [PMID: 15738418 PMCID: PMC553333 DOI: 10.1073/pnas.0409889102] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an alternative splicing factor that is mainly nuclear, although it shuttles rapidly between nuclear and cytoplasmic compartments. Cells stressed by osmotic shock (OSM) activate the mitogen-activated protein kinase kinase(3/6)-p38 signaling pathway, which in turn results in accumulation of hnRNP A1 in the cytoplasm. This effect modulates alternative splicing regulation in vivo and correlates with increased hnRNP A1 phosphorylation. We have characterized the molecular mechanism involved in the cytoplasmic accumulation of hnRNP A1 in NIH 3T3 cells subjected to OSM. This treatment results in serine-specific phosphorylation within a C-terminal peptide, dubbed the "F-peptide," which is adjacent to the M9 motif that mediates bidirectional transport of hnRNP A1. Analysis of mutants in which the F-peptide serines were replaced by aspartic acids or alanines showed that F-peptide phosphorylation is required for the subcellular redistribution of hnRNP A1 in cells subjected to OSM. Furthermore, F-peptide phosphorylation modulates the interaction of hnRNP A1 with transportin Trn1. Our findings suggest that the phosphorylation of F-peptide by cell-signaling pathways regulates the rate of hnRNP A1 nuclear import.
Collapse
Affiliation(s)
- Eric Allemand
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
220
|
Gubbels MJ, Wieffer M, Striepen B. Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 2005; 137:99-110. [PMID: 15279956 DOI: 10.1016/j.molbiopara.2004.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite, and its sub-cellular organization shows clear adaptations to this life-style. In addition to organelles shared among all eukaryotes, the organism possesses a number of specialized compartments with important roles in host cell invasion and intra-cellular survival. These unique aspects of the parasite's biology are also reflected in its genome. The ongoing genome sequencing efforts for T. gondii and related apicomplexans predict a high proportion of genes unique to the phylum, which lack homologs in other model organisms. Knowing the sub-cellular localization of these gene products will be an important first step towards their functional characterization. We used a library approach wherein parasite genomic DNA was fused to the yellow fluorescent protein (YFP) gene. Parasites transformed with this library were screened by flow cytometry and fluorescence microscopy. Clones tagged in a wide variety of sub-cellular compartments (nucleus, mitochondria, ER, dense granules (secreted), spliceosome, plasma membrane, apicoplast, inner membrane complex) were isolated and confirmed using compartment specific markers. Clones with tags in parasite-specific localizations were subjected to insert rescue and phenotypic verification using an in vitro recombination system. Among the genes identified is a novel inner membrane complex gene (IMC3) conserved among Apicomplexa.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases, University of Georgia, 724 Biological Sciences Building, Athens 30602, USA
| | | | | |
Collapse
|
221
|
Wang Y, Wang J, Gao L, Lafyatis R, Stamm S, Andreadis A. Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c.SRp55 complex that either recruits or antagonizes htra2beta1. J Biol Chem 2005; 280:14230-9. [PMID: 15695522 DOI: 10.1074/jbc.m413846200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 2 modulates the tau N-terminal domain, which interacts with the axonal membrane. Exon 10 codes for a microtubule binding domain, increasing the affinity of tau for microtubules. Both exons are excluded from fetal brain, but their default behavior is inclusion, suggesting that silencers are involved in their regulation. Exon 2 is significantly reduced in myotonic dystrophy type 1, whose symptoms include dementia. Mutations that affect exon 10 splicing cause frontotemporal dementia (FTDP). In this study, we investigated three regulators of exon 2 and 10 splicing: serine/arginine-rich (SR) proteins SRp55, SRp30c, and htra2beta1. The first two inhibit both exons; htra2beta1 inhibits exon 2 but activates exon 10. By deletion analysis, we identified splicing silencers located at the 5' end of each exon. Furthermore, we demonstrated that SRp30c and SRp55 bind to both silencers and to each other. In exon 2, htra2beta1 binds to the inhibitory heterodimer through its RS1 domain but not to exon 2, whereas in exon 10 the heterodimer may sterically interfere with htra2beta1 binding to a purine-rich enhancer (defined by FTDP mutation E10-Delta5 = Delta280K) directly downstream of the silencer. Increased exon 10 inclusion in FTDP mutant ENH (N279K) may arise from abolishing SRp30c binding. Also, htra2beta3, a naturally occurring variant of htra2beta1, no longer inhibits exon 2 splicing but can partially rescue splicing of exon 10 in FTDP mutation E10-Delta5. This work provides interesting insights into the splicing regulation of the tau gene.
Collapse
Affiliation(s)
- Yingzi Wang
- Shriver Center at University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
222
|
Tillemans V, Dispa L, Remacle C, Collinge M, Motte P. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:567-82. [PMID: 15686520 DOI: 10.1111/j.1365-313x.2004.02321.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Serine/arginine-rich (SR) proteins constitute an important class of splicing regulators in higher eukaryotes that share a modular structure consisting of one or two N-terminal RNA recognition motif (RRM) domains and a C-terminal RS-rich domain. Herein, we have investigated the in vivo functional distribution of Arabidopsis SR factors. Agrobacterium-mediated transient transformation revealed nuclear speckled distribution and the overall colocalization of fluorescent protein (FP)-tagged SR factors in both tobacco and Arabidopsis cells. Their overall colocalization in larger nucleoplasmic domains was further observed after transcriptional and phosphorylation/dephosphorylation inhibition, indicating a close functional association between SR factors, independent of their phosphorylation state. Furthermore, we demonstrated in vivo the conserved role of the RS and RRM domains in the efficient targeting of Arabidopsis SR proteins to nuclear speckles by using a series of structural domain-deleted mutants of atRSp31 and atRSZp22. We suggest additional roles of RS domain such as the shuttling of atRSZp22 between nucleoplasm and nucleolus through its phosphorylation level. The coexpression of deletion mutants with wild-type SR proteins revealed potential complex associations between them. Fluorescence recovery after photobleaching demonstrated similar dynamic properties of SR factors in both tobacco transiently expressing cells and Arabidopsis transgenics. Cell cycle phase-dependent organization of FP-tagged SR proteins was observed in living tobacco BY-2 cells. We showed that atRSp31 is degraded at metaphase by fluorescence quantification. SR proteins also localized within small foci at anaphase. These results demonstrate interesting related features as well as potentially important differences between plant and animal SR proteins.
Collapse
Affiliation(s)
- Vinciane Tillemans
- Laboratory of Plant Cell and Molecular Biology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
223
|
Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, Shi Y, Hunt ME, Sugrue SP. Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene. Mol Cell Biol 2005; 24:10223-35. [PMID: 15542832 PMCID: PMC529029 DOI: 10.1128/mcb.24.23.10223-10235.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown that pinin/DRS (Pnn), a 140-kDa nuclear and cell adhesion-related phosphoprotein, is involved in the regulation of cell adhesion and modulation of the activity of multiple tumor suppressor genes. In the nucleus Pnn is concentrated in the "nuclear speckles," zones of accumulation of transcriptional and mRNA splicing factors, where Pnn is involved in mRNA processing. Alternatively, other roles of Pnn in gene regulation have not yet been established. By utilizing in vitro pull-down assays, in vivo interaction studies, and immunofluorescence in combination with overexpression and RNA interference experiments, we present evidence that Pnn interacts with the known transcriptional corepressor CtBP1. As a consequence of this interaction Pnn was capable of relieving the CtBP1-mediated repression of E-cadherin promoter activity. Our results suggest that the interaction of Pnn with the corepressor CtBP1 may modulate repression of transcription by CtBP1. This interaction may reflect the existence of coupling factors involved in CtBP-mediated transcriptional regulation and mRNA processing events.
Collapse
Affiliation(s)
- Roman Alpatov
- Department of Anatomy and Cell Biology, 1600 SW Archer Rd., University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Dauksaite V, AKUSJäRVI G. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection. Biochem J 2004; 381:343-50. [PMID: 15068396 PMCID: PMC1133838 DOI: 10.1042/bj20040408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 01/12/2023]
Abstract
The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, ASF/SF2 functions as a strong inducer of proximal 5'-splice-site selection, both in vitro and in vivo. In the present study, we tested the functional role of individual domains of ASF/SF2 in alternative splicing in vitro. We show that ASF/SF2-RBD2 is the critical domain controlling E1A alternative splicing. In fact, RBD2 alone is sufficient to mimic the activity of the full-length ASF/SF2 protein as an inducer of proximal 5'-splice-site selection in vitro. The RBD2 domain induces a switch to E1A-proximal 5'-splice-site usage by repressing distal 12 S splicing and simultaneously stimulates proximal 13 S splicing. In contrast, the ASF/SF2-RBD1 domain has a more general splicing enhancer phenotype and appears to stimulate preferentially cap-proximal 5'-splice-site selection. Furthermore, the SWQDLKD motif, which is conserved in all SR proteins (serine/arginine-rich proteins) containing two RBDs, and the ribonucleoprotein-1-type RNA recognition motif were both found to be necessary for the alternative splice-site-switching activity of ASF/SF2. The RNP-1 motif was necessary for efficient RNA binding, whereas the SWQDLKD motif most probably contributes by functioning as a surface-mediating critical protein-protein contact during spliceosome assembly.
Collapse
Affiliation(s)
- Vita Dauksaite
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
| | - Göran AKUSJäRVI
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
225
|
Královicová J, Houngninou-Molango S, Krämer A, Vorechovsky I. Branch site haplotypes that control alternative splicing. Hum Mol Genet 2004; 13:3189-202. [PMID: 15496424 DOI: 10.1093/hmg/ddh334] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the allele-dependent expression of transcripts encoding soluble HLA-DQbeta chains is determined by branchpoint sequence (BPS) haplotypes in DQB1 intron 3. BPS RNAs associated with low inclusion of the transmembrane exon in mature transcripts showed impaired binding to splicing factor 1 (SF1), indicating that alternative splicing of DQB1 is controlled by differential BPS recognition early during spliceosome assembly. We also demonstrate that naturally occurring human BPS point mutations that alter splicing and lead to recognizable phenotypes cluster in BP and in position -2 relative to BP, implicating impaired SF1-BPS interactions in disease-associated BPS substitutions. Coding DNA variants produced smaller fluctuations of exon inclusion levels than random exonic substitutions, consistent with a selection against coding mutations that alter their own exonization. Finally, proximal splicing in this multi-allelic reporter system was promoted by at least seven SR proteins and repressed by hnRNPs F, H and I, supporting an extensive antagonism of factors balancing the splice site selection. These results provide the molecular basis for the haplotype-specific expression of soluble DQbeta, improve prediction of intronic point mutations and indicate how extraordinary, selection-driven DNA variability in HLA affects pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
226
|
Nesic D, Tanackovic G, Krämer A. A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J Cell Sci 2004; 117:4423-33. [PMID: 15316075 DOI: 10.1242/jcs.01308] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biogenesis of Sm-type small nuclear ribonucleoproteins (snRNPs) involves the export of newly transcribed small nuclear RNAs (snRNAs) to the cytoplasm, assembly with seven common proteins and modification at the 5' and 3' termini. Binding of snRNP-specific proteins and snRNA modification complete the maturation process. This is thought to occur after reimport of the core snRNPs into the nucleus. The heterotrimeric splicing factor SF3a converts a pre-mature 15S U2 snRNP into the functional 17S particle. To analyze cellular aspects of this process, we studied domains in SF3a60 and SF3a66 that are required for their localization to nuclear speckles. Regions in SF3a60 and SF3a66 that mediate the binding to SF3a120 are necessary for nuclear import of the proteins, suggesting that the SF3a heterotrimer forms in the cytoplasm. SF3a60 and SF3a66 deleted for zinc finger domains required for the incorporation of SF3a into the U2 snRNP are nuclear, indicating that the 17S U2 snRNP is assembled in the nucleus. However, these proteins show an aberrant nuclear distribution. Endogenous SF3a subunits colocalize with U2 snRNP in nuclear speckles, but cannot be detected in Cajal bodies, unlike core U2 snRNP components. By contrast, SF3a60 and SF3a66 lacking the zinc finger domains accumulate in Cajal bodies and are diffusely distributed in the cytoplasm, suggesting a function for Cajal bodies in the final maturation of the U2 snRNP.
Collapse
Affiliation(s)
- Dobrila Nesic
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 30, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
227
|
Chiodi I, Corioni M, Giordano M, Valgardsdottir R, Ghigna C, Cobianchi F, Xu RM, Riva S, Biamonti G. RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies. Nucleic Acids Res 2004; 32:4127-36. [PMID: 15302913 PMCID: PMC514380 DOI: 10.1093/nar/gkh759] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock induces the transcriptional activation of large heterochromatic regions of the human genome composed of arrays of satellite III DNA repeats. A number of RNA-processing factors, among them splicing factor SF2/ASF, associate with these transcription factors giving rise to nuclear stress bodies (nSBs). Here, we show that the recruitment of SF2/ASF to these structures is mediated by its second RNA recognition motif. Amino acid substitutions in the first alpha-helix of this domain, but not in the beta-strand regions, abrogate the association with nSBs. The same mutations drastically affect the in vivo activity of SF2/ASF in the alternative splicing of adenoviral E1A transcripts. Sequence analysis identifies four putative high-affinity binding sites for SF2/ASF in the transcribed strand of the satellite III DNA. We have verified by gel mobility shift assays that the second RNA-binding domain of SF2/ASF binds at least one of these sites. Our analysis suggests that the recruitment of SF2/ASF to nSBs is mediated by a direct interaction with satellite III transcripts and points to the second RNA-binding domain of the protein as the major determinant of this interaction.
Collapse
Affiliation(s)
- Ilaria Chiodi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Shomron N, Reznik M, Ast G. Splicing factor hSlu7 contains a unique functional domain required to retain the protein within the nucleus. Mol Biol Cell 2004; 15:3782-95. [PMID: 15181151 PMCID: PMC491837 DOI: 10.1091/mbc.e04-02-0152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 12/23/2022] Open
Abstract
Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing >150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3' splice site. Here, we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 protein that have distinct roles in its subcellular localization: a nuclear localization signal, a zinc-knuckle motif, and a lysine-rich region. The zinc-knuckle motif is embedded within the nuclear localization signal in a unique functional structure that is not required for hSlu7's entrance into the nucleus but rather to maintain hSlu7 inside it, preventing its shuttle back to the cytoplasm via the chromosomal region maintenance 1 pathway. Thus, the zinc-knuckle motif of hSlu7 determines the cellular localization of the protein through a nucleocytoplasmic-sensitive shuttling balance. Altogether, this indicates that zinc-dependent nucleocytoplasmic shuttling might be the possible molecular basis by which hSlu7 protein levels are regulated within the nucleus.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel 69978
| | | | | |
Collapse
|
229
|
Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SML. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 2004; 279:35788-97. [PMID: 15169763 DOI: 10.1074/jbc.m403927200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage factor I(m) (CF I(m)) is required for the first step in pre-mRNA 3'-end processing and can be reconstituted in vitro from its heterologously expressed 25- and 68-kDa subunits. The binding of CF I(m) to the pre-mRNA is one of the earliest steps in the assembly of the cleavage and polyadenylation machinery and facilitates the recruitment of other processing factors. We identified regions in the subunits of CF I(m) involved in RNA binding, protein-protein interactions, and subcellular localization. CF I(m)68 has a modular domain organization consisting of an N-terminal RNA recognition motif and a C-terminal alternating charge domain. However, the RNA recognition motif of CF I(m)68 on its own is not sufficient to bind RNA but is necessary for association with the 25-kDa subunit. RNA binding appears to require a CF I(m)68/25 heterodimer. Whereas multiple protein interactions with other 3'-end-processing factors are detected with CF I(m)25, CF I(m)68 interacts with SRp20, 9G8, and hTra2beta, members of the SR family of splicing factors, via its C-terminal alternating charge domain. This domain is also required for targeting CF I(m)68 to the nucleus. However, CF I(m)68 does not concentrate in splicing speckles but in foci that partially colocalize with paraspeckles, a subnuclear component in which other proteins involved in transcriptional control and RNA processing have been found.
Collapse
Affiliation(s)
- Sabine Dettwiler
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
230
|
Degot S, Le Hir H, Alpy F, Kedinger V, Stoll I, Wendling C, Seraphin B, Rio MC, Tomasetto C. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J Biol Chem 2004; 279:33702-15. [PMID: 15166247 DOI: 10.1074/jbc.m402754200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MLN51 is a nucleocytoplasmic shuttling protein that is overexpressed in breast cancer. The function of MLN51 in mammals remains elusive. Its fly homolog, named barentsz, as well as the proteins mago nashi and tsunagi have been shown to be required for proper oskar mRNA localization to the posterior pole of the oocyte. Magoh and Y14, the human homologs of mago nashi and tsunagi, are core components of the exon junction complex (EJC). The EJC is assembled on spliced mRNAs and plays important roles in post-splicing events including mRNA export, nonsense-mediated mRNA decay, and translation. In the present study, we show that human MLN51 is an RNA-binding protein present in ribonucleo-protein complexes. By co-immunoprecipitation assays, endogenous MLN51 protein is found to be associated with EJC components, including Magoh, Y14, and NFX1/TAP, and subcellular localization studies indicate that MLN51 transiently co-localizes with Magoh in nuclear speckles. Moreover, we demonstrate that MLN51 specifically associates with spliced mRNAs in co-precipitation experiments, both in the nucleus and in the cytoplasm, at the position where the EJC is deposited. Most interesting, we have identified a region within MLN51 sufficient to bind RNA, to interact with Magoh and spliced mRNA, and to address the protein to nuclear speckles. This conserved region of MLN51 was therefore named SELOR for speckle localizer and RNA binding module. Altogether our data demonstrate that MLN51 associates with EJC in the nucleus and remains stably associated with mRNA in the cytoplasm, suggesting that its overexpression might alter mRNA metabolism in cancer.
Collapse
Affiliation(s)
- Sébastien Degot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département de Pathologie Moléculaire, UPR 6520 CNRS/U596 INSERM/Université Louis Pasteur, BP 10142, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Sanford JR, Gray NK, Beckmann K, Cáceres JF. A novel role for shuttling SR proteins in mRNA translation. Genes Dev 2004; 18:755-68. [PMID: 15082528 PMCID: PMC387416 DOI: 10.1101/gad.286404] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Ser-Arg-rich (SR) proteins comprise a large family of nuclear phosphoproteins that are required for constitutive and alternative splicing. A subset of SR proteins shuttles continuously between the nucleus and the cytoplasm, suggesting that the role of shuttling SR proteins in gene expression may not be limited to nuclear pre-mRNA splicing, but may also include unknown cytoplasmic functions. Here, we show that shuttling SR proteins, in particular SF2/ASF, associate with translating ribosomes and stimulate translation when tethered to a reporter mRNA in Xenopus oocytes. Moreover, SF2/ASF enhances translation of reporter mRNAs in HeLa cells, and this activity is dependent on its ability to shuttle from the nucleus to the cytoplasm and is increased by the presence of an exonic-splicing enhancer. Furthermore, SF2/ASF can stimulate translation in vitro using a HeLa cell-free translation system. Thus, the association of SR proteins with translating ribosomes, as well as the stimulation of translation both in vivo and in vitro, strongly suggest a role for shuttling SR proteins in translation. We propose that shuttling SR proteins play multiple roles in the posttranscriptional expression of eukaryotic genes and illustrate how they may couple splicing and translation.
Collapse
Affiliation(s)
- Jeremy R Sanford
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
232
|
Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 2004; 88:1078-90. [PMID: 15009664 DOI: 10.1046/j.1471-4159.2003.02232.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. In humans, exon 10 of the gene is an alternatively spliced cassette which is adult-specific and which codes for a microtubule binding domain. Mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we reconstituted naturally occurring exon 10 FTDP mutants and classified their effects on its splicing. We also carried out a comprehensive survey of the influence of splicing regulators on exon 10 inclusion and tentatively identified the site of action for several of these factors. Lastly, we identified the domains of regulators SWAP and hnRNPG, which are required for regulation of exon 10 splicing.
Collapse
Affiliation(s)
- Junning Wang
- Shriver Center at UMMS, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
233
|
Sakashita E, Tatsumi S, Werner D, Endo H, Mayeda A. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol Cell Biol 2004; 24:1174-87. [PMID: 14729963 PMCID: PMC321435 DOI: 10.1128/mcb.24.3.1174-1187.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2 beta (hTra2 beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2 beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2 beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136-1019, USA
| | | | | | | | | |
Collapse
|
234
|
Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo. Mol Cell Biol 2004. [PMID: 14729963 DOI: 10.1128/mcb.24.3.1174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2 beta (hTra2 beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2 beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2 beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
Collapse
|
235
|
Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE. Identification of two RNA cis-elements that function to regulate the 5' splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 2004; 279:15799-804. [PMID: 14734550 DOI: 10.1074/jbc.m313950200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two splice variants derived from the BCL-x gene, proapoptotic Bcl-x(s) and anti-apoptotic Bcl-x(L), are produced via alternative 5' splice site selection within exon 2 of Bcl-x pre-mRNA. In previous studies, our laboratory demonstrated that ceramide regulated this 5' splice site selection, inducing the production of Bcl-x(s) mRNA with a concomitant decrease in Bcl-x(L) correlating with sensitization to chemotherapy (Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., and Hannun, Y. A. (2002) J. Biol. Chem. 277, 12587-12595). We have now identified several possible RNA cis-elements within exon 2 of Bcl-x pre-mRNA by sequence analysis. To study the possible roles of these RNA cis-elements in regulating the alternative 5' splice site selection of Bcl-x pre-mRNA, we developed a BCL-x minigene construct which conferred the same ratio of Bcl-x(L)/Bcl-x(s) mRNA as the endogenous Bcl-x and was responsive to ceramide treatment. Mutagenesis of either a purine-rich splicing enhancer or a pyrimidine tract element within exon 2 induced a change in the ratio of Bcl-x(L)/Bcl-x(s) mRNA from 7 to 1 and 0.23, thereby diminishing the selection of the Bcl-x(L) 5' splice site with a concomitant increase in Bcl-x(s) 5' splice site selection. Furthermore, mutagenesis of these cis-elements abolished the ability of ceramide to affect the 5' splice site selection. In vitro binding assays coupled with competitor studies demonstrated specific binding of RNA trans-activating proteins to these regions. SDS-PAGE analysis of cross-linked RNA trans-activating factors with these RNA cis-elements revealed the binding of 215-, 120-, and 30-kDa proteins to the purine-rich element and 120- and 76-kDa proteins to the pyrimidine tract element. In addition, exogenous treatment of A549 cells with ceramide increased the formation of protein complexes with these RNA cis-elements. Therefore, we have identified two ceramide-responsive RNA cis-elements within exon 2 of Bcl-x pre-mRNA, and this is the first report of an RNA cis-element responsive to a bioactive lipid.
Collapse
Affiliation(s)
- Autumn Massiello
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virgina 23298, USA
| | | | | | | | | | | |
Collapse
|
236
|
Mathioudaki K, Leotsakou T, Papadokostopoulou A, Paraskevas E, Ardavanis A, Talieri M, Scorilas A. SR-A1, a member of the human pre-mRNA splicing factor family, and its expression in colon cancer progression. Biol Chem 2004; 385:785-90. [PMID: 15493872 DOI: 10.1515/bc.2004.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SR (serine-arginine) proteins are essential pre-mRNA splicing factors. Several SR proteins have been characterized in humans, among them SR-A1. It has been demonstrated by members of our group that the SR-A1 gene is constitutively expressed in most of the human tissues, while its transcription is increased in breast carcinoma cell lines. Moreover, the SR-A1 gene is overexpressed in a set of ovarian tumors, suggesting that it may be involved in the pathogenesis and/or progression of ovarian cancer. Therefore, in the present study we examined the expression of the SR-A1 gene in colon cancer tissues by RT-PCR and found that it is overexpressed as compared to normal mucosa (p=0.01). The SR-A1 gene was expressed more frequently in well-differentiated tumors than those with poor differentiation. Survival curves determined by the Kaplan-Meier method and univariate analysis demonstrated that SR-A1-positivity is associated with a long survival (p=0.044). However, when entered into a Cox multivariate model adjusted for other clinicopathological features studied, SR-A1 expression status was not found to be of independent prognostic significance. To the best of our knowledge, this is the first study examining the expression of the novel gene SR-A1 in colon cancer progression.
Collapse
|
237
|
Li J, Hawkins IC, Harvey CD, Jennings JL, Link AJ, Patton JG. Regulation of alternative splicing by SRrp86 and its interacting proteins. Mol Cell Biol 2003; 23:7437-47. [PMID: 14559993 PMCID: PMC207616 DOI: 10.1128/mcb.23.21.7437-7447.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SRrp86 is a unique member of the SR protein superfamily containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK)-rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins and that the unique EK domain could inhibit both constitutive and alternative splicing. These functions were most consistent with the model in which SRrp86 functions by interacting with and thereby modulating the activity of target proteins. To identify the specific proteins that interact with SRrp86, we used a yeast two-hybrid library screen and immunoprecipitation coupled to mass spectrometry. We show that SRrp86 interacts with all of the core SR proteins, as well as a subset of other splicing regulatory proteins, including SAF-B, hnRNP G, YB-1, and p72. In contrast to previous results that showed activation of SRp20 by SRrp86, we now show that SAF-B, hnRNP G, and 9G8 all antagonize the activity of SRrp86. Overall, we conclude that not only does SRrp86 regulate SR protein activity but that it is, in turn, regulated by other splicing factors to control alternative splice site selection.
Collapse
Affiliation(s)
- Jun Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
238
|
Zhu YQ, Lu Y, Tan XD. Monochloramine induces reorganization of nuclear speckles and phosphorylation of SRp30 in human colonic epithelial cells: role of protein kinase C. Am J Physiol Cell Physiol 2003; 285:C1294-303. [PMID: 12826600 DOI: 10.1152/ajpcell.00090.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal epithelial cells are constantly stimulated by reactive oxidant metabolites (ROMs) in inflamed mucosa. Monochloramine (NH2Cl), a cell-permeant ROM, is particularly relevant to the pathogenesis of inflammation in the gastrointestinal tract. Nuclear speckles, a unique nuclear subcompartment, accumulate a family of proteins, namely, serine- and arginine-rich (SR) proteins. They play important roles in regulation of pre-mRNA splicing. Currently, little is known about the link between inflammatory stimulation and the pre-mRNA splicing process, although gene expression is changed in inflamed tissues. The present study was designed to investigate whether stimulation of human colonic epithelial cells (HT-29 and Caco-2 cell lines) with NH2Cl affects nuclear speckles and their components. By indirect immunofluorescence, nuclear speckles have been shown to undergo rapid aggregation after NH2Cl stimulation. By utilizing Western blotting, SRp30 (a subset of SR proteins) in intestinal epithelial cells was found to be phosphorylated after NH2Cl treatment, whereas other SR proteins were not responsive to NH2Cl stimulation. The cytotoxic effect of NH2Cl was excluded by both negative lactate dehydrogenase assay and propidium iodide staining. Therefore, NH2Cl-induced morphological changes on nuclear speckles and phosphorylated SRp30 do not result from intestinal epithelial injury. Furthermore, the effect of NH2Cl on nuclear speckles and SRp30 was blocked by bisindolylmaleimide I, a selective PKC inhibitor. Together, the available data suggest that stimulation of intestinal epithelial cells with NH2Cl results in a consequent change on pre-mRNA splicing machinery via a distinctive signal pathway involving activation of PKC. This effect may contribute to oxidant-induced pathophysiological changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ya-Qin Zhu
- Disease Pathogenesis Program, Box 217, Children's Memorial Institute for Education and Research, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA
| | | | | |
Collapse
|
239
|
Nogués G, Muñoz MJ, Kornblihtt AR. Influence of polymerase II processivity on alternative splicing depends on splice site strength. J Biol Chem 2003; 278:52166-71. [PMID: 14530256 DOI: 10.1074/jbc.m309156200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and pre-mRNA splicing are coordinated temporally and spatially, and both processes can influence each other. In particular, control of transcriptional elongation by RNA polymerase II has proved to be important for alternative splicing regulation. In this report we demonstrate that the efficiency of exon recognition by the splicing machinery is crucial for the elongation control. Alternative splicing of the fibronectin extra domain I (EDI) is because the polypyrimidine tract of its 3'-splice site occurs suboptimal. By mutating the polypyrimidine tract of EDI in two different positions, individually or in combination, and by disrupting its exonic splicing silencer, we managed to generate minigenes with increasing degrees of exon recognition. Improvement of exon recognition is evidenced by independence from the splicing regulator SF2/ASF for inclusion. The mutated minigenes were used to transfect human cells in culture and study the responsiveness of EDI alternative splicing to activation or inhibition of pol II elongation. Our results revealed that responsiveness of exon skipping to elongation is inversely proportional to 3'-splice site strength, which means that the better the alternative exon is recognized by the splicing machinery, the less its degree of inclusion is affected by transcriptional elongation.
Collapse
Affiliation(s)
- Guadalupe Nogués
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
240
|
Li K, Arikan MC, Andreadis A. Modulation of the membrane-binding domain of tau protein: splicing regulation of exon 2. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 116:94-105. [PMID: 12941465 DOI: 10.1016/s0169-328x(03)00259-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. The N-terminal domain of the protein interacts with the axonal membrane, and is modulated by regulated inclusion of exons 2 and 3. These two tau exons are alternatively spliced cassettes, in which exon 3 never appears independently of exon 2. Previous work with tau minigene constructs indicated that exon 2 resembles a constitutive exon. In this study, we show that exon 2 is regulated by a combination of exonic and intronic enhancers and silencers. Furthermore, we demonstrate that known splicing regulators affect the ratio of exon 2 isoforms. Lastly, we tentatively pinpoint the site of action of several splicing factors which regulate tau exon 2.
Collapse
Affiliation(s)
- Karen Li
- Division of Neurobiology of Developmental Disorders, Shriver Center for Mental Retardation at UMMS, Waltham, MA 02452, USA
| | | | | |
Collapse
|
241
|
Abstract
Speckles are subnuclear structures that are enriched in pre-messenger RNA splicing factors and are located in the interchromatin regions of the nucleoplasm of mammalian cells. At the fluorescence-microscope level they appear as irregular, punctate structures, which vary in size and shape, and when examined by electron microscopy they are seen as clusters of interchromatin granules. Speckles are dynamic structures, and both their protein and RNA-protein components can cycle continuously between speckles and other nuclear locations, including active transcription sites. Studies on the composition, structure and behaviour of speckles have provided a model for understanding the functional compartmentalization of the nucleus and the organization of the gene-expression machinery.
Collapse
Affiliation(s)
- Angus I Lamond
- Wellcome Trust Biocentre, Medical Sciences Institute/Wellcome Trust Biocentre Complex, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
242
|
Alvarez M, Estivill X, de la Luna S. DYRK1A accumulates in splicing speckles through a novel targeting signal and induces speckle disassembly. J Cell Sci 2003; 116:3099-107. [PMID: 12799418 DOI: 10.1242/jcs.00618] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase DYRK1A is distributed throughout the nucleoplasm, accumulating in speckle-like regions. We have found that this punctuated nuclear distribution is determined by the contribution of several elements. Although the nuclear import is mediated by two distinct nuclear localization signals, one at the N-terminus and the other located in the linker region, between subdomains X and XI of the catalytic domain, the accumulation in speckles that are SC35 positive depends on a sequence motif that is located C-terminal to the kinase domain and comprises a histidine tail. A similar sequence is also responsible for the targeting of cyclin T1. Therefore the histidine-rich region represents a novel splicing speckle targeting signal. Moreover, overexpression of DYRK1A induces speckle disassembly. Such disassembly is DYRK1A activity specific, since the overexpression of a DYRK1A kinase inactive mutant, the paralogous DYRK1B or a chimeric protein DYRK1B that has been directed to the speckles via the DYRK1A targeting signal, leaves the SC35 speckle pattern untouched. Thus DYRK1A protein kinase may play a role in regulating the biogenesis of the splicing speckle compartment.
Collapse
Affiliation(s)
- Monica Alvarez
- Program in Genes and Disease, Centre de Regulació Genòmica-CRG, Passeig Marítim 37-49, 08003-Barcelona, Spain
| | | | | |
Collapse
|
243
|
Sanford JR, Longman D, Cáceres JF. Multiple roles of the SR protein family in splicing regulation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:33-58. [PMID: 12494762 DOI: 10.1007/978-3-662-09728-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J R Sanford
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK
| | | | | |
Collapse
|
244
|
Soret J, Tazi J. Phosphorylation-dependent control of the pre-mRNA splicing machinery. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:89-126. [PMID: 12494764 DOI: 10.1007/978-3-662-09728-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- J Soret
- Institut de Génétique Moléculaire, UMR5535 du CNRS, IFR 24, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
245
|
Yun CY, Velazquez-Dones AL, Lyman SK, Fu XD. Phosphorylation-dependent and -independent nuclear import of RS domain-containing splicing factors and regulators. J Biol Chem 2003; 278:18050-5. [PMID: 12637531 DOI: 10.1074/jbc.m211714200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SR proteins and related RS domain-containing polypeptides are an important class of splicing regulators in higher eukaryotic cells. The RS domain facilitates nuclear import of SR proteins and mediates protein-protein interactions during spliceosome assembly; both functions appear to subject to regulation by phosphorylation. Previous studies have identified two nuclear import receptors for SR proteins, transportin-SR1 and transportin-SR2. Here we show that transportin-SR1 and transportin-SR2 are the alternatively spliced products of the same gene and that transportin-SR2 is the predominant transcript in most cells and tissues examined. While both receptors import typical SR proteins in a phosphorylation-dependent manner, they differentially import the RS domain-containing splicing regulators hTra2alpha and hTra2beta in different phosphorylation states. We suggest that differential regulation of nuclear import may serve as a mechanism for homeostasis of RS domain-containing splicing factors and regulators in the nucleus and for selective cellular responses to signaling.
Collapse
Affiliation(s)
- Chi Y Yun
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
246
|
Lai MC, Lin RI, Tarn WY. Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem J 2003; 371:937-45. [PMID: 12549978 PMCID: PMC1223332 DOI: 10.1042/bj20021827] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 01/22/2003] [Accepted: 01/28/2003] [Indexed: 11/17/2022]
Abstract
Members of the serine/arginine-rich (SR) protein family play an important role in both constitutive and regulated splicing of precursor mRNAs. Phosphorylation of the arginine/serine dipeptide-rich domain (RS domain) can modulate the activity and the subcellular localization of SR proteins. However, whether the SR protein family members are individually regulated and how this is achieved remain unclear. In this report we show that 5,6-dichloro-1 beta-D-ribofuranosyl-benzimidazole (DRB), an inhibitor of RNA polymerase II-dependent transcription, specifically induced hyperphosphorylation of SRp55 but not that of any other SR proteins tested. Hyperphosphorylation of SRp55 occurs at the RS domain and appears to require the RNA-binding activity. Upon DRB treatment, hyperphosphorylated SRp55 relocates to enlarged nuclear speckles. Intriguingly, SRp55 is specifically targeted for degradation by the proteasome upon overexpression of the SR protein kinase Clk/Sty. Although a destabilization signal is mapped within the C-terminal 43-amino acid segment of SRp55, its adjacent lysine/serine-rich RS domain is nevertheless critical for the Clk/Sty-mediated degradation. We report for the first time that SRp55 can be hyperphosphorylated under different circumstances whereby its fate is differentially influenced.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
247
|
Wang J, Ji J, Ye J, Zhao X, Wen J, Li W, Hu J, Li D, Sun M, Zeng H, Hu Y, Tian X, Tan X, Xu N, Zeng C, Wang J, Bi S, Yang H. The structure analysis and antigenicity study of the N protein of SARS-CoV. GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:145-54. [PMID: 15626344 PMCID: PMC5172421 DOI: 10.1016/s1672-0229(03)01018-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of the N protein of SARS-CoV is that it is a typical basic protein with a high predicted pI and high hydrophilicity, which is consistent with its function of binding to the ribophosphate backbone of the RNA molecule. The predicted high extent of phosphorylation of the N protein on multiple candidate phosphorylation sites demonstrates that it would be related to important functions, such as RNA-binding and localization to the nucleolus of host cells. Subsequent study shows that there is an SR-rich region in the N protein and this region might be involved in the protein-protein interaction. The abundant antigenic sites predicted in the N protein, as well as experimental evidence with synthesized polypeptides, indicate that the N protein is one of the major antigens of the SARS-CoV. Compared with other viral structural proteins, the low variation rate of the N protein with regards to its size suggests its importance to the survival of the virus.
Collapse
Affiliation(s)
- Jingqiang Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Jia Ji
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jia Ye
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Xiaoqian Zhao
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jie Wen
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Wei Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jianfei Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Dawei Li
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Min Sun
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Haipan Zeng
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Yongwu Hu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Xiangjun Tian
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Xuehai Tan
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Ningzhi Xu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Changqing Zeng
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | - Jian Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| | - Shengli Bi
- Center of Disease Control and Prevention, Beijing 100050, China
| | - Huanming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
- James D. Watson Institute of Genome Sciences, Zhijiang Campus, Zhejiang University and Hangzhou Genomics Institute, Hangzhou 310008, China
| |
Collapse
|
248
|
Lai MC, Kuo HW, Chang WC, Tarn WY. A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J 2003; 22:1359-69. [PMID: 12628928 PMCID: PMC151058 DOI: 10.1093/emboj/cdg126] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of precursor mRNA is often regulated by serine/arginine-rich proteins (SR proteins) and hnRNPs, and varying their concentration in the nucleus can be a mechanism for controlling splice site selection. To understand the nucleocytoplasmic transport mechanism of splicing regulators is of key importance. SR proteins are delivered to the nucleus by transportin-SRs (TRN-SRs), importin beta-like nuclear transporters. Here we identify and characterize a non-SR protein, RNA-binding motif protein 4 (RBM4), as a novel substrate of TRN-SR2. TRN-SR2 interacts specifically with RBM4 in a Ran-sensitive manner. TRN-SR2 indeed mediates the nuclear import of a recombinant protein containing the RBM4 C-terminal domain. This domain serves as a signal for both nuclear import and export, and for nuclear speckle targeting. Finally, both in vivo and in vitro splicing analyses demonstrate that RBM4 not only modulates alternative pre-mRNA splicing but also acts antagonistically to authentic SR proteins in splice site and exon selection. Thus, a novel splicing regulator with opposite activities to SR proteins shares an identical import pathway with SR proteins to the nucleus.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei and Institute of Anatomy and Cell Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan Corresponding author e-mail:
| | - Hao-Wei Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei and Institute of Anatomy and Cell Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan Corresponding author e-mail:
| | - Wen-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei and Institute of Anatomy and Cell Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan Corresponding author e-mail:
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei and Institute of Anatomy and Cell Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan Corresponding author e-mail:
| |
Collapse
|
249
|
Umehara H, Nishii Y, Morishima M, Kakehi Y, Kioka N, Amachi T, Koizumi J, Hagiwara M, Ueda K. Effect of cisplatin treatment on speckled distribution of a serine/arginine-rich nuclear protein CROP/Luc7A. Biochem Biophys Res Commun 2003; 301:324-9. [PMID: 12565863 DOI: 10.1016/s0006-291x(02)03017-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The C-half of cisplatin resistance-associated overexpressed protein (CROP), an SR-related protein, comprises domains rich in arginine and glutamate residues (RE domain), and is rich in arginine and serine residues (RS domain). We analyzed the role of the individual domains of CROP in cellular localization, subnuclear localization, and protein-protein interaction. CROP fused with green fluorescent protein, GFP-CROP, localized exclusively to the nucleus and showed a speckled intranuclear distribution. The yeast two-hybrid system revealed that CROP interacted with SF2/ASF, an SR protein involved in RNA splicing, as well as CROP itself. The RE and RS domains were necessary for both the intranuclear speckled distribution and the protein-protein interaction. CROP was phosphorylated by mSRPK1, mSRPK2, and Clk1 in vitro, and when cells were treated with cisplatin the subnuclear distribution of GFP-CROP was changed. These results suggest that cisplatin affects RNA splicing by changing the subnuclear distribution of SR proteins including CROP.
Collapse
Affiliation(s)
- Hiroshi Umehara
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:114-25. [PMID: 12531544 DOI: 10.1016/s1388-1981(02)00331-1] [Citation(s) in RCA: 588] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed significant advances in the understanding of the role of ceramide in apoptosis. This review summarizes these recent findings and discusses insights from studies of ceramide metabolism, topology, and effector actions. The recent identification of several genes for enzymes of ceramide metabolism, the development of mass spectrometric methods for ceramide analysis, and the increasing molecular and pharmacological tools to probe ceramide metabolism and function promise an accelerated phase in defining the molecular and biochemical details of the role of ceramide in apoptosis.
Collapse
Affiliation(s)
- Benjamin J Pettus
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|