201
|
Marino A, Arai S, Hou Y, Degl'Innocenti A, Cappello V, Mazzolai B, Chang YT, Mattoli V, Suzuki M, Ciofani G. Gold Nanoshell-Mediated Remote Myotube Activation. ACS NANO 2017; 11:2494-2508. [PMID: 28107625 DOI: 10.1021/acsnano.6b08202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mild heat stimulation of muscle cells within the physiological range represents an intriguing approach for the modulation of their functions. In this work, photothermal conversion was exploited to remotely stimulate striated muscle cells by using gold nanoshells (NSs) in combination with near-infrared (NIR) radiation. Temperature increments of approximately 5 °C were recorded by using an intracellular fluorescent molecular thermometer and were demonstrated to efficiently induce myotube contraction. The mechanism at the base of this phenomenon was thoroughly investigated and was observed to be a Ca2+-independent event directly involving actin-myosin interactions. Finally, chronic remote photothermal stimulations significantly increased the mRNA transcription of genes encoding heat shock proteins and sirtuin 1, a protein which in turn can induce mitochondrial biogenesis. Overall, we provide evidence that remote NIR + NS muscle excitation represents an effective wireless stimulation technique with great potential in the fields of muscle tissue engineering, regenerative medicine, and bionics.
Collapse
Affiliation(s)
- Attilio Marino
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Satoshi Arai
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Yanyan Hou
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Andrea Degl'Innocenti
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, Pisa 56127, Italy
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, MedChem Program of Life Sciences Institute, National University of Singapore , 3 Science Drive 3, 117543 Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR) , Biopolis 138667 Singapore
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Gianni Ciofani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
202
|
Mobini S, Leppik L, Thottakkattumana Parameswaran V, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 2017; 5:e2821. [PMID: 28097053 PMCID: PMC5237370 DOI: 10.7717/peerj.2821] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.
Collapse
Affiliation(s)
- Sahba Mobini
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany.,School of Materials, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Vishnu Thottakkattumana Parameswaran
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
203
|
Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng LT, Yuan H. A Mussel-Inspired Conductive, Self-Adhesive, and Self-Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601916. [PMID: 27779812 DOI: 10.1002/smll.201601916] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/10/2016] [Indexed: 05/25/2023]
Abstract
A graphene oxide conductive hydrogel is reported that simultaneously possesses high toughness, self-healability, and self-adhesiveness. Inspired by the adhesion behaviors of mussels, our conductive hydrogel shows self-adhesiveness on various surfaces and soft tissues. The hydrogel can be used as self-adhesive bioelectronics, such as electrical stimulators to regulate cell activity and implantable electrodes for recording in vivo signals.
Collapse
Affiliation(s)
- Lu Han
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Menghao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Weili Deng
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Liming Fang
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Kezhi Liu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chun Wai Chan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Youhong Tang
- Centre for NanoScale Science and Technology and School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, 5042, South Australia, Australia
| | - Lu-Tao Weng
- Department of Chemical and Biomolecular Engineering, Materials Characterisation and Preparation Facility, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Huipin Yuan
- College of Physical Science and Technology, Sichuan University, Chengdu, 610064, Sichuan, China
| |
Collapse
|
204
|
Sayyar S, Bjorninen M, Haimi S, Miettinen S, Gilmore K, Grijpma D, Wallace G. UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31916-31925. [PMID: 27782383 DOI: 10.1021/acsami.6b09962] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical conductivity by orders of magnitude without altering the processability of the host material. The addition of graphene also enhanced mesenchymal stem cell (MSC) attachment and proliferation. When electrical stimulation via the composite material was applied, MSC viability was not compromised, and osteogenic markers were upregulated. Using additive fabrication techniques, the material was processed into multilayer 3D scaffolds which supported MSC attachment. These conducting composites with excellent processability and compatibility with MSCs are promising biomaterials to be used as versatile platforms for biomedical applications.
Collapse
Affiliation(s)
- Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Miina Bjorninen
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Suvi Haimi
- Department of Oral and Maxillofacial Sciences, Clinicum, University of Helsinki , 00100 Helsinki, Finland
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, University of Tampere , 33100 Tampere, Finland
| | - Kerry Gilmore
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| | - Dirk Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, University of Groningen , 9600 AD Groningen, The Netherlands
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2500, Australia
| |
Collapse
|
205
|
Cai S, Bodle JC, Mathieu PS, Amos A, Hamouda M, Bernacki S, McCarty G, Loboa EG. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. FASEB J 2016; 31:346-355. [PMID: 27825103 DOI: 10.1096/fj.201600560r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022]
Abstract
In this study, we report for the first time that the primary cilium acts as a crucial sensor for electrical field stimulation (EFS)-enhanced osteogenic response in osteoprogenitor cells. In addition, primary cilia seem to functionally modulate effects of EFS-induced cellular calcium oscillations. Primary cilia are organelles that have recently been implicated to play a crucial sensor role for many mechanical and chemical stimuli on stem cells. Here, we investigate the role of primary cilia in EFS-enhanced osteogenic response of human adipose-derived stem cells (hASCs) by knocking down 2 primary cilia structural proteins, polycystin-1 and intraflagellar protein-88. Our results indicate that structurally integrated primary cilia are required for detection of electrical field signals in hASCs. Furthermore, by measuring changes of cytoplasmic calcium concentration in hASCs during EFS, our findings also suggest that primary cilia may potentially function as a crucial calcium-signaling nexus in hASCs during EFS.-Cai, S., Bodle, J. C., Mathieu, P. S., Amos, A., Hamouda, M., Bernacki, S., McCarty, G., Loboa, E. G. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells.
Collapse
Affiliation(s)
- Shaobo Cai
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Josephine C Bodle
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Pattie S Mathieu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Alison Amos
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Mehdi Hamouda
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Susan Bernacki
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Greg McCarty
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and .,College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
206
|
Rotman SG, Guo Z, Grijpma DW, Poot AA. Preparation and characterization of poly(trimethylene carbonate) and reduced graphene oxide composites for nerve regeneration. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stijn G. Rotman
- MIRA Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Zhengchao Guo
- MIRA Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Dirk W. Grijpma
- MIRA Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Centre Groningen; University of Groningen; PO Box 196 9700 AD Groningen The Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program; AO Foundation; Davos Switzerland
| | - André A. Poot
- MIRA Institute of Biomedical Technology and Technical Medicine and Department of Biomaterials Science and Technology, Faculty of Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program; AO Foundation; Davos Switzerland
| |
Collapse
|
207
|
Lim KT, Seonwoo H, Choi KS, Jin H, Jang KJ, Kim J, Kim JW, Kim SY, Choung PH, Chung JH. Pulsed-Electromagnetic-Field-Assisted Reduced Graphene Oxide Substrates for Multidifferentiation of Human Mesenchymal Stem Cells. Adv Healthc Mater 2016; 5:2069-79. [PMID: 27332788 DOI: 10.1002/adhm.201600429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) can modulate cell proliferation, DNA replication, wound healing, cytokine expression, and the differentiation of mesenchymal stem cells (MSCs). Graphene, a 2D crystal of sp(2) -hybridized carbon atoms, has entered the spotlight in cell and tissue engineering research. However, a combination of graphene and EMFs has never been applied in tissue engineering. This study combines reduced graphene oxide (RGO) and pulsed EMFs (PEMFs) on the osteogenesis and neurogenesis of MSCs. First, the chemical properties of RGO are measured. After evaluation, the RGO is adsorbed onto glass, and its morphological and electrical properties are investigated. Next, an in vitro study is conducted using human alveolar bone marrow stem cells (hABMSCs). Their cell viability, cell adhesion, and extracellular matrix (ECM) formation are increased by RGO and PEMFs. The combination of RGO and PEMFs enhances osteogenic differentiation. Together, RGO and PEMFs enhance the neurogenic and adipogenic differentiation of hABMSCs. Moreover, in a DNA microarray analysis, the combination of RGO and PEMFs synergically increases ECM formation, membrane proteins, and metabolism. The combination of RGO and PEMFs is expected to be an efficient platform for stem cell and tissue engineering.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering; College of Agricultural and Life Sciences; Kangwon National University; Chuncheon 200-701 Republic of Korea
| | - Hoon Seonwoo
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Kyung Soon Choi
- Advanced Nano-Surface Research Group; Korea Basic Science Institute; Daejeon 305-333 Republic of Korea
| | - Hexiu Jin
- School of Stomatology; Capital Medical University; Beijing 10050 China
| | - Kyung-Je Jang
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering; Institute for Nanoscience and Engineering; University of Arkansas; Fayetteville AR 72701 USA
| | - Soo Young Kim
- School of Chemical Engineering and Materials Science; Chung-Ang University; Seoul 151-742 Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute; School of Dentistry; Seoul National University; Seoul 110-774 Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering; Seoul National University; Seoul 151-742 Republic of Korea
- Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
208
|
New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci Rep 2016; 6:30231. [PMID: 27456818 PMCID: PMC4960616 DOI: 10.1038/srep30231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells.
Collapse
|
209
|
Yang S, Jang L, Kim S, Yang J, Yang K, Cho SW, Lee JY. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Macromol Biosci 2016; 16:1653-1661. [DOI: 10.1002/mabi.201600148] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/30/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Sumi Yang
- School of Materials Science and Engineering; Gwangju Institute of Science and Engineering (GIST); Gwangju 500-712 Republic of Korea
| | - LindyK. Jang
- School of Materials Science and Engineering; Gwangju Institute of Science and Engineering (GIST); Gwangju 500-712 Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering; Gwangju Institute of Science and Engineering (GIST); Gwangju 500-712 Republic of Korea
| | - Jongcheol Yang
- School of Materials Science and Engineering; Gwangju Institute of Science and Engineering (GIST); Gwangju 500-712 Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; Seoul 120-749 Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering; Gwangju Institute of Science and Engineering (GIST); Gwangju 500-712 Republic of Korea
| |
Collapse
|
210
|
Hiemer B, Ziebart J, Jonitz-Heincke A, Grunert PC, Su Y, Hansmann D, Bader R. Magnetically induced electrostimulation of human osteoblasts results in enhanced cell viability and osteogenic differentiation. Int J Mol Med 2016; 38:57-64. [PMID: 27220915 PMCID: PMC4899037 DOI: 10.3892/ijmm.2016.2590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
The application of electromagnetic fields to support the bone-healing processes is a therapeutic approach for patients with musculoskeletal disorders. The ASNIS-III s-series screw is a bone stimulation system providing electromagnetic stimulation; however, its influence on human osteoblasts (hOBs) has not been extensively investigated. Therefore, in the present study, the impact of this system on the viability and differentiation of hOBs was examined. We used the ASNIS-III s screw system in terms of a specific experimental test set-up. The ASNIS-III s screw system was used for the application of electromagnetic fields (EMF, 3 mT, 20 Hz) and electromagnetic fields combined with an additional alternating electric field (EMF + EF) (3 mT, 20 Hz, 700 mV). The stimulation of primary hOBs was conducted 3 times per day for 45 min over a period of 72 h. Unstimulated cells served as the controls. Subsequently, the viability, the gene expression of differentiation markers and pro-collagen type 1 synthesis of the stimulated osteoblasts and corresponding controls were investigated. The application of both EMF and EMF + EF using the ASNIS-III s screw system revealed a positive influence on bone cell viability and moderately increased the synthesis of pro-collagen type 1 compared to the unstimulated controls. Stimulation with EMF resulted in a slightly enhanced gene expression of type 1 collagen and osteocalcin; however, stimulation with EMF + EF resulted in a significant increase in alkaline phosphatase (1.4-fold) and osteocalcin (1.6-fold) levels, and a notable increase in the levels of runt-related transcription factor 2 (RUNX-2; 1.54-fold). Our findings demonstrate that stimulation with electromagnetic fields and an additional alternating electric field has a positive influence on hOBs as regards cell viability and the expression of osteoblastic differentiation markers.
Collapse
Affiliation(s)
- Bettina Hiemer
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Josefin Ziebart
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Philip Christian Grunert
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Yukun Su
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Doris Hansmann
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
211
|
Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. Biointerphases 2016; 11:011004. [PMID: 26790407 DOI: 10.1116/1.4940214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Collapse
|
212
|
Wu Y, Chen YX, Yan J, Quinn D, Dong P, Sawyer SW, Soman P. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels. Acta Biomater 2016; 33:122-30. [PMID: 26821341 DOI: 10.1016/j.actbio.2016.01.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Hydrogels with inherently conductive properties have been recently developed for tissue engineering applications, to serve as bioactive scaffolds to electrically stimulate cells and modulate their function. In this work, we have used interfacial polymerization of aniline monomers within gelatin methacrylate (GelMA) to develop a conductive hybrid composite. We demonstrate that as compared to pure GelMA, GelMA-polyaniline (GelMA-Pani) composite has similar swelling properties and compressive modulus, comparable cell adhesion and spreading responses, and superior electrical properties. Additionally, we demonstrate that GelMA-Pani composite can be printed in complex user-defined geometries using digital projection stereolithography, and will be useful in developing next-generation bioelectrical interfaces. STATEMENT OF SIGNIFICANCE We report the fabrication of a conductive hydrogel using naturally-derived gelatin methyacrylate (GelMA) and inherently conductive polyaniline (Pani). This work is significant, as GelMA-Pani composite has superior electrical properties as compared to pure Gelma, all the while maintaining biomimetic physical and biocompatible properties. Moreover, the ability to fabricate conductive-GelMA in complex user-defined micro-geometries, address the significant processing challenges associated with all inherently conductive polymers including Pani. The methodology described in this work can be extended to several conductive polymers and hydrogels, to develop new biocompatible electrically active interfaces.
Collapse
|
213
|
Rouabhia M, Park HJ, Zhang Z. Electrically Activated Primary Human Fibroblasts Improve In Vitro and In Vivo Skin Regeneration. J Cell Physiol 2016; 231:1814-21. [PMID: 26661681 DOI: 10.1002/jcp.25289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Electrical stimulation (ES) changes cellular behaviors and thus constitutes a potential strategy to promote wound healing. However, well-controlled in vitro findings have yet to be translated to in vivo trials. This study was to demonstrate the feasibility and advantages of transplanting electrically activated cells (E-Cells) to help wound healing. Primary human skin fibroblasts were activated through well defined ES and cultured with keratinocytes to generate engineered human skin (EHS), which were transplanted to nu/nu mice. The electrically activated EHS grafts were analyzed at 20 and 30 days post-grafting, showing faster wound closure, thick epidermis, vasculature, and functional basement membrane containing laminin and type IV collagen that were totally produced by the implanted human cells. Because a variety of cells can be electrically activated, E-Cells may become a new cell source and the transplantation of E-Cells may represent a new strategy in wound healing and tissue engineering. J. Cell. Physiol. 231: 1814-1821, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | - Hyun Jin Park
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Ze Zhang
- Département de Chirurgie, Faculté de Médecine, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
214
|
Hatamzadeh M, Najafi-Moghadam P, Beygi-Khosrowshahi Y, Massoumi B, Jaymand M. Electrically conductive nanofibrous scaffolds based on poly(ethylene glycol)s-modified polyaniline and poly(ε-caprolactone) for tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra22280c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to design and development of electrically conductive nanofibrous scaffolds composed of PEGs-b-(PANI)4 and PCL for tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Hatamzadeh
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Urmia
- Urmia
- Iran
| | | | - Younes Beygi-Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory
- Sahand University of Technology
- Tabriz
- Iran
- Chemical Engineering Department
| | | | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
215
|
Allahyari Z, Haghighipour N, Moztarzadeh F, Ghazizadeh L, Hamrang M, Shokrgozar MA, Gholizadeh S. Optimization of electrical stimulation parameters for MG-63 cell proliferation on chitosan/functionalized multiwalled carbon nanotube films. RSC Adv 2016; 6:109902-109915. [DOI: 10.1039/c6ra24407f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Combination of electrical stimulation with CNT-based conductive films and obtaining optimum signal parameters for MG-63 cells.
Collapse
Affiliation(s)
- Zahra Allahyari
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | | | - Fathollah Moztarzadeh
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | | | | | | | - Shayan Gholizadeh
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| |
Collapse
|
216
|
Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015; 5:18353. [PMID: 26678416 PMCID: PMC4683620 DOI: 10.1038/srep18353] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/17/2015] [Indexed: 11/09/2022] Open
Abstract
Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electrical stimulation and demonstrated partial limb regeneration. Several researchers reproduced these findings, applying low voltage DC electrical stimulation to the stumps of amputated rat forelimbs reporting "blastema, and new bone, bone marrow, cartilage, nerve, skin, muscle and epiphyseal plate formation". In spite of these encouraging results this research was discontinued. Recently there has been renewed interest in studying electrical stimulation, primarily at a cellular and subcellular level, and studies have demonstrated changes in stem cell behavior with increased proliferation, differentiation, matrix formation and migration, all important in tissue regeneration. We applied electrical stimulation, in vivo, to the stumps of amputated rat limbs and observed significant new bone, cartilage and vessel formation and prevention of neuroma formation. These findings demonstrate that electricity stimulates tissue regeneration and form the basis for further research leading to possible new treatments for regenerating limbs.
Collapse
Affiliation(s)
- Liudmila P Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dara Froemel
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Andrei Slavici
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Zachri N Ovadia
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Lukasz Hudak
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| |
Collapse
|
217
|
Koppes RA, Park S, Hood T, Jia X, Abdolrahim Poorheravi N, Achyuta AH, Fink Y, Anikeeva P. Thermally drawn fibers as nerve guidance scaffolds. Biomaterials 2015; 81:27-35. [PMID: 26717246 DOI: 10.1016/j.biomaterials.2015.11.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.
Collapse
Affiliation(s)
- Ryan A Koppes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tiffany Hood
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoting Jia
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Negin Abdolrahim Poorheravi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
218
|
Zhuge Y, Patlolla B, Ramakrishnan C, Beygui RE, Zarins CK, Deisseroth K, Kuhl E, Abilez OJ. Human pluripotent stem cell tools for cardiac optogenetics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6171-4. [PMID: 25571406 DOI: 10.1109/embc.2014.6945038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is likely that arrhythmias should be avoided for therapies based on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CM) to be effective. Towards achieving this goal, we introduced light-activated channelrhodopsin-2 (ChR2), a cation channel activated with 480 nm light, into human embryonic stem cells (hESC). By using in vitro approaches, hESC-CM are able to be activated with light. ChR2 is stably transduced into undifferentiated hESC via a lentiviral vector. Via directed differentiation, hESC(ChR2)-CM are produced and subjected to optical stimulation. hESC(ChR2)-CM respond to traditional electrical stimulation and produce similar contractility features as their wild-type counterparts but only hESC(ChR2)-CM can be activated by optical stimulation. Here it is shown that a light sensitive protein can enable in vitro optical control of hESC-CM and that this activation occurs optimally above specific light stimulation intensity and pulse width thresholds. For future therapy, in vivo optical stimulation along with optical inhibition could allow for acute synchronization of implanted hPSC-CM with patient cardiac rhythms.
Collapse
|
219
|
Gharibi R, Yeganeh H, Rezapour-Lactoee A, Hassan ZM. Stimulation of Wound Healing by Electroactive, Antibacterial, and Antioxidant Polyurethane/Siloxane Dressing Membranes: In Vitro and in Vivo Evaluations. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24296-311. [PMID: 26473663 DOI: 10.1021/acsami.5b08376] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A series of novel polyurethane/siloxane-based wound dressing membranes was prepared through sol-gel reaction of methoxysilane end-functionalized urethane prepolymers composed of castor oil and ricinoleic methyl ester as well as methoxysilane functional aniline tetramer (AT) moieties. The samples were fully characterized and their physicochemical, mechanical, electrical, and biological properties were assayed. The biological activity of these dressings against fibroblast cells and couple of microbes was also studied. It was revealed that samples that displayed electroactivity by introduction of AT moieties showed a broad range of antimicrobial activity toward different microorganisms, promising antioxidant (radical scavenging) efficiency and significant activity for stimulation of fibroblast cell growth and proliferation. Meanwhile, these samples showed appropriate tensile strength and ability for maintaining a moist environment over a wound by controlled equilibrium water absorption and water vapor transmission rate. The selected electroactive dressing was subjected to an in vivo assay using a rat animal model and the wound healing process was monitored and compared with analogous dressing without AT moieties. The recorded results showed that the electroactive dressings induced an increase in the rate of wound contraction, promoted collagen deposition, and encouraged vascularization in the wounded area. On the basis of the results of in vitro and in vivo assays, the positive influence of designed dressings for accelerated healing of a wound model was confirmed.
Collapse
Affiliation(s)
- Reza Gharibi
- Department of Polyurethane, Iran Polymer and Petrochemical Institute , P.O. Box 14965-115, Tehran, Iran
| | - Hamid Yeganeh
- Department of Polyurethane, Iran Polymer and Petrochemical Institute , P.O. Box 14965-115, Tehran, Iran
| | - Alireza Rezapour-Lactoee
- Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences , 14177-55469 Tehran, Iran
| | - Zuhair M Hassan
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University , P.O. Box 14115-331, Tehran, Iran
| |
Collapse
|
220
|
An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0419-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
221
|
Xiong GM, Yuan S, Wang JK, Do AT, Tan NS, Yeo KS, Choong C. Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses. Acta Biomater 2015; 23:240-249. [PMID: 25983317 DOI: 10.1016/j.actbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Hemocompatibility, anti-inflammation and anti-thrombogenicity of acellular synthetic vascular grafts remains a challenge in biomaterials design. Using electrospun polycaprolactone (PCL) fibers as a template, a coating of polypyrrole (PPy) was successfully polymerized onto the fiber surface. The fibers coated with heparin-doped PPy (PPy-HEP) demonstrated better electroactivity, lower surface resistivity (9-10-fold) and better anti-coagulation response (non-observable plasma recalcification after 30min vs. recalcification at 8-9min) as compared to fibers coated with pristine PPy. Red blood cell compatibility, measured by% hemolysis, was greatly improved on PPy-HEP-coated PCL in comparison to uncoated PCL (3.9±2.1% vs. 22.1±4.1%). PPy-HEP-coated PCL fibers also exhibited higher stiffness values (6.8±0.9MPa vs. 4.2±0.8MPa) as compared to PCL fibers, but similar tensile strengths. It was also observed that the application of a low alternating current led to a 4-fold reduction of platelet activation (as quantitated by CD62p expression) for the PPy-HEP-coated fibers as compared to non-stimulated conditions. In parallel, a reduction in the leukocyte adhesion to both pristine PPy-coated and PPy-HEP-coated fibers was observable with AC stimulation. Overall, a new strategy involving the use of hemocompatible conducting polymers and electrical stimulation to control thrombogenicity and inflammatory responses for synthetic vascular graft designs was demonstrated.
Collapse
|
222
|
Torrão JND, Dos Santos MPS, Ferreira JAF. Instrumented knee joint implants: innovations and promising concepts. Expert Rev Med Devices 2015. [PMID: 26202322 DOI: 10.1586/17434440.2015.1068114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on in vivo implementations of instrumented knee implants and recent prototypes with highly innovative potential. An in-depth analysis of the evolution of these systems was conducted, including three architectures developed by two research teams for in vivo operation that were implanted in 13 patients. The specifications of their various subsystems: sensor/transducers, power management, communication and processing/control units are presented, and their features are compared. These systems were designed to measure biomechanical quantities to further assist in rehabilitation and physical therapy, to access proper implant placement and joint function and to help predicting aseptic loosening. Five prototype systems that aim to improve their operation, as well as include new abilities, are also featured. They include technology to assist proper ligament tensioning and ensure self-powering. One can conclude that the concept of instrumented active knee implant seems the most promising trend for improving the outcomes of knee replacements.
Collapse
Affiliation(s)
- João N D Torrão
- a 1 Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | |
Collapse
|
223
|
Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater 2015; 10:034006. [PMID: 26065674 PMCID: PMC4489846 DOI: 10.1088/1748-6041/10/3/034006] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heart is one of the most vital organs in the human body, which actively pumps the blood through the vascular network to supply nutrients to as well as to extract wastes from all other organs, maintaining the homeostasis of the biological system. Over the past few decades, tremendous efforts have been exerted in engineering functional cardiac tissues for heart regeneration via biomimetic approaches. More recently, progress has been made toward the transformation of knowledge obtained from cardiac tissue engineering to building physiologically relevant microfluidic human heart models (i.e. heart-on-chips) for applications in drug discovery. The advancement in stem cell technologies further provides the opportunity to create personalized in vitro models from cells derived from patients. Here, starting from heart biology, we review recent advances in engineering cardiac tissues and heart-on-a-chip platforms for their use in heart regeneration and cardiotoxic/cardiotherapeutic drug screening, and then briefly conclude with characterization techniques and personalization potential of the cardiac models.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Simone Bersini
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
224
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
225
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
226
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
227
|
Brady MA, Waldman SD, Ethier CR. The Application of Multiple Biophysical Cues to Engineer Functional Neocartilage for Treatment of Osteoarthritis. Part I: Cellular Response. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:1-19. [DOI: 10.1089/ten.teb.2013.0757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariea A. Brady
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
| | | | - C. Ross Ethier
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
228
|
Hardy JG, Cornelison RC, Sukhavasi RC, Saballos RJ, Vu P, Kaplan DL, Schmidt CE. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering (Basel) 2015; 2:15-34. [PMID: 28955011 PMCID: PMC5597125 DOI: 10.3390/bioengineering2010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).
Collapse
Affiliation(s)
- John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - R Chase Cornelison
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Rushi C Sukhavasi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Richard J Saballos
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Philip Vu
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
229
|
Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:20-33. [PMID: 25065615 DOI: 10.1089/ten.teb.2013.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.
Collapse
Affiliation(s)
- Mariea A Brady
- 1 Department of Bioengineering, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
230
|
Soares dos Santos MP, Ferreira JAF, Ramos A, Simões JAO, Morais R, Silva NM, Santos PM, Reis MC, Oliveira T. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Rev Med Devices 2014; 11:617-35. [PMID: 25234709 DOI: 10.1586/17434440.2014.946695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper reviews instrumented hip joint replacements, instrumented femoral replacements and instrumented femoral fracture stabilizers. Examination of the evolution of such implants was carried out, including the detailed analysis of 16 architectures, designed by 8 research teams and implanted in 32 patients. Their power supply, measurement, communication, processing and actuation systems were reviewed, as were the tests carried out to evaluate their performance and safety. These instrumented implants were only designed to measure biomechanical and thermodynamic quantities in vivo, in order to use such data to conduct research projects and optimize rehabilitation processes. The most promising trend is to minimize aseptic loosening and/or infection following hip or femoral replacements or femoral stabilization procedures by using therapeutic actuators inside instrumented implants to apply controlled stimuli in the bone-implant interface.
Collapse
Affiliation(s)
- Marco P Soares dos Santos
- Biomechanics Research Group, Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
232
|
Cui H, Wang Y, Cui L, Zhang P, Wang X, Wei Y, Chen X. In Vitro Studies on Regulation of Osteogenic Activities by Electrical Stimulus on Biodegradable Electroactive Polyelectrolyte Multilayers. Biomacromolecules 2014; 15:3146-57. [DOI: 10.1021/bm5007695] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haitao Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yu Wang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Liguo Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Peibiao Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xianhong Wang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yen Wei
- Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
233
|
Clark CC, Wang W, Brighton CT. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J Orthop Res 2014; 32:894-903. [PMID: 24644137 DOI: 10.1002/jor.22595] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/17/2014] [Indexed: 02/04/2023]
Abstract
The objective of the described experiments was to determine the electrical parameters that lead to optimal expression of a number of bone-related genes in cultured human bone cells exposed to a capacitively coupled electric field. Human calvarial osteoblasts were grown in modified plastic Cooper dishes in which the cells could be exposed to various capacitively coupled electric fields. The optimal duration of stimulation and optimal duration of response to the electrical field, and the optimal amplitude, frequency and duty cycle were all determined for each of the genes analyzed. Results indicated that a capacitively coupled electric field of 60 kHz, 20 mV/cm, 50% duty cycle for 2 h duration per day significantly up-regulated mRNA expression of a number of transforming growth factor (TGF)-β family genes (bone morphogenetic proteins (BMP)-2 and -4, TGF-β1, - β2 and -β3) as well as fibroblast growth factor (FGF)-2, osteocalcin (BGP) and alkaline phosphatase (ALP). Protein levels of BMP-2 and -4, and TGF-β1 and - β2 were also elevated. The clinical relevance of these findings in the context of a noninvasive treatment modality for delayed union and nonunion fracture healing is discussed.
Collapse
Affiliation(s)
- Charles C Clark
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | | |
Collapse
|
234
|
Cui H, Liu Y, Cheng Y, Zhang Z, Zhang P, Chen X, Wei Y. In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering. Biomacromolecules 2014; 15:1115-23. [DOI: 10.1021/bm4018963] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Haitao Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yadong Liu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yilong Cheng
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Zhe Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Peibiao Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yen Wei
- Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
235
|
Cui H, Cui L, Zhang P, Huang Y, Wei Y, Chen X. In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair. Macromol Biosci 2014; 14:440-450. [PMID: 24821672 DOI: 10.1002/mabi.201300366] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/27/2013] [Indexed: 01/07/2025]
Abstract
The injectable electroactive and antioxidant hydrogels are prepared from mixing the tetraaniline functional copolymers and α-cyclodextrin (α-CD) aqueous solution. UV-vis and CV of the copolymer solution showed good electroactive properties. The antioxidant ability of the copolymer is also proved. The gelation mechanism and properties of the system are studied by WAXD, DSC, and rheometer. The encapsulated cells are highly viable in the hydrogels, suggesting that the hydrogels have excellent cytocompatibility. After subcutaneous injection, H&E staining study suggests acceptable biocompatibility of the materials in vivo. Moreover, data shows the injectable electroactive material can effectively accelerate the proliferation of encapsulated cells with electrical stimuli, and the mechanism is also elaborated. Such an injectable electroactive hydrogel would more closely mimic the native extracellular matrix, thereby combining a biomimetic environment of long-term cell survival and electrical signal to support the generation of functional tissue.
Collapse
Affiliation(s)
- Haitao Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | |
Collapse
|
236
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
237
|
Qu Y, Wang Y, Kong X, Li J, Zuo Y, Zou Q, Gong P, Man Y. Heat-treated membranes with bioelectricity promote bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:211-23. [DOI: 10.1080/09205063.2013.849903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
238
|
Soares dos Santos MP, Ferreira JAF, Ramos A, Simões JAO, Morais R, Silva NM, Santos PM, Reis MJCS, Oliveira T. Instrumented hip implants: electric supply systems. J Biomech 2013; 46:2561-71. [PMID: 24050511 DOI: 10.1016/j.jbiomech.2013.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/20/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
Instrumented hip implants were proposed as a method to monitor and predict the biomechanical and thermal environment surrounding such implants. Nowadays, they are being developed as active implants with the ability to prevent failures by loosening. The generation of electric energy to power active mechanisms of instrumented hip implants remains a question. Instrumented implants cannot be implemented without effective electric power systems. This paper surveys the power supply systems of seventeen implant architectures already implanted in-vivo, namely from instrumented hip joint replacements and instrumented fracture stabilizers. Only inductive power links and batteries were used in-vivo to power the implants. The energy harvesting systems, which were already designed to power instrumented hip implants, were also analyzed focusing their potential to overcome the disadvantages of both inductive-based and battery-based power supply systems. From comparative and critical analyses of the methods to power instrumented implants, one can conclude that: inductive powering and batteries constrain the full operation of instrumented implants; motion-driven electromagnetic energy harvesting is a promising method to power instrumented passive and active hip implants.
Collapse
Affiliation(s)
- Marco P Soares dos Santos
- TEMA/UA-Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; DEM/UA-Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Lee JY. Electrically Conducting Polymer-Based Nanofibrous Scaffolds for Tissue Engineering Applications. POLYM REV 2013. [DOI: 10.1080/15583724.2013.806544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
240
|
Ahadian S, Ostrovidov S, Hosseini V, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis 2013; 9:87-92. [PMID: 23823664 DOI: 10.4161/org.25121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.
Collapse
Affiliation(s)
- Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
241
|
Wang Y, Rouabhia M, Zhang Z. PPy-coated PET fabrics and electric pulse-stimulated fibroblasts. J Mater Chem B 2013; 1:3789-3796. [DOI: 10.1039/c3tb20257g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|