201
|
de Zwart AES, Riezebos-Brilman A, Kerstjens HAM, Verschuuren EAM, Alffenaar JWC. Respiratory Syncytial Virus Infection Morbidity in the Elderly: Time for Repurposing of Ribavirin? Clin Infect Dis 2020; 70:2238-2239. [PMID: 31504299 PMCID: PMC7108197 DOI: 10.1093/cid/ciz835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Auke E S de Zwart
- University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, University of Groningen, the Netherlands
| | - Annelies Riezebos-Brilman
- University Medical Centre Utrecht, Department of Medical Microbiology, University of Utrecht, the Netherlands
| | - Huib A M Kerstjens
- University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, University of Groningen, the Netherlands
| | - Erik A M Verschuuren
- University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, University of Groningen, the Netherlands
| | | |
Collapse
|
202
|
Kozak R, Prost K, Yip L, Williams V, Leis JA, Mubareka S. Severity of coronavirus respiratory tract infections in adults admitted to acute care in Toronto, Ontario. J Clin Virol 2020; 126:104338. [PMID: 32278299 PMCID: PMC7142695 DOI: 10.1016/j.jcv.2020.104338] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Coronaviruses represent a significant burden in acute care settings. Female gender and smoking were associated with poor prognosis. All cause mortality in our cohort was similar to what is observed for influenza virus.
Background The World Health Organization has highlighted the need for improved surveillance and understanding of the health burden imposed by non-influenza RNA respiratory viruses. Human coronaviruses (CoVs) are a major cause of respiratory and gastrointestinal tract infections with associated morbidity and mortality. Objectives The objective of our study was to characterize the epidemiology of CoVs in our tertiary care centre, and identify clinical correlates of disease severity. Study design A cross-sectional study was performed of 226 patients admitted with confirmed CoV respiratory tract infection between 2010 and 2016. Variables consistent with a severe disease burden were evaluated including symptoms, length of stay, intensive care unit (ICU) admission and mortality. Results CoVs represented 11.3% of all positive respiratory virus samples and OC43 was the most commonly identified CoV. The majority of infections were community-associated while 21.6% were considered nosocomial. The average length of stay was 11.8 days with 17.3% of patients requiring ICU admission and an all-cause mortality of 7%. In a multivariate model, female gender and smoking were associated with increased likelihood of admission to ICU or death. Conclusion This study highlights the significant burden of CoVs and justifies the need for surveillance in the acute care setting.
Collapse
Affiliation(s)
- Robert Kozak
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Karren Prost
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Lily Yip
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Victoria Williams
- Infection Prevention and Control, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jerome A Leis
- Infection Prevention and Control, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Infectious Diseases, Sunnybrook Health Sciences Centre and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Infectious Diseases, Sunnybrook Health Sciences Centre and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
203
|
Drysdale SB, Barr RS, Rollier CS, Green CA, Pollard AJ, Sande CJ. Priorities for developing respiratory syncytial virus vaccines in different target populations. Sci Transl Med 2020; 12:eaax2466. [PMID: 32188721 PMCID: PMC7613568 DOI: 10.1126/scitranslmed.aax2466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
The development of an effective vaccine against respiratory syncytial virus (RSV) has been hampered by major difficulties that occurred in the 1960s when a formalin-inactivated vaccine led to increased severity of RSV disease after acquisition of the virus in the RSV season after vaccination. Recent renewed efforts to develop a vaccine have resulted in about 38 candidate vaccines and monoclonal antibodies now in clinical development. The target populations for effective vaccination are varied and include neonates, young children, pregnant women, and older adults. The reasons for susceptibility to infection in each of these groups may be different and, therefore, could require different vaccine types for induction of protective immune responses, adding a further challenge for vaccine development. Here, we review the current knowledge of RSV vaccine development for these target populations and propose a view and rationale for prioritizing RSV vaccine development.
Collapse
Affiliation(s)
- Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
- Institute of Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Rachael S Barr
- Taunton and Somerset NHS Foundation Trust, Taunton TA1 5DA, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Christopher A Green
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Charles J Sande
- Oxford Vaccine Group, Department of Paediatrics and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
- KEMRI-Wellcome Trust Research Programme, Kilifi 80108, Kenya
| |
Collapse
|
204
|
Cai W, Buda S, Schuler E, Hirve S, Zhang W, Haas W. Risk factors for hospitalized respiratory syncytial virus disease and its severe outcomes. Influenza Other Respir Viruses 2020; 14:658-670. [PMID: 32064773 PMCID: PMC7578333 DOI: 10.1111/irv.12729] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Respiratory syncytial virus (RSV) is a major cause of hospital admission for acute lower respiratory tract infection in young children. Objectives We aimed to identify risk factors for hospitalized RSV disease and its severe outcomes. Methods We conducted a retrospective cohort study analyzing data of a ICD‐10‐code‐based hospital surveillance for severe acute respiratory infections (SARI). Using univariable and multivariable logistic regression analysis, we assessed age‐group, gender, season, and underlying medical conditions as possible risk factors for RSV and its severe outcomes including ICU admission, application of ventilator support, and death, respectively. Results Of the 413 552 patients hospitalized with SARI in the database, 8761 were diagnosed with RSV from week 01/2009 to 20/2018 with 97% (8521) aged <5 years. Among children aged <5 years, age‐groups 0‐5 months (OR: 20.29, 95% CI: 18.37‐22.41) and 6 months‐1 year (OR: 4.59, 95% CI: 4.16‐5.06), and underlying respiratory and cardiovascular disorders specific to the perinatal period (OR: 1.32, 95% CI: 1.11‐1.57) were risk factors for being diagnosed with RSV. Age‐group 0‐5 months (OR: 2.39, 95% CI: 1.45‐3.94), low birth weight (OR: 6.77, 95% CI: 1.28‐35.71), preterm newborn (OR: 6.71, 95% CI: 2.19‐20.61), underlying respiratory and cardiovascular disorders specific to the perinatal period (OR: 4.97, 95% CI: 3.36‐7.34), congenital malformation of the heart (OR: 3.65, 95% CI: 1.90‐7.02), congenital malformation of the great vessels (OR: 3.50, 95% CI: 1.10‐11.18), congenital defect originating in perinatal period (OR: 4.07, 95% CI: 1.71‐9.70), cardiovascular disease (OR: 5.19, 95% CI: 2.77‐9.72), neurological disorders (OR: 6.48, 95% CI: 3.76‐11.18), blood disease (OR: 3.67, 95% CI: 1.98‐6.79), and liver disease (OR: 14.99, 95% CI: 1.49‐150.82) contributed to ICU admission in RSV cases. Conclusions Using ICD‐10‐based surveillance data allows to identify risk factors for hospitalized RSV disease and its severe outcomes, and quantify the risk in different age‐groups.
Collapse
Affiliation(s)
- Wei Cai
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,Medizinische Fakultät Charité - Universitätsmedizin, Berlin, Germany
| | - Silke Buda
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | | | | | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Geneva, Switzerland
| | - Walter Haas
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,Medizinische Fakultät Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
205
|
Xie C, Lau EHY, Yoshida T, Yu H, Wang X, Wu H, Wei J, Cowling B, Peiris M, Li Y, Yen HL. Detection of Influenza and Other Respiratory Viruses in Air Sampled From a University Campus: A Longitudinal Study. Clin Infect Dis 2020; 70:850-858. [PMID: 30963180 PMCID: PMC7108140 DOI: 10.1093/cid/ciz296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Respiratory virus-laden particles are commonly detected in the exhaled breath of symptomatic patients or in air sampled from healthcare settings. However, the temporal relationship of detecting virus-laden particles at nonhealthcare locations vs surveillance data obtained by conventional means has not been fully assessed. METHODS From October 2016 to June 2018, air was sampled weekly from a university campus in Hong Kong. Viral genomes were detected and quantified by real-time reverse-transcription polymerase chain reaction. Logistic regression models were fitted to examine the adjusted odds ratios (aORs) of ecological and environmental factors associated with the detection of virus-laden airborne particles. RESULTS Influenza A (16.9% [117/694]) and influenza B (4.5% [31/694]) viruses were detected at higher frequencies in air than rhinovirus (2.2% [6/270]), respiratory syncytial virus (0.4% [1/270]), or human coronaviruses (0% [0/270]). Multivariate analyses showed that increased crowdedness (aOR, 2.3 [95% confidence interval {CI}, 1.5-3.8]; P < .001) and higher indoor temperature (aOR, 1.2 [95% CI, 1.1-1.3]; P < .001) were associated with detection of influenza airborne particles, but absolute humidity was not (aOR, 0.9 [95% CI, .7-1.1]; P = .213). Higher copies of influenza viral genome were detected from airborne particles >4 μm in spring and <1 μm in autumn. Influenza A(H3N2) and influenza B viruses that caused epidemics during the study period were detected in air prior to observing increased influenza activities in the community. CONCLUSIONS Air sampling as a surveillance tool for monitoring influenza activity at public locations may provide early detection signals on influenza viruses that circulate in the community.
Collapse
Affiliation(s)
- Chenyi Xie
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric H Y Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tomoyo Yoshida
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Han Yu
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xin Wang
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huitao Wu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jianjian Wei
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ben Cowling
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuguo Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
206
|
Abstract
Respiratory syncytial virus (RSV) is the most common pathogen associated with acute lower respiratory tract infections in young children. RSV is also a major viral pathogen causing severe lung disease in the adult population, particularly among the elderly. We conducted a review of adult RSV studies published from January 1970 to February 2017 to determine the burden of disease among adults worldwide. There were no restrictions on health care setting or definition of RSV infection. A total of 1530 published studies were identified, 95 of which were included in this review. The incidence rates of hospitalised RSV acute respiratory tract infection (ARI) in adults >65 years old ranged from 7.3 to 13.0/105 population in Africa and Asia and from 190 to 254/105 population in the USA. Higher incidence rates (195–1790/105 population) were observed in adults ≥50 years old for outpatient or emergency visits in the USA. Of all ARI patients, RSV accounted for 1–10% in adults and 2–14% in patients with chronic diseases or transplantation. Given the limitations in the existing data, significant efforts should be made to generate evidence on the burden of RSV infections in adults and to estimate the potential impact of future preventive interventions.
Collapse
|
207
|
LeBlanc JJ, ElSherif M, Mulpuru S, Warhuus M, Ambrose A, Andrew M, Boivin G, Bowie W, Chit A, Dos Santos G, Green K, Halperin SA, Hatchette TF, Ibarguchi B, Johnstone J, Katz K, Langley JM, Lagacé-Wiens P, Loeb M, Lund A, MacKinnon-Cameron D, McCarthy A, McElhaney JE, McGeer A, Poirier A, Powis J, Richardson D, Semret M, Shinde V, Smyth D, Trottier S, Valiquette L, Webster D, Ye L, McNeil S. Validation of the Seegene RV15 multiplex PCR for the detection of influenza A subtypes and influenza B lineages during national influenza surveillance in hospitalized adults. J Med Microbiol 2020; 69:256-264. [PMID: 31264957 PMCID: PMC7431100 DOI: 10.1099/jmm.0.001032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/16/2019] [Indexed: 01/04/2023] Open
Abstract
Background. The Serious Outcomes Surveillance Network of the Canadian Immunization Research Network (CIRN SOS) has been performing active influenza surveillance since 2009 (ClinicalTrials.gov identifier: NCT01517191). Influenza A and B viruses are identified and characterized using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), and multiplex testing has been performed on a subset of patients to identify other respiratory virus aetiologies. Since both methods can identify influenza A and B, a direct comparison was performed.Methods. Validated real-time RT-PCRs from the World Health Organization (WHO) to identify influenza A and B viruses, characterize influenza A viruses into the H1N1 or H3N2 subtypes and describe influenza B viruses belonging to the Yamagata or Victoria lineages. In a subset of patients, the Seeplex RV15 One-Step ACE Detection assay (RV15) kit was also used for the detection of other respiratory viruses.Results. In total, 1111 nasopharyngeal swabs were tested by RV15 and real-time RT-PCRs for influenza A and B identification and characterization. For influenza A, RV15 showed 98.0 % sensitivity, 100 % specificity and 99.7 % accuracy. The performance characteristics of RV15 were similar for influenza A subtypes H1N1 and H3N2. For influenza B, RV15 had 99.2 % sensitivity, 100 % specificity and 99.8 % accuracy, with similar assay performance being shown for both the Yamagata and Victoria lineages.Conclusions. Overall, the detection of circulating subtypes of influenza A and lineages of influenza B by RV15 was similar to detection by real-time RT-PCR. Multiplex testing with RV15 allows for a more comprehensive respiratory virus surveillance in hospitalized adults, without significantly compromising the reliability of influenza A or B virus detection.
Collapse
Affiliation(s)
- J. J. LeBlanc
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - M. ElSherif
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - S. Mulpuru
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - M. Warhuus
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - A. Ambrose
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - M. Andrew
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - G. Boivin
- Centre Hospitalier Universitaire de Québec, QC, Canada
| | - W. Bowie
- University of British Columbia, Vancouver, BC, Canada
| | - A. Chit
- Sanofi Pasteur, Swiftwater, PA, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - G. Dos Santos
- Business & Decision Life Sciences (on behalf of GSK), Bruxelles, Belgium
- Present address: GSK, Wavre, Belgium
| | - K. Green
- Mount Sinai Hospital, Toronto, ON, Canada
| | - S. A. Halperin
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - T. F. Hatchette
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - B. Ibarguchi
- GSK, Mississauga, ON, Canada
- Present address: Bayer, Inc., Mississauga, Ontario, Canada
| | - J. Johnstone
- Public Health Ontario and University of Toronto, Toronto, ON, Canada
| | - K. Katz
- North York General Hospital, Toronto, ON, Canada
| | - J. M. Langley
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | | | - M. Loeb
- Public Health Ontario and University of Toronto, Toronto, ON, Canada
| | - A. Lund
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - D. MacKinnon-Cameron
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - A. McCarthy
- Ottawa Hospital General, Ottawa, Ontario, Canada
| | - J. E. McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - A. McGeer
- Mount Sinai Hospital, Toronto, ON, Canada
| | - A. Poirier
- Centre Intégré Universitaire de Santé et Services Sociaux, Quebec, QC, Canada
| | - J. Powis
- Toronto East General Hospital, Toronto, ON, Canada
| | | | - M. Semret
- McGill University, Montreal, QC, Canada
| | - V. Shinde
- GSK, King of Prussia, PA, USA
- Present address: Novavax Vaccines, Washington, DC, USA
| | - D. Smyth
- The Moncton Hospital, Moncton, NB, Canada
| | - S. Trottier
- Centre Hospitalier Universitaire de Québec, QC, Canada
| | | | | | - L. Ye
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - S. A. McNeil
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
208
|
Hayden FG, Whitley RJ. Respiratory Syncytial Virus Antivirals: Problems and Progress. J Infect Dis 2020; 222:1417-1421. [DOI: 10.1093/infdis/jiaa029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard J Whitley
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
209
|
Ali A, Lopardo G, Scarpellini B, Stein RT, Ribeiro D. Systematic review on respiratory syncytial virus epidemiology in adults and the elderly in Latin America. Int J Infect Dis 2020; 90:170-180. [PMID: 31669592 PMCID: PMC7110494 DOI: 10.1016/j.ijid.2019.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The present study provides a comprehensive review of the recently published data on RSV epidemiology in adults and the elderly in Latin America. METHODS A systematic literature search was carried out in Medline, Scielo, Lilacs, and Cochrane Library. The search strategy aimed at retrieving studies focusing on RSV prevalence, burden, risk factors, and the routine clinical practice in the prevention and management of RSV infections in Latin American countries. Only articles published between January 2011 and December 2017 were considered. RESULTS Eighteen studies were included. Percentages of RSV detection varied highly across included studies for adult subjects with respiratory infections (0% to 77.9%), influenza-like illness (1.0% to 16.4%) and community-acquired pneumonia (1.3% to 13.5%). Considerable percentages of hospitalization were reported for RSV-infected adults with influenza-like illness (40.9% and 69.9%) and community-acquired pneumonia (91.7%). CONCLUSIONS Recent RSV data regarding adult populations in Latin America are scarce. RSV was documented as a cause of illness in adults and the elderly, being identified in patients with acute respiratory infections, influenza-like illness and community-acquired pneumonia. The studies suggest that RSV infections may be a significant cause of hospitalization in adult populations in Latin America, including younger adults.
Collapse
Affiliation(s)
- Abraham Ali
- Fundación Neumológica Colombiana, Carrera 13B # 161- 85 Piso 2, Postal Code 110131, Bogotá, Colombia.
| | - Gustavo Lopardo
- Department of Infectious Diseases at FUNCEI and Hospital Bernardo Houssay, French 3085, (1425) Buenos Aires, Argentina.
| | - Bruno Scarpellini
- Real World Evidence Department, Medical Affairs Latin America, Janssen Cilag Farmacêutica, Avenida Presidente Juscelino Kubitschek, 2041 - Vila Nova Conceição, 04543-011, São Paulo, Brazil.
| | - Renato T Stein
- Pontifícia Universidade Católica do RGS (PUCRS), ReSViNET Executive Committee member, Centro Clinico PUCRS, Av. Ipiranga, 6690, conj.420. Porto Alegre, RS, CEP 90610-000, Brazil.
| | - Diogo Ribeiro
- CTI Clinical Trial & Consulting Services, Rua Tierno Galvan, Torre 3, Piso 16, 1070-274 Lisboa, Portugal.
| |
Collapse
|
210
|
Boonyaratanakornkit J, Ekici S, Magaret A, Gustafson K, Scott E, Haglund M, Kuypers J, Pergamit R, Lynch J, Chu HY. Respiratory Syncytial Virus Infection in Homeless Populations, Washington, USA. Emerg Infect Dis 2019; 25:1408-1411. [PMID: 31211675 PMCID: PMC6590761 DOI: 10.3201/eid2507.181261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Homelessness has not previously been identified as a risk factor for respiratory syncytial virus (RSV) infection. We conducted an observational study at an urban safety-net hospital in Washington, USA, during 2012–2017. Hospitalized adults with RSV were more likely to be homeless, and several clinical outcome measures were worse with RSV than with influenza.
Collapse
|
211
|
Young S, Phillips J, Griego-Fullbright C, Wagner A, Jim P, Chaudhuri S, Tang S, Sickler J. Molecular point-of-care testing for influenza A/B and respiratory syncytial virus: comparison of workflow parameters for the ID Now and cobas Liat systems. J Clin Pathol 2019; 73:328-334. [PMID: 31826935 PMCID: PMC7279563 DOI: 10.1136/jclinpath-2019-206242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/21/2022]
Abstract
Aims Point-of-care (POC) tests for influenza and respiratory syncytial virus (RSV) offer the potential to improve patient management and antimicrobial stewardship. Studies have focused on performance; however, no workflow assessments have been published comparing POC molecular tests. This study compared the Liat and ID Now systems workflow, to assist end-users in selecting an influenza and/or RSV POC test. Methods Staffing, walk-away and turnaround time (TAT) of the Liat and ID Now systems were determined using 40 nasopharyngeal samples, positive for influenza or RSV. The ID Now system requires separate tests for influenza and RSV, so parallel (two instruments) and sequential (one instrument) workflows were evaluated. Results The ID Now ranged 4.1–6.2 min for staffing, 1.9–10.9 min for walk-away and 6.4–15.8 min for TAT per result. The Liat ranged 1.1–1.8 min for staffing, 20.0–20.5 min for walk-away and 21.3–22.0 min for TAT. Mean walk-away time comprised 38.0% (influenza positive) and 68.1% (influenza negative) of TAT for ID Now and 93.7% (influenza/RSV) for Liat. The ID Now parallel workflow resulted in medians of 5.9 min for staffing, 9.7 min for walk-away and 15.6 min for TAT. Assuming prevalence of 20% influenza and 20% RSV, the ID Now sequential workflow resulted in medians of 9.4 min for staffing, 17.4 min for walk-away, and 27.1 min for TAT. Conclusions The ID Now and Liat systems offer different workflow characteristics. Key considerations for implementation include value of both influenza and RSV results, clinical setting, staffing capacity, and instrument(s) placement.
Collapse
Affiliation(s)
- Stephen Young
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA .,TriCore Reference Laboratories, Albuquerque, New Mexico, USA
| | | | | | - Aaron Wagner
- TriCore Reference Laboratories, Albuquerque, New Mexico, USA
| | - Patricia Jim
- TriCore Reference Laboratories, Albuquerque, New Mexico, USA
| | | | - Shaowu Tang
- Roche Molecular Systems Inc, Pleasanton, California, USA
| | - Joanna Sickler
- Roche Molecular Systems Inc, Pleasanton, California, USA
| |
Collapse
|
212
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
213
|
Carvajal JJ, Avellaneda AM, Salazar-Ardiles C, Maya JE, Kalergis AM, Lay MK. Host Components Contributing to Respiratory Syncytial Virus Pathogenesis. Front Immunol 2019; 10:2152. [PMID: 31572372 PMCID: PMC6753334 DOI: 10.3389/fimmu.2019.02152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most prevalent viral etiological agent of acute respiratory tract infection. Although RSV affects people of all ages, the disease is more severe in infants and causes significant morbidity and hospitalization in young children and in the elderly. Host factors, including an immature immune system in infants, low lymphocyte levels in patients under 5 years old, and low levels of RSV-specific neutralizing antibodies in the blood of adults over 65 years of age, can explain the high susceptibility to RSV infection in these populations. Other host factors that correlate with severe RSV disease include high concentrations of proinflammatory cytokines such as interleukins (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and thymic stromal lymphopoitein (TSLP), which are produced in the respiratory tract of RSV-infected individuals, accompanied by a strong neutrophil response. In addition, data from studies of RSV infections in humans and in animal models revealed that this virus suppresses adaptive immune responses that could eliminate it from the respiratory tract. Here, we examine host factors that contribute to RSV pathogenesis based on an exhaustive review of in vitro infection in humans and in animal models to provide insights into the design of vaccines and therapeutic tools that could prevent diseases caused by RSV.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Salazar-Ardiles
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge E. Maya
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
| |
Collapse
|
214
|
Zhou F, Wang Y, Liu Y, Liu X, Gu L, Zhang X, Pu Z, Yang G, Liu B, Nie Q, Xue B, Feng J, Guo Q, Liu J, Fan H, Chen J, Zhang Y, Xu Z, Pang M, Chen Y, Nie X, Cai Z, Xu J, Peng K, Li X, Xiang P, Zhang Z, Jiang S, Su X, Zhang J, Li Y, Jin X, Jiang R, Dong J, Song Y, Zhou H, Wang C, Cao B. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J 2019; 54:13993003.02406-2018. [PMID: 31164430 DOI: 10.1183/13993003.02406-2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 02/05/2023]
Abstract
Although broad knowledge of influenza viral pneumonia has been established, the significance of non-influenza respiratory viruses in community-acquired pneumonia (CAP) and their impact on clinical outcomes remains unclear, especially in the non-immunocompromised adult population.Hospitalised immunocompetent patients with CAP were prospectively recruited from 34 hospitals in mainland China. Respiratory viruses were detected by molecular methods. Comparisons were conducted between influenza and non-influenza viral infection groups.In total, 915 out of 2336 adult patients with viral infection were enrolled in the analysis, with influenza virus (28.4%) the most frequently detected virus, followed by respiratory syncytial virus (3.6%), adenovirus (3.3%), human coronavirus (3.0%), parainfluenza virus (2.2%), human rhinovirus (1.8%) and human metapneumovirus (1.5%). Non-influenza viral infections accounted for 27.4% of viral pneumonia. Consolidation was more frequently observed in patients with adenovirus infection. The occurrence of complications such as sepsis (40.1% versus 39.6%; p=0.890) and hypoxaemia (40.1% versus 37.2%; p=0.449) during hospitalisation in the influenza viral infection group did not differ from that of the non-influenza viral infection group. Compared with influenza virus infection, the multivariable adjusted odds ratios of CURB-65 (confusion, urea >7 mmol·L-1, respiratory rate ≥30 breaths·min-1, blood pressure <90 mmHg (systolic) or ≤60 mmHg (diastolic), age ≥65 years) ≥3, arterial oxygen tension/inspiratory oxygen fraction <200 mmHg, and occurrence of sepsis and hypoxaemia for non-influenza respiratory virus infection were 0.87 (95% CI 0.26-2.84), 0.72 (95% CI 0.26-1.98), 1.00 (95% CI 0.63-1.58) and 1.05 (95% CI 0.66-1.65), respectively. The hazard ratio of 90-day mortality was 0.51 (95% CI 0.13-1.91).The high incidence of complications in non-influenza viral pneumonia and similar impact of non-influenza respiratory viruses relative to influenza virus on disease severity and outcomes suggest more attention should be given to CAP caused by non-influenza respiratory viruses.
Collapse
Affiliation(s)
- Fei Zhou
- Dept of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,These authors contributed equally to this work
| | - Yimin Wang
- Dept of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,These authors contributed equally to this work
| | - Yingmei Liu
- Dept of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,These authors contributed equally to this work
| | - Xuedong Liu
- Dept of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China.,These authors contributed equally to this work
| | - Li Gu
- Dept of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,These authors contributed equally to this work
| | - Xiaoju Zhang
- Dept of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China.,These authors contributed equally to this work
| | - Zenghui Pu
- Dept of Infectious Diseases, Yantai Yu Huang-Ding Hospital, Yantai, China.,These authors contributed equally to this work
| | - Guoru Yang
- Dept of Pulmonary and Critical Care Medicine, Weifang No. 2 People's Hospital, Weifang, China.,These authors contributed equally to this work
| | - Bo Liu
- Dept of Respiratory and Critical Care Medicine, Linzi District People's Hospital, Zibo, China.,These authors contributed equally to this work
| | - Qingrong Nie
- Dept of Respiratory and Critical Care Medicine, Liangxiang Hospital, Beijing, China
| | - Bing Xue
- Dept of Respiratory Medicine, Chuiyangliu Hospital Affiliated to Tshinghua University, Beijing, China
| | - Jing Feng
- Dept of Respiratory Medicine, General Hospital of Tianjin Medical University, Tianjin, China
| | - Qiang Guo
- Dept of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jianhua Liu
- Dept of Respiratory Medicine, Beijing Huairou Hospital of University of Chinese Academy of Science, Beijing, China
| | - Hong Fan
- Dept of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Chen
- Dept of Respiratory Medicine, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Zhang
- Dept of Respiratory Medicine, Daxing Teaching Hospital, Capital Medical University, Beijing, China
| | - Zhenyang Xu
- Dept of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Min Pang
- Dept of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Chen
- Dept of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Beijing China
| | - Xiuhong Nie
- Dept of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Cai
- Dept of Pulmonary and Critical Care Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinfu Xu
- Dept of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Kun Peng
- Dept of Respiratory Medicine, Beijing No. 6 Hospital, Beijing, China
| | - Xiangxin Li
- Dept of Pulmonary and Critical Care Medicine, Beijing Changping Hospital, Beijing, China
| | - Pingchao Xiang
- Dept of Pulmonary and Critical Care Medicine, Peking University Shougang Hospital, Beijing, China
| | - Zuoqing Zhang
- Dept of Respiratory Medicine, Beijing Shijingshan Hospital, Beijing, China
| | - Shujuan Jiang
- Dept of Pulmonary and Critical Care Medicine, Shandong Province Hospital, Jinan, China
| | - Xin Su
- Dept of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing, China
| | - Jie Zhang
- Dept of Respiratory Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanming Li
- Dept of Pulmonary and Critical Care Medicine, Beijing Hospital, Beijing, China
| | - Xiuhong Jin
- Dept of Respiratory Medicine, Beijing Pinggu Hospital, Beijing, China
| | - Rongmeng Jiang
- Infectious Disease Diagnosis and Treatment Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Dept of Infectious Diseases, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yuanlin Song
- Dept of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Zhou
- Dept of Respiratory Medicine, Beijing Electric Power Hospital, Beijing, China
| | - Chen Wang
- Dept of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China.,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,These authors contributed equally to this work
| | - Bin Cao
- Dept of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine Chinese Academy of Medical Science, National Clinical Research Center of Respiratory Diseases, Beijing, China .,Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.,These authors contributed equally to this work
| | | |
Collapse
|
215
|
Chuaychoo B, Ngamwongwan S, Kaewnaphan B, Athipanyasilp N, Horthongkham N, Kantakamalakul W, Muangman N. Clinical manifestations and outcomes of respiratory syncytial virus infection in adult hospitalized patients. J Clin Virol 2019; 117:103-108. [PMID: 31280089 PMCID: PMC7106545 DOI: 10.1016/j.jcv.2019.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023]
Abstract
Adult hospitalized patients with RSV were advanced age and had comorbidities. Cardiopulmonary complications were common. Major complication was pneumonia with acute respiratory failure. Pre-existing coronary arterial disease was a risk factor of cardiovascular complication. Pneumonia and acute myocardial infarction were the major causes of death.
Background Respiratory syncytial virus (RSV) is an important virus found in adult hospitalized patients. Objectives To study the clinical outcomes of hospitalized patients aged ≥ 15 years and diagnosed with RSV infection. Study design Both retrospective and prospective cohort studies were conducted at a university hospital between May 2014 and December 2015. Results: RSV was detected in 86 of 1562(5.5%) adult hospitalized patients suspected of respiratory viral infection. Sixty-nine patients were included in the study. RSV was detected by RT-PCR (82.6%), IFA (10.1%), and both RT-PCR and IFA (7.3%). Most patients (87.0%) were aged ≥ 50 years. Cardiovascular diseases, pulmonary diseases, immunocompromised hosts, and diabetes were the major comorbidities. The common manifestations were cough (92.8%), dyspnea (91.3%), sputum production (87.0%), tachypnea (75.4%), wheezing (73.9%), and fever (71.0%). Fifty- five patients (79.7%) were diagnosed with pneumonia. Hypoxemia (SpO2 ≤ 92%) was found in 53.6% patients. Twenty-five of 69(36.2%) patients developed respiratory failure and required ventilatory support. Cardiovascular complications were found in 24.6% of patients. Congestive heart failure, acute myocardial infarction (MI), new atrial fibrillation, and supraventricular tachycardia were found in 9(13.0%), 7(10.1%), 4(5.8%), and 3(4.3%) of 69 patients, respectively. Overall mortality was 15.9%. Pneumonia (81.8%) and acute MI (18.2%) were the major causes of death. Conclusions Most adult hospitalized patients with RSV infection were of advanced age and had comorbidities. Cardiopulmonary complications were the major causes of death. Management and prevention of RSV infection in these vulnerable groups are necessary.
Collapse
Affiliation(s)
- Benjamas Chuaychoo
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Sopita Ngamwongwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Respiratory Disease, Department of Medicine, Faculty of Medicine, Chonburi hospital, Chonburi, Thailand
| | - Bualan Kaewnaphan
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niracha Athipanyasilp
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Navin Horthongkham
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nisa Muangman
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
216
|
Sheshadri A, Karimipour M, Vakil E, Bashoura L, Godoy M, Arain MH, Evans SE, Dickey BF, Ost DE, Chemaly RF, Faiz SA. Refinement of estimates of mortality risk using the Radiologic Severity Index in hematologic malignancy patients with respiratory syncytial virus infection. Transpl Infect Dis 2019; 21:e13105. [PMID: 31081570 DOI: 10.1111/tid.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Immunocompromised hematologic malignancy (HM) patients experience high mortality after respiratory syncytial virus (RSV) lower respiratory tract infection (LRTI). We measured radiologic severity to determine whether it could improve the performance of 60-day mortality models based only upon immunodeficiency severity. METHODS We studied 155 HM patients, including 84 hematopoietic cell transplant recipients, who developed RSV LRTI from 2001 to 2013. We measured immunodeficiency using lymphopenia (lymphocyte count <200 cells/mm3 ), Immunodeficiency Severity Index (ISI), and Severe Immunodeficiency (SID) criteria. Radiologic severity was measured by the Radiologic Severity Index (RSI, range 0-72) at time of LRTI (baseline-RSI) and peak severity (peak-RSI). Delta-RSI was defined as the difference between baseline-RSI and peak-RSI. We used logistic regression models to measure the association of immunodeficiency and RSI with 60-day all-cause mortality, and measured model discrimination using areas under the receiver-operating characteristics curves, calibration using Brier scores, and explained variance using pseudo-R2 values. RESULTS Forty-one patients died within 60 days of RSV LRTI. Severe immunodeficiency was associated with higher mortality. Peak-RSI (odds ratio [OR] 1.06/point, 95% confidence interval [CI] 1.04-1.08), and delta-RSI (OR 1.07/point, 95% CI 1.05-1.10) were associated with 60-day mortality after RSV LRTI, but not baseline-RSI. Addition of peak-RSI or delta-RSI to baseline immunodeficiency improved the discrimination, calibration, and explained variance (P < 0.001) of 60-day mortality models. CONCLUSIONS Although baseline immunodeficiency in HM patients helps predict 60-day mortality after RSV LRTI, mortality risk estimates can be further refined by also measuring LRTI progression using RSI. RSI is well-suited as a marker of LRTI severity in RSV infection.
Collapse
Affiliation(s)
- Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mahtab Karimipour
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erik Vakil
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lara Bashoura
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Myrna Godoy
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muhammad H Arain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David E Ost
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saadia A Faiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
217
|
Tognarelli EI, Bueno SM, González PA. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells. Front Immunol 2019; 10:810. [PMID: 31057543 PMCID: PMC6478035 DOI: 10.3389/fimmu.2019.00810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants and produces a significant burden in the elderly. It can also infect and produce disease in otherwise healthy adults and recurrently infect those previously exposed to the virus. Importantly, recurrent infections are not necessarily a consequence of antigenic variability, as described for other respiratory viruses, but most likely due to the capacity of this virus to interfere with the host's immune response and the establishment of a protective and long-lasting immunity. Although some genes encoded by hRSV are known to have a direct participation in immune evasion, it seems that repeated infection is mainly given by its capacity to modulate immune components in such a way to promote non-optimal antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell (DC) function, which are key cells involved in establishing and regulating protective virus-specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph nodes and their capacity to activate virus-specific T cells, which likely impacts the host antiviral response against this virus. Here, we review and discuss the most important and recent findings related to DC modulation by hRSV, which might be at the basis of recurrent infections in previously infected individuals and hRSV-induced disease. A focus on the interaction between DCs and hRSV will likely contribute to the development of effective prophylactic and antiviral strategies against this virus.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
218
|
Bougarn S, Boughorbel S, Chaussabel D, Marr N. A curated transcriptome dataset collection to investigate the blood transcriptional response to viral respiratory tract infection and vaccination. F1000Res 2019; 8:284. [PMID: 31231515 PMCID: PMC6567289 DOI: 10.12688/f1000research.18533.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The human immune defense mechanisms and factors associated with good versus poor health outcomes following viral respiratory tract infections (VRTI), as well as correlates of protection following vaccination against respiratory viruses, remain incompletely understood. To shed further light into these mechanisms, a number of systems-scale studies have been conducted to measure transcriptional changes in blood leukocytes of either naturally or experimentally infected individuals, or in individual’s post-vaccination. Here we are making available a public repository, for research investigators for interpretation, a collection of transcriptome datasets obtained from human whole blood and peripheral blood mononuclear cells (PBMC) to investigate the transcriptional responses following viral respiratory tract infection or vaccination against respiratory viruses. In total, Thirty one31 datasets, associated to viral respiratory tract infections and their related vaccination studies, were identified and retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom web application designed for interactive query and visualization of integrated large-scale data. Quality control checks, using relevant biological markers, were performed. Multiple sample groupings and rank lists were created to facilitate dataset query and interpretation. Via this interface, users can generate web links to customized graphical views, which may be subsequently inserted into manuscripts to report novel findings. The GXB tool enables browsing of a single gene across projects, providing new perspectives on the role of a given molecule across biological systems in the diagnostic and prognostic following VRTI but also in identifying new correlates of protection. This dataset collection is available at:
http://vri1.gxbsidra.org/dm3/geneBrowser/list.
Collapse
Affiliation(s)
- Salim Bougarn
- Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Sabri Boughorbel
- Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Damien Chaussabel
- Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Nico Marr
- Systems Biology and Immunology Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|