201
|
Abstract
We investigated the role of chromatin in the catalysis of homologous strand pairing by Rad54 and Rad51. Rad54 is related to the ATPase subunits of chromatin-remodeling factors, whereas Rad51 is related to bacterial RecA. In the absence of superhelical tension, we found that the efficiency of strand pairing with chromatin is >100-fold higher than that with naked DNA. In addition, we observed that Rad54 and Rad51 function cooperatively in the ATP-dependent remodeling of chromatin. These findings indicate that Rad54 and Rad51 have evolved to function with chromatin, the natural substrate, rather than with naked DNA.
Collapse
Affiliation(s)
- Vassilios Alexiadis
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
202
|
Wallberg AE, Pedersen K, Lendahl U, Roeder RG. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002; 22:7812-9. [PMID: 12391150 PMCID: PMC134732 DOI: 10.1128/mcb.22.22.7812-7819.2002] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Revised: 08/06/2002] [Accepted: 08/13/2002] [Indexed: 11/20/2022] Open
Abstract
Ligand activation of Notch receptors leads to release of the intracellular receptor domain (Notch IC), which translocates to the nucleus and interacts with the DNA-binding protein RBP-Jkappa to control expression of specific target genes. A number of proteins have been shown to interact with Notch ICs and to modulate target gene activation, but the precise function of and interplay between these factors is not known. This report investigates the Notch IC-interacting proteins, p300, PCAF, and Mastermind-like 1 (MAML1), in an in vitro transcription system with purified factors and naked DNA or chromatin templates. MAML1, RBP-Jkappa, and Notch IC are all required for optimal transcription from DNA, whereas transcription from chromatin requires, in addition, p300, which interacts with MAML1. The transcriptional activity of p300 requires acetyl coenzyme A, indicating that it functions as a histone acetyltransferase when mediating Notch IC function. PCAF is unable to promote transcription on its own but enhances Notch IC-mediated transcription from chromatin in conjunction with p300. These data define a critical role for p300 in the potentiation of Notch IC function by MAML1 and PCAF, provide the first evidence for cooperativity between PCAF and p300 in Notch IC function, and also indicate direct effects of RBP-Jkappa, Notch IC, and MAML1 on the general transcription machinery.
Collapse
Affiliation(s)
- Annika E Wallberg
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
203
|
Santoro R, Li J, Grummt I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 2002; 32:393-6. [PMID: 12368916 DOI: 10.1038/ng1010] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 08/05/2002] [Indexed: 01/05/2023]
Abstract
Epigenetic control mechanisms silence about half of the ribosomal RNA (rRNA) genes in metabolically active cells. In exploring the mechanism by which the active or silent state of rRNA genes is inherited, we found that NoRC, a nucleolar remodeling complex containing Snf2h (also called Smarca5, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a, member 5), represses rDNA transcription. NoRC mediates rDNA silencing by recruiting DNA methyltransferase and histone deacetylase activity to the rDNA promoter, thus establishing structural characteristics of heterochromatin such as DNA methylation, histone hypoacetylation and methylation of the Lys9 residue of histone H3. These results indicate that active and inactive rRNA genes can be demarcated by their associated proteins, and link chromatin remodeling to DNA methylation and specific histone modifications.
Collapse
Affiliation(s)
- Raffaella Santoro
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
204
|
Kassabov SR, Henry NM, Zofall M, Tsukiyama T, Bartholomew B. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol Cell Biol 2002; 22:7524-34. [PMID: 12370299 PMCID: PMC135677 DOI: 10.1128/mcb.22.21.7524-7534.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The imitation switch (ISWI) complex from yeast containing the Isw2 and Itc1 proteins was shown to preferentially slide mononucleosomes with as little as 23 bp of linker DNA from the end to the center of DNA. The contacts of unique residues in the histone fold regions of H4, H2B, and H2A with DNA were determined with base pair resolution before and after chromatin remodeling by a site-specific photochemical cross-linking approach. The path of DNA and the conformation of the histone octamer in the nucleosome remodeled or slid by ISW2 were not altered, because after adjustment for the new translational position, the DNA contacts at specific sites in the histone octamer had not been changed. Maintenance of the canonical nucleosome structure after sliding was also demonstrated by DNA photoaffinity labeling of histone proteins at specific sites within the DNA template. In addition, nucleosomal DNA does not become more accessible during ISW2 remodeling, as assayed by restriction endonuclease cutting. ISW2 was also shown to have the novel capability of counteracting transcriptional activators by sliding nucleosomes through Gal4-VP16 bound initially to linker DNA and displacing the activator from DNA.
Collapse
Affiliation(s)
- Stefan R Kassabov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901-4413, USA
| | | | | | | | | |
Collapse
|
205
|
Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE, Simon JA. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111:197-208. [PMID: 12408864 DOI: 10.1016/s0092-8674(02)00976-5] [Citation(s) in RCA: 1192] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycomb group (PcG) proteins maintain transcriptional repression during development, likely by creating repressive chromatin states. The Extra Sex Combs (ESC) and Enhancer of Zeste [E(Z)] proteins are partners in an essential PcG complex, but its full composition and biochemical activities are not known. A SET domain in E(Z) suggests this complex might methylate histones. We purified an ESC-E(Z) complex from Drosophila embryos and found four major subunits: ESC, E(Z), NURF-55, and the PcG repressor, SU(Z)12. A recombinant complex reconstituted from these four subunits methylates lysine-27 of histone H3. Mutations in the E(Z) SET domain disrupt methyltransferase activity in vitro and HOX gene repression in vivo. These results identify E(Z) as a PcG protein with enzymatic activity and implicate histone methylation in PcG-mediated silencing.
Collapse
Affiliation(s)
- Jürg Müller
- EMBL, Gene Expression Programme, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, Kennison JA, Karch F. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 2002; 16:2621-6. [PMID: 12381660 PMCID: PMC187460 DOI: 10.1101/gad.231202] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
De novo chromatin assembly into regularly spaced nucleosomal arrays is essential for eukaryotic genome maintenance and inheritance. The Anti-Silencing Function 1 protein (ASF1) has been shown to be a histone chaperone, participating in DNA-replication-coupled nucleosome assembly. We show that mutations in the Drosophila asf1 gene derepress silencing at heterochromatin and that the ASF1 protein has a cell cycle-specific nuclear and cytoplasmic localization. Furthermore, using both genetic and biochemical methods, we demonstrate that ASF1 interacts with the Brahma (SWI/SNF) chromatin-remodelling complex. These findings suggest that ASF1 plays a crucial role in both chromatin assembly and SWI/SNF-mediated chromatin remodelling.
Collapse
Affiliation(s)
- Yuri M Moshkin
- Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Nucleosome sliding is a frequent result of energy-dependent nucleosome remodelling in vitro. This review discusses the possible roles for nucleosome sliding in the assembly and maintenance of dynamic chromatin and for the regulation of diverse functions in eukaryotic nuclei.
Collapse
Affiliation(s)
- Peter B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, D-80336 München, Germany.
| |
Collapse
|
208
|
Fyodorov DV, Kadonaga JT. Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly. Mol Cell Biol 2002; 22:6344-53. [PMID: 12192034 PMCID: PMC135643 DOI: 10.1128/mcb.22.18.6344-6353.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
ACF is a chromatin-remodeling complex that catalyzes the ATP-dependent assembly of periodic nucleosome arrays. This reaction utilizes the energy of ATP hydrolysis by ISWI, the smaller of the two subunits of ACF. Acf1, the large subunit of ACF, is essential for the full activity of the complex. We performed a systematic mutational analysis of Acf1 to elucidate the functions of specific subregions of the protein. These studies revealed DNA- and ISWI-binding regions that are important for the chromatin assembly and ATPase activities of ACF. The DNA-binding region of Acf1 includes a WAC motif, which is necessary for the efficient binding of ACF complex to DNA. The interaction of Acf1 with ISWI requires a DDT domain, which has been found in a variety of transcription and chromatin-remodeling factors. Chromatin assembly by ACF is also impaired upon mutation of an acidic region in Acf1, which may interact with histones during the deposition process. Lastly, we observed modest chromatin assembly defects on mutation of other conserved sequence motifs. Thus, Acf1 facilitates chromatin assembly via an N-terminal DNA-binding region with a WAC motif, a central ISWI-binding segment with a DDT domain, and a C-terminal region with an acidic stretch, a WAKZ motif, PHD fingers, and bromodomain.
Collapse
Affiliation(s)
- Dmitry V Fyodorov
- Section of Molecular Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
209
|
Abstract
The assembly of DNA into chromatin is a critical step in the replication and repair of the eukaryotic genome. It has been known for nearly 20 years that chromatin assembly is an ATP-dependent process. ATP-dependent chromatin-assembly factor (ACF) uses the energy of ATP hydrolysis for the deposition of histones into periodic nucleosome arrays, and the ISWI subunit of ACF is an ATPase that is related to helicases. Here we show that ACF becomes committed to the DNA template upon initiation of chromatin assembly. We also observed that ACF assembles nucleosomes in localized arrays, rather than randomly distributing them. By using a purified ACF-dependent system for chromatin assembly, we found that ACF hydrolyses about 2#150;4 molecules of ATP per base pair in the assembly of nucleosomes. This level of ATP hydrolysis is similar to that used by DNA helicases for the unwinding of DNA. These results suggest that a tracking mechanism exists in which ACF assembles chromatin as an ATP-driven DNA-translocating motor. Moreover, this proposed mechanism for ACF may be relevant to the function of other chromatin-remodelling factors that contain ISWI subunits.
Collapse
Affiliation(s)
- Dmitry V Fyodorov
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
210
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
211
|
Malik S, Wallberg AE, Kang YK, Roeder RG. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 2002; 22:5626-37. [PMID: 12101254 PMCID: PMC133960 DOI: 10.1128/mcb.22.15.5626-5637.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) regulates the expression of many liver-specific genes both during development and in the adult animal. Towards understanding the molecular mechanisms by which HNF-4 functions, we have established in vitro transcription systems that faithfully recapitulate HNF-4 activity. Here we have focused on the coactivator requirements for HNF-4, especially for the multicomponent TRAP/SMCC/Mediator complex that has emerged as the central regulatory module of the transcription apparatus. Using a system that has been reconstituted from purified transcription factors, as well as one consisting of unfractionated nuclear extract from which TRAP/SMCC/Mediator has been depleted by specific antibodies, we demonstrate a strong dependence of HNF-4 function on this coactivator. Importantly, we further show a TRAP/SMCC/Mediator-dependence for HNF-4 transcriptional activation from chromatin templates. The latter involves cooperation with the histone acetyltransferase-containing coactivator p300, in accord with a synergistic mode of action of the two divergent coactivators. We also show that HNF-4 and TRAP/SMCC/Mediator can interact physically. This interaction likely involves primary HNF-4 activation function 2 (AF-2)-dependent interactions with the TRAP220 subunit of TRAP/SMCC/Mediator and secondary (AF-2-independent) interactions with TRAP170/RGR1. Finally, recruitment experiments using immobilized templates strongly suggest that the functional consequences of the physical interaction probably are manifested at a postrecruitment step in the activation pathway.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
212
|
Lu H, Pise-Masison CA, Fletcher TM, Schiltz RL, Nagaich AK, Radonovich M, Hager G, Cole PA, Brady JN. Acetylation of nucleosomal histones by p300 facilitates transcription from tax-responsive human T-cell leukemia virus type 1 chromatin template. Mol Cell Biol 2002; 22:4450-62. [PMID: 12052856 PMCID: PMC133924 DOI: 10.1128/mcb.22.13.4450-4462.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. One key property of the coactivators is the presence of histone acetyltransferase (HAT) activity, which enables p300/CBP to modify nucleosome structure. The data presented in this manuscript demonstrate that full-length p300 and CBP facilitate transcription of a reconstituted chromatin template in the presence of Tax and CREB. The ability of p300 and CBP to activate transcription from the chromatin template is dependent upon the HAT activity. Moreover, the coactivator HAT activity must be tethered to the template by Tax and CREB, since a p300 mutant that fails to interact with Tax did not facilitate transcription or acetylate histones. p300 acetylates histones H3 and H4 within nucleosomes located in the promoter and 5' proximal regions of the template. Nucleosome acetylation is accompanied by an increase in the level of binding of RNA polymerase II transcription factor TFIID and RNA polymerase II to the promoter. Interestingly, we found distinct transcriptional activities between CBP and p300. CBP, but not p300, possesses an N-terminal activation domain which directly activates Tax-mediated HTLV-1 transcription from a naked DNA template. Finally, using the chromatin immunoprecipitation assay, we provide the first direct experimental evidence that p300 and CBP are associated with the HTLV-1 long terminal repeat in vivo.
Collapse
Affiliation(s)
- Hanxin Lu
- Virus Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
Fundamental mechanisms that regulate chromatin assembly and transcription have been elucidated recently using genetics and highly defined biochemical systems. Once DNA is packaged into chromatin, its function is controlled by the ordered recruitment of diverse enzymatic complexes that structurally remodel or chemically modify nucleosomes. Recent studies provide insight into the functional selectivity of chromatin-remodeling and -modifying complexes and how they act in specific combinations to regulate individual genes and cellular pathways.
Collapse
Affiliation(s)
- Shilpa Kadam
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
214
|
Tsukiyama T. The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 2002; 3:422-9. [PMID: 12042764 DOI: 10.1038/nrm828] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ATP-dependent chromatin-remodelling factors regulate the accessibility of DNA to nuclear factors that are involved in cellular processes that depend on protein DNA interactions. They probably accomplish this by using the energy of ATP hydrolysis to change the positions of nucleosomes on the DNA, or to change the structure of DNA within the nucleosomes. Although their mechanisms of action have been extensively studied in vitro, many questions remain about their functions in vivo.
Collapse
Affiliation(s)
- Toshio Tsukiyama
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mail Stop A1-162, PO Box 19024, Seattle, Washington 98109-1024, USA.
| |
Collapse
|
215
|
Bozhenok L, Wade PA, Varga-Weisz P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 2002; 21:2231-41. [PMID: 11980720 PMCID: PMC125993 DOI: 10.1093/emboj/21.9.2231] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Williams Syndrome Transcription Factor (WSTF), the product of the WBSCR9 gene, is invariably deleted in the haploinsufficiency Williams-Beuren Syndrome. Along with the nucleosome-dependent ATPase ISWI, WSTF forms a novel chromatin remodeling complex, WICH (WSTF-ISWI chromatin remodeling complex), which is conserved in vertebrates. The WICH complex was purified to homogeneity from Xenopus egg extract and was found to contain only WSTF and ISWI. In mouse cells, WSTF interacts with the SNF2H isoform of ISWI. WSTF accumulates in pericentric heterochromatin coincident with the replication of these structures, suggesting a role for WSTF in the replication of heterochromatin. Such a role is supported by the in vitro activity of both the mouse and frog WICH complexes: they are involved in the assembly of regular spaced nucleosomal arrays. In contrast to the related ISWI-interacting protein ACF1/WCRF180, WSTF binds stably to mitotic chromosomes. As dysfunction of other chromatin remodeling factors often has severe effects on development, haploinsufficiency of WSTF may explain some of the phenotypes associated with this disease.
Collapse
Affiliation(s)
| | - Paul A. Wade
- Marie Curie Research Institute, Oxted, Surrey RH8 0TL, UK and
Department of Pathology, Emory University, Atlanta, GA, USA Corresponding author e-mail:
| | - Patrick Varga-Weisz
- Marie Curie Research Institute, Oxted, Surrey RH8 0TL, UK and
Department of Pathology, Emory University, Atlanta, GA, USA Corresponding author e-mail:
| |
Collapse
|
216
|
Asahara H, Tartare-Deckert S, Nakagawa T, Ikehara T, Hirose F, Hunter T, Ito T, Montminy M. Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro. Mol Cell Biol 2002; 22:2974-83. [PMID: 11940655 PMCID: PMC133748 DOI: 10.1128/mcb.22.9.2974-2983.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a yeast two-hybrid screen to identify proteins that bind to the KIX domain of the coactivator p300, we obtained cDNAs encoding nucleosome assembly protein 1 (NAP-1), a 60-kDa histone H2A-H2B shuttling protein that promotes histone deposition. p300 associates preferentially with the H2A-H2B-bound form of NAP-1 rather than with the unbound form of NAP-1. Formation of NAP-1-p300 complexes was found to increase during S phase, suggesting a potential role for p300 in chromatin assembly. In micrococcal nuclease and supercoiling assays, addition of p300 promoted efficient chromatin assembly in vitro in conjunction with NAP-1 and ATP-utilizing chromatin assembly and remodeling factor; this effect was dependent in part on the intrinsic histone acetyltransferase activity of p300. Surprisingly, NAP-1 potently inhibited acetylation of core histones by p300, suggesting that efficient assembly requires acetylation of either NAP-1 or p300 itself. As p300 acted cooperatively with NAP-1 in stimulating transcription from a chromatin template in vitro, our results suggest a dual role of NAP-1-p300 complexes in promoting chromatin assembly and transcriptional activation.
Collapse
Affiliation(s)
- Hiroshi Asahara
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
The organization of DNA within eukaryotic cell nuclei poses special problems and opportunities for the cell. For example, assembly of DNA into chromatin is thought to be a principle mechanism by which adventitious general transcription is repressed. However, access to genomic DNA for events such as DNA repair must be facilitated by energy-intensive processes that either directly alter chromatin structure or impart post-translational modifications, leading to increased DNA accessibility. The assembly of DNA into chromatin affects both the incidence of damage to DNA and repair of that damage. Correction of most damage to DNA caused by UV irradiation occurs via the nucleotide excision repair (NER) process. NER requires extensive involvement of large multiprotein complexes with relatively large stretches of DNA. Here, we review recent evidence suggesting that at least some steps of NER require ATP-dependent chromatin remodeling activities while perhaps others do not.
Collapse
Affiliation(s)
- Kiyoe Ura
- Division of Gene Therapy Science, Osaka University School of Medicine, Suita, Japan
| | | |
Collapse
|
218
|
Tyler JK. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2268-74. [PMID: 11985607 DOI: 10.1046/j.1432-1033.2002.02890.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromatin is a highly dynamic structure that plays an essential role in regulating all nuclear processes that utilize the DNA template including DNA repair, replication, transcription and recombination. Thus, the mechanisms by which chromatin structures are assembled and modified are questions of broad interest. This minireview will focus on two groups of proteins: (a) histone chaperones and (b) ATP-dependent chromatin remodeling machines, that co-operate to assemble DNA and histone proteins into chromatin. The current understanding of how histone chaperones and ATP-dependent remodeling machines coordinately assemble chromatin in vitro will be discussed, together with the growing body of genetic evidence that supports the role of histone chaperones in the cell.
Collapse
Affiliation(s)
- Jessica K Tyler
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
219
|
An W, Palhan VB, Karymov MA, Leuba SH, Roeder RG. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol Cell 2002; 9:811-21. [PMID: 11983172 DOI: 10.1016/s1097-2765(02)00497-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The N-terminal tails of the core histones play important roles in transcriptional regulation, but their mechanism(s) of action are poorly understood. Here, pure chromatin templates assembled with varied combinations of recombinant wild-type and mutant core histones have been employed to ascertain the role of individual histone tails, both in overall acetylation patterns and in transcription. In vitro assays show an indispensable role for H3 and H4 tails, especially major lysine substrates, in p300-dependent transcriptional activation, as well as activator-targeted acetylation of promoter-proximal histone tails by p300. These results indicate, first, that constraints to transcription are imposed by nucleosomal histone components other than histone N-terminal tails and, second, that the histone N-terminal tails have selective roles, which can be modulated by targeted acetylation, in transcriptional activation by p300.
Collapse
Affiliation(s)
- Woojin An
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
220
|
Livengood JA, Scoggin KES, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK. p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300. J Biol Chem 2002; 277:9054-61. [PMID: 11782467 DOI: 10.1074/jbc.m108870200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 recruits the cellular coactivator CBP/p300 to mediate the transcriptional activation of target genes. In this study, we identify a novel p53-interacting region in CBP/p300, which we call CR2, located near the carboxyl terminus. The 95-amino acid CR2 region (amino acids 2055--2150) is located adjacent to the C/H3 domain and corresponds precisely with the minimal steroid receptor coactivator 1 (SRC1)-interacting domain of CBP (also called IBiD). We show that the region of p53 that participates in the CR2 interaction resides within the first 107 amino acids of the protein. p53 binds strongly to the CR2 domain of both CBP and the highly homologous coactivator p300. Importantly, an in-frame deletion of CR2 within the full-length p300 protein strongly compromises p300-mediated p53 transcriptional activation from a chromatin template in vitro. The identification of the p53-interacting CR2 domain in CBP/p300 prompted us to ask if the human T-cell leukemia virus (HTLV-I) Tax protein, which also interacts with CR2, competes with p53 for binding to this domain. We show that p53 and Tax exhibit mutually exclusive binding to the CR2 region, possibly contributing to the previously reported Tax repression of p53 function. Together, these studies identify and molecularly characterize a new p53 binding site on CBP/p300 that participates in coactivator-mediated p53 transcription function. The identity of the p53.CR2 interaction indicates that at least three distinct sites on CBP/p300 may participate in mediating p53 transactivation.
Collapse
Affiliation(s)
- Jill A Livengood
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
The Drosophila nucleosome remodeling factor (NURF) is an imitation switch (ISWI)-containing chromatin remodeling complex that can catalyze nucleosome repositioning at promoter regions to regulate access by the transcription machinery. Mononucleosomes reconstituted in vitro by salt dialysis adopt an ensemble of translational positions on DNA templates. NURF induces bi-directional 'sliding' of these nucleosomes to a subset of preferred positions. Here we show that mononucleosome sliding catalyzed by NURF bears similarity to nucleosome movement induced by elevated temperature. Moreover, we demonstrate that the GAL4 DNA-binding domain can extend NURF-induced nucleosome movement on a GAL4-E4 promoter, expanding the stretch of histone-free DNA at GAL4 recognition sites. The direction of NURF-induced nucleosome movement can be significantly modulated by asymmetric placement of tandem GAL4 sites relative to the nucleosome core particle. As such, sequence-specific, transcription factor-directed nucleosome sliding is likely to have substantial influence on promoter activation.
Collapse
Affiliation(s)
| | - Ali Hamiche
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| | - Carl Wu
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| |
Collapse
|
222
|
Levenstein ME, Kadonaga JT. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J Biol Chem 2002; 277:8749-54. [PMID: 11773058 DOI: 10.1074/jbc.m111212200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the effects of histone modifications upon chromatin structure and function, we studied the assembly and properties of chromatin that contains unmodified recombinant core histones. To this end, we synthesized the Drosophila core histones in Escherichia coli. The purified histones were lacking covalent modifications as well as their N-terminal initiating methionine residues. The recombinant histones were efficiently assembled into periodic nucleosome arrays in a completely purified recombinant system with Drosophila ATP-utilizing chromatin assembly and remodeling factor (ACF), Drosophila nucleosome assembly protein-1, plasmid DNA, and ATP. With the Gal4-VP16 activator and a crude transcription extract, we found that the transcriptional properties of ACF-assembled chromatin containing unmodified histones were similar to those of chromatin containing native histones. We then examined ACF-catalyzed chromatin remodeling with completely purified factors and chromatin consisting of unmodified histones. In these experiments, we observed promoter-specific disruption of the regularity of nucleosome arrays upon binding of Gal4-VP16 as well as nucleosome positioning by R3 Lac repressor and subsequent nucleosome remobilization upon isopropyl-beta-D-thiogalactopyranoside-induced dissociation of R3 from the template. Thus, chromatin assembly and remodeling by ACF can occur in the absence of histone modifications.
Collapse
Affiliation(s)
- Mark E Levenstein
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
223
|
Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475-87. [PMID: 11909519 DOI: 10.1016/s0092-8674(02)00654-2] [Citation(s) in RCA: 1082] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromatin structure creates barriers for each step in eukaryotic transcription. Here we discuss how the activities of two major classes of chromatin-modifying complexes, ATP-dependent remodeling complexes and HAT or HDAC complexes, might be coordinated to create a DNA template that is accessible to the general transcription apparatus.
Collapse
Affiliation(s)
- Geeta J Narlikar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
224
|
Clapier CR, Nightingale KP, Becker PB. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res 2002; 30:649-55. [PMID: 11809876 PMCID: PMC100309 DOI: 10.1093/nar/30.3.649] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone-DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underlies nucleosome sliding is largely unresolved. We recently discovered that the N-terminal 'tail' of histone H4 is critical for nucleosome remodeling by ISWI. If deleted, nucleosomes are no longer recognized as substrates and do not stimulate the ATPase activity of ISWI. We show here that the H4 tail is part of a more complex recognition epitope which is destroyed by grafting the H4 N-terminus onto other histones. We mapped the H4 tail requirement to a hydrophilic patch consisting of the amino acids R17H18R19 localized at the base of the tail. These residues have been shown earlier to contact nucleosomal DNA, suggesting that ISWI recognizes an 'epitope' consisting of the DNA-bound H4 tail. Consistent with this hypothesis, the ISWI ATPase is stimulated by isolated H4 tail peptides ISWI only in the presence of DNA. Acetylation of the adjacent K12 and K16 residues impairs substrate recognition by ISWI.
Collapse
Affiliation(s)
- Cedric R Clapier
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | |
Collapse
|
225
|
Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ. p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. Mol Cell Biol 2002; 22:127-37. [PMID: 11739728 PMCID: PMC134225 DOI: 10.1128/mcb.22.1.127-137.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient transcription of the human T-cell leukemia virus type 1 (HTLV-1) genome requires Tax, a virally encoded oncogenic transcription factor, in complex with the cellular transcription factor CREB and the coactivators p300/CBP. To examine Tax transactivation in vitro, we used a chromatin assembly system that included recombinant core histones. The addition of Tax, CREB, and p300 to the HTLV-1 promoter assembled into chromatin activated transcription several hundredfold. Chromatin templates selectively lacking amino-terminal histone tails demonstrated enhanced transcriptional activation by Tax and CREB, with significantly reduced dependence on p300 and acetyl coenzyme A (acetyl-CoA). Interestingly, Tax/CREB activation from the tailless chromatin templates retained a substantial requirement for acetyl-CoA, indicating a role for acetyl-CoA beyond histone acetylation. These data indicate that during Tax transcriptional activation, the amino-terminal histone tails are the major targets of p300 and that tail deletion and acetylation are functionally equivalent.
Collapse
Affiliation(s)
- Sara A Georges
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
226
|
MacCallum DE, Losada A, Kobayashi R, Hirano T. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 2002; 13:25-39. [PMID: 11809820 PMCID: PMC65070 DOI: 10.1091/mbc.01-09-0441] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously characterized major components of mitotic chromosomes assembled in Xenopus laevis egg extracts and collectively referred to them as Xenopus chromosome-associated polypeptides (XCAPs). They included five subunits of the condensin complex essential for chromosome condensation. In an effort to identify novel proteins involved in this process, we have isolated XCAP-F and found it to be the Xenopus ortholog of ISWI, a chromatin remodeling ATPase. ISWI exists in two major complexes in Xenopus egg extracts. The first complex contains ACF1 and two low-molecular-weight subunits, most likely corresponding to Xenopus CHRAC. The second complex is a novel one that contains the Xenopus ortholog of the human Williams syndrome transcription factor (WSTF). In the absence of the ISWI complexes, the deposition of histones onto DNA is apparently normal, but the spacing of nucleosomes is greatly disturbed. Despite the poor spacing of nucleosomes, ISWI depletion has little effect on DNA replication, chromosome condensation or sister chromatid cohesion in the cell-free extracts. The association of ISWI with chromatin is cell cycle regulated and is under the control of the INCENP-aurora B kinase complex that phosphorylates histone H3 during mitosis. Apparently contradictory to the generally accepted model, we find that neither chromosome condensation nor chromosomal targeting of condensin is compromised when H3 phosphorylation is drastically reduced by depletion of INCENP-aurora B.
Collapse
Affiliation(s)
- David E MacCallum
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | | | | | | |
Collapse
|
227
|
Lemon B, Inouye C, King DS, Tjian R. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 2001; 414:924-8. [PMID: 11780067 DOI: 10.1038/414924a] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An array of regulatory protein and multi-subunit cofactors has been identified that directs eukaryotic gene transcription. However, establishing the specific functions of various related cofactors has been difficult owing to the limitations inherent in assaying transcription in animals and cells indirectly. Here we describe, using an integrated chromatin-dependent reconstituted transcription reaction, the purification and identification of a multi-subunit cofactor (PBAF) that is necessary for ligand-dependent transactivation by nuclear hormone receptors. A highly related cofactor, human SWI/SNF, and the ISWI-containing chromatin-remodelling complex ACF both fail to potentiate transcription. We also show that transcriptional activation mediated by nuclear hormone receptors requires TATA-binding protein (TBP)-associated factors (TAFs) as well as the multi-subunit cofactors ARC/CRSP. These studies demonstrate functional selectivity amongst highly related complexes involved in gene regulation and help define a more complete set of factors and cofactors required to activate transcription.
Collapse
Affiliation(s)
- B Lemon
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | | | | | |
Collapse
|
228
|
Loyola A, LeRoy G, Wang YH, Reinberg D. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 2001; 15:2837-51. [PMID: 11691835 PMCID: PMC312801 DOI: 10.1101/gad.937401] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human ISWI-containing factor RSF (remodeling and spacing factor) was found to mediate nucleosome deposition and, in the presence of ATP, generate regularly spaced nucleosome arrays. Using this system, recombinant chromatin was reconstituted with bacterially produced histones. Acetylation of the histone tails was found to play an important role in establishing regularly spaced nucleosome arrays. Recombinant chromatin lacking histone acetylation was impaired in directing transcription. Histone-tail modifications were found to regulate transcription from the recombinant chromatin. Acetylation of the histone tails by p300 was found to increase transcription. Methylation of the histone H3 tail by Suv39H1 was found to repress transcription in an HP1-dependent manner. The effects of histone-tail modifications were observed in nuclear extracts. A highly reconstituted RNA polymerase II transcription system was refractory to the effect imposed by acetylation and methylation.
Collapse
Affiliation(s)
- A Loyola
- Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
229
|
Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 2001; 21:6574-84. [PMID: 11533245 PMCID: PMC99803 DOI: 10.1128/mcb.21.19.6574-6584.2001] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180- and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180+p105+p55 dCAF-1 complex is active for DNA replication-coupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and the Drosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo in Drosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.
Collapse
Affiliation(s)
- J K Tyler
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- D V Fyodorov
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
231
|
Aalfs JD, Narlikar GJ, Kingston RE. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J Biol Chem 2001; 276:34270-8. [PMID: 11435432 DOI: 10.1074/jbc.m104163200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent nucleosome remodeling complexes can be grouped into several classes that may differ in their biochemical remodeling activities and biological roles. Although there are a number of biochemical studies of each class of remodeler, there are very little data directly comparing the biochemical activities of remodelers from different classes. We have purified two ATP-hydrolyzing proteins, SNF2H and BRG1, which are members of complexes from two different classes of remodelers. Consistent with previous reports, these two homogeneous proteins can perform remodeling functions. We show significant functional differences between SNF2H and BRG1 in vitro; although both SNF2H and BRG1 hydrolyze ATP and remodel linear arrays of nucleosomes, only BRG1 can remodel mononucleosomes. Also, only BRG1 can alter the topology of nucleosomal plasmids. We propose that these functional differences reflect significant mechanistic differences between the two remodeler classes that will impact their biological roles.
Collapse
Affiliation(s)
- J D Aalfs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
232
|
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Längst G, Grummt I. NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001; 20:4892-900. [PMID: 11532953 PMCID: PMC125270 DOI: 10.1093/emboj/20.17.4892] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcription by RNA polymerase I on nucleosomal templates requires binding of the transcription termination factor TTF-I to a cognate site 160 bp upstream of the transcription start site. Binding of TTF-I is accompanied by changes in the chromatin architecture which suggests that TTF-I recruits a remodeling activity to the rDNA promoter. We have cloned a cDNA that encodes TIP5 (TTF-I-interacting protein 5), a 205 kDa protein that shares a number of important protein domains with WSTF (Williams syndrome transcription factor) and hAcf1/WCRF180, the largest subunits of human chromatin remodeling complexes hCHRAC and WCRF. TIP5 co-localizes with the basal RNA polymerase I transcription factor UBF in the nucleolus and is associated with SNF2h. The cellular TIP5-SNF2h complex, termed NoRC (nucleolar remodeling complex), induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. The results suggest that NoRC is a novel nucleolar chromatin remodeling machine that may serve a role in the regulation of the rDNA locus.
Collapse
Affiliation(s)
- Ralf Strohner
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | | | - Petr Jansa
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | | | | | - Gernot Längst
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| |
Collapse
|
233
|
Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 2001; 8:531-43. [PMID: 11583616 DOI: 10.1016/s1097-2765(01)00345-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NURF is an ISWI complex of four proteins that uses the energy of ATP hydrolysis to catalyze nucleosome sliding. Three NURF components have been identified previously. We have cloned cDNA encoding the largest NURF subunit, revealing a 301 kDa polypeptide (NURF301) that shares structural motifs with ACF1. We have reconstituted full and partial NURF complexes from recombinant proteins and show that NURF301 and the ISWI ATPase are necessary and sufficient for accurate and efficient nucleosome sliding. An HMGA/HMGI(Y)-like domain of NURF301 that facilitates nucleosome sliding indicates the importance of DNA conformational changes in the sliding mechanism. NURF301 also shows interactions with sequence-specific transcription factors, providing a basis for targeted recruitment of the NURF complex to specific genes.
Collapse
Affiliation(s)
- H Xiao
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Nakagawa T, Bulger M, Muramatsu M, Ito T. Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor. J Biol Chem 2001; 276:27384-91. [PMID: 11333264 DOI: 10.1074/jbc.m101331200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examine in vitro nucleosome assembly by nucleosome assembly protein-1 (NAP-1) and ATP-utilizing chromatin assembly and remodeling factor (ACF). In contrast to previous studies that used relaxed, circular plasmids as templates, we have found that negatively supercoiled templates reveal the distinct roles of NAP-1 and ACF in histone deposition and the formation of an ordered nucleosomal array. NAP-1 can efficiently deposit histones onto supercoiled plasmids. Furthermore, NAP-1 exhibits a greater affinity for histones H2A-H2B than does naked DNA, but in the presence of H3-H4, H2A-H2B are transferred from NAP-1 to the plasmid templates. These observations underscore the importance of a high affinity between H2A-H2B and NAP-1 for ordered transfer of core histones onto DNA. In addition, recombinant ACF composed of imitation switch and Acf1 can extend closely packed nucleosomes, which suggests that recombinant ACF can mobilize nucleosomes. In the assembly reaction with a supercoiled template, ACF need not be added simultaneously with NAP-1. Regularly spaced nucleosomes are generated even when recombinant ACF is added after core histones are transferred completely onto the DNA. Atomic force microscopy, however, suggests that NAP-1 alone fails to accomplish the formation of fine nucleosomal core particles, which are only formed in the presence of ACF. These results suggest a model for the ordered deposition of histones and the arrangement of nucleosomes during chromatin assembly in vivo.
Collapse
Affiliation(s)
- T Nakagawa
- Division of Gene Structure and Function, Saitama Medical School Research Center for Genomic Medicine, Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | |
Collapse
|
235
|
Eberharter A, Ferrari S, Längst G, Straub T, Imhof A, Varga-Weisz P, Wilm M, Becker PB. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 2001; 20:3781-8. [PMID: 11447119 PMCID: PMC125259 DOI: 10.1093/emboj/20.14.3781] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chromatin accessibility complex (CHRAC) was originally defined biochemically as an ATP-dependent 'nucleosome remodelling' activity. Central to its activity is the ATPase ISWI, which catalyses the transfer of histone octamers between DNA segments in cis. In addition to ISWI, four other potential subunits were observed consistently in active CHRAC fractions. We have now identified the p175 subunit of CHRAC as Acf1, a protein known to associate with ISWI in the ACF complex. Interaction of Acf1 with ISWI enhances the efficiency of nucleosome sliding by an order of magnitude. Remarkably, it also modulates the nucleosome remodelling activity of ISWI qualitatively by altering the directionality of nucleosome movements and the histone 'tail' requirements of the reaction. The Acf1-ISWI heteromer tightly interacts with the two recently identified small histone fold proteins CHRAC-14 and CHRAC-16. Whether topoisomerase II is an integral subunit has been controversial. Refined analyses now suggest that topoisomerase II should not be considered a stable subunit of CHRAC. Accordingly, CHRAC can be molecularly defined as a complex consisting of ISWI, Acf1, CHRAC-14 and CHRAC-16.
Collapse
Affiliation(s)
| | - Simona Ferrari
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | | | | | | | - Patrick Varga-Weisz
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Matthias Wilm
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Peter B. Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| |
Collapse
|
236
|
Espinosa JM, Emerson BM. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 2001; 8:57-69. [PMID: 11511360 DOI: 10.1016/s1097-2765(01)00283-0] [Citation(s) in RCA: 345] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tumor suppressor protein, p53, plays a critical role in mediating cellular response to stress signals by regulating genes involved in cell cycle arrest and apoptosis. p53 is believed to be inactive for DNA binding unless its C terminus is modified or structurally altered. We show that unmodified p53 actively binds to two sites at -1.4 and -2.3 kb within the chromatin-assembled p21 promoter and requires the C terminus and the histone acetyltransferase, p300, for transcription. Acetylation of the C terminus by p300 is not necessary for binding or promoter activation. Instead, p300 acetylates p53-bound nucleosomes in the p21 promoter with spreading to the TATA box. Thus, p53 is an active DNA and chromatin binding protein that may selectively regulate its target genes by recruitment of specific cofactors to structurally distinct binding sites.
Collapse
Affiliation(s)
- J M Espinosa
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
237
|
Abstract
The actions of lipophilic hormones, including steroids, retinoids, thyroid hormone and vitamin D(3), are mediated through a conserved superfamily of nuclear receptor proteins that function as ligand-regulated, DNA-binding transcriptional activators in the chromatin environment of the nucleus. The ligand-dependent transcriptional activity of nuclear receptors is enhanced by various cofactors that remodel chromatin, acetylate nucleosomal histones and contact the basal transcriptional machinery. The current challenge is to understand the mechanistic details of how interactions among these factors enhance transcription of hormone-regulated genes assembled into chromatin. Current biochemical and cell-based methods are providing some important clues.
Collapse
Affiliation(s)
- K C Lee
- Dept of Molecular Biology and Genetics, Cornell University, 14853, Ithaca, NY, USA
| | | |
Collapse
|
238
|
Varga-Weisz P. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 2001; 20:3076-85. [PMID: 11420723 DOI: 10.1038/sj.onc.1204332] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review addresses recent developments in the field of ATP-dependent chromatin remodeling factors. These factors use the energy of ATP hydrolysis to introduce superhelical torsion into DNA, which suggests a common mechanistic basis of action. Chromatin remodeling factors function both in transcriptional activation and repression, but they may have roles outside of transcriptional regulation such as DNA repair. A study of the nucleosome dependent ATPase ISWI in yeast illustrates the involvement of ATP-dependent chromatin remodeling in transcriptional repression by setting up inaccessible chromatin structures at promoters. However, factors such as ISWI are also involved in the restructuring of large chromatin domains and even whole chromosomes. Transcriptional regulation by ATP-dependent chromatin remodeling factors occurs in concert with histone modifying enzymes such as histone acetyltransferases and histone deacetylases: In yeast, SWI/SNF targeting is a requirement for histone acetyltransferases activity at promoters that are active at late stages of mitosis, when the chromatin is still condensed. This demonstrates that ATP-dependent remodeling factors facilitate covalent histone modifications. However, they are also regulated by histone modifications and in some circumstances they function in parallel with histone modifications towards the same goal.
Collapse
Affiliation(s)
- P Varga-Weisz
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 OTL, UK
| |
Collapse
|
239
|
Demeret C, Vassetzky Y, Méchali M. Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene 2001; 20:3086-93. [PMID: 11420724 DOI: 10.1038/sj.onc.1204333] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Organization of DNA into chromatin is likely to participate in the control of the timing and selection of DNA replication origins. Reorganization of the chromatin is carried out by chromatin remodelling machines, which may affect the choice of replication origins and efficiency of replication. Replication itself causes a profound rearrangement in the chromatin structure, from nucleosomes to DNA loop domains, allowing to retain or switch an epigenetic state. The present review considers the effects of chromatin remodelling on replication and vice versa.
Collapse
Affiliation(s)
- C Demeret
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | |
Collapse
|
240
|
Urnov FD, Wolffe AP. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001; 20:2991-3006. [PMID: 11420714 DOI: 10.1038/sj.onc.1204323] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of chromatin modifying and remodeling complexes implicated in genome control is growing faster than our understanding of the functional roles they play. We discuss recent in vitro experiments with biochemically defined chromatin templates that illuminate new aspects of action by histone acetyltransferases and ATP-dependent chromatin remodeling engines in facilitating transcription. We review a number of studies that present an 'ordered recruitment' view of transcriptional activation, according to which various complexes enter and exit their target promoter in a set sequence, and at specific times, such that action by one complex sets the stage for the arrival of the next one. A consensus emerging from all these experiments is that the joint action by several types of chromatin remodeling machines can lead to a more profound alteration of the infrastructure of chromatin over a target promoter than could be obtained by these enzymes acting independently. In addition, it appears that in specific cases one type of chromatin structure alteration (e.g., histone hyperacetylation) is contingent upon prior alterations of a different sort (i.e., ATP-dependent remodeling of histone-DNA contacts). The striking differences between the precise sequence of action by various cofactors observed in these studies may be - at least in part - due to differences between the specific promoters studied, and distinct requirements exhibited by specific loci for chromatin remodeling based on their pre-existing nucleoprotein architecture.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech. Center, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
| | | |
Collapse
|
241
|
Huang X, Kadonaga JT. Biochemical analysis of transcriptional repression by Drosophila histone deacetylase 1. J Biol Chem 2001; 276:12497-500. [PMID: 11278256 DOI: 10.1074/jbc.c100034200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the mechanisms by which deacetylases regulate transcription by RNA polymerase II, we investigated the biochemical properties of purified recombinant Drosophila histone deacetylase 1 (dHDAC1, also known as dRPD3). We found that purified dHDAC1 and Gal4-dHDAC1 polypeptides possess substantial deacetylase activity. Thus, deacetylation by dHDAC1 does not require any additional cofactors. Gal4-dHDAC1, but not dHDAC1, was observed to repress transcription in vitro by about 2-3-fold from chromatin templates, but not from naked DNA templates, in a Gal4 site-dependent manner. This magnitude of repression is similar to that commonly seen by deacetylases in vivo, as assessed by treatment of cells with deacetylase inhibitors. Transcriptional repression by Gal4-dHDAC1 was blocked by the deacetylase inhibitor, FR901228, and thus, deacetylase activity correlates with repression. Single round transcription analyses showed that Gal4-dHDAC1 reduces the absolute number of productive initiation complexes with chromatin templates. Moreover, with chromatin templates that were assembled with completely purified components, Gal4-dHDAC1 was found to deacetylate nucleosomal histones as well as to repress transcription. These experiments provide biochemical evidence for the requirement of chromatin for transcriptional repression by dHDAC1 and further show that dHDAC1 acts to repress the transcription initiation process.
Collapse
Affiliation(s)
- X Huang
- Section of Molecular Biology, 0347, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
242
|
Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y, Hanaoka F. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J 2001; 20:2004-14. [PMID: 11296233 PMCID: PMC125421 DOI: 10.1093/emboj/20.8.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the relationship between chromatin dynamics and nucleotide excision repair (NER), we have examined the effect of chromatin structure on the formation of two major classes of UV-induced DNA lesions in reconstituted dinucleosomes. Furthermore, we have developed a model chromatin-NER system consisting of purified human NER factors and dinucleosome substrates that contain pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) either at the center of the nucleosome or in the linker DNA. We have found that the two classes of UV-induced DNA lesions are formed efficiently at every location on dinucleosomes in a manner similar to that of naked DNA, even in the presence of histone H1. On the other hand, excision of 6-4PPs is strongly inhibited by dinucleosome assembly, even within the linker DNA region. These results provide direct evidence that the human NER machinery requires a space greater than the size of the linker DNA to excise UV lesions efficiently. Interestingly, NER dual incision in dinucleosomes is facilitated by recombinant ACF, an ATP-dependent chromatin remodeling factor. Our results indicate that there is a functional connection between chromatin remodeling and the initiation step of NER.
Collapse
Affiliation(s)
- Kiyoe Ura
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Marito Araki
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | | | - Chikahide Masutani
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Takashi Ito
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Shigenori Iwai
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Toshimi Mizukoshi
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | | | - Fumio Hanaoka
- Division of Gene Therapy Science, Osaka University School of Medicine, 2-2 Yamada-oka, Suita,
Institute for Molecular and Cellular Biology, Osaka University and CREST, JST, 1-3 Yamada-oka, Suita, Osaka 565-0870, Second Department of Biochemistry, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495 and Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Present address: Department of Genetics, Box 3657, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| |
Collapse
|
243
|
Abstract
De novo nucleosome assembly coupled to DNA replication and repair in vitro involves the histone chaperone chromatin assembly factor 1 (CAF-1). Recent studies support a model in which CAF-1 can be targeted to newly synthesized DNA through a direct interaction with proliferating cell nuclear antigen (PCNA) and can act synergistically with a newly identified histone chaperone. Insights have also been obtained into mechanisms by which this CAF-1-dependent pathway can establish a repressed chromatin state.
Collapse
Affiliation(s)
- J A Mello
- Institut Curie, Research section, UMR 218 du Centre National de la Recherche Scientifique (CNRS), 75248 Paris 05, Cedex, France.
| | | |
Collapse
|
244
|
Doerks T, Copley R, Bork P. DDT -- a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 2001; 26:145-6. [PMID: 11246006 DOI: 10.1016/s0968-0004(00)01769-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Homology-based sequence analyses have revealed the presence of a novel domain (DDT) in bromodomain PHD finger transcription factors (BPTFs), chromatin remodeling factors of the BAZ-family and other putative nuclear proteins. This domain is characterized by a number of conserved aromatic and charged residues and is predicted to consist of three alpha helices. Recent studies indicate a likely DNA-binding function for the DDT domain.
Collapse
Affiliation(s)
- T Doerks
- European Molecular Biology Laboratory, 69012 Heidelberg, Germany.
| | | | | |
Collapse
|
245
|
Gelbart ME, Rechsteiner T, Richmond TJ, Tsukiyama T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol Cell Biol 2001; 21:2098-106. [PMID: 11238944 PMCID: PMC86823 DOI: 10.1128/mcb.21.6.2098-2106.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate the biochemical characterization of chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae, we have developed a system to assemble nucleosomal arrays on immobilized templates using recombinant yeast core histones. This system enabled us to analyze the interaction of Isw2 ATP-dependent chromatin remodeling complex with nucleosomal arrays. We found that Isw2 complex interacts efficiently with both naked DNA and nucleosomal arrays in an ATP-independent manner, suggesting that ATP is required at steps subsequent to this physical interaction. We identified the second subunit of Isw2 complex, encoded by open reading frame YGL 133w (herein named ITC1), and found that both subunits of the complex, Isw2p and Itc1p, are essential for efficient interaction with DNA and nucleosomal arrays. Both subunits are also required for nucleosome-stimulated ATPase activity and chromatin remodeling activity of the complex. Finally, we found that ITC1 is essential for function of Isw2 complex in vivo, since isw2 and itc1 deletion mutants exhibit virtually identical phenotypes. These results demonstrate the utility of our in vitro system in studying interactions between chromatin-associated proteins and nucleosomal arrays.
Collapse
Affiliation(s)
- M E Gelbart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
246
|
Ross JF, Näär A, Cam H, Gregory R, Dynlacht BD. Active repression and E2F inhibition by pRB are biochemically distinguishable. Genes Dev 2001; 15:392-7. [PMID: 11230147 PMCID: PMC312635 DOI: 10.1101/gad.858501] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To understand mechanistically how pRB represses transcription, we used a reconstituted transcription assay and compared pRB activity on naked versus chromatin templates. Surprisingly, when pRB was directly recruited to a naked template, no transcriptional repression was observed. However, we observed active repression when the same promoter was assembled into chromatin. Histone deacetylases do not appear to play a role in this observed repression. Further experiments showed repression could occur after preinitiation complex assembly, in contrast with pRB inhibition of E2F, suggesting discrete mechanisms by which pRB directly inhibits an activator such as E2F or actively represses proximally bound transcription factors.
Collapse
Affiliation(s)
- J F Ross
- Harvard University, Department of Molecular and Cellular Biology, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
247
|
Clapier CR, Längst G, Corona DF, Becker PB, Nightingale KP. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 2001; 21:875-83. [PMID: 11154274 PMCID: PMC86678 DOI: 10.1128/mcb.21.3.875-883.2001] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.
Collapse
Affiliation(s)
- C R Clapier
- Adolf Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
248
|
Jiang W, Nordeen SK, Kadonaga JT. Transcriptional analysis of chromatin assembled with purified ACF and dNAP1 reveals that acetyl-CoA is required for preinitiation complex assembly. J Biol Chem 2000; 275:39819-22. [PMID: 11054407 DOI: 10.1074/jbc.c000713200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of chromatin structure in the regulation of transcription by RNA polymerase II, we developed a chromatin transcription system in which periodic nucleosome arrays are assembled with purified recombinant ATP-utilizing chromatin assembly and remodeling factor (ACF), purified recombinant nucleosome assembly protein 1 (dNAP1), purified native core histones, plasmid DNA, and ATP. With this chromatin, we observed robust activation of transcription with three different transcription factor sets (nuclear factor kappaB p65 + Sp1, estrogen receptor, and Gal4-VP16) added either before or after chromatin assembly. In fact, the efficiency of activated transcription from the ACF + dNAP1-assembled chromatin was observed to be comparable with that from naked DNA templates or chromatin assembled with a crude Drosophila extract (S190). With ACF + dNAP1-assembled chromatin, we found that transcriptional activation is dependent upon acetyl-CoA. This effect was not seen with naked DNA templates or with crude S190-assembled chromatin. We further determined that acetyl-CoA is required at the time of preinitiation complex assembly but not during assembly of the chromatin template. These findings suggest that there is at least one key acetylation event that is needed to assemble a functional transcription preinitiation complex with a chromatin template.
Collapse
Affiliation(s)
- W Jiang
- Section of Molecular Biology and Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
249
|
Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA. Multiple ISWI ATPase complexes from xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J Biol Chem 2000; 275:35248-55. [PMID: 10942776 DOI: 10.1074/jbc.m006041200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosomal ATPase ISWI is the catalytic subunit of several protein complexes that either organize or perturb chromatin structure in vitro. This work reports the cloning and biochemical characterization of a Xenopus ISWI homolog. Surprisingly, whereas we find four complex forms of ISWI in egg extracts, we find no functional homolog of NURF. One of these complexes, xACF, consists of ISWI, Acf1, and a previously uncharacterized protein of 175 kDa. Like both ACF and CHRAC, this complex organizes randomly deposited histones into a regularly spaced array. The remaining three forms include two novel ISWI complexes distinct from known ISWI complexes plus a histone-dependent ATPase complex. This comprehensive biochemical characterization of ISWI underscores the evolutionary conservation of the ACF/CHRAC family.
Collapse
Affiliation(s)
- D Guschin
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
250
|
Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14:2551-69. [PMID: 11040209 DOI: 10.1101/gad.831000] [Citation(s) in RCA: 546] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B Lemon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|