201
|
Kohl T, Lörinczi E, Pardo LA, Stühmer W. Rapid internalization of the oncogenic K+ channel K(V)10.1. PLoS One 2011; 6:e26329. [PMID: 22022602 PMCID: PMC3192180 DOI: 10.1371/journal.pone.0026329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/24/2011] [Indexed: 11/18/2022] Open
Abstract
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells.
Collapse
Affiliation(s)
- Tobias Kohl
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Eva Lörinczi
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Luis A. Pardo
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | - Walter Stühmer
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| |
Collapse
|
202
|
Macaulay EC, Weeks RJ, Andrews S, Morison IM. Hypomethylation of functional retrotransposon-derived genes in the human placenta. Mamm Genome 2011; 22:722-35. [PMID: 21874386 DOI: 10.1007/s00335-011-9355-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/29/2011] [Indexed: 11/25/2022]
Abstract
DNA hypomethylation is assumed to be a feature of the mammalian placenta; however, its role in regulating placental gene expression is not well defined. In this study, MeDIP and Sequenom MassARRAY were used to identify hypomethylated gene promoters in the human placenta. Among the genes identified, the hypomethylation of an alternative promoter for KCNH5 was found to be restricted to the placenta and chorion. Complete methylation of this promoter correlates with a silenced KCNH5 transcript in embryonic tissues, including the amnion. Unusually, this hypomethylated promoter and the alternative first exon are derived from a SINE (AluY) retrotransposon. Examination of additional retrotransposon-derived gene promoters in the placenta confirmed that retrotransposon hypomethylation permits the placenta-specific expression of these genes. Furthermore, the lineage-specific methylation displayed by KCNH5, INSL4, and ERVWE1 revealed that dichotomous methylation establishes differential retrotransposon silencing between the extra-embryonic and embryonic lineages. The hypomethylation of the retrotransposons that regulate these genes, each of which arose during recent primate evolution, is consistent with these genes having functional roles that are unique to the invasive haemochorial placentas of humans and recent primates.
Collapse
Affiliation(s)
- Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine and National Research Centre for Growth and Development, University of Otago, New Zealand
| | | | | | | |
Collapse
|
203
|
Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 2011; 301:C255-65. [DOI: 10.1152/ajpcell.00047.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progress through the cell mitotic cycle requires precise timing of the intrinsic molecular steps and tight coordination with the environmental signals that maintain a cell into the proper physiological context. Because of their great functional flexibility, ion channels coordinate the upstream and downstream signals that converge on the cell cycle machinery. Both voltage- and ligand-gated channels have been implicated in the control of different cell cycle checkpoints in normal as well as neoplastic cells. Ion channels mediate the calcium signals that punctuate the mitotic process, the cell volume oscillations typical of cycling cells, and the exocytosis of autocrine or angiogenetic factors. Other functions of ion channels in proliferation are still matter of debate. These may or may not depend on ion transport, as the channel proteins can form macromolecular complexes with growth factor and cell adhesion receptors. Direct conformational coupling with the cytoplasmic regulatory proteins is also possible. Derangement or relaxed control of the above processes can promote neoplasia. Specific types of ion channels have turned out to participate in the different stages of the tumor progression, in which cell heterogeneity is increased by the selection of malignant cell clones expressing the ion channel types that better support unrestrained growth. However, a comprehensive mechanistic picture of the functional relations between ion channels and cell proliferation is yet not available, partly because of the considerable experimental challenges offered by studying these processes in living mammalian cells. No doubt, such studies will constitute one of the most fruitful research fields for the next generation of cell physiologists.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
204
|
Abstract
Ion channels are involved in a variety of tumors. In particular, potassium channels are expressed abnormally in many cancer types, where their pharmacologic manipulation impairs tumor progression. Since this group of molecules has been successfully targeted for decades in other therapeutic areas, there is a significant body of knowledge on the pharmacology of potassium channels. Several groups of potassium channels with defined molecular identities have been proposed as candidates for therapeutic intervention. The strategies put forward range from classical small molecule blockade to gene therapy approaches, and include the use of potassium channels as targets for adjuvant therapy. We will discuss the reasons for these proposals and explore possible future developments.
Collapse
|
205
|
Li M, Xiong ZG. Ion channels as targets for cancer therapy. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2011; 3:156-166. [PMID: 21760973 PMCID: PMC3134009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
Cancer is a leading cause of death in the world. Conventional treatments have severe side effects and low survival rate. It is important to discover new targets and therapeutic strategies to improve the clinical outcomes of cancer patients. Ion channels are specialized membrane proteins that play important roles in various physiological processes. Recent studies have shown that abnormal expression and/or activity of a number of ion channels e.g. voltage-gated K(+), Na(+), Ca(2+) channels, TRP channels, and epithelial Na(+)/degenerin family of ion channels, are involved in the growth/proliferation, migration and/or invasion of cancer cells. In this review, we summarize the present knowledge about the roles of different ion channels in the development of cancer.
Collapse
Affiliation(s)
- Minghua Li
- Department of Psychology, Washington State University, VancouverWA, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of MedicineAtlanta, GA, USA
| |
Collapse
|
206
|
Lin H, Li Z, Chen C, Luo X, Xiao J, Dong D, Lu Y, Yang B, Wang Z. Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether à go-go K+ channel. PLoS One 2011; 6:e20362. [PMID: 21655246 PMCID: PMC3105031 DOI: 10.1371/journal.pone.0020362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/30/2011] [Indexed: 11/23/2022] Open
Abstract
The human ether-à-go-go-1 (h-eag1) K(+) channel is expressed in a variety of cell lines derived from human malignant tumors and in clinical samples of several different cancers, but is otherwise absent in normal tissues. It was found to be necessary for cell cycle progression and tumorigenesis. Specific inhibition of h-eag1 expression leads to inhibition of tumor cell proliferation. We report here that h-eag1 expression is controlled by the p53-miR-34-E2F1 pathway through a negative feed-forward mechanism. We first established E2F1 as a transactivator of h-eag1 gene through characterizing its promoter region. We then revealed that miR-34, a known transcriptional target of p53, is an important negative regulator of h-eag1 through dual mechanisms by directly repressing h-eag1 at the post-transcriptional level and indirectly silencing h-eag1 at the transcriptional level via repressing E2F1. There is a strong inverse relationship between the expression levels of miR-34 and h-eag1 protein. H-eag1antisense antagonized the growth-stimulating effects and the upregulation of h-eag1 expression in SHSY5Y cells, induced by knockdown of miR-34, E2F1 overexpression, or inhibition of p53 activity. Therefore, p53 negatively regulates h-eag1 expression by a negative feed-forward mechanism through the p53-miR-34-E2F1 pathway. Inactivation of p53 activity, as is the case in many cancers, can thus cause oncogenic overexpression of h-eag1 by relieving the negative feed-forward regulation. These findings not only help us understand the molecular mechanisms for oncogenic overexpression of h-eag1 in tumorigenesis but also uncover the cell-cycle regulation through the p53-miR-34-E2F1-h-eag1 pathway. Moreover, these findings place h-eag1 in the p53-miR-34-E2F1-h-eag1 pathway with h-eag as a terminal effecter component and with miR-34 (and E2F1) as a linker between p53 and h-eag1. Our study therefore fills the gap between p53 pathway and its cellular function mediated by h-eag1.
Collapse
Affiliation(s)
- Huixian Lin
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Zhe Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaobin Luo
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
- Cardiovascular Research Institute (Key Laboratory of Cardiovascular Research, Ministry of Education of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jiening Xiao
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Deli Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Cardiovascular Research Institute (Key Laboratory of Cardiovascular Research, Ministry of Education of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Cardiovascular Research Institute (Key Laboratory of Cardiovascular Research, Ministry of Education of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zhiguo Wang
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
- Cardiovascular Research Institute (Key Laboratory of Cardiovascular Research, Ministry of Education of China), Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
207
|
Chen Y, Sánchez A, Rubio ME, Kohl T, Pardo LA, Stühmer W. Functional K(v)10.1 channels localize to the inner nuclear membrane. PLoS One 2011; 6:e19257. [PMID: 21559285 PMCID: PMC3086910 DOI: 10.1371/journal.pone.0019257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/31/2011] [Indexed: 01/09/2023] Open
Abstract
Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression.
Collapse
Affiliation(s)
- Ye Chen
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Araceli Sánchez
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - María E. Rubio
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Tobias Kohl
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A. Pardo
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail: (LAP); (WS)
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail: (LAP); (WS)
| |
Collapse
|
208
|
Asher V, Warren A, Shaw R, Sowter H, Bali A, Khan R. The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int 2011; 11:6. [PMID: 21392380 PMCID: PMC3063814 DOI: 10.1186/1475-2867-11-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 03/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The voltage gated potassium (K+) channels Eag and HERG have been implicated in the pathogenesis of various cancers, through association with cell cycle changes and programmed cell death. The role of these channels in the onset and progression of ovarian cancer is unknown. An understanding of mechanism by which Eag and HERG channels affect cell proliferation in ovarian cancer cells is required and therefore we investigated their role in cell proliferation and their effect on the cell cycle and apoptosis of ovarian cancer cells. METHODS The presence of Eag and HERG was determined in SK-OV-3 cells using immunofluorescence and western blotting. The effect of the Eag blockers (imipramine and clofilium) and HERG blockers (E-4031 and ergtoxin) on cell proliferation was assessed using the MTS assay with further investigation of their role in the cell cycle and apoptosis determined by flow cytometry. RESULTS Eag and HERG channels were present in the cytoplasm and nuclei of SK-OV-3 cells. There was significant inhibition of proliferation of SK-OV-3 cells by imipramine (P < 0.001) and ergtoxin (P < 0.05) at 72 hours of culture. Incubation of cells with ergtoxin led to the accumulation of cells in the S and G2/M phase, while cells accumulated in S phase after incubation with E-4031, with no effect on apoptosis. Imipramine did not affect the cell cycle but increased the proportion of SK-OV-3 cells undergoing early apoptosis. CONCLUSION Both Eag and HERG channels are expressed in SK-OV-3 ovarian cancer cells and have a role in cell proliferation. HERG channels affect the cell cycle while Eag channels are implicated in the inhibition of apoptosis of ovarian cancer cells. The family of Eag channels may represent a new therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Viren Asher
- School of Graduate Entry Medicine and Health Royal Derby Hospital, Uttoxeter Road, Derby DE22 3DT, UK.
| | | | | | | | | | | |
Collapse
|
209
|
LeBoeuf B, Guo X, García LR. The effects of transient starvation persist through direct interactions between CaMKII and ether-a-go-go K+ channels in C. elegans males. Neuroscience 2011; 175:1-17. [PMID: 21145946 PMCID: PMC3059131 DOI: 10.1016/j.neuroscience.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. EGL-2 and UNC-43 interactions, induced after food deprivation, maintain reduced excitability in muscles involved in sex. In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - L. René García
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|
210
|
Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 2011; 4:67-85. [PMID: 20959630 PMCID: PMC3008964 DOI: 10.1242/dmm.005561] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/23/2010] [Indexed: 12/14/2022] Open
Abstract
Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest's environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.
Collapse
Affiliation(s)
- Douglas Blackiston
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
- Department of Regenerative and Developmental Biology, Forsyth Institute, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Joan M. Lemire
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Maria Lobikin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, and Biology Department, 200 Boston Avenue, Suite 4600, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
211
|
Asher V, Sowter H, Shaw R, Bali A, Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol 2010; 8:113. [PMID: 21190577 PMCID: PMC3022597 DOI: 10.1186/1477-7819-8-113] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/29/2010] [Indexed: 12/03/2022] Open
Abstract
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers.
Collapse
Affiliation(s)
- Viren Asher
- Department of Obstetrics and Gynaecology, School of Graduate Medicine and Health, Royal Derby Hospital, Uttoxeter road, Derby DE22 3DT, UK.
| | | | | | | | | |
Collapse
|
212
|
Merchan S, Pedelini L, Hueso G, Calzada A, Serrano R, Yenush L. Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes Cells 2010; 16:152-65. [PMID: 21143561 DOI: 10.1111/j.1365-2443.2010.01472.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which aberrantly accumulate potassium, are sensitive to agents causing replicative stress or DNA damage and present a cell cycle delay in the G(1) /S phase. A synthetic slow growth phenotype was identified in a subset of DNA repair mutants upon inhibition of Ppz activity. Moreover, we observe that this slow growth phenotype observed in cdc7(ts) mutants with reduced Ppz activity is reverted by disrupting the TRK1 potassium transporter gene. As over-expression of a mammalian potassium transporter leads to similar phenotypes, we conclude that these defects can be attributed to potassium accumulation. As we reported previously, internal potassium accumulation activates the Slt2 MAP kinase pathway. We show that the removal of SLT2 in ppz1 ppz2 mutants ameliorates sensitivity to agents causing replication stress and DNA damage, whereas over-activation of the pathway leads to similar cell cycle-related defects. Taken together, these results are consistent with inappropriate potassium accumulation reducing DNA replication efficiency, negatively influencing DNA integrity and leading to the requirement of mismatch repair, the MRX complex, or homologous recombination pathways for normal growth.
Collapse
Affiliation(s)
- Stephanie Merchan
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de Innovación, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
213
|
Asher V, Khan R, Warren A, Shaw R, Schalkwyk GV, Bali A, Sowter HM. The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol 2010; 5:78. [PMID: 21138547 PMCID: PMC3016344 DOI: 10.1186/1746-1596-5-78] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer is the second most common cancer of the female genital tract in the United Kingdom (UK), accounting for 6% of female deaths due to cancer. This cancer is associated with poor survival and there is a need for new treatments in addition to existing chemotherapy to improve survival. Potassium (K+) channels have been shown to be overexpressed in various cancers where they appear to play a role in cell proliferation and progression. Objectives To determine the expression of the potassium channels Eag and HERG in ovarian cancer tissue and to assess their role in cell proliferation. Methods The expression of Eag and HERG potassium channels was examined in an ovarian cancer tissue microarray. Their role in cell proliferation was investigated by blocking voltage-gated potassium channels in an ovarian cancer cell line (SK-OV-3). Results We show for the first time that high expression of Eag channels in ovarian cancer patients is significantly associated with poor survival (P = 0.016) unlike HERG channel expression where there was no correlation with survival. There was also a significant association of Eag staining with high tumour grade (P = 0.014) and presence of residual disease (P = 0.011). Proliferation of SK-OV-3 cells was significantly (P < 0.001) inhibited after treatment with voltage gated K+ channel blockers. Conclusion This novel finding demonstrates a role for Eag as a prognostic marker for survival in patients with ovarian cancer.
Collapse
Affiliation(s)
- Viren Asher
- Department of Obstetrics and Gynaecology, School of Graduate Entry Medicine and Health, Royal Derby Hospital, Uttoxeter Road, Derby DE22 3DT, UK.
| | | | | | | | | | | | | |
Collapse
|
214
|
Li Y, Liu X, Wu Y, Xu Z, Li H, Griffith LC, Zhou Y. Intracellular regions of the Eag potassium channel play a critical role in generation of voltage-dependent currents. J Biol Chem 2010; 286:1389-99. [PMID: 21059657 DOI: 10.1074/jbc.m110.184077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding, assembly, and trafficking of ion channels are tightly controlled processes and are important for biological functions relevant to health and disease. Here, we report that functional expression of the Eag channel is temperature-sensitive by a mechanism that is independent of trafficking or surface targeting of the channel protein. Eag channels in cells grown at 37 °C exhibit voltage-evoked gating charge movements but fail to conduct K(+) ions. By mutagenesis and chimeric channel studies, we show that the N- and C-terminal regions are involved in controlling a step after movement of the voltage sensor, as well as in regulating biophysical properties of the Eag channel. Synthesis and assembly of Eag at high temperature disrupt the ability of these domains to carry out their function. These results suggest an important role of the intracellular regions in the generation of Eag currents.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
215
|
Bittner S, Budde T, Wiendl H, Meuth SG. From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 2010; 20:999-1009. [PMID: 20529081 PMCID: PMC8094868 DOI: 10.1111/j.1750-3639.2010.00407.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 01/10/2023] Open
Abstract
TWIK-related acid-sensitive potassium channels (TASK1-3) belong to the family of two-pore domain (K(2P) ) potassium channels. Emerging knowledge about an involvement of TASK channels in cancer development, inflammation, ischemia and epilepsy puts the spotlight on a leading role of TASK channels under these conditions. TASK3 has been especially linked to cancer development. The pro-oncogenic potential of TASK3 could be shown in cell lines and in various tumor entities. Pathophysiological hallmarks in solid tumors (e.g. low pH and oxygen deprivation) regulate TASK3 channels. These conditions can also be found in (autoimmune) inflammation. Inhibition of TASK1,2,3 leads to a reduction of T cell effector function. It could be demonstrated that TASK1(-/-) mice are protected from experimental autoimmune inflammation while the same animals display increased infarct volumes after cerebral ischemia. Furthermore, TASK channels have both an anti-epileptic as well as a pro-epileptic potential. The relative contribution of these opposing influences depends on their cell type-specific expression and the conditions of the cellular environment. This indicates that TASK channels are per se neither protective nor detrimental but their functional impact depends on the "pathophysiological" scenario. Based on these findings TASK channels have evolved from "mere background" channels to key modulators in pathophysiological conditions.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfaelische Wilhelms‐University Muenster, Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| | - Sven G. Meuth
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
- Department of Neurology—Inflammatory disorders of the nervous system and neurooncology, University of Muenster, Muenster, Germany
| |
Collapse
|
216
|
Brelidze TI, Carlson AE, Davies DR, Stewart LJ, Zagotta WN. Identifying regulators for EAG1 channels with a novel electrophysiology and tryptophan fluorescence based screen. PLoS One 2010; 5. [PMID: 20824064 PMCID: PMC2932742 DOI: 10.1371/journal.pone.0012523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/02/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands. Methodology/Principal Findings Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators. In one arm of the screen we used electrophysiology to assess the functional effects of the library compounds on full-length EAG1 channels. In an orthogonal arm, we used tryptophan fluorescence to screen for binding of the library compounds to the isolated C-terminal region. Conclusions/Significance Several compounds from the flavonoid, indole and benzofuran chemical families emerged as binding partners and/or regulators of EAG1 channels. The two-prong screen can aid ligand and drug discovery for ligand-binding domains of other ion channels.
Collapse
Affiliation(s)
- Tinatin I. Brelidze
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anne E. Carlson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Douglas R. Davies
- Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America
| | - Lance J. Stewart
- Emerald BioStructures, Inc., Bainbridge Island, Washington, United States of America
| | - William N. Zagotta
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
217
|
Castle NA. Pharmacological modulation of voltage-gated potassium channels as a therapeutic strategy. Expert Opin Ther Pat 2010; 20:1471-503. [PMID: 20726689 DOI: 10.1517/13543776.2010.513384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD The human genome encodes at least 40 distinct voltage-gated potassium channel subtypes, which vary in regional expression, pharmacological and biophysical properties. Voltage-dependent potassium (Kv) channels help orchestrate many of the physiological and pathophysiological processes that promote and sometimes hinder the healthy functioning of our bodies. AREAS COVERED IN THIS REVIEW This review summarizes patent and scientific literature reports from the past decade highlighting the opportunities that Kv channels offer for the development of new therapeutic interventions for a wide variety of disorders. WHAT THE READER WILL GAIN The reader will gain an insight from an analysis of the associations of different Kv family members with disease processes, summary and evaluation of the development of therapeutically relevant pharmacological modulators of these channels, particularly focusing on proprietary agents being developed. TAKE HOME MESSAGE Development of new drugs that target Kv channels continue to be of great interest but is proving to be challenging. Nevertheless, opportunities for Kv channel modulators to have an impact on a wide range of disorders in the future remain an exciting prospect.
Collapse
|
218
|
Menéndez ST, Rodrigo JP, Allonca E, García-Carracedo D, Alvarez-Alija G, Casado-Zapico S, Fresno MF, Rodríguez C, Suárez C, García-Pedrero JM. Expression and clinical significance of the Kv3.4 potassium channel subunit in the development and progression of head and neck squamous cell carcinomas. J Pathol 2010; 221:402-10. [PMID: 20593490 DOI: 10.1002/path.2722] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The concept of ion channels as membrane therapeutic targets and diagnostic/prognostic biomarkers has attracted growing attention. We therefore investigated the expression pattern and clinical significance of the Kv3.4 potassium channel subunit during the development and progression of head and neck squamous cell carcinomas (HNSCCs). KCNC4 mRNA levels were determined by real-time RT-PCR in both HNSCC tissue specimens and derived cell lines. Kv3.4 protein expression was evaluated by immunohistochemistry in paraffin-embedded tissue specimens from 84 patients with laryngeal/pharyngeal squamous cell carcinomas and 67 patients with laryngeal dysplasias. Molecular alterations were correlated with clinicopathological parameters and patient outcome. Increased KCNC4 mRNA levels were found in 15 (54%) of 28 tumours, compared to the corresponding normal epithelia and varied mRNA levels were detected in 12 HNSCC-derived cell lines analysed. Increased Kv3.4 protein expression was observed in 34 (40%) of 84 carcinomas and also at early stages of HNSCC tumourigenesis. Thus, 35 (52%) of 67 laryngeal lesions displayed Kv3.4-positive staining in the dysplastic areas, whereas both stromal cells and normal adjacent epithelia exhibited negligible expression. No significant correlations were found between Kv3.4-positive expression in HNSCC and clinical data; however, Kv3.4 expression tended to diminish in advanced-stage tumours. Interestingly, patients carrying Kv3.4-positive dysplasias experienced a significantly higher laryngeal cancer incidence than did those with negative lesions (p = 0.0209). In addition, functional studies using HNSCC cells revealed that inhibition of Kv3.4 expression by siRNA leads to the inhibition of cell proliferation via selective cell cycle arrest at the G2/M phase without affecting apoptosis. Collectively, these data demonstrate for the first time that Kv3.4 expression is frequently increased during HNSCC tumourigenesis and correlated significantly with a higher cancer risk. Our findings support a role for Kv3.4 in malignant transformation and provide original evidence for the potential clinical utility of Kv3.4 expression as a biomarker for cancer risk assessment.
Collapse
Affiliation(s)
- Sofía Tirados Menéndez
- Servicio de Otorrinolaringología, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Liu X, Wu Y, Zhou Y. Intracellular linkers are involved in Mg2+-dependent modulation of the Eag potassium channel. Channels (Austin) 2010; 4:311-8. [PMID: 20855938 DOI: 10.4161/chan.4.4.12329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Modulation of activation kinetics by divalent ions is one of the characteristic features of Eag channels. Here, we report that Mg(2+)-dependent deceleration of Eag channel activation is significantly attenuated by a G297E mutation, which exhibits a gain-of-function phenotype in Drosophila by suppressing the effect of shaker mutation on behavior and neuronal excitability. The G297 residue is located in the intracellular linker of transmembrane segments S2 and S3, and is thus not involved in direct binding of Mg(2+) ions. Moreover, mutation of the only positively charged residue in the other intracellular linker between S4 and S5 also results in a dramatic reduction of Mg(2+)-dependent modulation of Eag activation kinetics. Collectively, the two mutations in eag eliminate or even paradoxically reverse the effect of Mg(2+) on channel activation and inactivation kinetics. Together, these results suggest an important role of the intracellular linker regions in gating processes of Eag channels.
Collapse
Affiliation(s)
- Xinqiu Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | | | | |
Collapse
|
220
|
Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1251-9. [DOI: 10.1016/j.bbabio.2010.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
|
221
|
Calmodulin interaction with hEAG1 visualized by FRET microscopy. PLoS One 2010; 5:e10873. [PMID: 20523736 PMCID: PMC2877719 DOI: 10.1371/journal.pone.0010873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ca2+-mediated regulation of ion channels provides a link between intracellular signaling pathways and membrane electrical activity. Intracellular Ca2+ inhibits the voltage-gated potassium channel EAG1 through the direct binding of calmodulin (CaM). Three CaM binding sites (BD-C1: 674-683, BD-C2: 711-721, BD-N: 151-165) have been identified in a peptide screen and were proposed to mediate binding. The participation of the three sites in CaM binding to the native channel, however, remains unclear. Methodology/Principal Findings Here we studied the binding of Ca2+/CaM to the EAG channel by visualizing the interaction between YFP-labeled CaM and Cerulean-labeled hEAG1 in mammalian cells by FRET. The results of our cellular approach substantiate that two CaM binding sites are predominantly involved; the high-affinity 1-8-14 based CaM binding domain in the N-terminus and the second C-terminal binding domain BD-C2. Mutations at these sites completely abolished CaM binding to hEAG1. Conclusions/Significance We demonstrated that the BD-N and BD-C2 binding domains are sufficient for CaM binding to the native channel, and, therefore, that BD-C1 is unable to bind CaM independently.
Collapse
|
222
|
Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16:107-21. [PMID: 20167536 DOI: 10.1016/j.molmed.2010.01.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 01/19/2023]
Abstract
Plasma membrane (PM) ion channels contribute to virtually all basic cellular processes and are also involved in the malignant phenotype of cancer cells. Here, we review the role of ion channels in cancer in the context of their involvement in the defined hallmarks of cancer: 1) self-sufficiency in growth signals, 2) insensitivity to antigrowth signals, 3) evasion of programmed cell death (apoptosis), 4) limitless replicative potential, 5) sustained angiogenesis and 6) tissue invasion and metastasis. Recent studies have indicated that the contribution of specific ion channels to these hallmarks varies for different types of cancer. Therefore, to determine the importance of ion channels as targets for cancer diagnosis and treatment their expression, function and regulation must be assessed for each cancer.
Collapse
|
223
|
García-Becerra R, Díaz L, Camacho J, Barrera D, Ordaz-Rosado D, Morales A, Ortiz CS, Avila E, Bargallo E, Arrecillas M, Halhali A, Larrea F. Calcitriol inhibits Ether-à go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp Cell Res 2010; 316:433-42. [DOI: 10.1016/j.yexcr.2009.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 11/28/2022]
|
224
|
Agarwal JR, Griesinger F, Stühmer W, Pardo LA. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 2010; 9:18. [PMID: 20105281 PMCID: PMC2835655 DOI: 10.1186/1476-4598-9-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/27/2010] [Indexed: 11/16/2022] Open
Abstract
Background The voltage-gated potassium channel hEag1 (KV10.1) has been related to cancer biology. The physiological expression of the human channel is restricted to the brain but it is frequently and abundantly expressed in many solid tumors, thereby making it a promising target for a specific diagnosis and therapy. Because chronic lymphatic leukemia has been described not to express hEag1, it has been assumed that the channel is not expressed in hematopoietic neoplasms in general. Results Here we show that this assumption is not correct, because the channel is up-regulated in myelodysplastic syndromes, chronic myeloid leukemia and almost half of the tested acute myeloid leukemias in a subtype-dependent fashion. Most interestingly, channel expression strongly correlated with increasing age, higher relapse rates and a significantly shorter overall survival. Multivariate Cox regression analysis revealed hEag1 expression levels in AML as an independent predictive factor for reduced disease-free and overall survival; such an association had not been reported before. As a functional correlate, specific hEag1 blockade inhibited the proliferation and migration of several AML cell lines and primary cultured AML cells in vitro. Conclusion Our observations implicate hEag1 as novel target for diagnostic, prognostic and/or therapeutic approaches in AML.
Collapse
Affiliation(s)
- Jasmin R Agarwal
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str, 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
225
|
Afrasiabi E, Hietamäki M, Viitanen T, Sukumaran P, Bergelin N, Törnquist K. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell Signal 2010; 22:57-64. [DOI: 10.1016/j.cellsig.2009.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/09/2009] [Indexed: 01/15/2023]
|
226
|
Abstract
The human genome encodes 40 voltage-gated K(+) channels (K(V)), which are involved in diverse physiological processes ranging from repolarization of neuronal and cardiac action potentials, to regulating Ca(2+) signalling and cell volume, to driving cellular proliferation and migration. K(V) channels offer tremendous opportunities for the development of new drugs to treat cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This Review discusses pharmacological strategies for targeting K(V) channels with venom peptides, antibodies and small molecules, and highlights recent progress in the preclinical and clinical development of drugs targeting the K(V)1 subfamily, the K(V)7 subfamily (also known as KCNQ), K(V)10.1 (also known as EAG1 and KCNH1) and K(V)11.1 (also known as HERG and KCNH2) channels.
Collapse
|
227
|
Rapamycin inhibits oncogenic intestinal ion channels and neoplasia in APC(Min/+) mice. Oncogene 2009; 29:1553-60. [PMID: 19966863 DOI: 10.1038/onc.2009.435] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis. Mice with a heterozygous APC(Min) mutation develop multiple intestinal neoplasia (Min) leading to premature death. Early in colorectal carcinogenesis, APC(Min/+) mice show enhanced Akt-mammalian target of rapamycin (mTOR) signaling, which is paralleled by upregulation of oncogenic K(+) channels. In this study, we tested the effect of mTOR inhibition with rapamycin on tumor formation in APC(Min/+) mice and evaluated ion channel regulation. We found that continuous long-term rapamycin treatment of APC(Min/+) mice dramatically inhibits intestinal neoplasia. Moreover, although untreated APC(Min/+) mice lose weight, experience intestinal bleeding and succumb to multiple neoplasia by 22.3+/-1.4 weeks of age, mice treated with rapamycin maintain stable weight and survive long term (39.6+/-3.4 weeks), with more than 30% surviving >1 year. Impressively, abnormalities in colonic electrolyte transport typical for APC(Min/+) mice are abolished, along with the suppression of epithelial Na(+) channel (ENaC) and oncogenic K(+) ion channels BK, Elk1 and Erg1, both functionally and at mRNA levels. These results show that continuous prophylaxis by rapamycin markedly inhibits the development of APC mutation-related polyposis, and suggest a novel contributing mechanism of action through the blockade of intestinal oncogenic ion channels.
Collapse
|
228
|
Hong HK, Yoon WJ, Kim YH, Yoo ES, Jo SH. Inhibition of the human ether-a-go-go-related gene (HERG) K+ channels by Lindera erythrocarpa. J Korean Med Sci 2009; 24:1089-98. [PMID: 19949665 PMCID: PMC2775857 DOI: 10.3346/jkms.2009.24.6.1089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/03/2008] [Indexed: 11/20/2022] Open
Abstract
Lindera erythrocarpa Makino (Lauraceae) is used as a traditional medicine for analgesic, antidote, and antibacterial purposes and shows anti-tumor activity. We studied the effects of Lindera erythrocarpa on the human ether-a-go-go-related gene (HERG) channel, which appears of importance in favoring cancer progression in vivo and determining cardiac action potential duration. Application of MeOH extract of Lindera erythrocarpa showed a dose-dependent decrease in the amplitudes of the outward currents measured at the end of the pulse (I(HERG)) and the tail currents of HERG (I(tail)). When the BuOH fraction and H(2)O fraction of Lindera erythrocarpa were added to the perfusate, both I(HERG) and I(tail) were suppressed, while the hexane fraction, CHCl(3) fraction, and EtOAc fraction did not inhibit either I(HERG) or I(tail). The potential required for half-maximal activation caused by EtOAc fraction, BuOH fraction, and H(2)O fraction shifted significantly. The BuOH fraction and H(2)O fraction (100 microg/mL) decreased g(max) by 59.6% and 52.9%, respectively. The H(2)O fraction- and BuOH fraction-induced blockades of I(tail) progressively decreased with increasing depolarization, showing the voltage-dependent block. Our findings suggest that Lindera erythrocarpa, a traditional medicine, blocks HERG channel, which could contribute to its anticancer and cardiac arrhythmogenic effect.
Collapse
Affiliation(s)
- Hee-Kyung Hong
- Department of Physiology, Institute of Bioscience and Biotechnology, Kangwon National University College of Medicine, Chuncheon, Korea
| | | | | | | | | |
Collapse
|
229
|
Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 2009; 8:3527-36. [PMID: 19823012 DOI: 10.4161/cc.8.21.9888] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All cells possess long-term, steady-state voltage gradients across the plasma membrane. These transmembrane potentials arise from the combined activity of numerous ion channels, pumps and gap junction complexes. Increasing data from molecular physiology now reveal that the role of changes in membrane voltage controls, and is in turn controlled by, progression through the cell cycle. We review recent functional data on the regulation of mitosis by bioelectric signals, and the function of membrane voltage and specific potassium, sodium and chloride ion channels in the proliferation of embryonic, somatic and neoplastic cells. Its unique properties place this powerful, well-conserved, but still poorly-understood signaling system at the center of the coordinated cellular interactions required for complex pattern formation. Moreover, disregulation of ion channel expression and function is increasingly observed to be not only a useful marker but likely a functional element in oncogenesis. New advances in genomics and the development of in vivo biophysical techniques suggest exciting opportunities for molecular medicine, bioengineering and regenerative approaches to human health.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | | | | |
Collapse
|
230
|
Brelidze TI, Carlson AE, Zagotta WN. Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods. J Biol Chem 2009; 284:27989-27997. [PMID: 19671703 PMCID: PMC2788851 DOI: 10.1074/jbc.m109.016337] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/14/2009] [Indexed: 11/06/2022] Open
Abstract
Similar to CNG and HCN channels, EAG and ERG channels contain a cyclic nucleotide binding domain (CNBD) in their C terminus. While cyclic nucleotides have been shown to facilitate opening of CNG and HCN channels, their effect on EAG and ERG channels is less clear. Here we explored cyclic nucleotide binding and modulation of mEAG1 and hERG1 channels with fluorescence and electrophysiology. Binding of cyclic nucleotides to the isolated CNBD of mEAG1 and hERG1 channels was examined with two independent fluorescence-based methods: changes in tryptophan fluorescence and fluorescence of an analog of cAMP, 8-NBD-cAMP. As a positive control for cyclic nucleotide binding we used changes in the fluorescence of the isolated CNBD of mHCN2 channels. Our results indicated that cyclic nucleotides do not bind to the isolated CNBD domain of mEAG1 channels and bind with low affinity (K(d) > or = 51 microm) to the isolated CNBD of hERG1 channels. Consistent with the results on the isolated CNBD, application of cyclic nucleotides to inside-out patches did not affect currents recorded from mEAG1 channels. Surprisingly, despite its low affinity binding to the isolated CNBD, cAMP also had no effect on currents from hERG1 channels even at high concentrations. Our results indicate that cyclic nucleotides do not directly modulate mEAG1 and hERG1 channels. Further studies are necessary to determine if the CNBD in the EAG family of K(+) channels might harbor a binding site for a ligand yet to be uncovered.
Collapse
Affiliation(s)
- Tinatin I Brelidze
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Anne E Carlson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
231
|
Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of KV1.3 gene promoter methylation. Pancreas 2009; 38:649-54. [PMID: 19465885 DOI: 10.1097/mpa.0b013e3181a56ebf] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to examine expression of 2 potassium (K) channels in pancreatic adenocarcinoma. METHODS The immunohistochemical and mRNA expression of GIRK1 (G-protein inwardly rectifying K channel 1) and KV1.3 channel (voltage-dependent K channel) was studied in 55 and 18 adenocarcinomas and 33 and 8 normal pancreas specimens, respectively. The methylation status of KV1.3 promoter was studied by methyl-specific polymerase chain reaction in 33 pancreatic adenocarcinomas. The results were correlated with the patients' prognosis. RESULTS GIRK1 was highly expressed in 80% (44/55) of adenocarcinoma samples versus 57.6% (19/33) of normal samples (P=0.03), as confirmed by reverse transcriptase-polymerase chain reaction results (P=0.007). KV1.3 expression was decreased in pancreatic adenocarcinomas compared with normal tissue (7.3% vs 39.4%; P=0.0005). KV1.3 down-expression was associated with metastatic tumors (P=0.018). KV1.3 promoter methylation was observed in 69.7% (22/33) of adenocarcinomas. CONCLUSION This is the first report of deregulation of 2 K channels in pancreatic adenocarcinoma. GIRK1 was highly expressed in pancreatic adenocarcinomas, corresponding to its role in cell proliferation. Methylation of KV1.3 gene promoter could explain the decrease of KV1.3 expression in adenocarcinomas. New therapeutic agents, such as DNA methylation inhibitors, could be useful against this dramatic cancer.
Collapse
|
232
|
Huang L, Dong L, Chen Y, Qi H, Xiao D. Effects of Sinusoidal Magnetic Field Observed on Cell Proliferation, Ion Concentration, and Osmolarity in Two Human Cancer Cell Lines. Electromagn Biol Med 2009; 25:113-26. [PMID: 16771300 DOI: 10.1080/15368370600719067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Low frequency magnetic fields have previously been shown to affect cell functions. In this article, the effects of 20 mT, 50 Hz sinusoidal magnetic field on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines (HL-60 and SK-Hep-1) were investigated. Inhibition of cell growth was observed. On the other hand, the exposure also increased the Na+, K+ ion concentration and osmolarity in cell supernatant compared to the control group. To our knowledge, this is the first study on cancer cells where magnetic fields affect osmolarity in cell supernatant. In addition, a model of cells exposed to the oscillating magnetic field is described as well as the characteristics of ions in and out of cells. The experimental data appears to be consistent with the theoretical analysis. The results are also discussed in terms of the relationships among cell growth, ion concentration, and osmolarity. Magnetic field inhibitions of cell growth in vitro may relate to changes in cell ion concentration and osmolarity.
Collapse
Affiliation(s)
- Lingzhen Huang
- Department of Electrical Engineering, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
233
|
Dolderer JH, Schuldes H, Bockhorn H, Altmannsberger M, Lambers C, von Zabern D, Jonas D, Schwegler H, Linke R, Schröder UH. HERG1 gene expression as a specific tumor marker in colorectal tissues. Eur J Surg Oncol 2009; 36:72-7. [PMID: 19577877 DOI: 10.1016/j.ejso.2009.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Colorectal carcinomas exhibit a frequent recurrence after curative surgery, which may partially be due to histopathologically inconspicuous minimal residual disease. Reliable markers for tumor cells in colorectal tissue are still missing. Therefore, in this study we compared the predictive value of the putative tumor markers carcinoembryonic antigen (CEA), cytokeratin-19 (CK19) and cytokeratin-20 (CK20) to that of a novel marker, the human ether-a-go-go-related gene (HERG1) K(+) channel, a suggested regulator of tumor cell proliferation. MATERIALS AND METHODS Using RT-PCR we studied HERG, CEA, CK19 and CK20 expression in colorectal carcinomas and non-carcinoma controls. HERG1 immunhistochemistry was performed in a total of 66 specimens, in colorectal carcinoma (n = 23), in matched histopathologically negative samples (n = 23) taken near the excision site from the same tumor patients and in healthy control biopsies (n = 20). In order to verify the relevance of HERG1 for tumor proliferation we studied the effect of HERG1 inhibition in the Colo-205 colon cancer carcinoma cell line using the MTT-assay. RESULTS HERG1 was expressed in all tumor samples regardless of their stage and in adenomas larger than 0.4 cm, but absent in small adenomas, sigmadiverticulitis specimen and healthy histopathologically negative samples, except for one which developed a tumor recurrence. In contrast, CEA, CK19 and CK20 were absent in some tumors. The selective HERG1 inhibitor E-4031 dose-dependently impaired tumor growth in the proliferation assays. DISCUSSION Our data indicate that HERG1, but not CEA, CK19 or CK20, is a highly sensitive and reliable tumor biomarker that may constitute a novel molecular target for tumor treatment.
Collapse
Affiliation(s)
- J H Dolderer
- Department of Surgery, Nordwest-Hospital, J.-W. Goethe-University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Díaz L, Ceja-Ochoa I, Restrepo-Angulo I, Larrea F, Avila-Chávez E, García-Becerra R, Borja-Cacho E, Barrera D, Ahumada E, Gariglio P, Alvarez-Rios E, Ocadiz-Delgado R, Garcia-Villa E, Hernández-Gallegos E, Camacho-Arroyo I, Morales A, Ordaz-Rosado D, García-Latorre E, Escamilla J, Sánchez-Peña LC, Saqui-Salces M, Gamboa-Dominguez A, Vera E, Uribe-Ramírez M, Murbartián J, Ortiz CS, Rivera-Guevara C, De Vizcaya-Ruiz A, Camacho J. Estrogens and human papilloma virus oncogenes regulate human ether-à-go-go-1 potassium channel expression. Cancer Res 2009; 69:3300-7. [PMID: 19351862 DOI: 10.1158/0008-5472.can-08-2036] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ether-à-go-go-1 (Eag1) potassium channels are potential tools for detection and therapy of numerous cancers. Here, we show human Eag1 (hEag1) regulation by cancer-associated factors. We studied hEag1 gene expression and its regulation by estradiol, antiestrogens, and human papillomavirus (HPV) oncogenes (E6/E7). Primary cultures from normal placentas and cervical cancer tissues; tumor cell lines from cervix, choriocarcinoma, keratinocytes, and lung; and normal cell lines from vascular endothelium, keratinocytes, and lung were used. Reverse transcription-PCR (RT-PCR) experiments and Southern blot analysis showed Eag1 expression in all of the cancer cell types, normal trophoblasts, and vascular endothelium, in contrast to normal keratinocytes and lung cells. Estradiol and antiestrogens regulated Eag1 in a cell type-dependent manner. Real-time RT-PCR experiments in HeLa cells showed that Eag1 estrogenic regulation was strongly associated with the expression of estrogen receptor-alpha. Eag1 protein was detected by monoclonal antibodies in normal placenta and placental blood vessels. Patch-clamp recordings in normal trophoblasts treated with estradiol exhibited potassium currents resembling Eag1 channel activity. Eag1 gene expression in keratinocytes depended either on cellular immortalization or the presence of HPV oncogenes. Eag1 protein was found in keratinocytes transfected with E6/E7 HPV oncogenes. Cell proliferation of E6/E7 keratinocytes was decreased by Eag1 antibodies inhibiting channel activity and by the nonspecific Eag1 inhibitors imipramine and astemizole; the latter also increased apoptosis. Our results propose novel oncogenic mechanisms of estrogen/antiestrogen use and HPV infection. We also suggest Eag1 as an early indicator of cell proliferation leading to malignancies and a therapeutic target at early stages of cellular hyperproliferation.
Collapse
Affiliation(s)
- Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 2009; 28:1792-806. [DOI: 10.1038/onc.2009.25] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
236
|
Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008; 283:36234-40. [PMID: 18927085 PMCID: PMC2606018 DOI: 10.1074/jbc.m801830200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 09/19/2008] [Indexed: 01/07/2023] Open
Abstract
Ether-á-go-go-1 (Eag1) is a CNS-localized voltage-gated potassium channel that is found ectopically expressed in a majority of extracranial solid tumors. While circumstantial evidence linking Eag1 to tumor biology has been well established, the mechanisms by which the channel contributes to tumor progression remain elusive. In this study, we have used in vivo and in vitro techniques to identify a candidate mechanism. A mutation that eliminates ion permeation fails to completely abolish xenograft tumor formation by transfected cells, indicating that Eag1 contributes to tumor progression independently of its primary function as an ion channel. Our data suggest that Eag1 interferes with the cellular mechanism for maintaining oxygen homeostasis, increasing HIF-1 activity, and thereby VEGF secretion and tumor vascularization.
Collapse
Affiliation(s)
- Bryan R Downie
- Max-Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci U S A 2008; 105:16608-13. [PMID: 18931301 PMCID: PMC2575467 DOI: 10.1073/pnas.0808328105] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Indexed: 02/07/2023] Open
Abstract
Ion transporters, and the resulting voltage gradients and electric fields, have been implicated in embryonic development and regeneration. These biophysical signals are key physiological aspects of the microenvironment that epigenetically regulate stem and tumor cell behavior. Here, we identify a previously unrecognized function for KCNQ1, a potassium channel known to be involved in human Romano-Ward and Jervell-Lange-Nielsen syndromes when mutated. Misexpression of its modulatory wild-type beta-subunit XKCNE1 in the Xenopus embryo resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. Depolarization of embryonic cells by misexpression of KCNE1 non-cell-autonomously induced melanocytes to overproliferate, spread out, and become highly invasive of blood vessels, liver, gut, and neural tube, leading to a deeply hyperpigmented phenotype. This effect is mediated by the up-regulation of Sox10 and Slug genes, thus linking alterations in ion channel function to the control of migration, shape, and mitosis rates during embryonic morphogenesis. Taken together, these data identify a role for the KCNQ1 channel in regulating key cell behaviors and reveal the molecular identity of a biophysical switch, by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell subpopulation.
Collapse
Affiliation(s)
- Junji Morokuma
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Douglas Blackiston
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Dany S. Adams
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| | - Guiscard Seebohm
- Institute of Physiology I, University of Tubingen, 72076 Tubingen, Germany
- Biochemistry I, Ruhr University Bochum, 44780 Bochum, Germany; and
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02155
| | - Michael Levin
- *Center for Regenerative and Developmental Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115
| |
Collapse
|
238
|
Ding XW, Gao S, Wang W, Yan JJ, Luo HS. Effect of imipramine on HT-29 cells' proliferation, cell cycle arrest and apoptosis and its mechanism. Shijie Huaren Xiaohua Zazhi 2008; 16:3043-3049. [DOI: 10.11569/wcjd.v16.i27.3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of imipramine on cell growth, cell cycle and apoptosis of HT-29 colon cancer cells, and to elucidate its molecular mechanism.
METHODS: Human colon cancer HT-29 cells were grown with routine cell cultivation and cells were treated with different concentrations of imiprmine. Cell survival was determined using MTT assay at 24 h, 48 h and 72 h, respectively; cell cycle distribution was assessed by FACS flow cytometery after propidium iodide staining; apoptosis of HT-29 cells was detected using Annexin V/PI methods and DNA ladder assay. Expression level of Eag1 protein was detected by Western blot, and mRNA expressions of p21, p27, CyclinE1 and CDK2 were determined by reverse transcription-polymerase chain reaction.
RESULTS: After treatment with imipramine in HT-29 cells at 24, 48 and 72 h, IC50 were 43, 32 and 22 μmol/L, respectively. Cell viability decreased dose-dependently and time-dependently after treatment with imiprmince in HT 29 cells. Cell cycle arrested during the G0/G1 phase accompanied by the induction of apoptosis in a dose-dependent manner. With imipramine increasing, HT-29 cells apoptosis index gradually increased (P < 0.01). Expression level of Eag1 protein was decreased in a dose-dependent manner (P < 0.05). The p21 mRNA and p27 mRNA were up-regulated (P < 0.05), and CDK2 mRNA and CyclinE1 mRNA were suppressed in imipramine-treated HT-29 cells in a dose-dependent manner (P < 0.05).
CONCLUSION: Imipramine, a non-specific inhibitor of Eag1 potassium channel, induces cell growth inhibition, cell-cycle arrest and apoptosis in HT-29 cells through up-regulation of p27 and/or p21.
Collapse
|
239
|
Wadhwa S, Wadhwa P, Dinda AK, Gupta NP. Differential expression of potassium ion channels in human renal cell carcinoma. Int Urol Nephrol 2008; 41:251-7. [PMID: 18777199 DOI: 10.1007/s11255-008-9459-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 08/11/2008] [Indexed: 11/29/2022]
Abstract
PURPOSE Ether-a-go-go (EAG) or EAG-related (ERG) voltage-gated potassium ion channels are involved in tumor generation and progression. Their over- and/or misexpression has been demonstrated in various tumors, and inhibition of these channels has suppressed proliferation of various cancer cells. We investigate and compare the pattern of expression of EAG and human ERG (HERG) channels in renal cell carcinoma and "normal" renal tissue. METHOD Tissue samples, obtained at the time of radical nephrectomy from the tumor-bearing areas, and uninvolved renal tissue were preserved in 4% paraformaldehyde and cryosectioned at 20 mum. Immunohistochemical and Western blot analysis was performed on the tumor and uninvolved kidney parenchyma by incubating with polyclonal anti-HERG 1b (Alomone Lab, Israel), anti-EAG1, and anti-EAG2. Pattern of expression of EAG/HERG channels in normal renal tissue and carcinoma were noted and compared. RESULTS The study was performed on 16 radical and four partial nephrectomy specimens (n = 20). All tumors in the cohort were clear cell renal carcinoma. Normal renal tissue was found to exhibit heterogeneous cytoplasmic positivity for EAG1 and focal HERG immunoreactivity (IR) in the proximal (PCT) and distal convoluted tubules (DCT). EAG2 IR was absent in the normal renal tissue. Clear cell RCC demonstrated a loss of HERG expression while diffuse overexpression of EAG1 and EAG2 was noted. Western blot analysis corroborated the immunohistochemical observations. CONCLUSIONS In our study both EAG1 and EAG2 potassium channels were overexpressed in clear cell renal cancer. In contrast to other adenocarcinomas, there is loss of HERG expression in clear cell RCC, which may possibly explain its chemoresistance. These ion channels may provide a potential for targeted therapy.
Collapse
Affiliation(s)
- Surbhi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
240
|
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88:1119-82. [PMID: 18626068 DOI: 10.1152/physrev.00020.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells of the gastrointestinal tract are an important barrier between the "milieu interne" and the luminal content of the gut. They perform transport of nutrients, salts, and water, which is essential for the maintenance of body homeostasis. In these epithelia, a variety of K(+) channels are expressed, allowing adaptation to different needs. This review provides an overview of the current literature that has led to a better understanding of the multifaceted function of gastrointestinal K(+) channels, thereby shedding light on pathophysiological implications of impaired channel function. For instance, in gastric mucosa, K(+) channel function is a prerequisite for acid secretion of parietal cells. In epithelial cells of small intestine, K(+) channels provide the driving force for electrogenic transport processes across the plasma membrane, and they are involved in cell volume regulation. Fine tuning of salt and water transport and of K(+) homeostasis occurs in colonic epithelia cells, where K(+) channels are involved in secretory and reabsorptive processes. Furthermore, there is growing evidence for changes in epithelial K(+) channel expression during cell proliferation, differentiation, apoptosis, and, under pathological conditions, carcinogenesis. In the future, integrative approaches using functional and postgenomic/proteomic techniques will help us to gain comprehensive insights into the role of K(+) channels of the gastrointestinal tract.
Collapse
Affiliation(s)
- Dirk Heitzmann
- Institute of Physiology and Clinic and Policlinic for Internal Medicine II, Regensburg, Germany
| | | |
Collapse
|
241
|
Han X, Xi L, Wang H, Huang X, Ma X, Han Z, Wu P, Ma X, Lu Y, Wang G, Zhou J, Ma D. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells. Biochem Biophys Res Commun 2008; 375:205-9. [PMID: 18706395 DOI: 10.1016/j.bbrc.2008.07.161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50=31.1 microM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21(Cip1) expression in a p53-dependent manner.
Collapse
Affiliation(s)
- Xiaobing Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Expression and prognostic roles of Eag1 in resected esophageal squamous cell carcinomas. Dig Dis Sci 2008; 53:2039-44. [PMID: 18080766 DOI: 10.1007/s10620-007-0116-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/05/2007] [Indexed: 12/22/2022]
Abstract
Expression of Eag1 was detected in resected esophageal squamous cell carcinomas tissues and matched tissues by immunohistochemistry and RT-PCR. Positive expression of Eag1 protein was 75% (51/68), and mRNA was 73% (8/11) in primary cancer tissues. Eag1 protein positively stained in all 10 metastatic lymph nodes. Eag1 protein and mRNA were negatively expressed in all non-cancerous matched tissues. Eag1 protein was associated with depth of penetration (P = 0.023), but not associated with other clinicopathological factors. Eag1 protein positive group had a significantly shorter survival time than the negative group (P = 0.005). Survival rates at each time-point for the positive group were lower than that for the negative group (P = 0.006), and Eag1 was identified as an independent prognostic factor of long-term survival (P = 0.016). In conclusion, Eag1 was aberrantly expressed in ESCC and correlated with poor prognosis after surgery.
Collapse
|
243
|
Martin S, Lino de Oliveira C, Mello de Queiroz F, Pardo LA, Stühmer W, Del Bel E. Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain. Neuroscience 2008; 155:833-44. [PMID: 18650019 DOI: 10.1016/j.neuroscience.2008.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
Eag1 (K(V)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K(+) channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed.
Collapse
Affiliation(s)
- S Martin
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Biology of Neuronal Signals, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Over the past two decades it has become apparent that essentially all living cells express voltage-activated ion channels. While the role of ion channels for electrical signaling between excitable cells is well known, their function in non-excitable cells is somewhat enigmatic. Research on cancer cells suggests that certain ion channels, K+ channels in particular, may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. An unsuspected role for K+ and Cl(-) channels has now been documented for primary brain tumors, glioma, where the concerted activity of these channels promotes cell invasion and the formation of brain metastasis. Specifically, Ca2+-activated K+ (BK) channels colocalize with ClC-3 Cl(-) channels to the invading processes of these tumor cells. Upon a rise in intracellular Ca2+, these channels activate and release K+ and Cl(-) ions together with obligated water causing a rapid shrinkage of the leading process. This in turn facilitates the invasion of the cell into the narrow and tortuous extracellular brain spaces. The NKCC1 cotransporter accumulates intracellular Cl(-) to unusually high concentrations, thereby establishing an outward directed gradient for Cl(-) ions. This allows glioma cells to utilize Cl(-) as an osmotically active anion during invasion. Importantly, the inhibition of Cl(-) channels retards cell volume changes, and, in turn, compromises tumor cell invasion. These findings have led to the clinical evaluation of a Cl(-) channel blocking peptide, chlorotoxin, in patients with malignant glioma. Data from this clinical trial shows remarkable tumor selectivity for chlorotoxin. The experimental therapeutic was well tolerated and is now evaluated in a multi-center phase II clinical trial. A similar role for Cl(-) and K+ channels is suspected in other metastatic cancers, and lessons learned from studies of gliomas may pave the way towards the development of novel therapeutics targeting ion channels.
Collapse
Affiliation(s)
- Harald Sontheimer
- The University of Alabama at Birmingham, Department of Neurobiology & Center for Glial Biology in Medicine, 1719 6th Avenue S., CIRC 410, Birmingham, AL 35294-0021, USA.
| |
Collapse
|
245
|
|
246
|
Tubulin as a Binding Partner of the Heag2 Voltage-Gated Potassium Channel. J Membr Biol 2008; 222:115-25. [DOI: 10.1007/s00232-008-9104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
|
247
|
Fraser SP, Pardo LA. Ion channels: functional expression and therapeutic potential in cancer. Colloquium on Ion Channels and Cancer. EMBO Rep 2008; 9:512-5. [PMID: 18451877 DOI: 10.1038/embor.2008.75] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/11/2008] [Indexed: 12/27/2022] Open
Affiliation(s)
- Scott P Fraser
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
248
|
Abstract
Emerging evidence indicates that ion channels act in a variety of physiologic and pathologic processes beyond electronic signal transmission, including in cancer. We recently found that the potassium channel Eag1 can mediate cancer progression and that a monoclonal antibody, which inhibits Eag1 action, can effectively restrict cancer cell proliferation. We discuss how Eag1 targeting may be useful in diagnostic or therapeutic settings.
Collapse
Affiliation(s)
- Luis A Pardo
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | |
Collapse
|
249
|
Ding XW, Luo HS, Luo B, Xu DQ, Gao S. Overexpression of hERG1 in resected esophageal squamous cell carcinomas: a marker for poor prognosis. J Surg Oncol 2008; 97:57-62. [PMID: 17786970 DOI: 10.1002/jso.20891] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to evaluate the expression and prognostic roles of human ether à go-go related gene (hERG1) potassium channels in resected esophageal squamous cell carcinoma. METHODS Expression of hERG1 protein and mRNA was detected by immunohistochemistry and reverse transcription PCR in resected esophageal squamous cell carcinomas (ESCCs) and non-cancerous matched tissues, and the correlation was examined between expression of hERG1 protein and clinicopathological factors and prognosis of ESCC patients. RESULTS Frequency of positive expression of hERG1 protein was 77.9% (53/68), mRNA was 81.8% (9/11). hERG1 protein and mRNA were negatively expressed in all non-cancerous matched tissues. There was no significant correlation between hERG1 protein expression and lymph node metastases, depth of penetration, stage, and other clinicopathological factors. Completeness was 92.5% for hERG1-positive group and 92.0% for hERG1-negative group. ESCC patients with positive expression of hERG1 protein had a significantly shorter postoperative survival time than those with negative expression (median, 30 vs. 56 months). Survival rates at each time-point for hERG1-positive group were lower than that for hERG1-negative group, and hERG1 was identified as an independent prognostic factor of long-term survival by multivariate analysis. CONCLUSION In ESCC, hERG1 was aberrantly expressed and correlated with poor prognosis after surgery.
Collapse
Affiliation(s)
- Xiang-Wu Ding
- Department of Gastroenterology, Xiangfan Central Hospital, Xiangfan, People's Republic of China.
| | | | | | | | | |
Collapse
|
250
|
Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 2008; 57:181-195. [PMID: 18329284 DOI: 10.1016/j.phrs.2008.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/16/2022]
Abstract
The human ether-à-go-go related gene (hERG) K+ channel is of great interest for both basic researchers and clinicians because its blockade by drugs can lead to QT prolongation, which is a risk factor for torsades de pointes, a potentially life-threatening arrhythmia. A growing list of agents with "QT liability" have been withdrawn from the market or restricted in their use, whereas others did not even receive regulatory approval for this reason. Thus, hERG K+ channels have become a primary antitarget (i.e. an unwanted target) in drug development because their blockade causes potentially serious side effects. On the other hand, the recent identification and functional characterization of hERG K+ channels not only in the heart, but also in several other tissues (e.g. neurons, smooth muscle and cancer cells) may have far reaching implications for drug development for a possible exploitation of hERG as a target, especially in oncology and cardiology.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Pharmacology, University of Bologna, Via Irnerio, 48, I-40126 Bologna BO, Bologna, Italy
| | | | | | | |
Collapse
|