201
|
Chakraborty S, Salekdeh GH, Yang P, Woo SH, Chin CF, Gehring C, Haynes PA, Mirzaei M, Komatsu S. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives. J Proteome Res 2015; 14:2723-44. [DOI: 10.1021/acs.jproteome.5b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Pingfang Yang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sun Hee Woo
- Chungbuk National University, Cheongju 362-763, Korea
| | - Chiew Foan Chin
- University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| | - Chris Gehring
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
202
|
Takeda T, Fukui Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium. Biosci Biotechnol Biochem 2015; 79:1579-86. [PMID: 25988618 DOI: 10.1080/09168451.2015.1045826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We explored functional significance of selenium (Se) in Arabidopsis physiology. Se at very low concentrations in cultivation exerted a considerable positive effect on Arabidopsis growth with no indication of oxidative stress, whereas Se at higher concentrations significantly suppressed the growth and brought serious oxidative damage. Respiration, ATP levels, and the activity of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) were enhanced in Arabidopsis grown in the medium containing 1.0 μM Se. Addition of an inhibitor of glutathione (GSH) synthesis to the medium abolished both of the Se-dependent growth promotion and NAD-GAPDH up-regulation. Assay of NAD-GAPDH purified from seedlings subjected to Se interventions raised the possibility of a direct connection between the activity of this enzyme and Arabidopsis growth. These results reveal that trace amounts of Se accelerate Arabidopsis growth, and suggest that this pro-growth effect of Se arises enhancing mitochondrial performance in a GSH-dependent manner, in which NAD-GAPDH may serve as a key regulator.
Collapse
Affiliation(s)
- Toru Takeda
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
203
|
Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2857-68. [PMID: 25954048 DOI: 10.1093/jxb/erv213] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).
Collapse
Affiliation(s)
- Luis Sanz
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Mateos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Tamara Lechón
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Fernández-Marcos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
204
|
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J. Cysteines under ROS attack in plants: a proteomics view. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2935-44. [PMID: 25750420 DOI: 10.1093/jxb/erv044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction.
Collapse
Affiliation(s)
- Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
205
|
Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2945-55. [PMID: 25873657 DOI: 10.1093/jxb/erv146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.
Collapse
Affiliation(s)
- F Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - D Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - J J Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ, CSIC, 18007 Granada, Spain
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
206
|
Correa-Aragunde N, Foresi N, Lamattina L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2913-21. [PMID: 25750426 DOI: 10.1093/jxb/erv073] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oxidative and nitrosative stresses and their respective antioxidant responses are common metabolic adjustments operating in all biological systems. These stresses result from an increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS) and an imbalance in the antioxidant response. Plants respond to ROS and RNS accumulation by increasing the level of the antioxidant molecules glutathione and ascorbate and by activating specific antioxidant enzymes. Nitric oxide (NO) is a free radical considered to be toxic or protective depending on its concentration, combination with ROS compounds, and subcellular localization. In this review we focus on the mechanisms of NO action in combination with ROS on the regulation of the antioxidant system in plants. In particular, we describe the redox post-translational modifications of cytosolic ascorbate peroxidase and its influence on enzyme activity. The regulation of ascorbate peroxidase activity by NO as a redox sensor of acute oxidative stress or as part of a hormone-induced signalling pathway leading to lateral root development is presented and discussed.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
207
|
Henry E, Fung N, Liu J, Drakakaki G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet 2015; 11:e1005199. [PMID: 25918875 PMCID: PMC4412566 DOI: 10.1371/journal.pgen.1005199] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 04/08/2015] [Indexed: 11/17/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments.
Collapse
Affiliation(s)
- Elizabeth Henry
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Nicholas Fung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jun Liu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
208
|
Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A. Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteomics 2015; 119:112-25. [PMID: 25682994 DOI: 10.1016/j.jprot.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO. BIOLOGICAL SIGNIFICANCE S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Juan J Lázaro
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - María C Romero-Puertas
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Alfonso Lázaro-Payo
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| |
Collapse
|
209
|
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1731-46. [PMID: 25699590 PMCID: PMC4378176 DOI: 10.1104/pp.15.00026] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates multiple developmental events and stress responses in plants. A major biologically active species of NO is S-nitrosoglutathione (GSNO), which is irreversibly degraded by GSNO reductase (GSNOR). The major physiological effect of NO is protein S-nitrosylation, a redox-based posttranslational modification mechanism by covalently linking an NO molecule to a cysteine thiol. However, little is known about the mechanisms of S-nitrosylation-regulated signaling, partly due to limited S-nitrosylated proteins being identified. In this study, we identified 1,195 endogenously S-nitrosylated peptides in 926 proteins from the Arabidopsis (Arabidopsis thaliana) by a site-specific nitrosoproteomic approach, which, to date, is the largest data set of S-nitrosylated proteins among all organisms. Consensus sequence analysis of these peptides identified several motifs that contain acidic, but not basic, amino acid residues flanking the S-nitrosylated cysteine residues. These S-nitrosylated proteins are involved in a wide range of biological processes and are significantly enriched in chlorophyll metabolism, photosynthesis, carbohydrate metabolism, and stress responses. Consistently, the gsnor1-3 mutant shows the decreased chlorophyll content and altered photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism in these processes. These results have provided valuable resources and new clues to the studies on S-nitrosylation-regulated signaling in plants.
Collapse
Affiliation(s)
- Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xuwu Sun
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Congming Lu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lixin Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| |
Collapse
|
210
|
Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM. Quantifying reversible oxidation of protein thiols in photosynthetic organisms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:631-640. [PMID: 25698223 DOI: 10.1007/s13361-014-1073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches--suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.
Collapse
Affiliation(s)
- William O Slade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | | | | |
Collapse
|
211
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
212
|
Gong B, Wen D, Wang X, Wei M, Yang F, Li Y, Shi Q. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. PLANT & CELL PHYSIOLOGY 2015; 56:790-802. [PMID: 25634962 DOI: 10.1093/pcp/pcv007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/15/2015] [Indexed: 05/18/2023]
Abstract
S-Nitrosoglutathione reductase (GSNOR) plays an important role in regulating nitric oxide (NO) and S-nitrosothiol (SNO) homeostasis, and is therefore involved in the modulation of processes mediated by reactive nitrogen species (RNS). Although RNS have emerged as a key component in plant response to abiotic stress, knowledge of their regulation by GSNOR under alkaline stress was lacking. In this study, metabolic regulation of NO and SNOs was investigated in tomato plants of the wild type (WT), GSNOR overexpression lines (OE-1/2) and GSNOR suppression lines (AS-1/2) grown under either control conditions or sodic alkaline stress. Phenotype, photosynthesis, reactive oxygen species (ROS) metabolism, Na(+)-K(+) homeostasis and expression of genes encoding ROS scavenging, Na(+) detoxification and programmed cell death (PCD) were also analyzed. Compared with WT lines, OE-1/2 lines were alkaline tolerant, while AS-1/2 lines were alkaline sensitive. In AS-1/2 lines, although genetic expression of Na(+) detoxification was activated by GSNOR-regulated NO and ROS signaling, excess RNS and ROS accumulation also led to serious oxidative stress and induced PCD. In contrast, overexpression of GSNOR significantly increased ROS scavenging efficiency. Thus, it seemed that increasing alkaline tolerance via GSNOR overexpression in tomato was attributed to the regulation of redox signaling including RNS and ROS.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Dan Wen
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiufeng Wang
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Min Wei
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Fengjuan Yang
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yan Li
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| |
Collapse
|
213
|
Trapet P, Kulik A, Lamotte O, Jeandroz S, Bourque S, Nicolas-Francès V, Rosnoblet C, Besson-Bard A, Wendehenne D. NO signaling in plant immunity: a tale of messengers. PHYTOCHEMISTRY 2015; 112:72-9. [PMID: 24713571 DOI: 10.1016/j.phytochem.2014.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/12/2014] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca(2+). Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-translational protein modification. Overall, these findings suggest that NO is probably an important component of the mechanism coordinating and regulating Ca(2+) and ROS signaling in plant immunity.
Collapse
Affiliation(s)
- Pauline Trapet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Anna Kulik
- INRA, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Olivier Lamotte
- CNRS, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Sylvain Jeandroz
- AgroSup Dijon, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Stéphane Bourque
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Valérie Nicolas-Francès
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Claire Rosnoblet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Angélique Besson-Bard
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France.
| |
Collapse
|
214
|
Zhang Z, Wang J, Chai R, Qiu H, Jiang H, Mao X, Wang Y, Liu F, Sun G. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. PLoS One 2015; 10:e0120627. [PMID: 25793615 PMCID: PMC4368689 DOI: 10.1371/journal.pone.0120627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 11/25/2022] Open
Abstract
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice blast disease. A compatible interaction requires overcoming plant defense responses to initiate colonization during the early infection process. Nitric oxide (NO) plays important roles in defense responses during host-pathogen interactions. Microbes generally protect themselves against NO-induced damage by using enzymes. Here, we characterized an S-(hydroxymethyl)-glutathione dehydrogenase gene in M. oryzae, MoSFA1, the homologs of which are involved in NO metabolism by specifically catalyzing the reduction of S-nitrosoglutathione (GSNO) in yeasts and plants. As expected from the activities of S-(hydroxymethyl)glutathione dehydrogenase in formaldehyde detoxification and GSNO reduction, MoSFA1 deletion mutants were lethal in formaldehyde containing medium, sensitive to exogenous NO and exhibited a higher level of S-nitrosothiols (SNOs) than that of the wild type. Notably, the mutants showed severe reduction of conidiation and appressoria turgor pressure, as well as significantly attenuated the virulence on rice cultivar CO-39. However, the virulence of MoSFA1 deletion mutants on wounded rice leaf was not affected. An infection assay on barley leaf further revealed that MoSFA1 deletion mutants exhibited a lower infection rate, and growth of infectious hyphae of the mutants was retarded not only in primary infected cells but also in expansion from cell to cell. Furthermore, barley leaf cell infected by MoSFA1 deletion mutants exhibited a stronger accumulation of H2O2 at 24 and 36 hpi. MoSFA1 deletion mutants displayed hypersensitivity to different oxidants, reduced activities of superoxide dismutases and peroxidases, and lower glutathione content in cells, compared with the wild type. These results imply that MoSFA1-mediated NO metabolism is important in redox homeostasis in response to development and host infection of M. oryzae. Taken together, this work identifies that MoSFA1 is required for conidiation and contributes to virulence in the penetration and biotrophic phases in M. oryzae.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
215
|
Hancock JT, Whiteman M. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci 2015; 1365:5-14. [DOI: 10.1111/nyas.12733] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John T. Hancock
- Faculty of Health and Applied Sciences; University of the West of England; Bristol England
| | - Matthew Whiteman
- University of Exeter Medical School; University of Exeter; Exeter England
| |
Collapse
|
216
|
Abstract
The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.
Collapse
Affiliation(s)
- Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| |
Collapse
|
217
|
Liu P, Zhang H, Yu B, Xiong L, Xia Y. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis. Sci Rep 2015; 5:8625. [PMID: 25720653 PMCID: PMC4342551 DOI: 10.1038/srep08625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 12/04/2022] Open
Abstract
Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.
Collapse
Affiliation(s)
- Pei Liu
- 1] Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong [2] Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Huoming Zhang
- Biosciences Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boying Yu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yiji Xia
- 1] Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong [2] Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
218
|
Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van Breusegem F, Messens J. DYn-2 Based Identification of Arabidopsis Sulfenomes. Mol Cell Proteomics 2015; 14:1183-200. [PMID: 25693797 DOI: 10.1074/mcp.m114.046896] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 01/02/2023] Open
Abstract
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Salma Akter
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Nandita Bodra
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Barbara De Smet
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Khadija Wahni
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Debbie Rombaut
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jarne Pauwels
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kate Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Frank Van Breusegem
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| |
Collapse
|
219
|
Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction. PROTOPLASMA 2015; 252:307-19. [PMID: 25064634 PMCID: PMC4287684 DOI: 10.1007/s00709-014-0680-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/12/2014] [Indexed: 05/09/2023]
Abstract
This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper.
Collapse
Affiliation(s)
- E. Pietrowska
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - S. Różalska
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - J. Nawrocka
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - U. Małolepsza
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
220
|
Mitochondrial Signaling in Plants Under Hypoxia: Use of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
221
|
Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB. Nitration and S-Nitrosylation: Two Post-translational Modifications (PTMs) Mediated by Reactive Nitrogen Species (RNS) and Their Role in Signalling Processes of Plant Cells. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
222
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
223
|
Seabra AR, Carvalho HG. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme. FRONTIERS IN PLANT SCIENCE 2015; 6:578. [PMID: 26284094 PMCID: PMC4515544 DOI: 10.3389/fpls.2015.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/13/2015] [Indexed: 05/03/2023]
Abstract
Glutamine synthetase (GS) catalyzes the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE) and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of GS isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.
Collapse
Affiliation(s)
| | - Helena G. Carvalho
- *Correspondence: Helena G. Carvalho, Laboratory of Molecular Biology of Nitrogen Assimilation, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal,
| |
Collapse
|
224
|
Nishizawa Y, Mochizuki S, Koiwai H, Kondo K, Kishimoto K, Katoh E, Minami E. Rice ubiquitin ligase EL5 prevents root meristematic cell death under high nitrogen conditions and interacts with a cytosolic GAPDH. PLANT SIGNALING & BEHAVIOR 2015; 10:e990801. [PMID: 25807209 PMCID: PMC4623351 DOI: 10.4161/15592324.2014.990801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 05/29/2023]
Abstract
Root formation in rice transformants overexpressing mutated EL5 (mEL5) was severely inhibited because of meristematic cell death. Cell death was caused by nitrogen sources, particularly nitrate forms, in the culture medium. Nitrite treatment increased the cytokinin contents in roots, but mEL5 contained more cytokinins than non-transformants. Transcriptome profiling showed overlaps between nitrite-responsive genes in non-transformants and genes with altered expression in untreated mEL5. These results indicate that impairment of EL5 function activates nitrogen signaling despite the absence of a nitrogen source. Physical interaction between the EL5 C-terminal region and a cytosolic glyceraldehyde-3-phosphate dehydrogenase, OsGapC2, was demonstrated in vitro and in vivo. Elucidation of the role of glyceraldehyde-3-phosphate dehydrogenase in oxidative cell death in plants is expected in future.
Collapse
Affiliation(s)
- Yoko Nishizawa
- National Institute of Agrobiological Sciences; Tsukuba, Japan
| | - Susumu Mochizuki
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Currently at Graduate School and Faculty of Agriculture; Kagawa University; Miki, Japan
| | - Hanae Koiwai
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Currently at Kitasato Institute for Life Sciences; Kitasato University; Sagamihara, Japan
| | - Katsuhiko Kondo
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Currently at JIRCAS; Tsukuba, Japan
| | - Kyutaro Kishimoto
- National Institute of Agrobiological Sciences; Tsukuba, Japan
- Currently at NARO Institute of Floricultural Science; Tsukuba, Japan
| | - Etsuko Katoh
- National Institute of Agrobiological Sciences; Tsukuba, Japan
| | - Eiichi Minami
- National Institute of Agrobiological Sciences; Tsukuba, Japan
| |
Collapse
|
225
|
Hydrogen Sulfide and Reactive Friends: The Interplay with Reactive Oxygen Species and Nitric Oxide Signalling Pathways. PROCEEDINGS OF THE INTERNATIONAL PLANT SULFUR WORKSHOP 2015. [DOI: 10.1007/978-3-319-20137-5_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
226
|
Chen YJ, Lu CT, Su MG, Huang KY, Ching WC, Yang HH, Liao YC, Chen YJ, Lee TY. dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation. Nucleic Acids Res 2014; 43:D503-11. [PMID: 25399423 PMCID: PMC4383970 DOI: 10.1093/nar/gku1176] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Given the increasing number of proteins reported to be regulated by S-nitrosylation (SNO), it is considered to act, in a manner analogous to phosphorylation, as a pleiotropic regulator that elicits dual effects to regulate diverse pathophysiological processes by altering protein function, stability, and conformation change in various cancers and human disorders. Due to its importance in regulating protein functions and cell signaling, dbSNO (http://dbSNO.mbc.nctu.edu.tw) is extended as a resource for exploring structural environment of SNO substrate sites and regulatory networks of S-nitrosylated proteins. An increasing interest in the structural environment of PTM substrate sites motivated us to map all manually curated SNO peptides (4165 SNO sites within 2277 proteins) to PDB protein entries by sequence identity, which provides the information of spatial amino acid composition, solvent-accessible surface area, spatially neighboring amino acids, and side chain orientation for 298 substrate cysteine residues. Additionally, the annotations of protein molecular functions, biological processes, functional domains and human diseases are integrated to explore the functional and disease associations for S-nitrosoproteome. In this update, users are allowed to search a group of interested proteins/genes and the system reconstructs the SNO regulatory network based on the information of metabolic pathways and protein-protein interactions. Most importantly, an endogenous yet pathophysiological S-nitrosoproteomic dataset from colorectal cancer patients was adopted to demonstrate that dbSNO could discover potential SNO proteins involving in the regulation of NO signaling for cancer pathways.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Tsung Lu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Min-Gang Su
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Wei-Chieh Ching
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsiao-Hsiang Yang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Yen-Chen Liao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan Department of Chemistry, National Taiwan University, Taipei 114, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan Department of Chemistry, National Taiwan University, Taipei 114, Taiwan
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
227
|
Chaki M, Kovacs I, Spannagl M, Lindermayr C. Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 2014; 9:e110232. [PMID: 25333472 PMCID: PMC4204854 DOI: 10.1371/journal.pone.0110232] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most important regulatory mechanisms of NO is S-nitrosylation-the covalent attachment of NO to cysteine residues. Although the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods have their limits. Thus, computational methods are attracting considerable attention for the identification of modification sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610 candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis proteome using the medium threshold. In the compartments "chloroplast," "CUL4-RING ubiquitin ligase complex," and "membrane" more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further development, such as including the three dimensional structure of proteins in such analyses, would improve the identification of S-nitrosylation sites.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
228
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
229
|
Vidal EA, Moyano TC, Canales J, Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5611-8. [PMID: 25129132 DOI: 10.1093/jxb/eru326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.
Collapse
Affiliation(s)
- Elena A Vidal
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Canales
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
230
|
Balsera M, Uberegui E, Schürmann P, Buchanan BB. Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 2014; 21:1327-55. [PMID: 24483204 DOI: 10.1089/ars.2013.5817] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. RECENT ADVANCES Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. CRITICAL ISSUES The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. FUTURE DIRECTIONS The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.
Collapse
Affiliation(s)
- Monica Balsera
- 1 Instituto de Recursos Naturales y Agrobiología de Salamanca , Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
231
|
Dietz KJ. Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 2014; 21:1356-72. [PMID: 24182193 DOI: 10.1089/ars.2013.5672] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE The redox regulatory signaling network of the plant cell controls and co-regulates transcriptional activities, thereby enabling adjustment of metabolism and development in response to environmental cues, including abiotic stress. RECENT ADVANCES Our rapidly expanding knowledge on redox regulation of plant transcription is driven by methodological advancements such as sensitive redox proteomics and in silico predictions in combination with classical targeted genetic and molecular approaches, often in Arabidopsis thaliana. Thus, transcription factors (TFs) are both direct and indirect targets of redox-dependent activity modulation. Redox control of TF activity involves conformational switching, nucleo-cytosolic partitioning, assembly with coregulators, metal-S-cluster regulation, redox control of upstream signaling elements, and proteolysis. CRITICAL ISSUES While the significance of redox regulation of transcription is well established for prokaryotes and non-plant eukaryotes, the momentousness of redox-dependent control of transcription in plants still receives insufficient awareness and, therefore, is discussed in detail in this review. FUTURE DIRECTIONS Improved proteome sensitivity will enable characterization of low abundant proteins and to simultaneously address the various post-translational modifications such as nitrosylation, hydroxylation, and glutathionylation. Combining such approaches by gradually increasing biotic and abiotic stress strength is expected to result in a systematic understanding of redox regulation. In the end, only the combination of in vivo, ex vivo, and in vitro results will provide conclusive pictures on the rather complex mechanism of redox regulation of transcription.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University , Bielefeld, Germany
| |
Collapse
|
232
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
233
|
Larrainzar E, Molenaar JA, Wienkoop S, Gil-Quintana E, Alibert B, Limami AM, Arrese-Igor C, González EM. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. PLANT, CELL & ENVIRONMENT 2014; 37:2051-63. [PMID: 24471423 DOI: 10.1111/pce.12285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/19/2014] [Indexed: 05/04/2023]
Abstract
Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests post-translational modifications cross-talk. Nitric Oxide 2014; 43:97-111. [PMID: 25175897 DOI: 10.1016/j.niox.2014.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022]
Abstract
Abiotic stress affects the normal physiology of the plants and results in crop loss. Brassica juncea is an oil yielding crop affected by abiotic stress. In future, over 30% yield loss by abiotic stress is predicted in India. Understanding the mechanism of plant response to stress would help in developing stress tolerant crops. Nitric oxide (NO) is now viewed as a remarkably important signaling molecule, involved in regulating stress responses. S-Nitrosylation is a NO based post-translational modification (PTM), linked with the regulation of many physiologically relevant targets. In the last decade, over 700 functionally varied S-nitrosylated proteins were identified, which suggested broad-spectrum regulation. To understand the physiological significance of S-nitrosylation, it was analyzed in cold stress. Functional categorization and validation of some of the B. juncea S-nitrosylated targets, suggested that NO produced during stress regulates cellular detoxification by modulating enzymes of ascorbate glutathione cycle, superoxide dismutase, glutathione S-transferase and glyoxalase I by S-nitrosylation in crude, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) depleted and apoplastic fractions. Interestingly, S-nitrosylation of enzymes associated with glucosinolate hydrolysis pathway, suggests a novel regulation of this Brassicaceae specific pathway by NO. Moreover, identification of enzymes of Glycolysis and Calvin cycle in crude and RuBisCO depleted fractions showed the regulation of metabolic as well as photosynthetic pathways by S-nitrosylation. S-Nitrosylation of cell wall modifying and proteolytic enzymes in the apoplast suggested differential and spatial regulation by S-nitrosylation. To have an overview of physiological role(s) of NO, collective information on NO based signaling (mainly by S-nitrosylation) is presented in this review.
Collapse
|
235
|
PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC. Int J Mol Sci 2014; 15:11204-19. [PMID: 24968264 PMCID: PMC4139777 DOI: 10.3390/ijms150711204] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022] Open
Abstract
S-nitrosylation (SNO) is one of the most universal reversible post-translational modifications involved in many biological processes. Malfunction or dysregulation of SNO leads to a series of severe diseases, such as developmental abnormalities and various diseases. Therefore, the identification of SNO sites (SNOs) provides insights into disease progression and drug development. In this paper, a new bioinformatics tool, named PSNO, is proposed to identify SNOs from protein sequences. Firstly, we explore various promising sequence-derived discriminative features, including the evolutionary profile, the predicted secondary structure and the physicochemical properties. Secondly, rather than simply combining the features, which may bring about information redundancy and unwanted noise, we use the relative entropy selection and incremental feature selection approach to select the optimal feature subsets. Thirdly, we train our model by the technique of the k-nearest neighbor algorithm. Using both informative features and an elaborate feature selection scheme, our method, PSNO, achieves good prediction performance with a mean Mathews correlation coefficient (MCC) value of about 0.5119 on the training dataset using 10-fold cross-validation. These results indicate that PSNO can be used as a competitive predictor among the state-of-the-art SNOs prediction tools. A web-server, named PSNO, which implements the proposed method, is freely available at http://59.73.198.144:8088/PSNO/.
Collapse
|
236
|
Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, Yates JR, Becker K. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal 2014; 20:2923-35. [PMID: 24256207 PMCID: PMC4039001 DOI: 10.1089/ars.2013.5553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Due to its life in different hosts and environments, the human malaria parasite Plasmodium falciparum is exposed to oxidative and nitrosative challenges. Nitric oxide (NO) and NO-derived reactive nitrogen species can constitute nitrosative stress and play a major role in NO-related signaling. However, the mode of action of NO and its targets in P. falciparum have hardly been characterized. Protein S-nitrosylation (SNO), a posttranslational modification of protein cysteine thiols, has emerged as a principal mechanism by which NO exerts diverse biological effects. Despite its potential importance, SNO has hardly been studied in human malaria parasites. Using a biotin-switch approach coupled to mass spectrometry, we systemically studied SNO in P. falciparum cell extracts. RESULTS We identified 319 potential targets of SNO that are widely distributed throughout various cellular pathways. Glycolysis in the parasite was found to be a major target, with glyceraldehyde-3-phosphate dehydrogenase being strongly inhibited by S-nitrosylation of its active site cysteine. Furthermore, we show that P. falciparum thioredoxin 1 (PfTrx1) can be S-nitrosylated at its nonactive site cysteine (Cys43). Mechanistic studies indicate that PfTrx1 possesses both denitrosylating and transnitrosylating activities mediated by its active site cysteines and Cys43, respectively. INNOVATION This work provides first insights into the S-nitrosoproteome of P. falciparum and suggests that the malaria parasite employs the thioredoxin system to deal with nitrosative challenges. CONCLUSION Our results indicate that SNO may influence a variety of metabolic processes in P. falciparum and contribute to our understanding of NO-related signaling processes and cytotoxicity in the parasites.
Collapse
Affiliation(s)
- Lihui Wang
- 1 Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University , Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
237
|
Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution. THE NEW PHYTOLOGIST 2014; 202:1142-1156. [PMID: 24611485 DOI: 10.1111/nph.12739] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/26/2014] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), CC 12457600, Mar del Plata, Argentina
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| |
Collapse
|
238
|
Schnabel U, Niquet R, Schlüter O, Gniffke H, Ehlbeck J. Decontamination and Sensory Properties of Microbiologically Contaminated Fresh Fruits and Vegetables by Microwave Plasma Processed Air (PPA). J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12273] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uta Schnabel
- Leibniz Institute for Plasma Science and Technology; Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Rijana Niquet
- Leibniz Institute for Plasma Science and Technology; Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering Potsdam-Bornim; Max-Eyth-Allee 100 14469 Potsdam Germany
| | - Holger Gniffke
- neu.zlt - Zentrum für Lebensmitteltechnologie Mecklenburg-Vorpommern GmbH; Seestraße 7 17033 Neubrandenburg Germany
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology; Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
239
|
Ai Y, Yang Y, Qiu B, Gao X. Unique WSPA protein from terrestrial macroscopic cyanobacteria can confer resistance to osmotic stress in transgenic plants. World J Microbiol Biotechnol 2014; 30:2361-9. [DOI: 10.1007/s11274-014-1661-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
240
|
Hancock JT, Whiteman M. Hydrogen sulfide and cell signaling: team player or referee? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:37-42. [PMID: 24607577 DOI: 10.1016/j.plaphy.2014.02.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/16/2014] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter, and along with other reactive compounds such as reactive oxygen species (ROS) and nitric oxide (NO) it is thought to be a key signalling molecule. Enzymes which generate H2S, and remove it, have been characterised in both plants and animals and although it is inherently toxic to cells - inhibiting cytochrome oxidase for example - H2S is now being thought of as part of signal transduction pathways. But is it working as a signal in the sense usually seen for small signalling molecules, that is, produced when needed, perceived and leading to dedicated responses in cells? A look through the literature shows that H2S is involved in many stress responses, and in animals is implicated in the onset of many diseases, in both cases where ROS and NO are often involved. It is suggested here that H2S is not acting as a true signal, but through its interaction with NO and ROS metabolism is modulating such activity, keeping it in check unless strictly needed, and that H2S is acting as a referee to ensure NO and ROS metabolism is working properly.
Collapse
Affiliation(s)
- J T Hancock
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - M Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
241
|
Mai VC, Drzewiecka K, Jeleń H, Narożna D, Rucińska-Sobkowiak R, Kęsy J, Floryszak-Wieczorek J, Gabryś B, Morkunas I. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:1-12. [PMID: 24656330 DOI: 10.1016/j.plantsci.2014.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 05/03/2023]
Abstract
This study demonstrates the sequence of enhanced generation of signal molecules such as phytohormones, i.e. jasmonic acid (JA), ethylene (ET), salicylic acid (SA), and a relatively stable free radical, nitric oxide (NO), in response of Pisum sativum L. cv. Cysterski seedling leaves to the infestation of pea aphid Acyrthosiphon pisum (Harris) at a varied population size. In time from 0 to 96h after A. pisum infestation these signal molecules accumulated transiently. Moreover, the convergence of these signaling pathways occurred. JA and its methyl derivative MeJA reached the first maximum of generation at 24th hour of infestation. An increase in ET and NO generation was observed at 48th hour of infestation. The increase in SA, JA/MeJA and ET concentrations in aphid-infested leaves occurred from the 72nd to 96th hour. In parallel, an increase was demonstrated for the activities of enzymes engaged in the biosynthesis of SA, such as phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H). Additionally, a considerable post-infestation accumulation of transcripts for PAL was observed. An increase in the activity of lipoxygenase (LOX), an important enzyme in the biosynthesis of JA was noted. This complex signaling network may contribute to the coordinated regulation of gene expression leading to specific defence responses.
Collapse
Affiliation(s)
- Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; Department of Plant Physiology, Vinh University, Le Duan 182, Vinh City, Viet Nam
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Henryk Jeleń
- Institute of Plant Products Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Renata Rucińska-Sobkowiak
- Department of Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 60-614 Poznań, Poland
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| | | | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Szafrana 1, 65-516 Zielona Góra, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
242
|
Oelze ML, Muthuramalingam M, Vogel MO, Dietz KJ. The link between transcript regulation and de novo protein synthesis in the retrograde high light acclimation response of Arabidopsis thaliana. BMC Genomics 2014; 15:320. [PMID: 24884362 PMCID: PMC4034770 DOI: 10.1186/1471-2164-15-320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Efficient light acclimation of photosynthetic cells is a basic and important property of plants. The process of acclimation depends on transformation of retrograde signals in gene expression, transcript accumulation and de novo protein synthesis. While signalling cues, transcriptomes and some involved players have been characterized, an integrated view is only slowly emerging, and information on the translational level is missing. Transfer of low (8 μmol quanta.m-2.s-1) or normal light (80 μmol quanta.m-2.s-1) acclimated 30 d old Arabidopsis thaliana plants to high light (800 μmol quanta.m-2.s-1) triggers retrograde signals. Using this established approach, we sought to link transcriptome data with de novo synthesized proteins by in vivo labelling with 35S methionine and proteome composition. Results De novo synthesized protein and proteome patterns could reliably be matched with newly annotated master gels. Each molecular level could be quantified for a set of 41 proteins. Among the proteins preferentially synthesized in plants transferred to high light were enzymes including carbonic anhydrase, fructose-1,6-bisphosphate aldolase, O-acetyl serine thiol lyase, and chaperones, while low rates upon transfer to high light were measured for e.g. dehydroascorbate reductase, glyceraldehyde-3-phosphate dehydrogenase and CuZn superoxide dismutase, and opposite responses between 10-fold and 100-fold light increment for e.g. glutamine synthetase and phosphoglycerate kinase. Conclusions The results prove the hypothesis that transcript abundance is poorly linked to de novo protein synthesis due to profound regulation at the level of translation. This vertical systems biology approach enables to quantitatively and kinetically link the molecular levels for scrutinizing signal processing and response generation.
Collapse
Affiliation(s)
| | | | | | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology - W5-134, University of Bielefeld, 33501 Bielefeld, Germany.
| |
Collapse
|
243
|
Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL. Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 2014; 39:35-45. [PMID: 24731839 DOI: 10.1016/j.niox.2014.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important signalling molecule in plants under physiological and stress conditions. Here we review the influence of NO on chloroplasts which can be directly induced by interaction with the photosynthetic apparatus by influencing photophosphorylation, electron transport activity and oxido-reduction state of the Mn clusters of the oxygen-evolving complex or by changes in gene expression. The influence of NO-induced changes in the photosynthetic apparatus on its functions and sensitivity to stress factors are discussed.
Collapse
Affiliation(s)
- Amarendra N Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India.
| | - Radka Vladkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Ranjeet Singh
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Meena Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi 435020, India
| | - Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | - Emilia L Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| |
Collapse
|
244
|
Sehrawat A, Deswal R. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res 2014; 13:2599-619. [PMID: 24684139 DOI: 10.1021/pr500082u] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive nitrogen species (RNS) including nitric oxide (NO) are important components of stress signaling. However, RNS-mediated signaling in the apoplast remains largely unknown. NO production measured in the shoot apoplast of Brassica juncea seedlings showed nonenzymatic nitrite reduction to NO. Thiol pool quantification showed cold-induced increase in the protein (including S-nitrosothiols) as well as non protein thiols. Proteins from the apoplast were resolved as 109 spots on the 2-D gel, while S-nitrosoglutathione-treated (a NO donor), neutravidin-agarose affinity chromatography-purified S-nitrosylated proteins were resolved as 52 spots. Functional categorization after MALDI-TOF/TOF identification showed 41 and 38% targets to be metabolic/cell-wall-modifying and stress-related, respectively, suggesting the potential role(s) of S-nitrosylation in regulating these responses. Additionally, identification of cold-stress-modulated putative S-nitrosylated proteins by nLC-MS/MS showed that only 38.4% targets with increased S-nitrosylation were secreted by classical pathway, while the majority (61.6%) of these were secreted by unknown/nonclassical pathways. Cold-stress-increased dehydroascorbate reductase and glutathione S-transferase activity via S-nitrosylation and promoted ROS detoxification by ascorbate regeneration and hydrogen peroxide detoxification. Taken together, cold-mediated NO production, thiol pool enrichment, and identification of the 48 putative S-nitrosylated proteins, including 25 novel targets, provided the preview of RNS-mediated cold-stress signaling in the apoplast.
Collapse
Affiliation(s)
- Ankita Sehrawat
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi , Delhi 110007, India
| | | |
Collapse
|
245
|
León J, Castillo MC, Coego A, Lozano-Juste J, Mir R. Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:907-21. [PMID: 24371253 DOI: 10.1093/jxb/ert454] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The extensive support for abscisic acid (ABA) involvement in the complex regulatory networks controlling stress responses and development in plants contrasts with the relatively recent role assigned to nitric oxide (NO). Because treatment with exogenous ABA leads to enhanced production of NO, it has been widely considered that NO participates downstream of ABA in controlling processes such as stomata movement, seed dormancy, and germination. However, data on leaf senescence and responses to stress suggest that the functional interaction between ABA and NO is more complex than previously thought, including not only cooperation but also antagonism. The functional relationship is probably determined by several factors including the time- and place-dependent pattern of accumulation of both molecules, the threshold levels, and the regulatory factors important for perception. These factors will determine the actions exerted by each regulator. Here, several examples of well-documented functional interactions between NO and ABA are analysed in light of the most recent reported data on seed dormancy and germination, stomata movements, leaf senescence, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- José León
- Plant Development and Hormone Action, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | | | | | | | | |
Collapse
|
246
|
Wilkins KA, Poulter NS, Franklin-Tong VE. Taking one for the team: self-recognition and cell suicide in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1331-42. [PMID: 24449385 DOI: 10.1093/jxb/ert468] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-incompatibility (SI) is an important genetically controlled mechanism used by many angiosperms to prevent self-fertilization and inbreeding. A multiallelic S-locus allows discrimination between 'self' (incompatible) pollen from 'nonself' pollen at the pistil. Interaction of matching pollen and pistil S-determinants allows 'self' recognition and triggers rejection of incompatible pollen. The S-determinants for Papaver rhoeas (poppy) are PrsS and PrpS. PrsS is a small secreted protein that acts as a signalling ligand to interact with its cognate pollen S-determinant PrpS, a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates increases in cytosolic free Ca(2+) and involves influx of Ca(2+) and K(+). Data implicate involvement of reactive oxygen species and nitric oxide signalling in the SI response. Downstream targets include the cytoskeleton, a soluble inorganic pyrophosphatase, Pr-p26.1, and a MAP kinase, PrMPK9-1. A major focus for SI-induced signalling is to initiate programmed cell death (PCD). In this review we provide an overview of our understanding of SI, with focus on how the signals and components are integrated, in particular, how reactive oxygen species, nitric oxide, and the actin cytoskeleton feed into a PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen in the context of understanding how PCD signalling systems may have evolved.
Collapse
Affiliation(s)
- Katie A Wilkins
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
247
|
Davies JM. Annexin-Mediated Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:128-40. [PMID: 27135495 PMCID: PMC4844307 DOI: 10.3390/plants3010128] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Calcium-permeable channels underpin elevations of free calcium that encode specific signals in stress adaptation, development and immunity. Identifying the genes encoding these channels remains a central goal of plant signalling research. Evidence now suggests that members of the plant annexin family function as unconventional calcium-permeable channels, with roles in development and stress signalling. Arabidopsis annexin 1 mediates a plasma membrane calcium-permeable conductance in roots that is activated by reactive oxygen species. Recombinant annexin 1 forms a very similar conductance in planar lipid bilayers, indicating that this protein could facilitate the in vivo conductance directly. The annexin 1 mutant is impaired in salinity-induced calcium signalling. Protein-protein interactions, post-translational modification and dynamic association with membranes could all influence annexin-mediated calcium signalling and are reviewed here. The prospect of annexins playing roles in calcium signalling events in symbiosis and immunity are considered.
Collapse
Affiliation(s)
- Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
248
|
He H, He L, Gu M. The diversity of nitric oxide function in plant responses to metal stress. Biometals 2014; 27:219-28. [PMID: 24509935 DOI: 10.1007/s10534-014-9711-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) emerges as signalling molecule, which is involved in diverse physiological processes in plants. High mobility metal interferes with NO signaling. The exogenous NO alleviates metal stress, whereas endogenous NO contributes to metal toxicity in plants. Owing to different cellular localization and concentration, NO may act as multifunctional regulator in plant responses to metal stress. It not only plays a crucial role in the regulation of gene expression, but serves as a long-distance signal. Through tight modulation of redox signaling, the integration among NO, reactive oxygen species and stress-related hormones in plants determines whether plants stimulate death pathway or activate survival signaling.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China,
| | | | | |
Collapse
|
249
|
Puyaubert J, Fares A, Rézé N, Peltier JB, Baudouin E. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:150-6. [PMID: 24388526 DOI: 10.1016/j.plantsci.2013.10.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
S-nitrosylation is a nitric oxide (NO)-based post-translational modification regulating protein function and signalling. We used a combination between the biotin switch method and labelling with isotope-coded affinity tag to identify endogenously S-nitrosylated peptides in Arabidopsis thaliana proteins extracted from plantlets. The relative level of S-nitrosylation in the identified peptides was compared between unstressed and cold-stress seedlings. We thereby detected 62 endogenously nitrosylated peptides out of which 20 are over-nitrosylated following cold exposure. Taken together these data provide a new repertoire of endogenously S-nitrosylated proteins in Arabidopsis with cysteine S-nitrosylation site. Furthermore they highlight the quantitative modification of the S-nitrosylation status of specific cysteine following cold stress.
Collapse
Affiliation(s)
- Juliette Puyaubert
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France.
| | - Abasse Fares
- INRA, UR1199, Laboratoire de Protéomique Fonctionnelle, 34060 Montpellier Cedex, France
| | - Nathalie Rézé
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France
| | - Jean-Benoît Peltier
- INRA, UR1199, Laboratoire de Protéomique Fonctionnelle, 34060 Montpellier Cedex, France
| | - Emmanuel Baudouin
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France
| |
Collapse
|
250
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:527-38. [PMID: 24288182 PMCID: PMC3904709 DOI: 10.1093/jxb/ert396] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150 mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.
Collapse
Affiliation(s)
- Juan C. Begara-Morales
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | | | - María N. Padilla
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Alfonso Carreras
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Juan B. Barroso
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|