201
|
Lee BR, Rengaraj D, Choi HJ, Han JY. A novel F-box domain containing cyclin F like gene is required for maintaining the genome stability and survival of chicken primordial germ cells. FASEB J 2019; 34:1001-1017. [PMID: 31914591 DOI: 10.1096/fj.201901294r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The stability and survival of germ cells are controlled by the germline-specific genes, however, such genes are less known in the avian species. Using a microarray-based the National Center for Biotechnology Information Gene Expression Omnibus dataset, we found an unigene (Gga.9721) that upregulated in the chicken primordial germ cells (PGCs). The unigene showed 97% identities with an uncharacterized chicken cyclin F like gene. The predicted chicken cyclin F like gene was further characterized through expression and regulation in the chicken PGCs. The sequence analysis revealed that the gene shows identities with cyclin F gene and contains an F-box domain. The expression of chicken cyclin F like was detected specifically in the gonads, PGCs, and germline cells. The knockdown of cyclin F like gene resulted in DNA damage and apoptosis in the PGCs. The genes related to stemness and germness were downregulated, whereas, genes related to apoptosis and DNA damage response were increased in the PGCs after the knockdown of chicken cyclin F like. We further observed that the Nanog homeobox controlled the transcriptional activity of chicken cyclin F like gene in PGCs. Collectively, the chicken cyclin F like gene, which is not reported in any other species, is required for maintaining the genome stability of germ cells.
Collapse
Affiliation(s)
- Bo Ram Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea.,Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
202
|
Purać J, Nikolić TV, Kojić D, Ćelić AS, Plavša JJ, Blagojević DP, Petri ET. Identification of a metallothionein gene in honey bee Apis mellifera and its expression profile in response to Cd, Cu and Pb exposure. Mol Ecol 2019; 28:731-745. [PMID: 30575191 DOI: 10.1111/mec.14984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2018] [Indexed: 12/01/2022]
Abstract
Metallothioneins are ubiquitous proteins important in metal homeostasis and detoxification. However, they have not previously been identified in honey bees or other Hymenoptera, where metallothioneins could be of ecophysiological and ecotoxicological significance. Better understanding of the molecular responses to stress induced by toxic metals could contribute to honey bee conservation. In addition, honey bee metallothionein could represent a biomarker for monitoring environmental quality. Here we identify and characterize a metallothionein gene in Apis mellifera (AmMT). AmMT is 1,680 bp long and encodes a 48 amino acids protein with 15 cysteines and no aromatic residues. A metal response element upstream of the start codon, coupled with numerous cis-regulatory elements indicate the functional context of AmMT. Molecular modelling predicts several transition metal binding sites, and comparative phylogenetic analysis revealed five putative metallothionein proteins in three other hymenoptera species. AmMT was characterized by cloning the full-length coding sequence of the putative metallothionein. Recombinant AmMT was found to increase metal tolerance upon overexpression in Escherichia coli supplemented with Cd, Cu or Pb. Finally, in laboratory tests on honey bees, gene expression profiles showed a dose-dependant relationship between Cd, Cu and Pb concentrations present in food and AmMT expression, while field experiments showed induction of AmMT in bees from an industrial site compared to those from an urban area. These studies suggest that AmMT has metal binding properties in agreement with a possible role in metal homeostasis. Further functional and structural characterization of metallothionein in honey bees and other Hymenoptera are necessary.
Collapse
Affiliation(s)
- Jelena Purać
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana V Nikolić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Anđelka S Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jovana J Plavša
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Duško P Blagojević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
203
|
Freitas EO, Melo BP, Lourenço-Tessutti IT, Arraes FBM, Amorim RM, Lisei-de-Sá ME, Costa JA, Leite AGB, Faheem M, Ferreira MA, Morgante CV, Fontes EPB, Grossi-de-Sa MF. Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application. BMC Biotechnol 2019; 19:79. [PMID: 31747926 PMCID: PMC6865010 DOI: 10.1186/s12896-019-0561-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Drought is one of the most harmful abiotic stresses for plants, leading to reduced productivity of several economically important crops and, consequently, considerable losses in the agricultural sector. When plants are exposed to stressful conditions, such as drought and high salinity, they modulate the expression of genes that lead to developmental, biochemical, and physiological changes, which help to overcome the deleterious effects of adverse circumstances. Thus, the search for new specific gene promoter sequences has proved to be a powerful biotechnological strategy to control the expression of key genes involved in water deprivation or multiple stress responses. RESULTS This study aimed to identify and characterize the GmRD26 promoter (pGmRD26), which is involved in the regulation of plant responses to drought stress. The expression profile of the GmRD26 gene was investigated by qRT-PCR under normal and stress conditions in Williams 82, BR16 and Embrapa48 soybean-cultivars. Our data confirm that GmRD26 is induced under water deficit with different induction folds between analyzed cultivars, which display different genetic background and physiological behaviour under drought. The characterization of the GmRD26 promoter was performed under simulated stress conditions with abscisic acid (ABA), polyethylene glycol (PEG) and drought (air dry) on A. thaliana plants containing the complete construct of pGmRD26::GUS (2.054 bp) and two promoter modules, pGmRD26A::GUS (909 pb) and pGmRD26B::GUS (435 bp), controlling the expression of the β-glucuronidase (uidA) gene. Analysis of GUS activity has demonstrated that pGmRD26 and pGmRD26A induce strong reporter gene expression, as the pAtRD29 positive control promoter under ABA and PEG treatment. CONCLUSIONS The full-length promoter pGmRD26 and the pGmRD26A module provides an improved uidA transcription capacity when compared with the other promoter module, especially in response to polyethylene glycol and drought treatments. These data indicate that pGmRD26A may become a promising biotechnological asset with potential use in the development of modified drought-tolerant plants or other plants designed for stress responses.
Collapse
Affiliation(s)
- Elinea O Freitas
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Federal University of Brasília, Brasília, DF, Brazil
| | - Bruno P Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina M Amorim
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Maria E Lisei-de-Sá
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Agricultural Research Company of Minas Gerais State, Uberaba, MG, Brazil
| | - Julia A Costa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Catholic University of Brasilia - Post-Graduation Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil
| | - Ana G B Leite
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Federal University of Brasília, Brasília, DF, Brazil
| | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | | | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Embrapa Semi-Arid, Petrolina, PE, Brazil
| | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil.
- Catholic University of Brasilia - Post-Graduation Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil.
| |
Collapse
|
204
|
Meyer-Alert H, Larsson M, Hollert H, Keiter SH. Benzo[a]pyrene and 2,3-benzofuran induce divergent temporal patterns of AhR-regulated responses in zebrafish embryos (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109505. [PMID: 31394372 DOI: 10.1016/j.ecoenv.2019.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| |
Collapse
|
205
|
Jin N, Shi R, Jiang Y, Chu D, Gong CX, Iqbal K, Liu F. Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging (Albany NY) 2019; 11:9672-9688. [PMID: 31714894 PMCID: PMC6874473 DOI: 10.18632/aging.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is the major tau phosphatase. Its activity toward tau is regulated by the methylation of PP2A catalytic subunit (PP2Ac) at Leu309. Protein phosphatase methylesterase-1 (PME-1) demethylates PP2Ac and suppresses its activity. We previously found that glycogen synthase kinase-3β (GSK-3β) suppresses PME-1 expression. However, the underlying molecular mechanism is unknown. In the present study, we analyzed the promoter of PME-1 gene and found that human PME-1 promoter contains two lymphoid enhancer binding factor-1/T-cell factor (LEF1/TCF) cis-elements in which β-catenin serves as a co-activator. β-catenin acted on these two cis-elements and promoted PME-1 expression. GSK-3β phosphorylated β-catenin and suppressed its function in promoting PME-1 expression. Inhibition and activation of GSK-3β by PI3K-AKT pathway promoted and suppressed, respectively, PME-1 expression in primary cultured neurons, SH-SY5Y cells and in the mouse brain. These findings suggest that GSK-3β phosphorylates β-catenin and suppresses its function on PME-1 expression, resulting in an increase of PP2Ac methylation.
Collapse
Affiliation(s)
- Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ruirui Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| |
Collapse
|
206
|
Ye W, Chen R, Chen X, Huang B, Lin R, Xie X, Chen J, Jiang J, Deng Y, Wen J. AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J 2019; 286:4215-4231. [PMID: 31199573 DOI: 10.1111/febs.14956] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is abundant in the kidney, liver, and intestine and is involved in the phase I metabolism of numerous endogenous and exogenous compounds. Therefore, exploring the regulatory mechanism of its basal expression in humans is particularly important to understand the bioactivation of several procarcinogens to their carcinogenic derivatives. Site-specific mutagenesis and deletion of the transcription factor binding site determined the core cis-acting elements in the human CYP1A1 proximal and distal promoter regions. The proximal promoter region [overlapping xenobiotic-responsive element (XRE) and GC box sequences] determined the basal expression of CYP1A1. In human hepatocellular carcinoma cells (HepG2) with aryl hydrocarbon receptor (AhR) or specificity protein 1 (Sp1) knockdown, we confirmed that AhR and Sp1 are involved in basal CYP1A1 expression. In HepG2 cells overexpressing either AhR or Sp1, AhR determined the proximal transactivation of basal CYP1A1 expression. Via DNA affinity precipitation assays and ChIP, we found that AhR bound to the promoter and recruited Sp1 to transactivate CYP1A1 expression. The coordinated interaction between Sp1 and AhR was identified to be DNA mediated. Our work revealed a basal regulatory mechanism of an interesting human gene by which AhR interacts with Sp1 through DNA and recruits Sp1 to regulate basal CYP1A1 expression.
Collapse
Affiliation(s)
- Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
207
|
Chen M, Yan H, Wang K, Cui Y, Chen R, Liu J, Zhu H, Qu L, Pan C. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology 2019; 139:147-155. [DOI: 10.1016/j.theriogenology.2019.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/04/2019] [Accepted: 08/04/2019] [Indexed: 01/04/2023]
|
208
|
Coates HW, Chua NK, Brown AJ. Consulting prostate cancer cohort data uncovers transcriptional control: Regulation of the MARCH6 gene. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1656-1668. [PMID: 31422115 DOI: 10.1016/j.bbalip.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022]
Abstract
Cholesterol accumulation is a hallmark of prostate cancer (PCa) enabled by the upregulation of its synthesis, which presents a potential therapeutic target. This pathway is suppressed by the E3 ubiquitin ligase membrane-associated RING-CH-type finger 6 (MARCH6); however, little is known of MARCH6 regulation, particularly at the transcriptional level. Here, we consulted large transcriptomic PCa datasets to investigate transcription factors and DNA sequence elements that regulate the MARCH6 gene. Amongst 498 primary PCa tissues of The Cancer Genome Atlas, we identified a striking positive correlation between MARCH6 and androgen receptor (AR) gene expression (r = 0.81, p < 1 × 10-117) that held in other primary tumour datasets. Two putative androgen response elements were identified in the MARCH6 gene using motif prediction and mining of publicly accessible chromatin immunoprecipitation-sequencing data. However, MARCH6 expression was not androgen-responsive in luciferase reporter and qRT-PCR assays. Instead, we established that the MARCH6-AR correlation in primary PCa is due to common regulation by the transcription factor Sp1. We located a region 100 bp downstream of the MARCH6 transcriptional start site that contains three Sp1 binding sites and strongly upregulates promoter activity. The functionality of this region, and Sp1-mediated upregulation of MARCH6, was confirmed using pharmacological and genetic inhibition of Sp1. Moreover, modulation of Sp1 activity affected the stability of squalene monooxygenase, a cholesterol biosynthesis enzyme and MARCH6 substrate. We thus establish Sp1 as the first known regulator of the MARCH6 gene and demonstrate that interrogation of transcriptomic datasets can assist in the de novo inference of transcriptional regulation.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Ngee Kiat Chua
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
209
|
Millen S, Gross C, Donhauser N, Mann MC, Péloponèse JM, Thoma-Kress AK. Collagen IV (COL4A1, COL4A2), a Component of the Viral Biofilm, Is Induced by the HTLV-1 Oncoprotein Tax and Impacts Virus Transmission. Front Microbiol 2019; 10:2439. [PMID: 31708905 PMCID: PMC6819499 DOI: 10.3389/fmicb.2019.02439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for Adult T-Cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 infects CD4+ T-cells via cell-to-cell transmission requiring reorganization of the cytoskeleton and expression of the viral transactivator and oncoprotein Tax. Viruses spread at the virological synapse (VS), a virus-induced specialized cell-cell contact, by polarized budding into synaptic clefts, and by cell surface transfer of viral biofilms (VBs). Since little is known about Tax’s role in formation of the VB, we asked which component of the VB is regulated by Tax and important for HTLV-1 transmission. Collagens are not only structural proteins of the extracellular matrix and basal membrane but also represent an important component of the VB. Here, we report that among the collagens known to be present in VBs, COL4 is specifically upregulated in the presence of HTLV-1 infection. Further, we found that transient expression of Tax is sufficient to induce COL4A1 and COL4A2 transcripts in Jurkat and CCRF-CEM T-cells, while robust induction of COL4 protein requires continuous Tax expression as shown in Tax-transformed T-cell lines. Repression of Tax led to a significant reduction of COL4A1/A2 transcripts and COL4 protein. Mechanistically, luciferase-based promoter studies indicate that Tax activates the COL4A2 and, to a less extent, the COL4A1 promoter. Imaging showing partial co-localization of COL4 with the viral Gag protein in VBs at the VS and transfer of COL4 and Gag to target cells suggests a role of COL4 in VB formation. Strikingly, in chronically infected C91-PL cells, knockout of COL4A2 impaired Gag transfer between infected T-cells and acceptor T-cells, while release of virus-like particles was unaffected. Taken together, we identified COL4 (COL4A1, COL4A2) as a component of the VB and a novel cellular target of Tax with COL4A2 appearing to impact virus transmission. Thus, this study is the first to provide a link between Tax’s activity and VB formation by hijacking COL4 protein functions.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie C Mann
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jean-Marie Péloponèse
- IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
210
|
Wang Z, Zhang X, Jiang E, Yan H, Zhu H, Chen H, Liu J, Qu L, Pan C, Lan X. InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits. Anim Genet 2019; 51:117-121. [PMID: 31625179 DOI: 10.1111/age.12871] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is involved in the Hedgehog pathway and has been shown to regulate the RNA stability of several growth-related target genes. It is located in a quantitative trait locus showing a strong association with traits related to body size in ducks. Fibroblast growth factor receptor 1 (FGFR1) also participates in Hedgehog signaling pathways and has been reported to be associated with organic growth and development. FGFR1-knockout mice have been shown to have severe postnatal growth defects, including an approximately 50% reduction in body weight and bone mass. Meanwhile, nonsense-mediated mRNA decay factor (SMG6) can maintain genomic stability, which is associated with organic growth and development. Therefore, we hypothesized that IGF2BP1, FGFR1 and SMG6 genes may play important roles in the growth traits of goats. In this study, the existence of two insertion/deletion (InDel) variants within IGF2BP1, one InDel within FGFR1 and two InDels within SMG6 was verified and their correlation with growth traits was analyzed in 2429 female Shaanbei white cashmere goats. Results showed both the 15 bp InDel in intron 2 and the 5 bp InDel in the 3' regulatory region within IGF2BP1 were significantly associated with growth traits (P < 0.05) and goats with the combinatorial homozygous insertion genotypes of these two loci had the highest body weight (P = 0.046). The other InDels within FGFR1 and SMG6 were not obviously associated with growth traits (P > 0.05). Therefore, the two InDels in IGF2BP1 were vital mutations affecting goat growth traits.
Collapse
Affiliation(s)
- Z Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - E Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - H Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.,College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - H Zhu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - H Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - J Liu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - L Qu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - C Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
211
|
Ye W, Lin R, Chen X, Chen J, Chen R, Xie X, Deng Y, Wen J. T-2 toxin upregulates the expression of human cytochrome P450 1A1 (CYP1A1) by enhancing NRF1 and Sp1 interaction. Toxicol Lett 2019; 315:77-86. [PMID: 31470059 DOI: 10.1016/j.toxlet.2019.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 01/11/2023]
Abstract
T-2 toxin is a major pollutant in crops and feedstuffs. Due to its high toxicity in a variety of organisms, T-2 toxin is of great concern as a threat to humans and to animal breeding. Overexpression of CYP1A1 may contribute to carcinogenesis, and CYP1A1 may be a promising target for the prevention and treatment of human malignancies. Therefore, it is essential to understand the regulatory mechanism by which T-2 toxin induces CYP1A1 expression in human cells. In this study, we confirmed that T-2 toxin (100 ng/mL) induced the expression of CYP1A1 in HepG2 cells through NRF1 and Sp1 bound to the promoter instead of through the well-recognized Aromatic hydrocarbon receptors (AhR). In cells treated with T-2 toxin, Sp1, but not NRF1, was significantly upregulated. However, T-2 toxin apparently promoted the interaction between NRF1 and Sp1 proteins, as revealed by IP analysis. Furthermore, in T-2 toxin-treated HepG2 cells, nuclear translocation of NRF1 was enhanced, while knockdown of Sp1 ablated NRF1 nuclear enrichment. Our results revealed that the upregulation of CYP1A1 by T-2 toxin in HepG2 cells depended on enhanced interaction between Sp1 and NRF1. This finding suggests the tumorigenic features of T-2 toxin might be related to the CYP1A1, which provides new insights to understand the toxicological effect of T-2 toxin.
Collapse
Affiliation(s)
- Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
212
|
Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle. Microb Pathog 2019; 137:103801. [PMID: 31618669 DOI: 10.1016/j.micpath.2019.103801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 10/11/2019] [Indexed: 01/11/2023]
Abstract
Mastitis is one of the costliest diseases in dairy farms caused by infection of different microorganisms such as Escherichia coli, Streptococcus uberis and Staphylococcus aureus. Promoters are significantly involved in regulating gene expression and shedding light on the mechanisms of transcriptional regulation in physiological and immunological processes of the infections. Exploiting regulatory elements such as transcription factor binding sites (TFBSs modules) on the promoter region could reveal co-regulated genes, which allow screating regulatory models and executing a cross-sectional analysis on several databases. In this study, the promoter regions of 11 genes associated with contagious mastitis including CCL4, CXCL8, STAT3, IKBKB, MAPK14, NFKBIA, NFKB1, TNF, IL18, IL6, and HCK were investigated to predict the activating regulatory modules on promoters and to discover the key related transcription factors. By exploring the promoter regions, 228 genes were discovered comprising the same transcription factors modules. Out of 228 genes, 36 were validated using five microarray datasets. The promoter research of these genes revealed that as many as 7 down-regulated and 12 up-regulated genes are predictable in the network. The genes whose functions were associated with the initial gene list (11 genes), were identified by DAVID queries with TFBSs models implying that the approach provides a clear image of the underlying regulatory mechanism of gene expression profile and offers a novel approach in designing gene networks in cattle.
Collapse
|
213
|
Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun 2019; 521:50-56. [PMID: 31610916 DOI: 10.1016/j.bbrc.2019.10.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/06/2019] [Indexed: 01/20/2023]
Abstract
Osteoarthritis (OA) is characterized with articular cartilage degradation, and monosodium iodoacetate (MIA)-treated chondrocyte is the most commonly used model for mimicking OA progression. Zinc protects chondrocytes from MIA-induced damage. Here, we explored the protective effects of 25 μM zinc on 5 μM MIA-treated SW1353 cells (human chondrosarcoma cell line) through the analysis of energy metabolism- and autophagy-related parameters. We found that the exposure of SW1353 cells to MIA decreased ATP levels, expression of glycolysis-related proteins, including glucose transporter 1, hexokinase 2, and pyruvate dehydrogenase E1 component subunit alpha, and the levels of mitochondrial complex I, II, IV, and V subunits of the oxidative phosphorylation pathway. MIA treatment also decreased the expression of autophagy-related proteins, including autophagic elongation protein 5 (ATG5), ATG7, and microtubule-associated protein 1A/1B light chain 3B (LC3-II) and mitophagy-related proteins, including phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), ubiquitin, and p62. These results indicate that MIA interferes with energy metabolism and the autophagic clearance of dysfunctional mitochondria (so called mitophagy). Interestingly, zinc exposure could almost completely reverse the effects of MIA, suggesting its potential protective role against OA progression.
Collapse
|
214
|
Pan CH, Chen CJ, Shih CM, Wang MF, Wang JY, Wu CH. Oxidative stress-induced cellular senescence desensitizes cell growth and migration of vascular smooth muscle cells through down-regulation of platelet-derived growth factor receptor-beta. Aging (Albany NY) 2019; 11:8085-8102. [PMID: 31584878 PMCID: PMC6814625 DOI: 10.18632/aging.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The relationship between aging and restenosis are unclear. The purposes of this study were to investigate the possible pathological role and mechanism of aging on formation of restenosis. Our data indicated that cell proliferation and migration of the oxidative stress-induced senescent vascular smooth muscle cells were obviously desensitized to stimulation by platelet-derived growth factor (PDGF)-BB, which may have been caused by suppression of promoter activity, transcription, translation, and activation levels of PDGF receptor (PDGFR)-β. The analyzed data obtained from the binding array of transcription factors (TFs) showed that binding levels of eighteen TFs on the PDGFR-β promoter region (-523 to -1) were significantly lower in senescent cells compared to those of non-senescent cells. Among these TFs, the bioinformatics prediction suggested that the putative binding sites of ten TFs were found in this promoter region. Of these, transcriptional levels of seven TFs were markedly reduced in senescent cells. The clinical data showed that the proportion of restenosis was relatively lower in the older group than that in the younger group. Our study results suggested that a PDGFR-β-mediated pathway was suppressed in aging cells, and our clinical data showed that age and the vascular status were slightly negatively correlated in overall participants.
Collapse
Affiliation(s)
- Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Jui Chen
- Department of Pharmacy, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
| | - Jie-Yu Wang
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
215
|
Chi H, Sørmo KG, Diao J, Dalmo RA. T-box transcription factor eomesodermin/Tbr2 in Atlantic cod (Gadus morhua L.): Molecular characterization, promoter structure and function analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:28-38. [PMID: 31302288 DOI: 10.1016/j.fsi.2019.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Eomesodermin (Eomes) is a member of T-box transcription factor family and plays an important role in the regulation of a wide variety of developmental processes and immune response in animals. Here we report cloning and characterization of the full-length cDNA of Atlantic cod Eomes (GmEomes), which possesses a TBOX_3 domain similar to its counterpart in mammals. The regulated expression was observed in head kidney and spleen in response to live Vibrio anguillarum infection in vivo, and spleen leukocytes in vitro after PMA and poly I:C stimulation. Furthermore, we determined a 694 bp sequence, upstream of the transcriptional start site (TSS), to contain a number of sequence motifs that matched known transcription factor-binding sites. Activities of the presumptive regulatory gene were assessed by transfecting different 5'-deletion constructs in CHSE-214 cells. The results showed that the basal promoters and positive transcriptional regulator activities of GmEomes were dependent by sequences located from -694 to -376 bp upstream of TSS. Furthermore, we found that some Eomes binding sites were present in the 5'-flanking regions of the cod IFNγ gene predicted by bioinformatics. However, Co-transfection of eomesodermin overexpression plasmids with INFγ reporter vector into CHSE-214 cells determined that Atlantic cod eomesodermin played a minor role in activation of the INFγ promoter.
Collapse
Affiliation(s)
- Heng Chi
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China; Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, 266071, Qingdao, China.
| | - Kristian Gillebo Sørmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
216
|
Rajib SA, Sharif Siam MK. Characterization and Analysis of Mammalian AKR7A Gene Promoters: Implications for Transcriptional Regulation. Biochem Genet 2019; 58:171-188. [PMID: 31529389 DOI: 10.1007/s10528-019-09936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/03/2019] [Indexed: 01/14/2023]
Abstract
Aldo-keto reductase (AKR) superfamily is responsible for preventing mammalian cells from the toxic and carcinogenic effect of different genotoxic and non-genotoxic chemicals by reducing them, though the inducibility of these genes are different in different species. The aim of this paper is to compare the gene regulation mechanisms of AKR superfamily genes in different species and to identify the conserved areas, which are responsible for gene regulations in the presence of antioxidant, toxicants, and non-genotoxic carcinogens. At the beginning of the analysis AKR genes found in different species were divided into two groups based on their amino acid sequence similarities. Comparison of AKR7A gene clusters between different species revealed that Human AKR7A2 has orthologues in mammalians like rat, mouse, pigs, and other primates. On the other hand, AKR7A3 has orthologues only in rat and AKR7L is present only in primates. All the genes of AKR superfamily have a trend to stay in clusters in mammalian chromosomes having repeated sequences in between them. Transcription start site analysis revealed that genes like human AKR7A2 and rat Akr7a4 do not have conventional promoter regions such as TATA box, CAAT box and have several GC-rich regions, whereas gene like Akr7a1 contains a TATA box 25 bp upstream of transcription start site instead of having CpG islands. Putative orthologous genes i.e., rat AKR7A4, human AKR7A2, and mouse AKR7A5 share more common features such as common transcription factor binding site for specificity protein 1 (SP1), GATA binding factor family, Selenocysteine tRNA gene transcription activating factor (STAF) zinc finger protein, Krüppel-like C2H2 zinc finger (HICF) protein, negative glucocorticoid response element (NGRE) etc. Similarly, genes like rat AKR7A1, human AKR7A3, and human AKR7L share common sequence and transcription factor binding sites. Among those, Nuclear factor erythroid 2-related factor 2 (Nrf2) is thought to be responsible for the inducibility of these genes in the presence of antioxidants. Our analysis revealed that AKR7A gene family consists of genes having a large number of variations in them. Some of these, such as AKR7A2 are housekeeping genes, on the other hand, genes like AKR7A3 are highly inducible in the presence of antioxidants because of the presence of Nrf2 binding site in their promoter. AKR7A1 has a different promoter than others and function of AKR7L gene is still unknown.
Collapse
Affiliation(s)
- Samiul Alam Rajib
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mohammad Kawsar Sharif Siam
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.,Darwin College, University of Cambridge, Silver Street, Cambridge, CB3 9EU, UK
| |
Collapse
|
217
|
Comai G, Heude E, Mella S, Paisant S, Pala F, Gallardo M, Langa F, Kardon G, Gopalakrishnan S, Tajbakhsh S. A distinct cardiopharyngeal mesoderm genetic hierarchy establishes antero-posterior patterning of esophagus striated muscle. eLife 2019; 8:e47460. [PMID: 31535973 PMCID: PMC6752947 DOI: 10.7554/elife.47460] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.
Collapse
Affiliation(s)
- Glenda Comai
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Eglantine Heude
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Department Adaptation du VivantCNRS/MNHN UMR 7221, Muséum national d’Histoire naturelleParisFrance
| | - Sebastian Mella
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Sylvain Paisant
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| | - Francesca Pala
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Laboratory of Clinical Immunology and Microbiology (LCIM)National Institutes of HealthBethesdaUnited States
| | - Mirialys Gallardo
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Francina Langa
- Mouse Genetics Engineering CenterInstitut PasteurParisFrance
| | - Gabrielle Kardon
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Swetha Gopalakrishnan
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
- Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell BiologyInstitut PasteurParisFrance
- CNRS UMR 3738ParisFrance
| |
Collapse
|
218
|
Zheng XR, Jiang L, Ning C, Hu ZZ, Zhou L, Yu Y, Zhang SL, Liu JF. A novel mutation in the promoter region of RPL8 regulates milk fat traits in dairy cattle by binding transcription factor Pax6. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158528. [PMID: 31520776 DOI: 10.1016/j.bbalip.2019.158528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
Ribosomal protein L8 (RPL8) was considered as a promising candidate gene for the milk fat percentage trait in dairy cattle in our previous genome-wide association studies, but the mechanism remains to be determined. Here we investigated the molecular mechanism underlying the effect of bovine RPL8 on milk fat percentage. We demonstrated that RPL8 silencing in bovine mammary epithelial cells affected the expression of genes encoding fat-related enzymes (ACACA, FASN, ACSS1, FABP3, SREBP-1, DGAT1, GPAM, PLIN2, PLIN5 and CIDEA). Furthermore, we showed here that a single nucleotide polymorphism, g.-931G > T (chr14:1508300, UMD3.1) in the putative RPL8 promoter region significantly reduced its promoter activity. Interestingly, this decrease in activity was paralleled by lower RPL8 expression in mammary gland tissues of dairy cattle with the homozygous TT genotype compared to that of cattle with the wild-type homozygous GG genotype. Importantly, we found g.-931G > T added a paired box 6 (Pax6)-binding site and this mutation located in the presumed Pax6-binding site. EMSA and co-immunoprecipitation (Co-IP) assays confirmed the interaction between RPL8 and Pax6 and the T allele exhibited a higher affinity of DNA/protein interactions than G allele, suggesting that Pax6 is an important transcription factor for RPL8 expression. In addition, lactating cows with the GG and GT genotypes presented a significant decrease in milk fat percentage compared to cows with TT genotypes. Altogether, our study indicated that g.-931G > T at RPL8 promoter altered its expression by affecting the interplay between Pax6 and RPL8, which may account for the association with milk fat traits. Findings herein first elucidated the biological function of RPL8 gene in milk fat and the identified SNP g.-931G > T may be considered as genetic makers for breeding in dairy cattle.
Collapse
Affiliation(s)
- Xian-Rui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Zheng Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Sheng-Li Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding & Reproduction, Ministry of Agriculture, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
219
|
Belver L, Yang AY, Albero R, Herranz D, Brundu FG, Quinn SA, Pérez-Durán P, Álvarez S, Gianni F, Rashkovan M, Gurung D, Rocha PP, Raviram R, Reglero C, Cortés JR, Cooke AJ, Wendorff AA, Cordó V, Meijerink JP, Rabadan R, Ferrando AA. GATA3-Controlled Nucleosome Eviction Drives MYC Enhancer Activity in T-cell Development and Leukemia. Cancer Discov 2019; 9:1774-1791. [PMID: 31519704 DOI: 10.1158/2159-8290.cd-19-0471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Long-range enhancers govern the temporal and spatial control of gene expression; however, the mechanisms that regulate enhancer activity during normal and malignant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin accessibility in the regulation of MYC expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1-MYC enhancer (N-Me), a long-range T cell-specific MYC enhancer, shows dynamic changes in chromatin accessibility during T-cell specification and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells. Mechanistically, we demonstrate that GATA3-driven nucleosome eviction dynamically modulates N-Me enhancer activity and is strictly required for NOTCH1-induced T-ALL initiation and maintenance. These results directly implicate aberrant regulation of chromatin accessibility at oncogenic enhancers as a mechanism of leukemic transformation. SIGNIFICANCE: MYC is a major effector of NOTCH1 oncogenic programs in T-ALL. Here, we show a major role for GATA3-mediated enhancer nucleosome eviction as a driver of MYC expression and leukemic transformation. These results support the role of aberrant chromatin accessibility and consequent oncogenic MYC enhancer activation in NOTCH1-induced T-ALL.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Alexander Y Yang
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | | | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Pablo Pérez-Durán
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Silvia Álvarez
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Francesca Gianni
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Devya Gurung
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Pedro P Rocha
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, La Jolla, California.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jose R Cortés
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, New York
| | | | - Valentina Cordó
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jules P Meijerink
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Raúl Rabadan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Biomedical Informatics, Columbia University, New York, New York
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York. .,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Pediatrics, Columbia University Medical Center, New York, New York.,Department of Pathology, Columbia University Medical Center, New York, New York
| |
Collapse
|
220
|
Gearing LJ, Cumming HE, Chapman R, Finkel AM, Woodhouse IB, Luu K, Gould JA, Forster SC, Hertzog PJ. CiiiDER: A tool for predicting and analysing transcription factor binding sites. PLoS One 2019; 14:e0215495. [PMID: 31483836 PMCID: PMC6726224 DOI: 10.1371/journal.pone.0215495] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
The availability of large amounts of high-throughput genomic, transcriptomic and epigenomic data has provided opportunity to understand regulation of the cellular transcriptome with an unprecedented level of detail. As a result, research has advanced from identifying gene expression patterns associated with particular conditions to elucidating signalling pathways that regulate expression. There are over 1,000 transcription factors (TFs) in vertebrates that play a role in this regulation. Determining which of these are likely to be controlling a set of genes can be assisted by computational prediction, utilising experimentally verified binding site motifs. Here we present CiiiDER, an integrated computational toolkit for transcription factor binding analysis, written in the Java programming language, to make it independent of computer operating system. It is operated through an intuitive graphical user interface with interactive, high-quality visual outputs, making it accessible to all researchers. CiiiDER predicts transcription factor binding sites (TFBSs) across regulatory regions of interest, such as promoters and enhancers derived from any species. It can perform an enrichment analysis to identify TFs that are significantly over- or under-represented in comparison to a bespoke background set and thereby elucidate pathways regulating sets of genes of pathophysiological importance.
Collapse
Affiliation(s)
- Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Helen E. Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ross Chapman
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Alexander M. Finkel
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Isaac B. Woodhouse
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Kevin Luu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Jodee A. Gould
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular Translational Science, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
221
|
Guru Vishnu P, Bhattacharya TK, Bhushan B, Paswan C, Rajendra Prasad A, Divya D. Genetic polymorphism in core promoter sequence of ACTRIIB gene and association analysis with growth traits in chicken. Reprod Domest Anim 2019; 54:1330-1340. [PMID: 31310035 DOI: 10.1111/rda.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/06/2019] [Indexed: 11/29/2022]
Abstract
Molecular breeding exploiting candidate genes is burgeoning reproductive approach to improve growth traits in poultry. The activin type IIB receptor (ACTRIIB) is a negative growth regulator, modulating action of many muscle growth regulators. PCR-single-strand conformation polymorphism was employed to unravel polymorphism in promoter region of the ACTRIIB gene and delineate its association with growth traits in Aseel and control broiler (CB). Analysis of 5' promoter region (1122bp) of ACTRIIB gene identified five SNPs, that is g. [56 G > C (SNP1), 352A > C (SNP2), 580G > A (SNP3), 625C > T (SNP4) and 962C > T (SNP5)] at SMAD, paired box 7 homeodomain binding motif, GC box and bHLH-PAS type transcription factors in CB and Aseel. CB had significantly higher body weight (BW) and average daily gain (ADG) at all SNP sites, except at SNP 1. The haplotype construction resulted 8 haplotypes in CB and Aseel population. The BW and ADG differed significantly (p < .05) at all ages in CB and Aseel. The diplotypes H1H8 and H1H4 manifested higher BW and ADG, while diplotypes H3H8 and H3H7 displayed BW and ADG at each age in both lines (p < .05). Aseel exhibited higher expression of ACTRIIB gene than CB by 70.17, 4.83, 1.41, 2.38, 5.13, 1.20, 2.90, 6.53 and 11.75 times for h1h2, h1h3, h1h4, h1h6, h1h7, h1h8 h3h4, h3h7 and h3h8, respectively. The H3H8 and H3H7 diplotypes exhibited higher level of mRNA and protein than H1H8 and H1H4. The regulatory upstream region of ACTRIIB gene demonstrates high degree of genetic diversity and can be harnessed as potential marker in genetic selection programmes for increasing meat production.
Collapse
Affiliation(s)
| | | | - Bharat Bhushan
- Division of Animal Genetics & Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Chandan Paswan
- Avian Molecular Genetics Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - Athe Rajendra Prasad
- Division of Animal Genetics & Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Devara Divya
- Avian Molecular Genetics Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
222
|
Kopp W, Vingron M. DNA Motif Match Statistics Without Poisson Approximation. J Comput Biol 2019; 26:846-865. [DOI: 10.1089/cmb.2018.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Wolfgang Kopp
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
223
|
Cheevarungnapakul K, Khaksar G, Panpetch P, Boonjing P, Sirikantaramas S. Identification and Functional Characterization of Genes Involved in the Biosynthesis of Caffeoylquinic Acids in Sunflower ( Helianthus annuus L.). FRONTIERS IN PLANT SCIENCE 2019; 10:968. [PMID: 31417585 PMCID: PMC6685037 DOI: 10.3389/fpls.2019.00968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/10/2019] [Indexed: 05/25/2023]
Abstract
Sunflower (Helianthus annuus L.) sprouts accumulate high amounts of caffeoylquinic acids (CQAs) including chlorogenic acid (5-CQA) and 1,5-diCQA. These compounds, which can be found in many plants, including tomato, globe artichoke, and chicory, have many health benefits, including antioxidant, antihepatotoxic, and antiglycative activities. However, CQA profiles and biosynthesis have not previously been studied in sunflower sprouts. In the present study, we found that 5-CQA and 1,5-diCQA were the major CQAs found in sunflower sprouts. We also identified minor accumulation of other CQAs, namely 3-CQA, 4-CQA, 3,4-diCQA, and 4,5-diCQA. According to genome-wide identification and phylogenetic analysis of genes involved in CQA biosynthesis in sunflower, three genes (HaHQT1, HaHQT2, and HaHQT3) encoding hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) and two genes (HaHCT1 and HaHCT2) encoding hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) were identified. Expression analysis of these five genes in hypocotyls and cotyledons strongly suggested that HaHQT2 could be the main enzyme responsible for CQA biosynthesis, as HaHQT2 had the highest expression levels. In addition, when transiently expressed in the leaves of Nicotiana benthamiana, all three HaHQTs, which were soluble and not membrane-bound enzymes, could increase the content of 5-CQA by up to 94% compared to that in a control. Overall, our results increase understanding of CQA biosynthesis in sunflower sprouts and could be exploited by plant breeders to enhance accumulation of health-promoting CQAs in these plants.
Collapse
Affiliation(s)
- Ketthida Cheevarungnapakul
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panpetch
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patwira Boonjing
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
224
|
Dautt-Castro M, López-Virgen AG, Ochoa-Leyva A, Contreras-Vergara CA, Sortillón-Sortillón AP, Martínez-Téllez MA, González-Aguilar GA, Casas-Flores JS, Sañudo-Barajas A, Kuhn DN, Islas-Osuna MA. Genome-Wide Identification of Mango ( Mangifera indica L.) Polygalacturonases: Expression Analysis of Family Members and Total Enzyme Activity During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:969. [PMID: 31417586 PMCID: PMC6682704 DOI: 10.3389/fpls.2019.00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 05/22/2023]
Abstract
Mango (Mangifera indica L.) is an important commercial fruit that shows a noticeable loss of firmness during ripening. Polygalacturonase (PG, E.C. 3.2.1.15) is a crucial enzyme for cell wall loosening during fruit ripening since it solubilizes pectin and its activity correlates with fruit softening. Mango PGs were mapped to a genome draft using seventeen PGs found in mango transcriptomes and 48 bonafide PGs were identified. The phylogenetic analysis suggests that they are related to Citrus sinensis, which may indicate a recent evolutive divergence and related functions with orthologs in the tree. Gene expression analysis for nine PGs showed differential expression for them during post-harvest fruit ripening, MiPG21-1, MiPG14, MiPG69-1, MiPG17, MiPG49, MiPG23-3, MiPG22-7, and MiPG16 were highly up-regulated. PG enzymatic activity also increased during maturation and these results correlate with the loss of firmness observed in mango during post-harvest ripening, between the ethylene production burst and the climacteric peak. The analysis of PGs promoter regions identified regulatory sequences associated to ripening such as MADS-box, ethylene regulation like ethylene insensitive 3 (EIN3) factors, APETALA2-like and ethylene response element factors. During mango fruit ripening the action of at least these nine PGs contribute to softening, and their expression is regulated at the transcriptional level. The prediction of the tridimensional structure of some PGs showed a conserved parallel beta-helical fold related to polysaccharide hydrolysis and a modular architecture, where exons correspond to structural elements. Further biotechnological approaches could target specific softening-related PGs to extend mango post-harvest shelf life.
Collapse
Affiliation(s)
- Mitzuko Dautt-Castro
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Andrés G. López-Virgen
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Carmen A. Contreras-Vergara
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Ana P. Sortillón-Sortillón
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Miguel A. Martínez-Téllez
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - Gustavo A. González-Aguilar
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| | - J. Sergio Casas-Flores
- Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | - Adriana Sañudo-Barajas
- Laboratorio de Bioquímica, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Unidad Culiacán, Culiacán, Mexico
| | - David N. Kuhn
- Agricultural Research Service, Subtropical Horticulture Research Station, United States Department of Agriculture, Miami, FL, United States
| | - Maria A. Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Mexico
| |
Collapse
|
225
|
Boltz TA, Khuri S, Wuchty S. Promoter conservation in HDACs points to functional implications. BMC Genomics 2019; 20:613. [PMID: 31351464 PMCID: PMC6660948 DOI: 10.1186/s12864-019-5973-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background Histone deacetylases (HDACs) are the proteins responsible for removing the acetyl group from lysine residues of core histones in chromosomes, a crucial component of gene regulation. Eleven known HDACs exist in humans and most other vertebrates. While the basic function of HDACs has been well characterized and new discoveries are still being made, the transcriptional regulation of their corresponding genes is still poorly understood. Results Here, we conducted a computational analysis of the eleven HDAC promoter sequences in 25 vertebrate species to determine whether transcription factor binding sites (TFBSs) are conserved in HDAC evolution, and if so, whether they provide useful information about HDAC expression and function. Furthermore, we used tissue-specific information of transcription factors to investigate the potential expression patterns of HDACs in different human tissues based on their transcription factor binding sites. We found that the TFBS profiles of most of the HDACs were well conserved in closely related species for all HDAC promoters except HDAC7 and HDAC10. HDAC5 had particularly strong conservation across over half of the species studied, with nearly identical profiles in the primate species. Our comparisons of TFBSs with the tissue specific gene expression profiles of their corresponding TFs showed that most HDACs had the ability to be ubiquitously expressed. A few HDAC promoters exhibited the potential for preferential expression in certain tissues, most notably HDAC11 in gall bladder, while HDAC9 seemed to have less propensity for expression in the nervous system. Conclusions In general, we found evolutionary conservation in HDAC promoters that seems to be more prominent for the ubiquitously expressed HDACs. In turn, when conservation did not follow usual phylogeny, human TFBS patterns indicated possible functional relevance. While we found that HDACs appear to uniformly expressed, we confirm that the functional differences in HDACs may be less a matter of location of activity than a question of which proteins and which acetyl groups they may be acting on. Electronic supplementary material The online version of this article (10.1186/s12864-019-5973-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toni A Boltz
- Department of Computer Science, University of Miami, Coral Gables, FL, USA.,Present address: University of California, Los Angeles, Los Angeles, CA, USA
| | - Sawsan Khuri
- University of Exeter College of Medicine and Health, Exeter, UK
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL, USA. .,Department of Biology, University of Miami, Coral Gables, FL, USA. .,Center of Computational Science, University of Miami, Coral Gables, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
226
|
Lebow MA, Schroeder M, Tsoory M, Holzman-Karniel D, Mehta D, Ben-Dor S, Gil S, Bradley B, Smith AK, Jovanovic T, Ressler KJ, Binder EB, Chen A. Glucocorticoid-induced leucine zipper "quantifies" stressors and increases male susceptibility to PTSD. Transl Psychiatry 2019; 9:178. [PMID: 31346158 PMCID: PMC6658561 DOI: 10.1038/s41398-019-0509-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 12/04/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) selectively develops in some individuals exposed to a traumatic event. Genetic and epigenetic changes in glucocorticoid pathway sensitivity may be essential for understanding individual susceptibility to PTSD. This study focuses on PTSD markers in the glucocorticoid pathway, spotlighting glucocorticoid-induced leucine zipper (GILZ), a transcription factor encoded by the gene Tsc22d3 on the X chromosome. We propose that GILZ uniquely "quantifies" exposure to stressors experienced from late gestation to adulthood and that low levels of GILZ predispose individuals to PTSD in males only. GILZ mRNA and methylation were measured in 396 male and female human blood samples from the Grady Trauma Project cohort (exposed to multiple traumatic events). In mice, changes in glucocorticoid pathway genes were assessed following exposure to stressors at distinct time points: (i) CRF-induced prenatal stress (CRF-inducedPNS) with, or without, additional exposure to (ii) PTSD induction protocol in adulthood, which induces PTSD-like behaviors in a subset of mice. In humans, the number of traumatic events correlated negatively with GILZ mRNA levels and positively with % methylation of GILZ in males only. In male mice, we observed a threefold increase in the number of offspring exhibiting PTSD-like behaviors in those exposed to both CRF-inducedPNS and PTSD induction. This susceptibility was associated with reduced GILZ mRNA levels and epigenetic changes, not found in females. Furthermore, virus-mediated shRNA knockdown of amygdalar GILZ increased susceptibility to PTSD. Mouse and human data confirm that dramatic alterations in GILZ occur in those exposed to a stressor in early life, adulthood or both. Therefore, GILZ levels may help identify at-risk populations for PTSD prior to additional traumatic exposures.
Collapse
Affiliation(s)
- Maya A. Lebow
- 0000 0004 0604 7563grid.13992.30Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel ,0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mariana Schroeder
- 0000 0004 0604 7563grid.13992.30Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel ,0000 0000 9497 5095grid.419548.5Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Michael Tsoory
- 0000 0004 0604 7563grid.13992.30Department of Veterinary Resources, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Dorin Holzman-Karniel
- 0000 0004 0604 7563grid.13992.30Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Divya Mehta
- 0000 0000 9497 5095grid.419548.5Department of Translational Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Shifra Ben-Dor
- 0000 0004 0604 7563grid.13992.30Department of Biological Services, Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shosh Gil
- 0000 0004 0604 7563grid.13992.30Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Bekh Bradley
- 0000 0004 0419 4084grid.414026.5Atlanta Veterans Affairs Medical Center, Decatur, GA USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Alicia K. Smith
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Tanja Jovanovic
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Kerry J. Ressler
- 0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, 76100, Rehovot, Israel. .,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
227
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
228
|
Gross CM, Kellner M, Wang T, Lu Q, Sun X, Zemskov EA, Noonepalle S, Kangath A, Kumar S, Gonzalez-Garay M, Desai AA, Aggarwal S, Gorshkov B, Klinger C, Verin AD, Catravas JD, Jacobson JR, Yuan JXJ, Rafikov R, Garcia JGN, Black SM. LPS-induced Acute Lung Injury Involves NF-κB-mediated Downregulation of SOX18. Am J Respir Cell Mol Biol 2019; 58:614-624. [PMID: 29115856 DOI: 10.1165/rcmb.2016-0390oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of the early events in the progression of LPS-mediated acute lung injury in mice is the disruption of the pulmonary endothelial barrier resulting in lung edema. However, the molecular mechanisms by which the endothelial barrier becomes compromised remain unresolved. The SRY (sex-determining region on the Y chromosome)-related high-mobility group box (Sox) group F family member, SOX18, is a barrier-protective protein through its ability to increase the expression of the tight junction protein CLDN5. Thus, the purpose of this study was to determine if downregulation of the SOX18-CLDN5 axis plays a role in the pulmonary endothelial barrier disruption associated with LPS exposure. Our data indicate that both SOX18 and CLDN5 expression is decreased in two models of in vivo LPS exposure (intraperitoneal, intratracheal). A similar downregulation was observed in cultured human lung microvascular endothelial cells (HLMVECs) exposed to LPS. SOX18 overexpression in HLMVECs or in the mouse lung attenuated the LPS-mediated vascular barrier disruption. Conversely, reduced CLDN5 expression (siRNA) reduced the HLMVEC barrier-protective effects of SOX18 overexpression. The mechanism by which LPS decreases SOX18 expression was identified as transcriptional repression through binding of NF-κB (p65) to a SOX18 promoter sequence located between -1,082 and -1,073 bp with peroxynitrite contributing to LPS-mediated NF-κB activation. We conclude that NF-κB-dependent decreases in the SOX18-CLDN5 axis are essentially involved in the disruption of human endothelial cell barrier integrity associated with LPS-mediated acute lung injury.
Collapse
Affiliation(s)
| | - Manuela Kellner
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xutong Sun
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny A Zemskov
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Satish Noonepalle
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Archana Kangath
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Sanjiv Kumar
- 1 Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Manuel Gonzalez-Garay
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Saurabh Aggarwal
- 3 Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Boris Gorshkov
- 1 Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Christina Klinger
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | | | - John D Catravas
- 4 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia; and
| | - Jeffrey R Jacobson
- 5 Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Jason X-J Yuan
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ruslan Rafikov
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- 2 Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
229
|
Zhang K, Yuan Q, Xie J, Yuan L, Wang Y. PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:715-722. [PMID: 31168600 DOI: 10.1093/abbs/gmz052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is expressed in pancreatic β cells and is involved in insulin secretion. However, the precise mechanisms remain unclear. Calcium/calmodulin-dependent serine protein kinase (CASK), which plays a vital role in the anchoring of insulin granules on pancreatic β cell membrane, is probably a downstream of the transcription factor PPAR-γ. The aim of the present study was to investigate the correlation among PPAR-γ, CASK and insulin secretion. We found that rosiglitazone (RSG) had a positive effect on the expression of CASK and PPAR-γ in INS-1 cells as shown by real-time polymerase chain reaction (PCR) and western blot analysis, but did not change the cellular location of CASK as shown by immunofluorescence assay. Knockdown of PPAR-γ significantly attenuated the mRNA and protein expression levels of CASK. ChIP-qPCR and luciferase assays showed that PPAR-γ bound with the Cask promoter, and promoter activity of Cask was elevated by RSG. RSG significantly enhanced the insulin secretion with potassium stimulation, but did not alter the insulin content as shown by potassium-stimulated insulin secretion assay. In addition, with RSG pretreatment, knockdown of Cask did not significantly affect the PPAR-γ activation-mediated insulin secretion. Moreover, electron microscopy demonstrated that with RSG pretreatment, silence of Cask did not change the number of vesicles anchored on the cell membranes compared with those in siCask-treated cells. Overall, the present study identifies that CASK is one of the PPAR-γ downstream targets and PPAR-γ exerts a positive effect on the expression of CASK in INS-1 cells. PPAR-γ activation increases insulin secretion independent of the upregulation of CASK.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Qingzhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jinyang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
230
|
Ergün BG, Gasser B, Mattanovich D, Çalık P. Engineering of
alcohol dehydrogenase 2
hybrid‐promoter architectures in
Pichia pastoris
to enhance recombinant protein expression on ethanol. Biotechnol Bioeng 2019; 116:2674-2686. [DOI: 10.1002/bit.27095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| | - Brigitte Gasser
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Diethard Mattanovich
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| |
Collapse
|
231
|
Chen M, Wang J, Liu N, Cui W, Dong W, Xing B, Pan C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019; 138:94-101. [PMID: 31319268 DOI: 10.1016/j.theriogenology.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Sex determining region Y-box 9 (SOX9), an important member of the SRY- type HMGbox (SOX) gene family, plays an important role in the regulation of mammalian reproduction, including sex differentiation during the embryonic development stage and spermatogenesis after birth. To explore the roles of polymorphism and expression of the SOX9 gene in the development of testes, we analyzed the indel of SOX9 in pigs and the corresponding expression level of the SOX9 gene in 7-day and 5-month-old porcine Sertoli cells. Results revealed that the DD haplotype of SOX9 gene as well as the ID genotype were significantly associated with larger testicular weight, while the II haplotype was closely related to the smaller testicular weight. More importantly, the SOX9 gene expression of ID genotyped group was significantly higher than that in II genotyped group. Our results first revealed that the indel polymorphism and expression of SOX9 were significantly associated with pig reproduction traits indicating the critical roles of SOX9 gene in testes development. The study provides a new clue for understanding the regulation of animal reproductive activities.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
232
|
Li D, Lin C, Li N, Du Y, Yang C, Bai Y, Feng Z, Su C, Wu R, Song S, Yan P, Chen M, Jain A, Huang L, Zhang Y, Li X. PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine 2019; 45:124-138. [PMID: 31279780 PMCID: PMC6642334 DOI: 10.1016/j.ebiom.2019.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Our previous study revealed that PLAGL2 or POFUT1 can promote tumorigenesis and maintain significant positive correlations in colorectal cancer (CRC). However, the mechanism leading to the co-expression and the underlying functional and biological implications remain unclear. Methods Clinical tumor tissues and TCGA dataset were utilized to analyze the co-expression of PLAGL2 and POFUT1. Luciferase reporter assays, specially made bidirectional promoter vectors and ectopic expression of 3’UTR were employed to study the mechanisms of co-expression. In vitro and in vivo assays were performed to further confirm the oncogenic function of both. The sphere formation assay, immunofluorescence, Western blot and qRT-PCR were performed to investigate the effect of both genes in colorectal cancer stem cells (CSCs). Findings PLAGL2 and POFUT1 maintained co-expression in CRC (r = 0.91, p < .0001). An evolutionarily conserved bidirectional promoter, rather than post-transcriptional regulation by competing endogenous RNAs, caused the co-expression of PLAGL2 and POFUT1 in CRC. The bidirectional gene pair PLAGL2/POFUT1 was subverted in CRC and acted synergistically to promote colorectal tumorigenesis by maintaining stemness of colorectal cancer stem cells through the Wnt and Notch pathways. Finally, PLAGL2 and POFUT1 share transcription factor binding sites, and introducing mutations into promoter regions with shared transcription regulatory elements led to a decrease in the PLAGL2/POFUT1 promoter activity in both directions. Interpretation Our team identified for the first time a bidirectional promoter pair oncogene, PLAGL2-POFUT1, in CRC. The two genes synergistically promote the progression of CRC and affect the characteristics of CSCs, which can offer promising intervention targets for clinicians and researchers. Fund National Nature Science Foundation of China, the Hunan province projects of Postgraduate Independent Exploration and Innovation of Central South University.
Collapse
Affiliation(s)
- Daojiang Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China; Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Changwei Lin
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Nanpeng Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yuheng Du
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Chunxing Yang
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yang Bai
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Zhicai Feng
- Department of Burns and Plastic Surgery, the 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Chen Su
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Runliu Wu
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shenglei Song
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Peicheng Yan
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Miao Chen
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Arad Jain
- College of Arts and Science, University of Virginia, Charlottesville, Virginia 22904, United States of America
| | - Lihua Huang
- Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yi Zhang
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaorong Li
- Department of gastroenterological surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China; Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
233
|
Detection of coding sequence, mRNA expression and three insertions/deletions (indels) of KDM6A gene in male pig. Theriogenology 2019; 133:10-21. [DOI: 10.1016/j.theriogenology.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/31/2019] [Accepted: 04/18/2019] [Indexed: 01/20/2023]
|
234
|
Prakash V, Chakraborty S. Identification of transcription factor binding sites on promoter of RNA dependent RNA polymerases ( RDRs) and interacting partners of RDR proteins through in silico analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1055-1071. [PMID: 31402824 PMCID: PMC6656839 DOI: 10.1007/s12298-019-00660-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 05/14/2023]
Abstract
RNA silencing phenomenon in plants provides resistance to various pathogens and also, it maintains genome integrity. The process of RNA silencing is regulated by diverse proteins, among which RNA dependent RNA polymerases (RDRs) are very crucial for the amplification of small RNAs (sRNAs). Out of various RDR proteins present in plants, role of RDR1, RDR2 and RDR6 for providing resistance against various biotic stresses have been well documented. In contrast, very few information is available regarding the role of RDR3, RDR4 and RDR5 proteins in plant biology and stress response. Furthermore, the regulation of RDRs is not yet known. Here, we have carried out in silico studies for identification of the transcription factor (TF) binding sites on the promoter of RDR1-6 genes of various plant species. Among the TFs predicted to bind on the promoter of RDRs, MYB44, AS1/AS2, WRKY1 are the major one. Furthermore, putative interacting protein partners of RDRs proteins of tomato and rice were also predicted by STRING database which suggests that DCL (Dicer-like) proteins are strong candidate proteins as the interacting partners of RDRs. The knowledge of regulation of RDRs and its interacting protein partners might help in developing resistant plants to biotic stresses.
Collapse
Affiliation(s)
- Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
235
|
Koul A, Sharma D, Kaul S, Dhar MK. Identification and in silico characterization of cis-acting elements of genes involved in carotenoid biosynthesis in tomato. 3 Biotech 2019; 9:287. [PMID: 31297303 DOI: 10.1007/s13205-019-1798-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Carotenoids, the widespread and structurally diverse class of pigments, accumulate in the fruits of tomato plants in a tissue specific manner. The carotenoid biosynthetic pathway genes have been cloned and characterized in tomato and other plants, however, its regulation is still obscure. We collected and analyzed forty different accessions of tomato for the present study. HPLC analysis revealed differential accumulation of major carotenoids (lycopene and ß-carotene) in the ripe fruit tissue. In order to understand the underlying regulatory mechanisms in carotenoid biosynthesis and accumulation, we sequenced the cis-acting elements i.e. promoter, 5' and 3' untranslated regions of the carotenoid pathway genes, in all accessions, followed by their in silico validation. Major differences observed in the CAAT Box, Opaque-2 Box and L-box in the promoters of carotenoid isomerase and lycopene-beta cyclase genes, respectively, along with the variations in musashi binding element of 5' untranslated regions of the carotenoid isomerase gene, suggest their differential role in regulating the carotenogenesis process in tomato. The binding sites for various transcription factors namely RIN, AGAMOUS, CRY, RAP2.2 and PIF1 on the promoters of important carotenoid pathway genes were predicted in silico. We propose that expression of carotenoid genes and also the formation of protein product in ripe tomato fruits, is regulated efficiently by the binding of these transcription factors at selected sites in the promoter region. Finally, the differential expression of the above-mentioned genes in different developmental tissues supports the possible involvement of promoters and untranslated regions in carotenoid biosynthesis and accumulation process. The present study has generated significant information concerning regulatory players involved in the carotenoid biosynthesis in tomato.
Collapse
|
236
|
Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kundaje A. Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS One 2019; 14:e0218073. [PMID: 31206543 PMCID: PMC6576758 DOI: 10.1371/journal.pone.0218073] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/24/2019] [Indexed: 11/19/2022] Open
Abstract
The relationship between noncoding DNA sequence and gene expression is not well-understood. Massively parallel reporter assays (MPRAs), which quantify the regulatory activity of large libraries of DNA sequences in parallel, are a powerful approach to characterize this relationship. We present MPRA-DragoNN, a convolutional neural network (CNN)-based framework to predict and interpret the regulatory activity of DNA sequences as measured by MPRAs. While our method is generally applicable to a variety of MPRA designs, here we trained our model on the Sharpr-MPRA dataset that measures the activity of ∼500,000 constructs tiling 15,720 regulatory regions in human K562 and HepG2 cell lines. MPRA-DragoNN predictions were moderately correlated (Spearman ρ = 0.28) with measured activity and were within range of replicate concordance of the assay. State-of-the-art model interpretation methods revealed high-resolution predictive regulatory sequence features that overlapped transcription factor (TF) binding motifs. We used the model to investigate the cell type and chromatin state preferences of predictive TF motifs. We explored the ability of our model to predict the allelic effects of regulatory variants in an independent MPRA experiment and fine map putative functional SNPs in loci associated with lipid traits. Our results suggest that interpretable deep learning models trained on MPRA data have the potential to reveal meaningful patterns in regulatory DNA sequences and prioritize regulatory genetic variants, especially as larger, higher-quality datasets are produced.
Collapse
Affiliation(s)
- Rajiv Movva
- The Harker School, San Jose, CA, United States of America
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Peyton Greenside
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, United States of America
| | - Georgi K. Marinov
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States of America
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
237
|
Roca-Ayats N, Martínez-Gil N, Cozar M, Gerousi M, Garcia-Giralt N, Ovejero D, Mellibovsky L, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Functional characterization of the C7ORF76 genomic region, a prominent GWAS signal for osteoporosis in 7q21.3. Bone 2019; 123:39-47. [PMID: 30878523 DOI: 10.1016/j.bone.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Núria Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Mónica Cozar
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Marina Gerousi
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Diana Ovejero
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain.
| |
Collapse
|
238
|
Roca Paixão JF, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BPD, de Almeida-Engler J, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep 2019; 9:8080. [PMID: 31147630 PMCID: PMC6542788 DOI: 10.1038/s41598-019-44571-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Drought episodes decrease plant growth and productivity, which in turn cause high economic losses. Plants naturally sense and respond to water stress by activating specific signalling pathways leading to physiological and developmental adaptations. Genetically engineering genes that belong to these pathways might improve the drought tolerance of plants. The abscisic acid (ABA)-responsive element binding protein 1/ABRE binding factor (AREB1/ABF2) is a key positive regulator of the drought stress response. We investigated whether the CRISPR activation (CRISPRa) system that targets AREB1 might contribute to improve drought stress tolerance in Arabidopsis. Arabidopsis histone acetyltransferase 1 (AtHAT1) promotes gene expression activation by switching chromatin to a relaxed state. Stable transgenic plants expressing chimeric dCas9HAT were first generated. Then, we showed that the CRISPRa dCas9HAT mechanism increased the promoter activity controlling the β-glucuronidase (GUS) reporter gene. To activate the endogenous promoter of AREB1, the CRISPRa dCas9HAT system was set up, and resultant plants showed a dwarf phenotype. Our qRT-PCR experiments indicated that both AREB1 and RD29A, a gene positively regulated by AREB1, exhibited higher gene expression than the control plants. The plants generated here showed higher chlorophyll content and faster stomatal aperture under water deficit, in addition to a better survival rate after drought stress. Altogether, we report that CRISPRa dCas9HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixão
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil. .,INRA, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France.
| | | | | | | | | | - Daniel D Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil. .,Catholic University of Brasilia - Post-Graduation Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil.
| |
Collapse
|
239
|
Garland MA, Sengupta S, Mathew LK, Truong L, de Jong E, Piersma AH, La Du J, Tanguay RL. Glucocorticoid receptor-dependent induction of cripto-1 ( one-eyed pinhead) inhibits zebrafish caudal fin regeneration. Toxicol Rep 2019; 6:529-537. [PMID: 31249786 PMCID: PMC6584771 DOI: 10.1016/j.toxrep.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
We previously used a chemical genetics approach with the larval zebrafish to identify small molecule inhibitors of tissue regeneration. This led to the discovery that glucocorticoids (GC) block early stages of tissue regeneration by the inappropriate activation of the glucocorticoid receptor (GR). We performed a microarray analysis to identify the changes in gene expression associated with beclomethasone dipropionate (BDP) exposure during epimorphic fin regeneration. Oncofetal cripto-1 showed > eight-fold increased expression in BDP-treated regenerates. We hypothesized that the mis-expression of cripto-1 was essential for BDP to block regeneration. Expression of cripto-1 was not elevated in GR morphants in the presence of BDP indicating that cripto-1 induction was GR-dependent. Partial translational suppression of Cripto-1 in the presence of BDP restored tissue regeneration. Retinoic acid exposure prevented increased cripto-1 expression and permitted regeneration in the presence of BDP. We demonstrated that BDP exposure increased cripto-1 expression in mouse embryonic stem cells and that regulation of cripto-1 by GCs is conserved in mammals.
Collapse
Key Words
- AEC, apical epithelial cap
- BDP, beclomethasone dipropionate
- Beclomethasone dipropionate
- Cripto-1
- DMSO, dimethyl sulfoxide
- EB, embryoid body
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- Epimorphic regeneration
- FGF, fibroblast growth factor
- GC, glucocorticoid
- GR, glucocorticoid receptor
- Glucocorticoids
- ISH, in situ hybridization
- MIAME, Minimum Information About a Microarray Experiment
- MO, morpholino oligonucleotide
- One-eyed pinhead
- RA, retinoic acid
- SEM, standard error of the mean
- TGF-β, transforming growth factor beta
- Zebrafish
- dpa, days post-amputation
- dpf, days post-fertilization
- eSC, embryonic stem cell
- hpa, hours post-amputation
- hpf, hours post-fertilization
- mLIF, murine leukemia inhibitory factor
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- zf, zebrafish
Collapse
Affiliation(s)
| | - Sumitra Sengupta
- Department of Environmental and Molecular Toxicology, United States
| | - Lijoy K Mathew
- Department of Environmental and Molecular Toxicology, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, United States
| | - Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jane La Du
- Department of Environmental and Molecular Toxicology, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, United States
| |
Collapse
|
240
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
241
|
Cinnamon and its Metabolite Protect the Nigrostriatum in a Mouse Model of Parkinson's Disease Via Astrocytic GDNF. J Neuroimmune Pharmacol 2019; 14:503-518. [PMID: 31119595 DOI: 10.1007/s11481-019-09855-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has potent neurotrophic effects and is known to promote the dopaminergic (DA) neuronal survival in cellular and animal models of Parkinson's disease (PD). However, long-term ectopic GDNF delivery is associated with long lasting adverse side effects in PD patients. Therefore, finding safer and effective ways to elevate endogenous GDNF levels is an active area of research. This study underlines the importance of sodium benzoate (NaB), a metabolite of commonly-used spice cinnamon, a food-additive and an FDA-approved drug against hyperammonemia, in stimulating GDNF in primary mouse and human astrocytes. Presence of cAMP response element (CRE) in the Gdnf gene promoter, recruitment of CREB to the Gdnf promoter by NaB and abrogation of NaB-mediated GDNF expression by siRNA knockdown of CREB suggest that NaB induces the transcription of Gdnf via CREB. Finally, oral administration of NaB and cinnamon itself increased the level of GDNF in vivo in the substantia nigra pars compacta (SNpc) of normal as well as MPTP-intoxicated mice. Accordingly, cinnamon and NaB treatment protected tyrosine hydroxylase positive neurons in the SNpc and fibers in the striatum, normalized striatal neurotransmitters, and improved locomotor activities in MPTP-intoxicated Gfapcre mice, but not GdnfΔastro mice lacking GDNF in astrocytes. These findings highlight the importance of astroglial GDNF in cinnamon- and NaB-mediated protection of the nigrostriatum in MPTP mouse model of PD and suggest possible therapeutic potential of cinnamon and NaB in PD patients. Graphical abstract Cinnamon metabolite sodium benzoate (NaB) activates cAMP-response element-binding (CREB) via protein kinase A (PKA) in astrocytes. Activated CREB then binds to cAMP-response element (CRE) present in GDNF gene promoter to stimulate the transcription of GDNF in astrocytes. This astrocytic GDNF leads to nigral trophism and protects dopaminergic neurons from MPTP insult.
Collapse
|
242
|
Brenca M, Stacchiotti S, Fassetta K, Sbaraglia M, Janjusevic M, Racanelli D, Polano M, Rossi S, Brich S, Dagrada GP, Collini P, Colombo C, Gronchi A, Astolfi A, Indio V, Pantaleo MA, Picci P, Casali PG, Dei Tos AP, Pilotti S, Maestro R. NR4A3 fusion proteins trigger an axon guidance switch that marks the difference between EWSR1 and TAF15 translocated extraskeletal myxoid chondrosarcomas. J Pathol 2019; 249:90-101. [PMID: 31020999 PMCID: PMC6766969 DOI: 10.1002/path.5284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare sarcoma histotype with uncertain differentiation. EMC is hallmarked by the rearrangement of the NR4A3 gene, which in most cases fuses with EWSR1 or TAF15. TAF15‐translocated EMC seem to feature a more aggressive course compared to EWSR1‐positive EMCs, but whether the type of NR4A3 chimera impinges upon EMC biology is still largely undefined. To gain insights on this issue, a series of EMC samples (7 EWSR1‐NR4A3 and 5 TAF15‐NR4A3) were transcriptionally profiled. Our study unveiled that the two EMC variants display a distinct transcriptional profile and that the axon guidance pathway is a major discriminant. In particular, class 4–6 semaphorins and axonal guidance cues endowed with pro‐tumorigenic activity were more expressed in TAF15‐NR4A3 tumors; vice versa, class 3 semaphorins, considered to convey growth inhibitory signals, were more abundant in EWSR1‐NR4A3 EMC. Intriguingly, the dichotomy in axon guidance signaling observed in the two tumor variants was recapitulated in in vitro cell models engineered to ectopically express EWSR1‐NR4A3 or TAF15‐NR4A3. Moreover, TAF15‐NR4A3 cells displayed a more pronounced tumorigenic potential, as assessed by anchorage‐independent growth. Overall, our results indicate that the type of NR4A3 chimera dictates an axon guidance switch and impacts on tumor cell biology. These findings may provide a framework for interpretation of the different clinical–pathological features of the two EMC variants and lay down the bases for the development of novel patient stratification criteria and therapeutic approaches. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Monica Brenca
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Stacchiotti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Kelly Fassetta
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Marta Sbaraglia
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Milijana Janjusevic
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Dominga Racanelli
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Sabrina Rossi
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Silvia Brich
- Unit of Experimental Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gian P Dagrada
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Chiara Colombo
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo G Casali
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Oncology and Haemato-Oncology Department, University of Milan, Milano, Italy
| | - Angelo P Dei Tos
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy.,Department of Medicine, University of Padua School of Medicine, Padova, Italy
| | - Silvana Pilotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
243
|
Hu G, Yan Z, Zhang C, Cheng M, Yan Y, Wang Y, Deng L, Lu Q, Luo S. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:188. [PMID: 31072351 PMCID: PMC6507024 DOI: 10.1186/s13046-019-1202-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor of the forkhead box proteins superfamily, which includes four isoforms FOXM1a, b, c, and d. FOXM1 has been implicated in hepatocellular carcinoma (HCC) progression, but the underlying molecular mechanism remains elusive. In this study, we aim to clarify the molecular basis for FOXM1-mediated HCC progression. METHODS Bioinformatic analysis was used to explore the differentially expressed genes predicting HCC proliferation. The expression of FOXM1 and kinesin family member (KIF)4A was confirmed by western blotting and immunohistochemistry in HCC tissues. Kaplan-Meier survival analysis was conducted to analyze the clinical impact of FOXM1 and KIF4A on HCC. The effect of FOXM1 on the regulation of KIF4A expression was studied in cell biology experiments. The interaction between KIF4A and FOXM1 was analyzed by chromatin immunoprecipitation and luciferase experiments. A series of experiments was performed to explore the functions of FOXM1/KIF4A in HCC progression, such as cell proliferation, cell growth, cell viability, and cell cycle. A xenograft mouse model was used to explore the regulatory effect of FOXM1-KIF4A axis on HCC tumor growth. RESULTS FOXM1 and KIF4A were overexpressed in human primary HCC tissues compared to that in matched adjacent normal liver tissue and are significant risk factors for HCC recurrence and shorter survival. We found that KIF4A was dominantly regulated by FOXM1c among the four isoforms, and further identified KIF4A as a direct downstream target of FOXM1c. Inhibiting FOXM1 decreased KIF4A expression in HCC cells, whereas its overexpression had the opposite effect. FOXM1-induced HCC cell proliferation was dependent on elevated KIF4A expression as KIF4A knockdown abolished FOXM1-induced proliferation of HCC cells both in vitro and in vivo. CONCLUSION The FOXM1-KIF4A axis mediates human HCC progression and is a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Guohui Hu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhengwei Yan
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Cheng Zhang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
244
|
van Well EM, Bader V, Patra M, Sánchez-Vicente A, Meschede J, Furthmann N, Schnack C, Blusch A, Longworth J, Petrasch-Parwez E, Mori K, Arzberger T, Trümbach D, Angersbach L, Showkat C, Sehr DA, Berlemann LA, Goldmann P, Clement AM, Behl C, Woerner AC, Saft C, Wurst W, Haass C, Ellrichmann G, Gold R, Dittmar G, Hipp MS, Hartl FU, Tatzelt J, Winklhofer KF. A protein quality control pathway regulated by linear ubiquitination. EMBO J 2019; 38:e100730. [PMID: 30886048 PMCID: PMC6484417 DOI: 10.15252/embj.2018100730] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.
Collapse
Affiliation(s)
- Eva M van Well
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Maria Patra
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ana Sánchez-Vicente
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jens Meschede
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Nikolas Furthmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Schnack
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Joseph Longworth
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Kohji Mori
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lena Angersbach
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Showkat
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Dominik A Sehr
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lena A Berlemann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Petra Goldmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Albrecht M Clement
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas C Woerner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Developmental Genetics, Technical University Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
245
|
Hou L, Li B, Ding D, Kang L, Wang X. CREB-B acts as a key mediator of NPF/NO pathway involved in phase-related locomotor plasticity in locusts. PLoS Genet 2019; 15:e1008176. [PMID: 31150381 PMCID: PMC6561586 DOI: 10.1371/journal.pgen.1008176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/12/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression changes in neural systems are essential for environment-induced behavioral plasticity in animals; however, neuronal signaling pathways mediating the effect of external stimuli on transcriptional changes are largely unknown. Recently, we have demonstrated that the neuropeptide F (NPF)/nitric oxide (NO) signaling pathway plays a regulatory role in phase-related locomotor plasticity in the migratory locust, Locusta migratoria. Here, we report that a conserved transcription factor, cAMP response element-binding protein B (CREB-B), is a key mediator involved in the signaling pathway from NPF2 to NOS in the migratory locust, triggering locomotor activity shift between solitarious and gregarious phases. We find that CREB-B directly activates brain NOS expression by interacting with NOS promoter region. The phosphorylation at serine 110 site of CREB-B dynamically changes in response to population density variation and is negatively controlled by NPF2. The involvement of CREB-B in NPF2-regulated locomotor plasticity is further validated by RNAi experiment and behavioral assay. Furthermore, we reveal that protein kinase A mediates the regulatory effects of NPF2 on CREB-B phosphorylation and NOS transcription. These findings highlight a precise signal cascade underlying environment-induced behavioral plasticity.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Beibei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
246
|
Chatterjee B, Ghosh K, Suresh L, Kanade SR. Curcumin ameliorates PRMT5-MEP50 arginine methyltransferase expression by decreasing the Sp1 and NF-YA transcription factors in the A549 and MCF-7 cells. Mol Cell Biochem 2019; 455:73-90. [PMID: 30392062 DOI: 10.1007/s11010-018-3471-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
The protein arginine methyltransferase 5 (PRMT5) and its catalytic partner methylosome protein MEP50 (WDR77) catalyse the mono- and symmetric di-methylation of selective arginines in various histones and non-histone target proteins. It has emerged as a crucial epigenetic regulator in cell proliferation and differentiation; which also reported to be overexpressed in many forms of cancers in humans. In this study, we aimed to assess the modulations in the expression of this enzyme upon exposure to the well-studied natural compound from the spice turmeric, curcumin. We exposed the lung and breast cancer cell lines (A549 and MCF-7) to curcumin (2 and 20 μM) and observed a highly significant inhibitory effect on the expression of both PRMT5 and MEP50. The level of symmetrical dimethylarginine (SDMA) in multiple proteins, and more specifically, the H4R3me2s mark (which predominates in GC-rich motifs in nucleosomal DNA) was also diminished significantly. We also found that curcumin significantly reduced the level and enrichment of the transcription factors Sp1 and NF-YA which shares their binding sites within the GC-rich region of the PRMT5 proximal promoter. Furthermore, the involvement of both PKC-p38-ERK-cFos and AKT-mTOR signalling was observed in reducing the Sp1 and NF-YA expression by curcumin. Therefore, we propose curcumin decreased the expression of PRMT5 in these cells by affecting at least these two transcription factors. Altogether, we report a new molecular target of curcumin and further elucidation of this proposed mechanism through which curcumin affects the PRMT5-MEP50 methyltransferase expression might be explored for its therapeutic application.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Lavanya Suresh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, 671316, India.
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Telangana, 500046, India.
| |
Collapse
|
247
|
Aatsinki SM, Elkhwanky MS, Kummu O, Karpale M, Buler M, Viitala P, Rinne V, Mutikainen M, Tavi P, Franko A, Wiesner RJ, Chambers KT, Finck BN, Hakkola J. Fasting-Induced Transcription Factors Repress Vitamin D Bioactivation, a Mechanism for Vitamin D Deficiency in Diabetes. Diabetes 2019; 68:918-931. [PMID: 30833469 PMCID: PMC6477896 DOI: 10.2337/db18-1050] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Low 25-hydroxyvitamin D levels correlate with the prevalence of diabetes; however, the mechanisms remain uncertain. Here, we show that nutritional deprivation-responsive mechanisms regulate vitamin D metabolism. Both fasting and diabetes suppressed hepatic cytochrome P450 (CYP) 2R1, the main vitamin D 25-hydroxylase responsible for the first bioactivation step. Overexpression of coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), induced physiologically by fasting and pathologically in diabetes, resulted in dramatic downregulation of CYP2R1 in mouse hepatocytes in an estrogen-related receptor α (ERRα)-dependent manner. However, PGC-1α knockout did not prevent fasting-induced suppression of CYP2R1 in the liver, indicating that additional factors contribute to the CYP2R1 repression. Furthermore, glucocorticoid receptor (GR) activation repressed the liver CYP2R1, suggesting GR involvement in the regulation of CYP2R1. GR antagonist mifepristone partially prevented CYP2R1 repression during fasting, suggesting that glucocorticoids and GR contribute to the CYP2R1 repression during fasting. Moreover, fasting upregulated the vitamin D catabolizing CYP24A1 in the kidney through the PGC-1α-ERRα pathway. Our study uncovers a molecular mechanism for vitamin D deficiency in diabetes and reveals a novel negative feedback mechanism that controls crosstalk between energy homeostasis and the vitamin D pathway.
Collapse
Affiliation(s)
- Sanna-Mari Aatsinki
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Admescope Ltd., Oulu, Finland
| | - Mahmoud-Sobhy Elkhwanky
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marcin Buler
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pirkko Viitala
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | - Maija Mutikainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andras Franko
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Köln, Germany
| | - Kari T Chambers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
248
|
Domínguez MA, Landi V, Morera L, Martínez A, Jiménez-Marín Á, Garrido JJ. Identification and functional characterization of polymorphisms in promoter sequences of porcine NOD1 and NOD2 genes. Res Vet Sci 2019; 124:310-316. [PMID: 31030118 DOI: 10.1016/j.rvsc.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
NOD-like receptors (NLRs) play a key role in the innate immune system, acting as a second line of surveillance against pathogens. NLRs detect particular bacteria that have gained access to the cytoplasm, evading recognition by other pattern recognition receptors, such as Toll-like receptors. It has been demonstrated that coding sequence-single nucleotide polymorphisms may alter the ligand recognition ability of NLRs, affecting their pathogen-sensing function. However, there have been no data relating to the identification and functional analysis of SNPs in porcine NLR promoters. We examined the promoter sequences of the porcine NOD1 and NOD2 genes with the aim to identify and to evaluate the effect of genetic variations on promoter activity. Six SNPs in NOD1 and three SNPs in NOD2 were identified. Luciferase reporter gene assays showed significant differences in promoter activity between allele variants of NOD1 -920G>A (NC_010460.4:g.42431413G>A) and NOD2 -1670G>A (NC_010448.4:g.34169122T>C) SNPs. The results suggest that promoter polymorphisms could modify the expression levels of porcine NOD1 and NOD2 genes.
Collapse
Affiliation(s)
- Miguel A Domínguez
- Laboratorio de Genética Molecular y Zoonosis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma Benito Juárez de Oaxaca, Mexico; Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Vincenzo Landi
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Luis Morera
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Amparo Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Juan J Garrido
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
249
|
Regulation of differential proton-coupled folate transporter gene expression in human tumors: transactivation by KLF15 with NRF-1 and the role of Sp1. Biochem J 2019; 476:1247-1266. [PMID: 30914440 DOI: 10.1042/bcj20180394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Tumors can be therapeutically targeted with novel antifolates (e.g. AGF94) that are selectively transported by the human proton-coupled folate transporter (hPCFT). Studies were performed to determine the transcription regulation of hPCFT in tumors and identify possible mechanisms that contribute to the highly disparate levels of hPCFT in HepG2 versus HT1080 tumor cells. Transfection of hPCFT-null HT1080 cells with hPCFT restored transport and sensitivity to AGF94 Progressive deletions of the hPCFT promoter construct (-2005 to +96) and reporter gene assays in HepG2 and HT1080 cells confirmed differences in hPCFT transactivation and localized a minimal promoter to between positions -50 and +96. The minimal promoter included KLF15, GC-Box and NRF-1 cis-binding elements whose functional importance was confirmed by promoter deletions and mutations of core consensus sequences and reporter gene assays. In HepG2 cells, NRF-1, KLF15 and Sp1 transcripts were increased over HT1080 cells by ∼5.1-, ∼44-, and ∼2.4-fold, respectively. In Drosophila SL2 cells, transfection with KLF15 and NRF-1 synergistically activated the hPCFT promoter; Sp1 was modestly activating or inhibitory. Chromatin immunoprecipitation and electrophoretic mobility shift assay (EMSA) and supershifts confirmed differential binding of KLF15, Sp1, and NRF-1 to the hPCFT promoter in HepG2 and HT1080 cells that paralleled hPCFT levels. Treatment of HT1080 nuclear extracts (NE) with protein kinase A increased Sp1 binding to its consensus sequence by EMSA, suggesting a role for Sp1 phosphorylation in regulating hPCFT transcription. A better understanding of determinants of hPCFT transcriptional control may identify new therapeutic strategies for cancer by modulating hPCFT levels in combination with hPCFT-targeted antifolates.
Collapse
|
250
|
Xu LS, Francis A, Turkistany S, Shukla D, Wong A, Batista CR, DeKoter RP. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Exp Hematol 2019; 73:50-63.e2. [PMID: 30986496 DOI: 10.1016/j.exphem.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022]
Abstract
The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.
Collapse
MESH Headings
- Apoptosis/genetics
- CARD Signaling Adaptor Proteins/biosynthesis
- CARD Signaling Adaptor Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Guanylate Cyclase/biosynthesis
- Guanylate Cyclase/genetics
- Humans
- Introns
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Response Elements
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Alyssa Francis
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Devanshi Shukla
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alison Wong
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Carolina R Batista
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada.
| |
Collapse
|