201
|
Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol 2011; 22:890-901. [PMID: 21511827 DOI: 10.1681/asn.2010080890] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol-modified ADA to reduce adenosine levels and the inhibition of the A(2B) adenosine receptor (A(2B)R) attenuated renal fibrosis and dysfunction. Furthermore, activation of A(2B)R promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A(2B)R. Taken together, these data suggest that A(2B)R-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Yingbo Dai
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
202
|
Eckle T, Koeppen M, Eltzschig H. Use of a hanging weight system for coronary artery occlusion in mice. J Vis Exp 2011:2526. [PMID: 21540816 PMCID: PMC3169250 DOI: 10.3791/2526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Murine studies of acute injury are an area of intense investigation, as knockout mice for different genes are becoming increasingly available. Cardioprotection by ischemic preconditioning (IP) remains an area of intense investigation. To further elucidate its molecular basis, the use of knockout mouse studies is particularly important. Despite the fact that previous studies have already successfully performed cardiac ischemia and reperfusion in mice, this model is technically very challenging. Particularly, visual identification of the coronary artery, placement of the suture around the vessel and coronary occlusion by tying off the vessel with a supported knot is technically difficult. In addition, re-opening the knot for intermittent reperfusion of the coronary artery during IP without causing surgical trauma adds additional challenge. Moreover, if the knot is not tied down strong enough, inadvertent reperfusion due to imperfect occlusion of the coronary may affect the results. In fact, this can easily occur due to the movement of the beating heart. Based on potential problems associated with using a knotted coronary occlusion system, we adopted a previously published model of chronic cardiomyopathy based on a hanging weight system for intermittent coronary artery occlusion during IP. In fact, coronary artery occlusion can thus be achieved without having to occlude the coronary by a knot. Moreover, reperfusion of the vessel can be easily achieved by supporting the hanging weights which are in a remote localization from cardiac tissues. We tested this system systematically, including variation of ischemia and reperfusion times, preconditioning regiments, body temperature and genetic backgrounds. In addition to infarct staining, we tested cardiac troponin I (cTnI) as a marker of myocardial infarction in this model. In fact, plasma levels of cTnI correlated with infarct sizes (R2=0.8). Finally, we could show in several studies that this technique yields highly reproducible infarct sizes during murine IP and myocardial infarction. Therefore, this technique may be helpful for researchers who pursue molecular mechanisms involved in cardioprotection by IP using a genetic approach in mice with targeted gene deletion. Further studies on cardiac IP using transgenic mice may consider this technique.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, USA.
| | | | | |
Collapse
|
203
|
Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK. Hypoxia-inducible factor-1α-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5'-nucleotidase (CD73) and the A2B adenosine receptor. THE JOURNAL OF IMMUNOLOGY 2011; 186:4367-74. [PMID: 21357264 DOI: 10.4049/jimmunol.0903617] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal ischemia/reperfusion injury (IR) is characterized by intermittent loss of perfusion to the gut, resulting in dramatic increases in morbidity and mortality. Based on previous studies indicating an anti-inflammatory role for hypoxia-inducible factor (HIF)-1-elicited enhancement of extracellular adenosine production via ecto-5'-nucleotidase (CD73) and signaling through the A2B adenosine receptor (A2BAR), we targeted HIF-1 during IR using pharmacological or genetic approaches. Initial studies with pharmacological HIF activation indicated attenuation of intestinal injury with dimethyloxallyl glycine (DMOG) treatment during murine IR. Although DMOG treatment was associated with induction of CD73 transcript and protein, DMOG protection was abolished in cd73(-/-) mice. Similarly, DMOG treatment enhanced A2BAR transcript and protein levels, whereas DMOG protection was abolished in A2BAR(-/-) mice. Finally, studies of mice with conditional HIF-1α deletion in intestinal epithelia or pharmacological inhibition of HIF-1 with 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin revealed enhanced tissue injury during IR. These studies indicated a tissue-protective role of HIF-dependent enhancement of intestinal adenosine generation and signaling during intestinal IR.
Collapse
Affiliation(s)
- Melanie L Hart
- Department of Anesthesiology and Critical Care Medicine, Tübingen University Hospital, D-72074 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
204
|
MacManus CF, Campbell EL, Keely S, Burgess A, Kominsky DJ, Colgan SP. Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB J 2011; 25:1856-64. [PMID: 21350119 DOI: 10.1096/fj.10-170316] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in "inflammatory hypoxia." Given these associations, we hypothesized that endothelial-derived, hypoxia-inducible mediators might influence epithelial function. Guided by cDNA microarray analysis of human microvascular endothelial cells (HMEC-1 line) subjected to hypoxia (pO(2) 20 torr, 8 h), we identified adrenomedullin (ADM) as a prominent hypoxia-inducible factor (HIF) that acts on epithelial cells through cell surface receptors. We assessed the functional ability for exogenous ADM to signal in human intestinal Caco2 cells in vitro by demonstrating a dose-dependent induction of Erk1/2phosphorylation. Further analysis revealed that ADM deneddylates cullin-2 (Cul2), whose action has been demonstrated to control the activity of HIF. Caco2 cells stably expressing a hypoxic response element (HRE)-driven luciferase promoter confirmed that ADM activates the HIF signaling pathway. Extensions of these studies revealed an increase in canonical HIF-1-dependent genes following stimulation with ADM. To define physiological relevance, we investigated the effect of ADM in a DSS model of murine colitis. Administration of ADM resulted in reduced inflammatory indices and less severe histological inflammation compared to vehicle controls. Analysis of tissue and serum cytokines showed a marked and significant inhibition of colitis-associated TNF-α, IL-1β, and KC. Analysis of circulating ADM demonstrated an increase in serum ADM in murine models of colitis. Taken together, these results identify ADM as an endogenously generated vascular mediator that functions as a mucosal protective factor through fine tuning of HIF activity.
Collapse
Affiliation(s)
- Christopher F MacManus
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
205
|
Affiliation(s)
- Holger K Eltzschig
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
206
|
Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal 2011; 7:265-73. [PMID: 21484089 DOI: 10.1007/s11302-011-9222-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/31/2011] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) of the central nervous system (CNS) consists of a unique subset of endothelial cells that possess tight junctions which form a relatively impervious physical barrier to a large variety of blood components. Until recently, there have been no good in vitro models for studying the human BBB without the co-culture of feeder cells. The hCMEC/D3 cell line is the first stable, well-differentiated human brain endothelial cell line that grows independently in culture with characteristics that closely resemble those of resident human brain endothelial cells. As our previously published findings demonstrated the importance of adenosine receptor (AR) signaling for lymphocyte entry into the CNS, we wanted to determine if human brain endothelial cells possess the capacity to generate and respond to extracellular adenosine. Utilizing the hCMEC/D3 cell line, we determined that these cells express CD73, the cell surface enzyme that converts extracellular AMP to adenosine. When grown under normal conditions, these cells also express the A(1), A(2A), and A(2B) AR subtypes. Additionally, hCMEC/D3 cells are responsive to extracellular AR signaling, as cAMP levels increase following the addition of the broad spectrum AR agonist 5'-N-ethylcarboxamidoadenosine (NECA). Overall, these results indicate that human brain endothelial cells, and most likely the human BBB, have the capacity to synthesize and respond to extracellular adenosine.
Collapse
|
207
|
Belikoff BG, Hatfield S, Georgiev P, Ohta A, Lukashev D, Buras JA, Remick DG, Sitkovsky M. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2444-53. [PMID: 21242513 PMCID: PMC3708265 DOI: 10.4049/jimmunol.1001567] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.
Collapse
Affiliation(s)
- Bryan G. Belikoff
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Peter Georgiev
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Dmitriy Lukashev
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Jon A. Buras
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| | - Daniel G. Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115
| |
Collapse
|
208
|
Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS, Kim JK, LaNoue KF, Linden J. Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 2011; 60:669-79. [PMID: 21270276 PMCID: PMC3028369 DOI: 10.2337/db10-1070] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the mechanisms by which blockade of adenosine A(2B) receptors (A(2B)Rs) reduces insulin resistance. RESEARCH DESIGN AND METHODS We investigated the effects of deleting or blocking the A(2B)R on insulin sensitivity using glucose tolerance tests (GTTs) and hyperinsulinemic-euglycemic clamps in mouse models of type 2 diabetes. The effects of diabetes on A(2B)R transcription and signaling were measured in human and mouse macrophages and mouse endothelial cells. In addition, tag single nucleotide polymorphisms (SNPs) in ~42 kb encompassing the A(2B)R gene, ADORA2B, were evaluated for associations with markers of diabetes and inflammation. RESULTS Treatment of mice with the nonselective adenosine receptor agonist 5'-N-ethylcarboxamidoadensoine (NECA) increased fasting blood glucose and slowed glucose disposal during GTTs. These responses were inhibited by A(2B)R deletion or blockade and minimally affected by deletion of A(1)Rs or A(2A)Rs. During hyperinsulinemic-euglycemic clamp of diabetic KKA(Y) mice, A(2B)R antagonism increased glucose infusion rate, reduced hepatic glucose production, and increased glucose uptake into skeletal muscle and brown adipose tissue. Diabetes caused a four- to sixfold increase in A(2B)R mRNA in endothelial cells and macrophages and resulted in enhanced interleukin (IL)-6 production in response to NECA due to activation of protein kinases A and C. Five consecutive tag SNPs in ADORA2B were highly correlated with IL-6 and C-reactive protein (CRP). Diabetes had a highly significant independent effect on variation in inflammatory markers. The strength of associations between several ADORA2B SNPs and inflammatory markers was increased when accounting for diabetes status. CONCLUSIONS Diabetes affects the production of adenosine and the expression of A(2B)Rs that stimulate IL-6 and CRP production, insulin resistance, and the association between ADORA2B SNPs and inflammatory markers. We hypothesize that increased A(2B)R signaling in diabetes increases insulin resistance in part by elevating proinflammatory mediators. Selective A(2B)R blockers may be useful to treat insulin resistance.
Collapse
Affiliation(s)
- Robert A. Figler
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Guoquan Wang
- Adenosine Therapeutics Group of PGxHealth, Clinical Data Incorporated, Charlottesville, Virginia
| | - Susseela Srinivasan
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhiyou Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - James S. Pankow
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Katya Ravid
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Bertil Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catherine C. Hedrick
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kathryn F. LaNoue
- Department of Biochemistry, Boston University, Boston, Massachusetts
| | - Joel Linden
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
209
|
Glover LE, Irizarry K, Scully M, Campbell EL, Bowers BE, Aherne CM, Kominsky DJ, MacManus CF, Colgan SP. IFN-γ attenuates hypoxia-inducible factor (HIF) activity in intestinal epithelial cells through transcriptional repression of HIF-1β. THE JOURNAL OF IMMUNOLOGY 2011; 186:1790-8. [PMID: 21199896 DOI: 10.4049/jimmunol.1001442] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies have revealed that hypoxia and inflammation occur coincidentally in mucosal disorders, such as inflammatory bowel disease. During inflammation, epithelial-expressed hypoxia-inducible factor (HIF) serves an endogenously protective function. In this study, we sought to explore how mucosal immune responses influence HIF-dependent end points. Guided by a screen of relevant inflammatory mediators, we identified IFN-γ as a potent repressor of HIF-dependent transcription in human intestinal epithelial cells. Analysis of HIF levels revealed that HIF-1β, but not HIF-1α, is selectively repressed by IFN-γ in a JAK-dependent manner. Cloning and functional analysis of the HIF-1β promoter identified a prominent region for IFN-γ-dependent repression. Further studies revealed that colonic IFN-γ and HIF-1β levels were inversely correlated in a murine colitis model. Taken together, these studies demonstrated that intestinal epithelial HIF is attenuated by IFN-γ through transcriptional repression of HIF-1β. These observations are relevant to the pathophysiology of colitis (i.e., that loss of HIF signaling during active inflammation may exacerbate disease pathogenesis).
Collapse
Affiliation(s)
- Louise E Glover
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Feoktistov I, Biaggioni I. Role of adenosine A(2B) receptors in inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:115-44. [PMID: 21586358 PMCID: PMC3748596 DOI: 10.1016/b978-0-12-385526-8.00005-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in our understanding of the unique role of A(2B) receptors in the regulation of inflammation, immunity, and tissue repair was considerably facilitated with the introduction of new pharmacological and genetic tools. However, it also led to seemingly conflicting conclusions on the role of A(2B) adenosine receptors in inflammation with some publications indicating proinflammatory effects and others suggesting the opposite. This chapter reviews the functions of A(2B) receptors in various cell types related to inflammation and integrated effects of A(2B) receptor modulation in several animal models of inflammation. It is argued that translation of current findings into novel therapies would require a better understanding of A(2B) receptor functions in diverse types of inflammatory responses in various tissues and at different points of their progression.
Collapse
Affiliation(s)
- Igor Feoktistov
- Department of Medicine, Vanderbilt University, Division of Cardiovascular Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
211
|
Linden J. Regulation of leukocyte function by adenosine receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:95-114. [PMID: 21586357 DOI: 10.1016/b978-0-12-385526-8.00004-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system responds to cues in the microenvironment to make acute and chronic adaptations in response to inflammation and injury. Locally produced purine nucleotides and adenosine provide receptor-mediated signaling to all bone-marrow derived cells of the immune system to modulate their responses. This review summarizes recent advances in our understanding of the effects of adenosine signaling through G protein-coupled adenosine receptors on cells of the immune system. Adenosine A(2A) receptors (A(2A)Rs) have a generally suppressive effect on the activation of immune cells. Moreover, their transcription is strongly induced by signals that activate macrophages or dendritic cells through toll-like receptors, or T cells through T cell receptors. A(2A)R induction is responsible for producing a gradual dissipation of inflammatory responses. A(2A)R activation is particularly effective in limiting the activation of invariant NKT (iNKT) cells that play a central role in acute reperfusion injury. A(2A) agonists have clinical promise for the treatment of vaso-occlusive tissue injury. Blockade of A(2A) receptors may be useful to enhance immune-mediated killing of cancer cells. A(2B)R expression also is transcriptionally regulated by hypoxia, cytokines, and oxygen radicals. Acute A(2B)R activation attenuates the production of proinflammatory cytokines from macrophages, but sustained activation facilitates macrophage and dendritic cell remodeling and the production of acute phase proteins and angiogenic factors that may participate in evoking insulin resistance and tissue fibrosis. A(2B)R activation also influences macrophage and neutrophil function by influencing expression of the anti-inflammatory netrin receptor, UNC5B. The therapeutic significance of adenosine-mediated effects on the immune system is discussed.
Collapse
Affiliation(s)
- Joel Linden
- Division of Inflammation Biology, La Jolla Institute of Allergy and Immunology, California, USA
| |
Collapse
|
212
|
Abstract
The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the "inflammasome". This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.
Collapse
|
213
|
Zhou Y, Schneider DJ, Morschl E, Song L, Pedroza M, Karmouty-Quintana H, Le T, Sun CX, Blackburn MR. Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. THE JOURNAL OF IMMUNOLOGY 2010; 186:1097-106. [PMID: 21149612 DOI: 10.4049/jimmunol.1002907] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine is an extracellular signaling molecule that is generated in response to cell injury where it orchestrates tissue protection and repair. Whereas adenosine is best known for promoting anti-inflammatory activities during acute injury responses, prolonged elevations can enhance destructive tissue remodeling processes associated with chronic disease states. The generation of adenosine and the subsequent activation of the adenosine 2B receptor (A(2B)R) is an important processes in the regulation of both acute and chronic lung disease. The goal of this study was to examine the contribution of the A(2B)R in models of bleomycin-induced lung injury that exhibit varying degrees of acute and chronic injury. Intratracheal bleomycin exposure results in substantial acute lung injury followed by progressive fibrosis. In this model, genetic removal of the A(2B)R resulted in enhanced loss of barrier function and increased pulmonary inflammation, with few differences in indexes of pulmonary fibrosis. These results support an anti-inflammatory role for this receptor in this model of acute lung injury. In contrast, systemic exposure of mice to bleomycin resulted in modest acute lung injury together with progressive pulmonary fibrosis. In this model, the effects of A(2B)R removal on acute lung injury were negligible; however, there were substantial reductions in pulmonary fibrosis, supporting a profibrotic role for this receptor. A(2B)R-dependent regulation of IL-6 production was identified as a potential mechanism involved in the diminished pulmonary fibrosis seen in A(2B)R knockout mice exposed to i.p. bleomycin. These studies highlight the distinct roles of A(2B)R signaling during acute and chronic stages of lung injury.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Johnston-Cox HA, Yang D, Ravid K. Physiological implications of adenosine receptor-mediated platelet aggregation. J Cell Physiol 2010; 226:46-51. [PMID: 20717958 DOI: 10.1002/jcp.22379] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an important mediator of inhibition of platelet activation. This metabolite is released from various cells, as well as generated via activity of ecto-enzymes on the cell surface. Binding of adenosine to A(2) subtypes (A(2A) or A(2B)), G-protein coupled adenosine receptors, results in increased levels of intracellular cyclic adenosine monophosphate (cAMP), a strong inhibitor of platelet activation. The role and importance of adenosine and its receptors in platelet physiology are addressed in this review, including recently identified roles for the A(2B) adenosine receptor as a modulator of platelet activation through its newly described role in the control of expression of adenosine diphosphate (ADP) receptors.
Collapse
Affiliation(s)
- Hillary A Johnston-Cox
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
215
|
Mirakaj V, Gatidou D, Pötzsch C, König K, Rosenberger P. Netrin-1 Signaling Dampens Inflammatory Peritonitis. THE JOURNAL OF IMMUNOLOGY 2010; 186:549-55. [DOI: 10.4049/jimmunol.1002671] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
216
|
Cui D, Trier K, Zeng J, Wu K, Yu M, Ge J. Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol 2010; 88:759-65. [PMID: 19604158 DOI: 10.1111/j.1755-3768.2009.01559.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Recent results have shown that treatment with the non-selective adenosine antagonist 7-methylxanthine (7-MX) reduces the development of form deprivation myopia (FDM) in guinea pigs. The aims of this study were to identify the presence of adenosine receptors (AdoRs) in the eye wall of the guinea pig and to determine their possible changes during form deprivation. METHODS Three-week-old guinea pigs were monocularly treated with a translucent lens to induce FDM. After 21 days, samples were taken from the posterior eye wall and examined with immunofluorescence confocal microscopy for the presence of AdoRA1, AdoRA2A, AdoRA2B and AdoRA3 proteins. Western blot analysis was used to quantitate AdoRs in samples from the retina, choroids and sclera. RESULTS All four subtypes of AdoR were expressed in the posterior wall of the guinea pig eye, although AdoRA3 only weakly. Twenty-one days after the induction of myopia, we observed a significant decrease in protein expression for AdoRA1 (- 25.5%) and an increase in protein expression for AdoRA2B (+ 66.7%) in the retina of FDM eyes. CONCLUSIONS AdoRs of all subtypes are expressed in the retina, choroids and sclera in guinea pigs and may play a role in the regulation of eye growth. The changed pattern of AdoR expression during form deprivation confirms that pharmaceutical intervention targeting AdoRs may reduce myopia progression.
Collapse
Affiliation(s)
- Dongmei Cui
- Zhongshan Ophthalmic Centre, SunYat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
217
|
Mutz C, Mirakaj V, Vagts DA, Westermann P, Waibler K, König K, Iber T, Nöldge-Schomburg G, Rosenberger P. The neuronal guidance protein netrin-1 reduces alveolar inflammation in a porcine model of acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R189. [PMID: 20969752 PMCID: PMC3219296 DOI: 10.1186/cc9301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/07/2010] [Accepted: 10/22/2010] [Indexed: 12/14/2022]
Abstract
Introduction Acute lung injury (ALI) is an inflammatory disorder of pulmonary or extrapulmonary origin. We have previously demonstrated that netrin-1 dampens murine ALI, and in an attempt to advance this finding into future clinical practice we evaluated whether netrin-1 would reduce alveolar inflammation during porcine ALI. Methods This was a controlled in vivo experimental study in pigs. We induced ALI through lipoploysaccharide (LPS) infusion (50 μg/kg) for 2 hours. Following this, we exposed animals to either vehicle, intravenous netrin-1 (netrin-1 i.v.) or inhaled netrin-1 (netrin-1 inh.). Serum samples and bronchoalveolar lavage (BAL) were obtained to determine levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, interleukin-6 and interleukin-8 at baseline and 6 hours following treatment. Myeloperoxidase activity (MPO) and protein levels were determined in the BAL, and tissue samples were obtained for histological evaluation. Finally, animals were scanned with spiral CT. Results Following LPS infusion, animals developed acute pulmonary injury. Serum levels of TNF-α and IL-6 were significantly reduced in the netrin-1 i.v. group. BAL demonstrated significantly reduced cytokine levels 6 hours post-netrin-1 treatment (TNF-α: vehicle 633 ± 172 pg/ml, netrin-1 i.v. 84 ± 5 pg/ml, netrin-1 inh. 168 ± 74 pg/ml; both P < 0.05). MPO activity and protein content were significantly reduced in BAL samples from netrin-1-treated animals. Histological sections confirmed reduced inflammatory changes in the netrin-1-treated animals. Computed tomography corroborated reduced pulmonary damage in both netrin-1-treated groups. Conclusions We conclude that treatment with the endogenous anti-inflammatory protein netrin-1 reduces pulmonary inflammation during the initial stages of ALI and should be pursued as a future therapeutic option.
Collapse
Affiliation(s)
- Christian Mutz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Rostock, Rostock University, Schillingallee 35, Rostock 18057, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wick MJ, Buesing EJ, Wehling CA, Loomis ZL, Cool CD, Zamora MR, Miller YE, Colgan SP, Hersh LB, Voelkel NF, Dempsey EC. Decreased neprilysin and pulmonary vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 183:330-40. [PMID: 20813891 DOI: 10.1164/rccm.201002-0154oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased. OBJECTIVES To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved. METHODS Control and advanced COPD lung lysates (n = 13-14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H₂O₂, and incubated with antioxidants or lysosomal/proteasomal inhibitors. MEASUREMENTS AND MAIN RESULTS COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H₂O₂, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced. CONCLUSIONS Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia.
Collapse
Affiliation(s)
- Marilee J Wick
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Castillo CA, León D, Ruiz MA, Albasanz JL, Martín M. Modulation of adenosine A1 and A2A receptors in C6 glioma cells during hypoxia: involvement of endogenous adenosine. J Neurochem 2010; 105:2315-29. [PMID: 18315561 DOI: 10.1111/j.1471-4159.2008.05314.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During hypoxia, extracellular adenosine levels are increased to prevent cell damage, playing a neuroprotective role mainly through adenosine A(1) receptors. The aim of the present study was to analyze the effect of hypoxia in both adenosine A(1) and A(2A) receptors endogenously expressed in C6 glioma cells. Two hours of hypoxia (5% O(2)) caused a significant decrease in adenosine A(1) receptors. The same effect was observed at 6 h and 24 h of hypoxia. However, adenosine A(2A) receptors were significantly increased at the same times. These effects were not due to hypoxia-induced alterations in cells number or viability. Changes in receptor density were not associated with variations in the rate of gene expression. Furthermore, hypoxia did not alter HIF-1alpha expression in C6 cells. However, HIF-3alpha, CREB and CREM were decreased. Adenosine A(1) and A(2A) receptor density in normoxic C6 cells treated with adenosine for 2, 6 and 24 h was similar to that observed in cells after oxygen deprivation. When C6 cells were subjected to hypoxia in the presence of adenosine deaminase, the density of receptors was not significantly modulated. Moreover, DPCPX, an A(1) receptor antagonist, blocked the effects of hypoxia on these receptors, while ZM241385, an A(2A) receptor antagonist, was unable to prevent these changes. These results suggest that moderate hypoxia modulates adenosine receptors and cAMP response elements in glial cells, through a mechanism in which endogenous adenosine and tonic A(1) receptor activation is involved.
Collapse
Affiliation(s)
- Carlos A Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
220
|
Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res 2010; 88:219-28. [PMID: 20679415 DOI: 10.1093/cvr/cvq256] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under hypoxic conditions, mitochondria can represent a threat to the cell because of their capacity to generate toxic reactive oxygen species (ROS). However, cardiomyocytes are equipped with an oxygen-sensing pathway that involves prolyl hydroxylase oxygen sensors and hypoxia-inducible factors (HIFs), which induces a tightly regulated programme to keep ischaemic mitochondrial activity under control. The aim of this review is to provide an update on the pathways leading to mitochondrial reprogramming, which occurs in the myocardium during ischaemia, with particular emphasis on those induced by HIF activation. We start by studying the mechanisms of mitochondrial damage during ischaemia and upon reperfusion, highlighting the importance of the formation of the mitochondrial permeability transition pore during reperfusion and its consequences for cardiomyocyte survival. Next, we analyse hypoxia-induced metabolic reprogramming through HIF and its important consequences for mitochondrial bioenergetics, as well as the phenomenon known as the hibernating myocardium. Subsequently, we examine the mechanisms underlying ischaemic preconditioning, focusing, in particular, on those that involve the HIF pathway, such as adenosine signalling, sub-lethal ROS generation, and nitric oxide production. Finally, the role of the mitochondrial uncoupling proteins in ischaemia tolerance is discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa , Diego de León 62, 28006 Madrid, Spain.
| | | | | |
Collapse
|
221
|
Schingnitz U, Hartman K, MacManus CF, Eckle T, Zug S, Colgan SP, Eltzschig HK. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5271-9. [PMID: 20348420 PMCID: PMC2858788 DOI: 10.4049/jimmunol.0903035] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia, or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (AR) as potential therapeutic target in endotoxin-induced acute lung injury. We gained initial insight from in vitro studies of cultured endothelia or epithelia exposed to inflammatory mediators showing time-dependent induction of the A2BAR (up to 12.9 + or - 3.4-fold, p < 0.05). Similarly, murine studies of endotoxin-induced lung injury identified an almost 4.6-fold induction of A2BAR transcript and corresponding protein induction with LPS exposure. Studies utilizing A2BAR promoter constructs and RNA protection assays indicated that A2BAR induction involved mRNA stability. Functional studies of LPS-induced lung injury revealed that pharmacological inhibition or genetic deletion of the A2BAR was associated with dramatic increases in lung inflammation and histologic tissue injury. Studies of A2BAR bone marrow chimeric mice suggested pulmonary A2BAR signaling in lung protection. Finally, studies with a specific A2BAR agonist (BAY 60-6583) demonstrated attenuation of lung inflammation and pulmonary edema in wild-type but not in gene-targeted mice for the A2BAR. These studies suggest the A2BAR as potential therapeutic target in the treatment of endotoxin-induced forms of acute lung injury.
Collapse
Affiliation(s)
- Ulrich Schingnitz
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Katherine Hartman
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, USA
| | - Christopher F. MacManus
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, USA
| | - Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, USA
| | - Stephanie Zug
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, USA
| |
Collapse
|
222
|
Kolachala VL, Wang L, Obertone TS, Prasad M, Yan Y, Dalmasso G, Gewirtz AT, Merlin D, Sitaraman SV. Adenosine 2B receptor expression is post-transcriptionally regulated by microRNA. J Biol Chem 2010; 285:18184-90. [PMID: 20388705 DOI: 10.1074/jbc.m109.066555] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have reported that epithelial adenosine 2B receptor (A(2B)AR) mRNA and protein are up-regulated in colitis, which we demonstrated to be regulated by tumor necrosis factor alpha (TNF-alpha). Here, we examined the mechanism that governs A(2B)AR expression during colitis. A 1.4-kb sequence of the A(2B)AR promoter was cloned into the pFRL7 luciferase vector. Anti-microRNA (miRNA) was custom-synthesized based on specific miRNA binding sites. The binding of miRNA to the 3'-untranslated region (UTR) of A(2B)AR mRNA was examined by cloning this 3'-UTR downstream of the luciferase gene in pMIR-REPORT. In T84 cells, TNF-alpha induced a 35-fold increase in A(2B)AR mRNA but did not increase promoter activity in luciferase assays. By nuclear run-on assay, no increase in A(2B)AR mRNA following TNF-alpha treatment was observed. Four putative miRNA target sites (miR27a, miR27b, miR128a, miR128b) in the 3'-UTR of the A(2B)AR mRNA were identified in T84 cells and mouse colon. Pretreatment of cells with TNF-alpha reduced the levels of miR27b and miR128a by 60%. Over expression of pre-miR27b and pre-miR128a reduced A(2B)AR levels by >60%. Blockade of miR27b increased A(2B)AR mRNA levels by 6-fold in vitro. miR27b levels declined significantly in colitis-affected tissue in mice in the presence of increased A(2B)AR mRNA. Collectively, these data demonstrate that TNF-alpha-induced A(2B)AR expression in colonic epithelial cells is post-transcriptionally regulated by miR27b and miR128a and show that miR27b influences A(2B)AR expression in murine colitis.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Yang D, Chen H, Koupenova M, Carroll SH, Eliades A, Freedman JE, Toselli P, Ravid K. A new role for the A2b adenosine receptor in regulating platelet function. J Thromb Haemost 2010; 8:817-27. [PMID: 20102488 DOI: 10.1111/j.1538-7836.2010.03769.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Activation of platelets is a critical component of atherothrombosis and plays a central role in the progression of unstable cardiovascular syndromes. Adenosine, acting through adenosine receptors, increases intracellular cAMP levels and inhibits platelet aggregation. The A2a adenosine receptor has already been recognized as a mediator of adenosine-dependent effects on platelet aggregation, and here we present a new role for the A2b adenosine receptor (A2bAR) in this process. METHODS AND RESULTS As compared with platelets from wild-type controls, platelets derived from A2bAR knockout mice have significantly greater ADP receptor activation-induced aggregation. Although mouse megakaryocytes and platelets express low levels of the A2bAR transcript, this gene is highly upregulated following injury and systemic inflammation in vivo. Under these conditions, A2bAR-mediated inhibition of platelet aggregation significantly increases. Our studies also identify a novel mechanism by which the A2bAR could regulate platelet aggregation; namely, ablation of the A2bAR leads to upregulated expression of the P2Y1 ADP receptor, whereas A2bAR-mediated or direct elevation of cAMP has the opposite effect. Thus, the A2bAR regulates platelet function beyond mediating the immediate effect of adenosine on aggregation. CONCLUSIONS Taken together, these investigations show for the first time that the platelet A2bAR is upregulated under stress in vivo, plays a significant role in regulating ADP receptor expression, and inhibits agonist-induced platelet aggregation.
Collapse
MESH Headings
- Adenosine A2 Receptor Agonists
- Adenosine Diphosphate/blood
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cells, Cultured
- Cyclic AMP/blood
- Disease Models, Animal
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Genotype
- Inflammation/chemically induced
- Inflammation/genetics
- Inflammation/metabolism
- Lipopolysaccharides
- Megakaryocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Platelet Aggregation/drug effects
- Platelet Aggregation/genetics
- RNA, Messenger/blood
- Receptor, Adenosine A2B/blood
- Receptor, Adenosine A2B/deficiency
- Receptor, Adenosine A2B/genetics
- Receptors, Purinergic P2/blood
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2Y1
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Lu Q, Harrington EO, Newton J, Casserly B, Radin G, Warburton R, Zhou Y, Blackburn MR, Rounds S. Adenosine protected against pulmonary edema through transporter- and receptor A2-mediated endothelial barrier enhancement. Am J Physiol Lung Cell Mol Physiol 2010; 298:L755-67. [PMID: 20228181 DOI: 10.1152/ajplung.00330.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A(1) or A(3) antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A(2A) and A(2B), respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A(2A) and A(2B) receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A(2A)/A(2B) receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A(2A) and A(2B) agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A(2A) and A(2B) receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by alpha-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the development of edema before ALI but also partially reversed edema after ALI. The data suggest that adenosine deaminase inhibition may be useful in treatment of pulmonary edema in settings of ALI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Over decades, anesthesiologists have used intravenous adenosine as mainstay therapy for diagnosing or treating supraventricular tachycardia in the perioperative setting. More recently, specific adenosine receptor therapeutics or gene-targeted mice deficient in extracellular adenosine production or individual adenosine receptors became available. These models enabled physicians and scientists to learn more about the biologic functions of extracellular nucleotide metabolism and adenosine signaling. Such functions include specific signaling effects through adenosine receptors expressed by many mammalian tissues; for example, vascular endothelia, myocytes, hepatocytes, intestinal epithelia, or immune cells. At present, pharmacological approaches to modulate extracellular adenosine signaling are evaluated for their potential use in perioperative medicine, including attenuation of acute lung injury; renal, intestinal, hepatic and myocardial ischemia; or vascular leakage. If these laboratory studies can be translated into clinical practice, adenosine receptor-based therapeutics may become an integral pharmacological component of daily anesthesiology practice.
Collapse
|
226
|
|
227
|
Eltzschig HK, Rivera-Nieves J, Colgan SP. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin Ther Targets 2009; 13:1267-77. [PMID: 19769545 DOI: 10.1517/14728220903241666] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular adenosine functions as an endogenous distress signal via activation of four distinct adenosine receptors (A1, A2A, A2B and A3). Conditions of limited oxygen availability or acute inflammation lead to elevated levels of extracellular adenosine and enhanced signaling events. This relates to a combination of four mechanisms: i) increased production of adenosine via extracellular phosphohydrolysis of precursor molecules (particularly ATP and ADP); ii) increased expression and signaling via hypoxia-induced adenosine receptors, particularly the A2B adenosine receptor; iii) attenuated uptake from the extracellular towards the intracellular compartment; and iv) attenuated intracellular metabolism. Due to their large surface area, mucosal organs are particularly prone to hypoxia and ischemia associated inflammation. Therefore, it is not surprising that adenosine production and signaling plays a central role in attenuating tissue inflammation and injury during intestinal ischemia or inflammation. In fact, recent studies combining pharmacological and genetic approaches demonstrated that adenosine signaling via the A2B adenosine receptor dampens mucosal inflammation and tissue injury during intestinal ischemia or experimental colitis. This review outlines basic principles of extracellular adenosine production, signaling, uptake and metabolism. In addition, we discuss the role of this pathway in dampening hypoxia-elicited inflammation, specifically in the setting of intestinal ischemia and inflammation.
Collapse
Affiliation(s)
- Holger K Eltzschig
- University of Colorado, Mucosal Inflammation Program, Department of Medicine, Denver, 12700 E 19th Avenue, Mailstop B112, Research Complex 2, Room 7124, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
228
|
Michael S, Warstat C, Michel F, Yan L, Müller CE, Nieber K. Adenosine A(2A) agonist and A(2B) antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 2009; 6:117-24. [PMID: 20020217 DOI: 10.1007/s11302-009-9174-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 12/01/2009] [Indexed: 12/22/2022] Open
Abstract
Adenosine can show anti-inflammatory as well as pro-inflammatory activities. The contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. In this study, we examined the effect of the adenosine A(2A) receptor agonist CGS 21680 and the A(2B)R antagonist PSB-1115 on acute inflammation induced experimentally by 2,4,6-trinitrobenzenesulfonic acid (TNBS) on rat ileum/jejunum preparations. Pre-incubation of the ileum/jejunum segments with TNBS for 30 min resulted in a concentration-dependent inhibition of acetylcholine (ACh)-induced contractions. Pharmacological activation of the A(2A)R with CGS 21680 (0.1-10 microM) pre-incubated simultaneously with TNBS (10 mM) prevented concentration-dependently the TNBS-induced inhibition of the ACh contractions. Stimulation of A(2B)R with the selective agonist BAY 60-6583 (10 microM) did neither result in an increase nor in a further decrease of ACh-induced contractions compared to the TNBS-induced inhibition. The simultaneous pre-incubation of the ileum/jejunum segments with TNBS (10 mM) and the selective A(2B)R antagonist PSB-1115 (100 microM) inhibited the contraction-decreasing effect of TNBS. The effects of the A(2A)R agonist and the A(2B)R antagonist were in the same range as the effect induced by 1 microM methotrexate. The combination of the A(2A)R agonist CGS 21680 and the A(2B)R antagonist PSB-1115 at subthreshold concentrations of both agents found a significant amelioration of the TNBS-diminished contractility. Our results demonstrate that the activation of A(2A) receptors or the blockade of the A(2B) receptors can prevent the inflammation-induced disturbance of the ACh-induced contraction in TNBS pre-treated small intestinal preparations. The combination of both may be useful for the treatment of inflammatory bowel diseases.
Collapse
|
229
|
Pettengill MA, Lam VW, Ojcius DM. The danger signal adenosine induces persistence of chlamydial infection through stimulation of A2b receptors. PLoS One 2009; 4:e8299. [PMID: 20011598 PMCID: PMC2788228 DOI: 10.1371/journal.pone.0008299] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/08/2009] [Indexed: 11/18/2022] Open
Abstract
Infections with intracellular bacteria such as chlamydiae affect the majority of the world population. Infected tissue inflammation and granuloma formation help contain the short-term expansion of the invading pathogen, leading also to local tissue damage and hypoxia. However, the effects of key aspects of damaged inflamed tissues and hypoxia on continued infection with intracellular bacteria remain unknown. We find that development of Chlamydia trachomatis is reversibly retarded by prolonged exposure of infected cells to extracellular adenosine, a hallmark of hypoxia and advanced inflammation. In epithelial cells, this effect was mediated by the A2b adenosine receptor, unique in the adenosine receptor family for having a hypoxia-inducible factor (HIF1-α) binding site at its promoter region, and was dependent on an increase in the intracellular cAMP levels, but was independent of cAMP-dependent protein kinase (PKA). Further study of adenosine receptor signaling during intracellular bacterial infection could lead to breakthroughs in our understanding of persistent infections with these ubiquitous pathogens.
Collapse
Affiliation(s)
- Matthew A Pettengill
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | | | | |
Collapse
|
230
|
Eckle T, Koeppen M, Eltzschig HK. Role of extracellular adenosine in acute lung injury. Physiology (Bethesda) 2009; 24:298-306. [PMID: 19815856 DOI: 10.1152/physiol.00022.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) is a lung disease characterized by pulmonary edema and severe hypoxia. The past decade hosted a search for endogenous mechanisms controlling lung inflammation and pulmonary edema during ALI. As such, recent evidence indicates extracellular adenosine in orchestrating the resolution of pulmonary edema and inflammation during ALI.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado Denver, Aurora, Colorado, USA
| | | | | |
Collapse
|
231
|
HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 2009; 88:165-71. [PMID: 19841638 DOI: 10.1038/icb.2009.77] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoxia is a common characteristic of many pathological and physiological conditions that can markedly change cellular metabolism and cause the accumulation of extracellular adenosine. Recent studies have shown that adenosine can modulate the function of certain immune cell types through binding with different adenosine receptors. Our previous studies have shown that hypoxia has an effect on the biological activity of dendritic cells (DCs) by inducing their differentiation towards a Th2 polarising phenotype. However, the mechanisms underlying this suppression remain unclear. In this study, we have demonstrated that hypoxic mDCs predominantly express adenosine receptor A2b. The A2b receptor antagonist MRS1754 was able to increase the production of IL-12p70 and TNF-alpha by hypoxic mDCs and elevate the amount of Th1 cytokine IFN-gamma production in a mDCs-T-cell co-culture system. We also found that the effect of hypoxia on IL-12p70 production was mediated via increased intracellular cAMP levels through the up-regulation of A2b adenosine receptor and the preferential expression of adenosine A2b receptors in hypoxic mDCs was HIF-1 alpha dependent. Therefore, the hypoxic mDCs could provide a useful tool for researching the function of A2bR in human DCs. Our results offer new insights into understanding the molecular mechanisms underlying the biological activities of DCs in local-tissue hypoxic microenvironments.
Collapse
|
232
|
Liver Cyst Cytokines Promote Endothelial Cell Proliferation and Development. Exp Biol Med (Maywood) 2009; 234:1155-65. [DOI: 10.3181/0903-rm-112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Autosomal dominant polycystic kidney (ADPKD) is highly prevalent genetic disease. Liver cyst disease is the most common extrarenal manifestation in ADPKD and accounts for up to 10% of ADPKD morbidity and mortality. The clinical features of ADPKD liver disease arise from dramatic increases in liver cyst volumes. To identify mechanisms that promote liver cyst growth, the present study characterized the degree of vascularization of liver cyst walls and determined that cyst-specific cytokines and growth factors can drive endothelial cell proliferation and development. Microscopic techniques demonstrated liver cyst walls are well vascularized. A comparative analysis found the vascular density in free liver cyst walls was greater in mice than in humans. Treatment of human micro-vascular endothelial cells (HMEC-1) with human liver cyst fluid (huLCF) induced a rapid increase in vascular endothelium growth factor receptor 2 (VEGFR2) phosphorylation that persisted for 45–60 min and was blocked by 20 μM SU5416, a VEGFR tyrosine kinase inhibitor. Similarly, huLCF treatment of HMEC-1 cells induced an increase in the cell proliferation rate (131 ± 6% of control levels; P > 0.05) and the degree of vascular development (‘tube’ diameter assay: 92 ± 14 μm for huLCF vs. 12 ± 7 μm for vehicle); P > 0.05). Both cell proliferation and vascular development were sensitive to SU5416. These studies indicate that factors secreted by liver cyst epithelia can activate VEGF signaling pathways and induce endothelial cell proliferation and differentiation. The present studies suggest that targeting VEGFR2-dependent angiogenesis may be an effective therapeutic strategy in blocking ADPKD liver cyst vascularization and growth.
Collapse
|
233
|
Roa H, Gajardo C, Troncoso E, Fuentealba V, Escudero C, Yáñez A, Sobrevia L, Pastor-Anglada M, Quezada C, San Martin R. Adenosine mediates transforming growth factor-beta 1 release in kidney glomeruli of diabetic rats. FEBS Lett 2009; 583:3192-8. [PMID: 19737558 DOI: 10.1016/j.febslet.2009.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/18/2009] [Accepted: 09/02/2009] [Indexed: 01/13/2023]
Abstract
Up regulation of the transforming growth factor-beta 1 (TGF-beta1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-beta1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.
Collapse
Affiliation(s)
- H Roa
- Laboratorio Patología Molecular, Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci U S A 2009; 106:10684-9. [PMID: 19541651 DOI: 10.1073/pnas.0901326106] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, through the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha (HIFs), induces angiogenesis by up-regulating a common set of angiogenic cytokines. Unlike HIF-1alpha, which regulates a unique set of genes, most genes regulated by HIF-2alpha overlap with those induced by HIF-1alpha. Thus, the unique contribution of HIF-2alpha remains largely obscure. By using adenoviral mutant HIF-1alpha and adenoviral mutant HIF-2alpha constructs, where the HIFs are transcriptionally active under normoxic conditions, we show that HIF-2alpha but not HIF-1alpha regulates adenosine A(2A) receptor in primary cultures of human lung endothelial cells. Further, siRNA knockdown of HIF-2alpha completely inhibits hypoxic induction of A(2A) receptor. Promoter studies show a 2.5-fold induction of luciferase activity with HIF-2alpha cotransfection. Analysis of the A(2A) receptor gene promoter revealed a hypoxia-responsive element in the region between -704 and -595 upstream of the transcription start site. By using a ChIP assay, we demonstrate that HIF-2alpha binding to this region is specific. In addition, we demonstrate that A(2A) receptor has angiogenic potential, as assessed by increases in cell proliferation, cell migration, and tube formation. Additional data show increased expression of A(2A) receptor in human lung tumor cancer samples relative to adjacent normal lung tissue. These data also demonstrate that A(2A) receptor is regulated by hypoxia and HIF-2alpha in human lung endothelial cells but not in mouse-derived endothelial cells.
Collapse
|
235
|
Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher P. A(2B) adenosine receptors in immunity and inflammation. Trends Immunol 2009; 30:263-70. [PMID: 19427267 PMCID: PMC2756472 DOI: 10.1016/j.it.2009.04.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 01/08/2023]
Abstract
A(2B) adenosine receptors are increasingly recognized as important orchestrators of inflammation. A(2B) receptor activation promotes the inflammatory response of mast cells, epithelial cells, smooth muscle cells and fibroblasts, thereby contributing to the pathophysiology of asthma and colitis. A(2B) receptor stimulation limits endothelial cell inflammatory responses and permeability and suppresses macrophage activation thereby preventing tissue injury after episodes of hypoxia and ischemia. A(2B) receptor stimulation also promotes the production of angiogenic cytokines by endothelial cells, mast cells and dendritic cells, aiding granuloma tissue formation and inflammatory resolution, but can also contribute to tumor growth. A(2B) receptors are, thus, potentially important pharmacological targets in treating immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, Newark, 07103, USA.
| | | | | | | | | |
Collapse
|
236
|
Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4957-64. [PMID: 19342675 PMCID: PMC2831100 DOI: 10.4049/jimmunol.0801324] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammatory diseases influence tissue metabolism, significantly altering the profile of extracellular adenine nucleotides. A number of studies have suggested that adenosine (Ado) may function as an endogenously generated anti-inflammatory molecule. Given the central role of intestinal epithelial cells to the development of colitis, we hypothesized that specific Ado receptors would contribute to disease resolution in mucosal inflammation as modeled by dextran sodium sulfate (DSS) colitis. Initial profiling studies revealed that murine intestinal epithelial cells express predominantly the Ado A2B receptor (AA2BR) and to a lesser extent AA2AR. Guided by these results, we examined the contribution of AA2BR to colitis. Initial studies indicated that the severity of colitis was increased in Aa2br(-/-) mice relative to Aa2br(+/+) controls, as reflected by increased weight loss, colonic shortening, and disease activity indices. Likewise, enteral administration of the selective AA2BR inhibitor PSB1115 to Aa2br(+/+) mice resulted in a similar increase in severity of DSS colitis. Cytokine profiling of colonic tissue revealed specific deficiencies in IL-10 in Aa2br(-/-) mice relative to controls. Extensions of these findings in cultured human intestinal epithelial cells revealed that stable Ado analogs induce IL-10 mRNA and protein and that such increases can be blocked with PSB1115. Taken together, these studies indicate a central regulatory role for AA2BR-modulated IL-10 in the acute inflammatory phase of DSS colitis, thereby implicating AA2BR as an endogenously protective molecule expressed on intestinal epithelial cells.
Collapse
Affiliation(s)
- Julia-Stefanie Frick
- Institute for Medical Microbiology and Hygiene, University Hospital, Tuebingen, Germany
| | | | - Melanie Scully
- Mucosal Inflammation Program, University of Colorado Health Sciences Center, Denver, CO
| | - Louise E. Glover
- Mucosal Inflammation Program, University of Colorado Health Sciences Center, Denver, CO
| | - Holger K. Eltzschig
- Mucosal Inflammation Program, University of Colorado Health Sciences Center, Denver, CO
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Science Center, Denver, CO
| | - Sean P. Colgan
- Mucosal Inflammation Program, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|
237
|
Hart ML, Jacobi B, Schittenhelm J, Henn M, Eltzschig HK. Cutting Edge: A2B Adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2009; 182:3965-8. [PMID: 19299692 DOI: 10.4049/jimmunol.0802193] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrointestinal ischemia/reperfusion (IR) injury significantly contributes to the morbidity and mortality of critical illness. In this study, we hypothesized a protective role for extracellular adenosine signaling in intestinal IR injury. Initial profiling studies of mucosal scrapings following murine IR demonstrated selective induction of the A2B adenosine receptor (A2BAR) transcript. Moreover, gene-targeted mice for the A2BAR showed more profound intestinal IR injury compared with controls. In contrast, A2AAR(-/-) mice exhibited no differences in intestinal injury compared with littermate controls. In addition, selective inhibition of the A2BAR resulted in enhanced intestinal inflammation and injury during IR. Furthermore, A2BAR agonist treatment (BAY 60-6583) protected from intestinal injury, inflammation, and permeability dysfunction in wild-type mice, whereas the therapeutic effects of BAY 60-6583 were abolished following targeted A2BAR gene deletion. Taken together, these studies demonstrate the A2BAR as a novel therapeutic target for protection during gastrointestinal IR injury.
Collapse
Affiliation(s)
- Melanie L Hart
- Department of Anesthesiology and Intensive Care Medicine, Center for Inflammation and Hypoxia, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
238
|
Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 2009; 10:195-202. [PMID: 19122655 DOI: 10.1038/ni.1683] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/27/2008] [Indexed: 02/06/2023]
Abstract
The neuronal guidance molecule netrin-1 is linked to the coordination of inflammatory responses. Given that mucosal surfaces are particularly prone to hypoxia-elicited inflammation, we sought to determine the function of netrin-1 in hypoxia-induced inflammation. We detected hypoxia-inducible factor 1alpha (HIF-1alpha)-dependent induction of expression of the gene encoding netrin-1 (Ntn1) in hypoxic epithelia. Neutrophil transepithelial migration studies showed that by engaging A2B adenosine receptor (A2BAR) on neutrophils, netrin-1 attenuated neutrophil transmigration. Exogenous netrin-1 suppressed hypoxia-elicited inflammation in wild-type but not in A2BAR-deficient mice, and inflammatory hypoxia was enhanced in Ntn1(+/-) mice relative to that in Ntn1(+/+) mice. Our studies demonstrate that HIF-1alpha-dependent induction of netrin-1 attenuates hypoxia-elicited inflammation at mucosal surfaces.
Collapse
Affiliation(s)
- Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen 72076, Germany
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 2009; 8:139-52. [PMID: 19165233 DOI: 10.1038/nrd2761] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells in the human body need oxygen to function and survive, and severe deprivation of oxygen, as occurs in ischaemic heart disease and stroke, is a major cause of mortality. Nevertheless, other organisms, such as the fossorial mole rat or diving seals, have acquired the ability to survive in conditions of limited oxygen supply. Hypoxia tolerance also allows the heart to survive chronic oxygen shortage, and ischaemic preconditioning protects tissues against lethal hypoxia. The recent discovery of a new family of oxygen sensors--including prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3)--has yielded exciting novel insights into how cells sense oxygen and keep oxygen supply and consumption in balance. Advances in understanding of the role of these oxygen sensors in hypoxia tolerance, ischaemic preconditioning and inflammation are creating new opportunities for pharmacological interventions for ischaemic and inflammatory diseases.
Collapse
|
240
|
Cui PL, Lv D, Zhang J, Yao SW, Wang YB, Yang ZX. Oxidative stress damage and HIF-1α expression in rat intestinal mucosa during acute necrotic pancreatitis. Shijie Huaren Xiaohua Zazhi 2009; 17:24-30. [DOI: 10.11569/wcjd.v17.i1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the role of oxidative stress in intestinal mucosal barrier damage during ANP, and to explore the putative mechanism of HIF-1α during this process.
METHODS: Male Wistar rats were divided randomly into three groups: group A (n = 18) and B (n = 18) served as ANP models, group C (n = 10) was designated as a normal control (sham operation). In group A and C, rats were treated with normal saline therapy, while in group B, rats were treated with DMSO therapy. During the observation period, the morphological changes of intestinal mucosa and pancreatic tissue were observed, and the intestinal permeability was evaluated by FITC-labeled Dextran method and DAO activity detection. The activities of SOD, MPO and the level of MDA and GSH were measured and also the expression of HIF-1α protein was assayed.
RESULTS: During the observation period of ANP, the intestinal mucosal barrier function was damaged seriously and the intestinal permeability was increased. As early as 6h, the DAO activity in the mucosa was decreased obviously (0.43 ± 0.07 U/L vs 0.91 ± 0.11 U/L, P < 0.05) while was attenuated by administration of DMSO. In the serum, the detection of DAO activity showed an opposite results. Also in ANP group, the activity of SOD and the level of GSH were highly decreased (SOD: 12.12 ± 2.24 U/mg vs 25.12 ± 3.86 U/mg; GSH: 160.75 ± 24.25 mg/g vs 412.45 ± 45.60 mg/g, both P < 0.01), while the activity of MPO and the level of MDA were markedly increased (MPO: 1.32 ± 0.18 U/mg vs 0.63 ± 0.11 U/mg; MDA: 2.85 ± 0.21 nmol/mg vs 1.34 ± 0.12 nmol/mg, both P < 0.01). However, administration of DMSO attenuated the damage to some extent, and mucosal barrier function was improved (P < 0.05). And the injury induced by oxidative stress was limited to some extent (P < 0.05). Western blot showed the expression of HIF-1α protein was up-regulated with ANP while down-regulated with DMSO.
CONCLUSION: The intestinal mucosal barrier is damaged during the process of ANP; oxidative stress plays an important role in the damage to mucosal barrier and OFR scavenger could maintain the integrity of mucosal barrier structure and function; HIF-1α is involved in the protection effect on intestinal mucosal barrier under hypoxia induced by ANP, which could be regulated through attenuating the mucosal barrier damage when OFR scavenger is used.
Collapse
|
241
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
242
|
Feoktistov I, Biaggioni I, Cronstein BN. Adenosine receptors in wound healing, fibrosis and angiogenesis. Handb Exp Pharmacol 2009:383-97. [PMID: 19639289 DOI: 10.1007/978-3-540-89615-9_13] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wound healing and tissue repair are critical processes, and adenosine, released from injured or ischemic tissues, plays an important role in promoting wound healing and tissue repair. Recent studies in genetically manipulated mice demonstrate that adenosine receptors are required for appropriate granulation tissue formation and in adequate wound healing. A(2A) and A(2B) adenosine receptors stimulate both of the critical functions in granulation tissue formation (i.e., new matrix production and angiogenesis), and the A(1) adenosine receptor (AR) may also contribute to new vessel formation. The effects of adenosine acting on these receptors is both direct and indirect, as AR activation suppresses antiangiogenic factor production by endothelial cells, promotes endothelial cell proliferation, and stimulates angiogenic factor production by endothelial cells and other cells present in the wound. Similarly, adenosine, acting at its receptors, stimulates collagen matrix formation directly. Like many other biological processes, AR-mediated promotion of tissue repair is critical for appropriate wound healing but may also contribute to pathogenic processes. Excessive tissue repair can lead to problems such as scarring and organ fibrosis and adenosine, and its receptors play a role in pathologic fibrosis as well. Here we review the evidence for the involvement of adenosine and its receptors in wound healing, tissue repair and fibrosis.
Collapse
Affiliation(s)
- Igor Feoktistov
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN 37232-6300, USA.
| | | | | |
Collapse
|
243
|
Abstract
There is increasing evidence of a causal relationship between sleep-disordered breathing and metabolic dysfunction. Metabolic syndrome (MetS), a cluster of risk factors that promote atherosclerotic cardiovascular disease, comprises central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension, manifestations of altered total body energy regulation. Excess caloric intake is indisputably the key driver of MetS, but other environmental and genetic factors likely play a role; in particular, obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), may induce or exacerbate various aspects of MetS. Clinical studies show that OSA can affect glucose metabolism, cholesterol, inflammatory markers, and nonalcoholic fatty liver disease. Animal models of OSA enable scientists to circumvent confounders such as obesity in clinical studies. In the most widely used model, which involves exposing rodents to IH during their sleep phase, the IH alters circadian glucose homeostasis, impairs muscle carbohydrate uptake, induces hyperlipidemia, and upregulates cholesterol synthesis enzymes. Complicating factors such as obesity or a high-fat diet lead to progressive insulin resistance and liver inflammation, respectively. Mechanisms for these effects are not yet fully understood, but are likely related to energy-conserving adaptations to hypoxia, which is a strong catabolic stressor. Finally, IH may contribute to the morbidity of MetS by inducing inflammation and oxidative stress. Identification of OSA as a potential causative factor in MetS would have immense clinical impact and could improve the management and understanding of both disorders.
Collapse
Affiliation(s)
- Jonathan Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | |
Collapse
|
244
|
Conde SV, Monteiro EC, Obeso A, Gonzalez C. Adenosine in peripheral chemoreception: new insights into a historically overlooked molecule--invited article. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:145-59. [PMID: 19536476 DOI: 10.1007/978-90-481-2259-2_17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present article we review in a concise manner the literature on the general biology of adenosine signalling. In the first section we describe briefly the historical aspects of adenosine research. In the second section is presented the biochemical characteristics of this nucleoside, namely its metabolism and regulation, and its physiological actions. In the third section we have succinctly described the role of adenosine and its metabolism in hypoxia. The final section is devoted to the role of adenosine in chemoreception in the carotid body, providing a review of the literature on the presence of adenosine receptors in the carotid body; on the effects of adenosine at presynaptic level in carotid body chemoreceptor cells, as well as, its metabolism and regulation; and at postsynaptic level in carotid sinus nerve activity. Additionally, a review on the effects of adenosine in ventilation was done. This review discusses evidence for a key role of adenosine in the hypoxic response of carotid body and emphasizes new research likely to be important in the future.
Collapse
Affiliation(s)
- S V Conde
- Department of Pharmacology, Faculty of Medical Sciences, New University of Lisbon, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| | | | | | | |
Collapse
|
245
|
St. Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 2009; 218:35-44. [PMID: 18767039 PMCID: PMC3265330 DOI: 10.1002/jcp.21579] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is a metabolite generated and released from cells, particularly under injury or stress. It elicits protective or damaging responses via signaling through the adenosine receptors, including the adenylyl cyclase inhibitory A(1) and A(3), and the adenylyl cyclase stimulatory A(2A) and A(2B). Multiple adenosine receptor types, including stimulatory and inhibitory, can be found in the same cell, suggesting that a careful balance of adenosine receptor expression in a particular cell is necessary for a specific adenosine-induced response. This balance could be controlled by differential expression of the adenosine receptor genes under different stimuli. Here, we have reviewed an array of studies that have characterized basal or induced expression of the adenosine receptors and common as well as distinct mechanisms of effect, in hopes that ongoing studies on this topic will further elucidate detailed mechanisms of adenosine receptor regulation, leading to potential therapeutic applications.
Collapse
Affiliation(s)
- Cynthia St. Hilaire
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Shannon H. Carroll
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Hongjie Chen
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| | - Katya Ravid
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| |
Collapse
|
246
|
Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 2008; 14:5947-52. [PMID: 18829471 DOI: 10.1158/1078-0432.ccr-08-0229] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancerous tissue protection from tumor-recognizing CD8(+) and CD4(+) T cells (antitumor T cells) limits the therapeutic potential of immunotherapies. We propose that tumor protection is to a large extent due to (a) inhibition of antitumor T cells by hypoxia-driven accumulation of extracellular adenosine in local tumor microenvironment and due to (b) T regulatory cell-produced extracellular adenosine. The adenosine triggers the immunosuppressive signaling via intracellular cyclic AMP-elevating A2A adenosine receptors (A2AR) on antitumor T cells. In addition, the activated antitumor T cells in hypoxic tumor microenvironment could be inhibited by elevated levels of immunosuppressive hypoxia-inducible factor-1alpha. Complete rejection or tumor growth retardation was observed when A2AR has been genetically eliminated or antagonized with synthetic drug or with natural A2AR antagonist 1,3,7-trimethylxanthine (caffeine). The promising strategy may be in combining the anti-hypoxia-adenosinergic treatment that prevents inhibition of antitumor T cells by tumor-produced and T regulatory cell-produced adenosine with targeting of other negative regulators, such as CTL antigen-4 blockade. Observations of tumor rejection in mice and massive prospective epidemiologic studies support the feasibility of anti-hypoxia-adenosinergic combined immunotherapy.
Collapse
Affiliation(s)
- Michail V Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
247
|
Eckle T, Grenz A, Laucher S, Eltzschig HK. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 2008; 118:3301-15. [PMID: 18787641 DOI: 10.1172/jci34203] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 08/13/2008] [Indexed: 12/15/2022] Open
Abstract
Although acute lung injury contributes significantly to critical illness, resolution often occurs spontaneously via activation of incompletely understood pathways. We recently found that mechanical ventilation of mice increases the level of pulmonary adenosine, and that mice deficient for extracellular adenosine generation show increased pulmonary edema and inflammation after ventilator-induced lung injury (VILI). Here, we profiled the response to VILI in mice with genetic deletions of each of the 4 adenosine receptors (ARs) and found that deletion of the A2BAR gene was specifically associated with reduced survival time and increased pulmonary albumin leakage after injury. In WT mice, treatment with an A2BAR-selective antagonist resulted in enhanced pulmonary inflammation, edema, and attenuated gas exchange, while an A2BAR agonist attenuated VILI. In bone marrow-chimeric A2BAR mice, although the pulmonary inflammatory response involved A2BAR signaling from bone marrow-derived cells, A2BARs located on the lung tissue attenuated VILI-induced albumin leakage and pulmonary edema. Furthermore, measurement of alveolar fluid clearance (AFC) demonstrated that A2BAR signaling enhanced amiloride-sensitive fluid transport and elevation of pulmonary cAMP levels following VILI, suggesting that A2BAR agonist treatment protects by drying out the lungs. Similar enhancement of pulmonary cAMP and AFC were also observed after beta-adrenergic stimulation, a pathway known to promote AFC. Taken together, these studies reveal a role for A2BAR signaling in attenuating VILI and implicate this receptor as a potential therapeutic target during acute lung injury.
Collapse
Affiliation(s)
- Tobias Eckle
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
248
|
Hilaire CS, Koupenova M, Carroll SH, Smith BD, Ravid K. TNF-alpha upregulates the A2B adenosine receptor gene: The role of NAD(P)H oxidase 4. Biochem Biophys Res Commun 2008; 375:292-6. [PMID: 18647598 PMCID: PMC2583397 DOI: 10.1016/j.bbrc.2008.07.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/15/2008] [Indexed: 12/11/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-alpha) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A(2B) adenosine receptor (A(2B)AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-alpha. Here, we show a regulatory loop by which TNF-alpha upregulates the A(2B)AR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A(2B)AR, and Nox inhibitors dampen the effect of TNF-alpha. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A(2B)AR.
Collapse
Affiliation(s)
- Cynthia St. Hilaire
- Department of Biochemistry and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - Milka Koupenova
- Department of Biochemistry and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - Shannon H. Carroll
- Department of Biochemistry and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - Barbara D. Smith
- Department of Biochemistry and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| | - Katya Ravid
- Department of Biochemistry and the Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118
| |
Collapse
|
249
|
Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS One 2008; 3:e3352. [PMID: 18839041 PMCID: PMC2556398 DOI: 10.1371/journal.pone.0003352] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 09/15/2008] [Indexed: 01/06/2023] Open
Abstract
Background Hypoxia-inducible factor 1 (HIF)-1α is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1α as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1α as transcriptional regulator during infections with RSV. Methodology, Principal Findings We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1α. These studies revealed that RSV-positive cells also stained for HIF-1α, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1α protein 24 h after RSV infection. In contrast, HIF-1α activation was abolished utilizing UV-treated RSV. Moreover, HIF-α-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1α dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1α. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1α activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-α-activation in a murine in vivo model. Conclusions/Significance Taking together, these studies suggest hypoxia-independent activation of HIF-1α during infection with RSV in vitro and in vivo.
Collapse
|
250
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120:233-53. [PMID: 18848843 DOI: 10.1016/j.pharmthera.2008.08.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 12/20/2022]
Abstract
The wide distribution of ATP and adenosine receptors as well as enzymes for purine metabolism in different gut regions suggests a complex role for these mediators in the regulation of gastrointestinal functions. Studies in rodents have shown a significant involvement of adenosine in the control of intestinal secretion, motility and sensation, via activation of A1, A2A, A2B or A3 purinergic receptors, as well as the participation of ATP in the regulation of enteric functions, through the recruitment of P2X and P2Y receptors. Increasing interest is being focused on the involvement of ATP and adenosine in the pathophysiology of intestinal disorders, with particular regard for inflammatory bowel diseases (IBDs), intestinal ischemia, post-operative ileus and related dysfunctions, such as gut dysmotility, diarrhoea and abdominal discomfort/pain. Current knowledge suggests that adenosine contributes to the modulation of enteric immune and inflammatory responses, leading to anti-inflammatory actions. There is evidence supporting a role of adenosine in the alterations of enteric motor and secretory activity associated with bowel inflammation. In particular, several studies have highlighted the importance of adenosine in diarrhoea, since this nucleoside participates actively in the cross-talk between immune and epithelial cells in the presence of diarrhoeogenic stimuli. In addition, adenosine exerts complex regulatory actions on pain transmission at peripheral and spinal sites. The present review illustrates current information on the role played by adenosine in the regulation of enteric functions, under normal or pathological conditions, and discusses pharmacological interventions on adenosine pathways as novel therapeutic options for the management of gut disorders and related abdominal symptoms.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|