201
|
Curtiss J, Rodriguez-Uribe L, Stewart JM, Zhang J. Identification of differentially expressed genes associated with semigamy in Pima cotton (Gossypium barbadense L.) through comparative microarray analysis. BMC PLANT BIOLOGY 2011; 11:49. [PMID: 21410961 PMCID: PMC3068091 DOI: 10.1186/1471-2229-11-49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 03/16/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Semigamy in cotton is a type of facultative apomixis controlled by an incompletely dominant autosomal gene (Se). During semigamy, the sperm and egg cells undergo cellular fusion, but the sperm and egg nucleus fail to fuse in the embryo sac, giving rise to diploid, haploid, or chimeric embryos composed of sectors of paternal and maternal origin. In this study we sought to identify differentially expressed genes related to the semigamy genotype by implementing a comparative microarray analysis of anthers and ovules between a non-semigametic Pima S-1 cotton and its doubled haploid natural isogenic mutant semigametic 57-4. Selected differentially expressed genes identified by the microarray results were then confirmed using quantitative reverse transcription PCR (qRT-PCR). RESULTS The comparative analysis between isogenic 57-4 and Pima S-1 identified 284 genes in anthers and 1,864 genes in ovules as being differentially expressed in the semigametic genotype 57-4. Based on gene functions, 127 differentially expressed genes were common to both semigametic anthers and ovules, with 115 being consistently differentially expressed in both tissues. Nine of those genes were selected for qRT-PCR analysis, seven of which were confirmed. Furthermore, several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues. CONCLUSION As the first report using microarray analysis, several important metabolic pathways affected by differentially expressed genes in the semigametic cotton genotype have been identified and described in detail. While these genes are unlikely to be the semigamy gene itself, the effects associated with expression changes in those genes do mimic phenotypic traits observed in semigametic plants. A more in-depth analysis of semigamy is necessary to understand its expression and regulation at the genetic and molecular level.
Collapse
Affiliation(s)
- Jessica Curtiss
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Laura Rodriguez-Uribe
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - J McD Stewart
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
202
|
Roy B, Copenhaver GP, von Arnim AG. Fluorescence-tagged transgenic lines reveal genetic defects in pollen growth--application to the eIF3 complex. PLoS One 2011; 6:e17640. [PMID: 21408229 PMCID: PMC3049774 DOI: 10.1371/journal.pone.0017640] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022] Open
Abstract
Background Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis. Methodology/Principal Findings Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation. Conclusion/Significance eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
203
|
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD. MicroRNA activity in the Arabidopsis male germline. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1611-20. [PMID: 21357774 PMCID: PMC5536363 DOI: 10.1093/jxb/erq452] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/19/2023]
Abstract
Most of the core proteins involved in the microRNA (miRNA) pathway in plants have been identified, and almost simultaneously hundreds of miRNA sequences processed in the Arabidopsis sporophyte have been discovered by exploiting next-generation sequencing technologies. However, there is very limited understanding about potentially distinct mechanisms of post-transcriptional regulation between different cell lineages. In this review the focus is on the Arabidopsis male gametophyte (pollen), where the germline differentiates after meiosis giving rise to the male gametes. Based on comparative analysis of miRNAs identified in sperm cells by in-depth sequencing, their possible functions during germ cell specification and beyond fertilization are discussed. In addition, 25 potentially novel miRNAs processed in sperm cells and pollen were identified, as well as enriched variations in the sequence length of known miRNAs, which might indicate subfunctionalization by association with a putative germline-specific Argonaute complex. ARGONAUTE 5 (AGO5), by close homology to AGO1 and localizing preferentially to the sperm cell cytoplasm in mature pollen, may be part of such a complex.
Collapse
|
204
|
De Smet I, Beeckman T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 2011; 12:177-88. [PMID: 21346731 DOI: 10.1038/nrm3064] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
205
|
Suwabe K, Suzuki G, Watanabe M. Achievement of genetics in plant reproduction research: the past decade for the coming decade. Genes Genet Syst 2011; 85:297-310. [PMID: 21317542 DOI: 10.1266/ggs.85.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a variety of innovations of emerging technologies in science have been accomplished. Advanced research environment in plant science has made it possible to obtain whole genome sequence in plant species. But now we recognize this by itself is not sufficient to understand the overall biological significance. Since Gregor Mendel established a principle of genetics, known as Mendel's Laws of Inheritance, genetics plays a prominent role in life science, and this aspect is indispensable even in modern plant biology. In this review, we focus on achievements of genetics on plant sexual reproduction research in the last decade and discuss the role of genetics for the coming decade. It is our hope that this will shed light on the importance of genetics in plant biology and provide valuable information to plant biologists.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | |
Collapse
|
206
|
Baroux C, Raissig MT, Grossniklaus U. Epigenetic regulation and reprogramming during gamete formation in plants. Curr Opin Genet Dev 2011; 21:124-33. [PMID: 21324672 DOI: 10.1016/j.gde.2011.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Plants and animals reproduce sexually via specialized, highly differentiated gametes. Yet, gamete formation drastically differs between the two kingdoms. In flowering plants, the specification of cells destined to enter meiosis occurs late in development, gametic and accessory cells are usually derived from the same meiotic product, and two distinct female gametes involved in double fertilization differentiate. This poses fascinating questions in terms of gamete development and the associated epigenetic processes. Although studies in this area remain at their infancy, it becomes clear that large-scale epigenetic reprogramming, involving RNA-directed DNA methylation, chromatin modifications, and nucleosome remodeling, contributes to the establishment of transcriptionally repressive or permissive epigenetic landscapes. Furthermore, a role for small RNAs in the regulation of transposable elements during gametogenesis is emerging.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | |
Collapse
|
207
|
Wan L, Zha W, Cheng X, Liu C, Lv L, Liu C, Wang Z, Du B, Chen R, Zhu L, He G. A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. PLANTA 2011; 233:309-23. [PMID: 21046148 DOI: 10.1007/s00425-010-1301-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 10/12/2010] [Indexed: 05/06/2023]
Abstract
Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.
Collapse
Affiliation(s)
- Linglin Wan
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Jiang SY, Ramachandran S. Functional genomics of rice pollen and seed development by genome-wide transcript profiling and Ds insertion mutagenesis. Int J Biol Sci 2010; 7:28-40. [PMID: 21209789 PMCID: PMC3014553 DOI: 10.7150/ijbs.7.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/27/2010] [Indexed: 01/10/2023] Open
Abstract
Rice pollen and seed development are directly related to grain yield. To further improve rice yield, it is important for us to functionally annotate the genes controlling pollen/seed development and to use them for rice breeding. Here we first carried out a genome-wide expression analysis with an emphasis on genes being involved in rice pollen and seed development. Based on the transcript profiling, we have identified and functionally classified 82 highly expressed pollen-specific, 12 developing seed-specific and 19 germinating seed-specific genes. We then presented the utilization of the maize transposon Dissociation (Ds) insertion lines for functional genomics of rice pollen and seed development and as alternative germplasm resources for rice breeding. We have established a two-element Activator/Dissociation (Ac/Ds) gene trap tagging system and generated around 20,000 Ds insertion lines. We have subjected these lines for screens to obtain high and low yield Ds insertion lines. Some interesting lines have been obtained with higher yield or male sterility. Flanking Sequence Tags (FSTs) analyses showed that these Ds-tagged genes encoded various proteins including transcription factors, transport proteins, unknown functional proteins and so on. They exhibited diversified expression patterns. Our results suggested that rice could be improved not only by introducing foreign genes but also by knocking out its endogenous genes. This finding might provide a new way for rice breeder to further improve rice varieties.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| | | |
Collapse
|
209
|
Oh SA, Park KS, Twell D, Park SK. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:839-50. [PMID: 21105930 DOI: 10.1111/j.1365-313x.2010.04374.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular patterning and differentiation in plants depend on the balance of asymmetric and symmetric divisions. Patterning of the male gametophyte (pollen grains) in flowering plants requires asymmetric division of the microspore followed by a symmetric division of the germ cell to produce three highly differentiated cells: a single vegetative cell and two sperm cells. In Arabidopsis sidecar pollen (scp) mutants a proportion of microspores first divide symmetrically, and then go on to produce 'four-celled' pollen with an extra vegetative cell; however, details of the timing and origin of phenotypic defects in scp and the identity of the SCP gene have remained obscure. Comparative analysis of the original hypomorphic scp-1 allele and a T-DNA-induced null allele, scp-2, revealed that in the absence of SCP, microspores undergo normal nuclear positioning, but show delayed entry into mitosis, increased cell expansion and alterations in the orientation of nuclear division. We identified the SCP gene to encode a male gametophyte-specific LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES 2-like (LBD/ASL) protein that is expressed in microspore nuclei in a tightly regulated phase-specific manner. Therefore, our study demonstrates that the correct patterning of male gametophyte depends on the activity of a nuclear LBD/ASL family protein that is essential for the correct timing and orientation of asymmetric microspore division.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
210
|
Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development. PLANT & CELL PHYSIOLOGY 2010; 51:2060-81. [PMID: 21062870 DOI: 10.1093/pcp/pcq165] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. A decrease in expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes which appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several cyclin-dependent kinases (CDKs), cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the most extensive and most comprehensive data set available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Collapse
Affiliation(s)
- Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. ACTA ACUST UNITED AC 2010; 24:171-87. [PMID: 21076968 DOI: 10.1007/s00497-010-0155-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/23/2010] [Indexed: 02/06/2023]
Abstract
The tomato clade within the genus Solanum has numerous advantages for mechanistic studies of reproductive isolation. Its thirteen closely related species, along with four closely allied Solanum species, provide a defined group with diverse mating systems that display complex interspecific reproductive barriers. Several kinds of pre- and postzygotic barriers have already been identified within this clade. Well-developed genetic maps, introgression lines, interspecific bridging lines, and the newly available draft genome sequence of the domesticated tomato (Solanum lycopersicum) are valuable tools for the genetic analysis of interspecific reproductive barriers. The excellent chromosome morphology of these diploid species allows detailed cytological analysis of interspecific hybrids. Transgenic methodologies, well developed in the Solanaceae, allow the functional testing of candidate reproductive barrier genes as well as live imaging of pollen rejection events through the use of fluorescently tagged proteins. Proteomic and transcriptomics approaches are also providing new insights into the molecular nature of interspecific barriers. Recent progress toward understanding reproductive isolation mechanisms using these molecular and genetic tools is assessed in this review.
Collapse
|
212
|
|
213
|
Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics 2010; 186:1425-33. [PMID: 20923978 DOI: 10.1534/genetics.110.122911] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Separate sexes have evolved repeatedly from hermaphroditic ancestors in flowering plants, and thus select taxa can provide unparalleled insight into the evolutionary dynamics of sex chromosomes that are thought to be shared by plants and animals alike. Here we ask whether two octoploid sibling species of wild strawberry--one almost exclusively dioecious (males and females), Fragaria chiloensis, and one subdioecious (males, females, and hermaphrodites), F. virginiana--share the same sex-determining chromosome. We created a genetic map of the sex chromosome and its homeologs in F. chiloensis and assessed macrosynteny between it and published maps of the proto-sex chromosome of F. virginiana and the homeologous autosome of hermaphroditic diploid species. Segregation of male and female function in our F. chiloensis mapping population confirmed that linkage and dominance relations are similar to those in F. virginiana. However, identification of the molecular markers most tightly linked to the sex-determining locus in the two octoploid species shows that, in both, this region maps to homeologues of chromosome 6 in diploid congeners, but is located at opposite ends of their respective chromosomes.
Collapse
|
214
|
Forsthoefel NR, Dao TP, Vernon DM. PIRL1 and PIRL9, encoding members of a novel plant-specific family of leucine-rich repeat proteins, are essential for differentiation of microspores into pollen. PLANTA 2010; 232:1101-1114. [PMID: 20697737 DOI: 10.1007/s00425-010-1242-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Plant intracellular Ras-group-related leucine-rich repeat proteins (PIRLs) are a plant-specific class of leucine-rich repeat (LRR) proteins related to animal and fungal LRRs that take part in developmental signaling and gene regulation. As part of a systematic functional study of the Arabidopsis thaliana PIRL gene family, T-DNA knockout mutants defective in the closely related PIRL1 and PIRL9 genes were identified and characterized. Pirl1 and pirl9 single mutants displayed normal transmission and did not exhibit an obvious developmental phenotype. To investigate the possibility of functional redundancy, crosses to generate double mutants were carried out; however, pirl1;pirl9 plants were not recovered. Reciprocal crosses between wild type and pirl1/PIRL1;pirl9 plants, which produce 50% pirl1;pirl9 gametophytes, indicated male-specific transmission failure of the double-mutant allele combination. Scanning electron microscopy and viability staining showed that approximately half of the pollen produced by pirl1/PIRL1;pirl9 plants was inviable and severely malformed. Tetrad analyses with qrt1 indicated that pollen defects segregated with the double-mutant allele combination, thus demonstrating that PIRL1 and PIRL9 function after meiosis. Pollen development was characterized with bright field, fluorescence, and transmission electron microscopy. Pirl1;pirl9 mutants stopped growing as microspores, failed to initiate vacuolar fission, aborted, and underwent cytoplasmic degeneration. Development consistently arrested at the late microspore stage, just prior to pollen mitosis I. Thus, PIRL1 and PIRL9 have redundant roles essential at a key transition point early in pollen development. Together, these results define a functional context for these two members of this distinct class of plant LRR genes.
Collapse
|
215
|
Backues SK, Korasick DA, Heese A, Bednarek SY. The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. THE PLANT CELL 2010; 22:3218-31. [PMID: 20959563 PMCID: PMC2990125 DOI: 10.1105/tpc.110.077727] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/20/2010] [Accepted: 09/27/2010] [Indexed: 05/20/2023]
Abstract
Clathrin-mediated membrane trafficking is critical for multiple stages of plant growth and development. One key component of clathrin-mediated trafficking in animals is dynamin, a polymerizing GTPase that plays both regulatory and mechanical roles. Other eukaryotes use various dynamin-related proteins (DRP) in clathrin-mediated trafficking. Plants are unique in the apparent involvement of both a family of classical dynamins (DRP2) and a family of dynamin-related proteins (DRP1) in clathrin-mediated membrane trafficking. Our analysis of drp2 insertional mutants demonstrates that, similar to the DRP1 family, the DRP2 family is essential for Arabidopsis thaliana development. Gametophytes lacking both DRP2A and DRP2B were inviable, arresting prior to the first mitotic division in both male and female gametogenesis. Mutant pollen displayed a variety of defects, including branched or irregular cell plates, altered Golgi morphology and ectopic callose deposition. Ectopic callose deposition was also visible in the pollen-lethal drp1c-1 mutant and appears to be a specific feature of pollen-defective mutants with impaired membrane trafficking. However, drp2ab pollen arrested at earlier stages in development than drp1c-1 pollen and did not accumulate excess plasma membrane or display other gross defects in plasma membrane morphology. Therefore, the DRP2 family, but not DRP1C, is necessary for cell cycle progression during early gametophyte development. This suggests a possible role for DRP2-dependent clathrin-mediated trafficking in the transduction of developmental signals in the gametophyte.
Collapse
Affiliation(s)
- Steven K. Backues
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - David A. Korasick
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
216
|
Kliwer I, Dresselhaus T. Establishment of the male germline and sperm cell movement during pollen germination and tube growth in maize. PLANT SIGNALING & BEHAVIOR 2010; 5:885-9. [PMID: 20505353 PMCID: PMC3014542 DOI: 10.4161/psb.5.7.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two sperm cells are required to achieve double fertilization in flowering plants (angiosperms). In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and are transported to the female gametes (egg and central cell) via the pollen tube. The two sperm cells arise from the generative pollen cell either within the pollen grain or after germination inside the pollen tube. While pollen tube growth and sperm behaviour has been intensively investigated in model plant species such as tobacco and lily, little is know about sperm dynamics and behaviour during pollen germination, tube growth and sperm release in grasses. In the March issue of Journal of Experimental Botany, we have reported about the sporophytic and gametophytic control of pollen tube germination, growth and guidance in maize.1 Five progamic phases were distinguished involving various prezygotic crossing barriers before sperm cell delivery inside the female gametophyte takes place. Using live cell imaging and a generative cell-specific promoter driving α-tubulin-YFP expression in the male germline, we report here the formation of the male germline inside the pollen grain and the sperm behaviour during pollen germination and their movement dynamics during tube growth in maize.
Collapse
Affiliation(s)
- Irina Kliwer
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
217
|
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 2010; 11:338. [PMID: 20507633 PMCID: PMC2895629 DOI: 10.1186/1471-2164-11-338] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/28/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
Collapse
Affiliation(s)
- Li Q Wei
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
218
|
Metzinger CA, Bergmann DC. Plant asymmetric cell division regulators: pinch-hitting for PARs? F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948808 PMCID: PMC2948360 DOI: 10.3410/b2-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Like animals, plants use asymmetric cell divisions to create pattern and diversity. Due to a rigid cell wall and lack of cell migrations, these asymmetric divisions incur the additional constraints of being locked into their initial orientations. How do plants specify and carry out asymmetric divisions? Intercellular communication has been suspected for some time and recent developments identify these signals as well as point to segregated determinants and proteins with PAR-like functions as parts of the answer.
Collapse
Affiliation(s)
- Carrie A Metzinger
- Department of Biology, 371 Serra Mall, Stanford University Stanford, CA, 94305-5020 USA
| | | |
Collapse
|
219
|
Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: uncovering the weakest links. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1959-68. [PMID: 20351019 PMCID: PMC2917059 DOI: 10.1093/jxb/erq053] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 05/18/2023]
Abstract
The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.
Collapse
Affiliation(s)
| | | | - Jeffrey F. Harper
- Biochemistry Department MS200, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
220
|
Abstract
Pollen grains represent the highly reduced haploid male gametophyte generation in angiosperms. They play an essential role in plant fertility by generating and delivering twin sperm cells to the embryo sac to undergo double fertilization. The functional specialization of the male gametophyte and double fertilization are considered to be key innovations in the evolutionary success of angiosperms. The haploid nature of the male gametophyte and its highly tractable ontogeny makes it an attractive system to study many fundamental biological processes, such as cell fate determination, cell-cycle progression and gene regulation. The present mini-review encompasses key advances in our understanding of the molecular mechanisms controlling male gametophyte patterning in angiosperms. A brief overview of male gametophyte development is presented, followed by a discussion of the genes required at landmark events of male gametogenesis. The value of the male gametophyte as an experimental system to study the interplay between cell fate determination and cell-cycle progression is also discussed and exemplified with an emerging model outlining the regulatory networks that distinguish the fate of the male germline from its sister vegetative cell. We conclude with a perspective of the impact emerging data will have on future research strategies and how they will develop further our understanding of male gametogenesis and plant development.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
221
|
Li T, Gong C, Wang T. RA68 is required for postmeiotic pollen development in Oryza sativa. PLANT MOLECULAR BIOLOGY 2010; 72:265-277. [PMID: 19888555 DOI: 10.1007/s11103-009-9566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/25/2009] [Indexed: 05/27/2023]
Abstract
Postmeiotic development is a unique characteristic of flowering plants. During the development, microspores undergo two cycles of mitosis (PMI and PMII) and a subsequent maturation process to finally produce the mature pollen, but the mechanism underlying the development is still largely unknown. Here, we report on the roles of a novel gene, RA68, in postmeiotic pollen development in Oryza sativa. RA68 was expressed preferentially in shoots and flowers. In flowers, the transcript persisted from the floral organ differentiation to the mature pollen stages and showed preferential accumulation in male meiocytes, developing pollen and tapetal cells. RA68-deficient RNAi lines showed reduced seed setting and pollen viability but not an aberrant phenotype in vegetative organs. Knockdown of RA68 led to arrested PMI, smaller pollen grains with little or no starch, and aborted pollen but not severely distruped male meiosis. Additionally, no abnormality of anther wall development was observed in RA68-RNAi lines. RA68 may be required for postmeiotic pollen development by affecting PMI and starch accumulation.
Collapse
Affiliation(s)
- Tang Li
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, 100093, China
| | | | | |
Collapse
|
222
|
Oh SA, Pal MD, Park SK, Johnson JA, Twell D. The tobacco MAP215/Dis1-family protein TMBP200 is required for the functional organization of microtubule arrays during male germline establishment. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:969-81. [PMID: 20022922 PMCID: PMC2826647 DOI: 10.1093/jxb/erp367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 05/19/2023]
Abstract
The haploid microspore division during pollen development in flowering plants is an intrinsically asymmetric division which establishes the male germline for sexual reproduction. Arabidopsis gem1 mutants lack the male germline as a result of disturbed microspore polarity, division asymmetry, and cytokinesis and represent loss-of-function mutants in MOR1/GEM1, a plant orthologue of the conserved MAP215/Dis1 microtubule associated protein (MAP) family. This provides genetic evidence for the role of MAP215/Dis1 in the organization of gametophytic microtubule arrays, but it has remained unknown how microtubule arrays are affected in gem1 mutant microspores. Here, novel male gametophytic microtubule-reporter Nicotiana tabacum plants were constructed, expressing a green fluorescent protein-alpha-TUBULIN fusion protein (GFP-TUA6) under the control of a microspore-specific promoter. These plants allow effective visualization of all major male gametophytic microtubule arrays and provide useful tools to study the regulation of microtubule arrays by MAPs and other effectors. Depletion of TMBP200, a tobacco homologue of MOR1/GEM1 in gametophytic microtubule-reporter plants using microspore-targeted RNA interference, induced defects in microspore polarity, division asymmetry and cytokinesis that were associated with striking defects in phragmoplast position, orientation, and structure. Our observations further reveal a requirement for TMBP200 in gametophytic spindle organization and a novel role in spindle position and orientation in polarized microspores. These results provide direct evidence for the function of MAP215/Dis1 family protein TMBP200 in the organization of microtubule arrays critical for male germline formation in plants.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Madhumita Das Pal
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Soon Ki Park
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - James Andrew Johnson
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David Twell
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
223
|
Andreuzza S, Li J, Guitton AE, Faure JE, Casanova S, Park JS, Choi Y, Chen Z, Berger F. DNA LIGASE I exerts a maternal effect on seed development in Arabidopsis thaliana. Development 2010; 137:73-81. [PMID: 20023162 DOI: 10.1242/dev.041020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Maternal effects are defined by mutations that affect the next generation when they are maternally inherited. To date, most indepth studies of maternal effects in plants have attributed their origin to genomic imprinting that restricts expression to the maternal allele. The DNA glycosylase DEMETER (DME) removes methylated cytosine residues, causing transcriptional activation of the maternal allele of imprinted genes. In this study, we show that loss-of-function of the major DNA LIGASE I (AtLIG1) in Arabidopsis thaliana causes maternal effects in the endosperm, which is the seed tissue that nurtures embryo development. AtLIG1 expression is not imprinted and has a limited impact on imprinted gene expression. Genetic interaction analyses further indicate that AtLIG1 acts downstream of DME. The removal of methylated cytosine residues by DME involves the creation of DNA single-strand breaks and our results suggest that AtLIG1 repairs these breaks.
Collapse
Affiliation(s)
- Sebastien Andreuzza
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Brownfield L, Twell D. A dynamic DUO of regulatory proteins coordinates gamete specification and germ cell mitosis in the angiosperm male germline. PLANT SIGNALING & BEHAVIOR 2009; 4:1159-62. [PMID: 20514235 PMCID: PMC2819445 DOI: 10.4161/psb.4.12.9950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/08/2023]
Abstract
The production of two functional sperm cells within each male gametophyte is essential for double fertilization in flowering plants and involves a single mitotic division of the male germ cell and cell specification to produce functional gametes. Several proteins that are important regulators of male germ cell division have been identified as well as the R2R3 MYB protein DUO1 that has a dual role in cell division and cell specification. We recently identified a novel regulatory protein DUO3, that has overlapping roles with DUO1 in cell division and specification and shows similarity to GON4 related cell lineage regulators in animals. DUO3 also has important roles outside the germline and is required for embryo patterning and meristem function. We outline the regulatory roles of DUO3 in male germline development and its possible mechanisms of action as a lineage regulator in current models that link germ cell cycle control and gamete specification.
Collapse
Affiliation(s)
| | - David Twell
- Department of Biology; University of Leicester, Leicester, UK
| |
Collapse
|
225
|
Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D. The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1401-11. [PMID: 19726570 PMCID: PMC2773108 DOI: 10.1104/pp.109.145896] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
The stamen, which consists of an anther and a filament, is the male reproductive organ in a flower. The specification of stamen identity in Arabidopsis (Arabidopsis thaliana) is controlled by a combination of the B genes APETALA3 (AP3) and PISTILLATA, the C gene AGAMOUS (AG), and the E genes SEPALLATA1 (SEP1) to SEP4. The "floral organ-building" gene SPOROCYTELESS/NOZZLE (SPL/NZZ) plays a central role in regulating anther cell differentiation. However, much less is known about how "floral organ identity" and floral organ-building genes interact to control floral organ development. In this study, we report that ectopic expression of SPL/NZZ not only affects flower development in the wild-type background but also leads to the transformation of petal-like organs into stamen-like organs in flowers of ap2-1, a weak ap2 mutant allele. Moreover, our loss-of-function analysis indicates that the spl/nzz mutant enhances the phenotype of the ag weak allele ag-4. Furthermore, ectopic expression and overexpression of SPL/NZZ altered expression of AG, SEP3, and AP2 in rosette leaves and flowers, while ectopic expression of SPL/NZZ resulted in ectopic expression of AG and SEP3 in the outer whorls of flowers. Our results indicate that the SPL/NZZ gene is engaged in controlling stamen identity via interacting with genes required for stamen identity in Arabidopsis.
Collapse
|
226
|
Suzuki G. Recent progress in plant reproduction research: the story of the male gametophyte through to successful fertilization. PLANT & CELL PHYSIOLOGY 2009; 50:1857-64. [PMID: 19825944 DOI: 10.1093/pcp/pcp142] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual reproduction is an important biological event not only for evolution but also for breeding in plants. It is a well known fact that Charles Darwin (1809-1882) was interested in the reproduction system of plants as part of his concept of 'species' and 'evolution.' His keen observation and speculation is timeless even in the current post-genome era. In the Darwin anniversary year of 2009, I have summarized recent molecular genetic studies of plant reproduction, focusing especially on male gametophyte development, pollination and fertilization. We are just beginning to understand the molecular mechanisms of the elaborate reproduction system in flowering plants, which have been a mystery for >100 years.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan.
| |
Collapse
|
227
|
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 2009; 5:e1000621. [PMID: 19714218 PMCID: PMC2726614 DOI: 10.1371/journal.pgen.1000621] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/29/2009] [Indexed: 12/03/2022] Open
Abstract
Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction. For successful reproduction in flowering plants, a single-celled pollen tube must rapidly extend through female pistil tissue, locate female gametes, and deliver sperm. Pollen tubes undergo a dramatic transformation while growing in the pistil; they grow faster compared to tubes grown in vitro and become competent to perceive and respond to navigation cues secreted by the pistil. The genes expressed by pollen tubes in response to growth in the pistil have not been characterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. Importantly, we identify a set of genes that are specifically expressed in pollen tubes in response to their growth in the pistil and are not expressed during other stages of pollen or plant development. We analyzed mutants in 33 pollen tube–expressed genes using a sensitive series of pollen function assays and demonstrate that seven of these genes are critical for pollen tube growth; two specifically disrupt growth in the pistil. By identifying pollen tube genes induced by the pistil and describing a mutant analysis scheme to understand their function, we lay the foundation for functional genomic analysis of pollen–pistil interactions.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Alexander R. Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ann Manziello
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - Ritu Pandey
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - David Mount
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - Stojan Denic
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Bane Vasic
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Mark A. Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MAJ); (RP)
| | - Ravishankar Palanivelu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (MAJ); (RP)
| |
Collapse
|
228
|
Zhao D. Control of anther cell differentiation: a teamwork of receptor-like kinases. ACTA ACUST UNITED AC 2009; 22:221-8. [DOI: 10.1007/s00497-009-0106-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/20/2009] [Indexed: 11/28/2022]
|
229
|
Gibalová A, Renák D, Matczuk K, Dupl'áková N, Cháb D, Twell D, Honys D. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. PLANT MOLECULAR BIOLOGY 2009; 70:581-601. [PMID: 19449183 DOI: 10.1007/s11103-009-9493-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
Sexual plant reproduction depends on the production and differentiation of functional gametes by the haploid gametophyte generation. Currently, we have a limited understanding of the regulatory mechanisms that have evolved to specify the gametophytic developmental programs. To unravel such mechanisms, it is necessary to identify transcription factors (TF) that are part of such haploid regulatory networks. Here we focus on bZIP TFs that have critical roles in plants, animals and other kingdoms. We report the functional characterization of Arabidopsis thaliana AtbZIP34 that is expressed in both gametophytic and surrounding sporophytic tissues during flower development. T-DNA insertion mutants in AtbZIP34 show pollen morphological defects that result in reduced pollen germination efficiency and slower pollen tube growth both in vitro and in vivo. Light and fluorescence microscopy revealed misshapen and misplaced nuclei with large lipid inclusions in the cytoplasm of atbzip34 pollen. Scanning and transmission electron microscopy revealed defects in exine shape and micropatterning and a reduced endomembrane system. Several lines of evidence, including the AtbZIP34 expression pattern and the phenotypic defects observed, suggest a complex role in male reproductive development that involves a sporophytic role in exine patterning, and a sporophytic and/or gametophytic mode of action of AtbZIP34 in several metabolic pathways, namely regulation of lipid metabolism and/or cellular transport.
Collapse
Affiliation(s)
- Antónia Gibalová
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
230
|
Brownfield L, Hafidh S, Durbarry A, Khatab H, Sidorova A, Doerner P, Twell D. Arabidopsis DUO POLLEN3 is a key regulator of male germline development and embryogenesis. THE PLANT CELL 2009; 21:1940-56. [PMID: 19638475 PMCID: PMC2729611 DOI: 10.1105/tpc.109.066373] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/19/2009] [Accepted: 07/14/2009] [Indexed: 05/19/2023]
Abstract
Male germline development in angiosperms produces the pair of sperm cells required for double fertilization. A key regulator of this process in Arabidopsis thaliana is the male germline-specific transcription factor DUO POLLEN1 (DUO1) that coordinates germ cell division and gamete specification. Here, we uncover the role of DUO3, a nuclear protein that has a distinct, but overlapping role with DUO1 in male germline development. DUO3 is a conserved protein in land plants and is related to GON-4, a cell lineage regulator of gonadogenesis in Caenorhabditis elegans. Mutant duo3-1 germ cells either fail to divide or show a delay in division, and we show that, unlike DUO1, DUO3 promotes entry into mitosis independent of the G2/M regulator CYCB1;1. We also show that DUO3 is required for the expression of a subset of germline genes under DUO1 control and that like DUO1, DUO3 is essential for sperm cell specification and fertilization. Furthermore, we demonstrate an essential sporophytic role for DUO3 in cell division and embryo patterning. Our findings demonstrate essential developmental roles for DUO3 in cell cycle progression and cell specification in both gametophytic and sporophytic tissues.
Collapse
Affiliation(s)
- Lynette Brownfield
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|