201
|
de Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. THE NEW PHYTOLOGIST 2014; 202:1126-1141. [PMID: 24571056 DOI: 10.1111/nph.12725] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Light and temperature, in coordination with the endogenous clock and the hormones gibberellin (GA) and brassinosteroids (BRs), modulate plant growth and development by affecting the expression of multiple cell wall- and auxin-related genes. PHYTOCHROME INTERACTING FACTORS (PIFs) play a central role in the activation of these genes, the activity of these factors being regulated by the circadian clock and phytochrome-mediated protein destabilization. GA signaling is also integrated at the level of PIFs; the DELLA repressors are found to bind these factors and impair their DNA-binding ability. The recent finding that PIFs are co-activated by BES1 and BZR1 highlights a further role of these regulators in BR signal integration, and reveals that PIFs act in a concerted manner with the BR-related BES1/BZR1 factors to activate auxin synthesis and transport at the gene expression level, and synergistically activate several genes with a role in cell expansion. Auxins feed back into this growth regulatory module by inducing GA biosynthesis and BES1/BZR1 gene expression, in addition to directly regulating several of these growth pathway gene targets. An exciting challenge in the future will be to understand how this growth program is dynamically regulated in time and space to orchestrate differential organ expansion and to provide plants with adaptation flexibility.
Collapse
Affiliation(s)
- Miguel de Lucas
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología- CSIC, Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
202
|
Weiste C, Dröge-Laser W. The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nat Commun 2014; 5:3883. [DOI: 10.1038/ncomms4883] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/15/2014] [Indexed: 01/05/2023] Open
|
203
|
Identification and characterization of the grape WRKY family. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787680. [PMID: 24883326 PMCID: PMC4022171 DOI: 10.1155/2014/787680] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/21/2022]
Abstract
WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grape WRKY genes were classified into three groups (groups 1–3). Analysis of WRKY genes expression profiles indicated that 28 WRKY genes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA). In that 16 WRKY genes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.
Collapse
|
204
|
Rice EA, Khandelwal A, Creelman RA, Griffith C, Ahrens JE, Taylor JP, Murphy LR, Manjunath S, Thompson RL, Lingard MJ, Back SL, Larue H, Brayton BR, Burek AJ, Tiwari S, Adam L, Morrell JA, Caldo RA, Huai Q, Kouadio JLK, Kuehn R, Sant AM, Wingbermuehle WJ, Sala R, Foster M, Kinser JD, Mohanty R, Jiang D, Ziegler TE, Huang MG, Kuriakose SV, Skottke K, Repetti PP, Reuber TL, Ruff TG, Petracek ME, Loida PJ. Expression of a truncated ATHB17 protein in maize increases ear weight at silking. PLoS One 2014; 9:e94238. [PMID: 24736658 PMCID: PMC3988052 DOI: 10.1371/journal.pone.0094238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/12/2014] [Indexed: 12/11/2022] Open
Abstract
ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.
Collapse
Affiliation(s)
- Elena A. Rice
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Abha Khandelwal
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Robert A. Creelman
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Cara Griffith
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | | - Siva Manjunath
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | | - Huachun Larue
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Bonnie R. Brayton
- Dupont-Pioneer Hi-Bred International, Waipahu, Hawaii, United States of America
| | - Amanda J. Burek
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Shiv Tiwari
- Dupont-Pioneer Hi-Bred International, Hayward, California, United States of America
| | - Luc Adam
- ABCAM, Burlingame, California, United States of America
| | | | - Rico A. Caldo
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Qing Huai
- Monsanto Company, Cambridge, Massachusetts, United States of America
| | | | - Rosemarie Kuehn
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Anagha M. Sant
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Rodrigo Sala
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Matt Foster
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Josh D. Kinser
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Radha Mohanty
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Dongming Jiang
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Todd E. Ziegler
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Mingya G. Huang
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Kyle Skottke
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Peter P. Repetti
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - T. Lynne Reuber
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Thomas G. Ruff
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Paul J. Loida
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
205
|
Wu J, Liu S, Guan X, Chen L, He Y, Wang J, Lu G. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber. BMC Res Notes 2014; 7:218. [PMID: 24708619 PMCID: PMC4108051 DOI: 10.1186/1756-0500-7-218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. RESULTS A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. CONCLUSION Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be involved in various vegetative and reproductive developmental processes. Furthermore, they will be involved in different signal pathways and may mediate the crosstalk between various hormone responses.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Songyu Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Xiaoyan Guan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Yanjun He
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Jie Wang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology,
Agricultural Ministry of China, Department of Horticulture, Zhejiang
University, Zijingang Campus, A535 Agriculture building, Hangzhou 310058,
Zhejiang, China
| |
Collapse
|
206
|
Persak H, Pitzschke A. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 2014; 15:2517-37. [PMID: 24531138 PMCID: PMC3958865 DOI: 10.3390/ijms15022517] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/24/2022] Open
Abstract
In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, Vienna A-1190, Austria.
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, Vienna A-1190, Austria.
| |
Collapse
|
207
|
Tejedor-Cano J, Carranco R, Personat JM, Prieto-Dapena P, Almoguera C, Espinosa JM, Jordano J. A passive repression mechanism that hinders synergic transcriptional activation by heat shock factors involved in sunflower seed longevity. MOLECULAR PLANT 2014; 7:256-9. [PMID: 23956123 DOI: 10.1093/mp/sst117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Javier Tejedor-Cano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
208
|
Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, Zenoni S, Cavallini E, Pezzotti M, Cheng ZM(M. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. HORTICULTURE RESEARCH 2014; 1:14016. [PMID: 26504535 PMCID: PMC4596322 DOI: 10.1038/hortres.2014.16] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors (TFs) that are involved in the regulation of various physiological processes, such as development and senescence, and in plant response to many biotic and abiotic stresses. Despite the growing number of studies on the genomic organisation of WRKY gene family in different species, little information is available about this family in grapevine (Vitis vinifera L.). In the present study, a total number of 59 putative grapevine WRKY transcription factors (VvWRKYs) were identified based on the analysis of various genomic and proteomic grapevine databases. According to their structural and phylogentic features, the identified grapevine WRKY transcription factors were classified into three main groups. In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine, the VvWRKYs expression profiles were examined in publicly available microarray data. Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. To also extend our analysis to situations not covered by the arrays and to validate our results, the expression profiles of selected VvWRKYs in response to drought stress, Erysiphe necator (powdery mildew) infection, and hormone treatments (salicilic acid and ethylene), were investigated by quantitative real-time reverse transcription PCR (qRT-PCR). The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine.
Collapse
Affiliation(s)
- Min Wang
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy
| | - Gang Wang
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying-Hai Liang
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Sara Zenoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Erika Cavallini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
| | - Zong-Ming (Max) Cheng
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
209
|
Pérez AC, Goossens A. Jasmonate signalling: a copycat of auxin signalling? PLANT, CELL & ENVIRONMENT 2013; 36:2071-84. [PMID: 23611666 DOI: 10.1111/pce.12121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 05/22/2023]
Abstract
Plant hormones regulate almost all aspects of plant growth and development. The past decade has provided breakthrough discoveries in phytohormone sensing and signal transduction, and highlighted the striking mechanistic similarities between the auxin and jasmonate (JA) signalling pathways. Perception of auxin and JA involves the formation of co-receptor complexes in which hormone-specific E3-ubiquitin ligases of the SKP1-Cullin-F-box protein (SCF) type interact with specific repressor proteins. Across the plant kingdom, the Aux/IAA and the JASMONATE-ZIM DOMAIN (JAZ) proteins correspond to the auxin- and JA-specific repressors, respectively. In the absence of the hormones, these repressors form a complex with transcription factors (TFs) specific for both pathways. They also recruit several proteins, among which the general co-repressor TOPLESS, and thereby prevent the TFs from activating gene expression. The hormone-mediated interaction between the SCF and the repressors targets the latter for 26S proteasome-mediated degradation, which, in turn, releases the TFs to allow modulating hormone-dependent gene expression. In this review, we describe the similarities and differences in the auxin and JA signalling cascades with respect to the protein families and the protein domains involved in the formation of the pathway-specific complexes.
Collapse
Affiliation(s)
- A Cuéllar Pérez
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium; Department of Plant Biotechnology & Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | | |
Collapse
|
210
|
The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. PLoS One 2013; 8:e78859. [PMID: 24223858 PMCID: PMC3815225 DOI: 10.1371/journal.pone.0078859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.
Collapse
|
211
|
Merelo P, Xie Y, Brand L, Ott F, Weigel D, Bowman JL, Heisler MG, Wenkel S. Genome-wide identification of KANADI1 target genes. PLoS One 2013; 8:e77341. [PMID: 24155946 PMCID: PMC3796457 DOI: 10.1371/journal.pone.0077341] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022] Open
Abstract
Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.
Collapse
Affiliation(s)
- Paz Merelo
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yakun Xie
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucas Brand
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Felix Ott
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Marcus G. Heisler
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- School of Biologlical Sciences, Sydney University, Sydney, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- * E-mail: (JLB); (MGH); (SW)
| |
Collapse
|
212
|
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin. TRENDS IN PLANT SCIENCE 2013; 18:450-8. [PMID: 23701908 DOI: 10.1016/j.tplants.2013.04.006] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 05/18/2023]
Abstract
The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.
Collapse
Affiliation(s)
- Julien Lavenus
- Institut de Recherche pour le Développement (IRD), UMR DIADE (IRD/UM2), 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:618-30. [PMID: 23663106 DOI: 10.1111/tpj.12234] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 05/18/2023]
Abstract
Trees are capable of tremendous architectural plasticity, allowing them to maximize their light exposure under highly competitive environments. One key component of tree architecture is the branch angle, yet little is known about the molecular basis for the spatial patterning of branches in trees. Here, we report the identification of a candidate gene for the br mutation in Prunus persica (peach) associated with vertically oriented growth of branches, referred to as 'pillar' or 'broomy'. Ppa010082, annotated as hypothetical protein in the peach genome sequence, was identified as a candidate gene for br using a next generation sequence-based mapping approach. Sequence similarity searches identified rice TAC1 (tiller angle control 1) as a putative ortholog, and we thus named it PpeTAC1. In monocots, TAC1 is known to lead to less compact growth by increasing the tiller angle. In Arabidopsis, an attac1 mutant showed more vertical branch growth angles, suggesting that the gene functions universally to promote the horizontal growth of branches. TAC1 genes belong to a gene family (here named IGT for a shared conserved motif) found in all plant genomes, consisting of two clades: one containing TAC1-like genes; the other containing LAZY1, which contains an EAR motif, and promotes vertical shoot growth in Oryza sativa (rice) and Arabidopsis through influencing polar auxin transport. The data suggest that IGT genes are ancient, and play conserved roles in determining shoot growth angles in plants. Understanding how IGT genes modulate branch angles will provide insights into how different architectural growth habits evolved in terrestrial plants.
Collapse
Affiliation(s)
- Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. PLANT PHYSIOLOGY 2013; 162:2042-55. [PMID: 23796794 PMCID: PMC3729781 DOI: 10.1104/pp.113.220699] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 05/18/2023]
Abstract
Symbiotic root nodules in leguminous plants result from interaction between the plant and nitrogen-fixing rhizobia bacteria. There are two major types of legume nodules, determinate and indeterminate. Determinate nodules do not have a persistent meristem, while indeterminate nodules have a persistent meristem. Auxin is thought to play a role in the development of both these types of nodules. However, inhibition of rootward auxin transport at the site of nodule initiation is crucial for the development of indeterminate nodules but not determinate nodules. Using the synthetic auxin-responsive DR5 promoter in soybean (Glycine max), we show that there is relatively low auxin activity during determinate nodule initiation and that it is restricted to the nodule periphery subsequently during development. To examine if and what role auxin plays in determinate nodule development, we generated soybean composite plants with altered sensitivity to auxin. We overexpressed microRNA393 to silence the auxin receptor gene family, and these roots were hyposensitive to auxin. These roots nodulated normally, suggesting that only minimal/reduced auxin signaling is required for determinate nodule development. We overexpressed microRNA160 to silence a set of repressor auxin response factor transcription factors, and these roots were hypersensitive to auxin. These roots were not impaired in epidermal responses to rhizobia but had significantly reduced nodule primordium formation, suggesting that auxin hypersensitivity inhibits nodule development. These roots were also hyposensitive to cytokinin and had attenuated expression of key nodulation-associated transcription factors known to be regulated by cytokinin. We propose a regulatory feedback loop involving auxin and cytokinin during nodulation.
Collapse
Affiliation(s)
| | | | - Mathieu Baron
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Stéphanie Coppin
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Suresh Damodaran
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | - Sajag Adhikari
- Department of Plant Science (M.T., N.R.N., M.B., S.C., S.D., S.A., S.P.A., S.S.) and Department of Biology and Microbiology (S.S.), South Dakota State University, Brookings, South Dakota 57007
- Ecole Nationale Supérieure Agronomique, BP32607 Auzeville-Tolosane, France (M.B., S.C.); and
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (O.Y.)
| | | | | | | |
Collapse
|
215
|
Sherif S, El-Sharkawy I, Paliyath G, Jayasankar S. PpERF3b, a transcriptional repressor from peach, contributes to disease susceptibility and side branching in EAR-dependent and -independent fashions. PLANT CELL REPORTS 2013; 32:1111-24. [PMID: 23515898 DOI: 10.1007/s00299-013-1405-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 05/21/2023]
Abstract
Peach ERF3b is a potent transcriptional repressor for defense-related genes even in the presence of similar levels of transcriptional activators and can interfere with plant development through pathways independent of the EAR motif. Ethylene response factors (ERFs) are a major group of plant transcription factors with either activation or repression capabilities on gene transcription. Repressor-type ERFs are characterised by an intrinsic motif, namely the ERF-associated amphiphilic repression motif (EAR). Here we report the identification of three genes from peach (Prunus persica), PpERF12, PpERF3a and PpERF3b, encoding for ERF repressors. The transcription kinetics of these genes was investigated by qRT-PCR after inoculation of peach leaves with Xanthomonas campestris pv. pruni. All three genes showed higher induction in the susceptible 'BabyGold 5', than in the resistant 'Venture' peach varieties suggesting a negative role for these genes in disease resistance. The functional potency of PpERF3b has been confirmed in vivo by its ability to repress the expression of GUS-reporter gene. To better understand the functional role of PpERF3b, the full-length and the EAR-truncated (PpERF3b∆EAR) genes were overexpressed in tobacco (Nicotiana tabacum). Both transgenic plants (PpERF3b and PpERF3b∆EAR) uniformly exhibited precocious side branching, which suggests the interference of PpERF3b with auxin-mediated dormancy of lateral shoots. Consistent with that the expression of auxin-response factors (Nt-ARF1, Nt-ARF6 and Nt-ARF8) was significantly downregulated in transgenic plants compared to the wild type (WT). Although side branching was independent of EAR motif, the response of transgenic plants to inoculation by Pseudomonas syringae pv. tabaci was EAR dependent. Transgenic plants overexpressing PpERF3b∆EAR showed less disease symptoms than those overexpressing the full-length gene or WT plants. Resistance of PpERF3b∆EAR plants was associated with enhanced induction of pathogenesis-related (PR) genes. Our results indicate that repressor-type ERFs might act through pathways that are dependent or independent of the EAR motif.
Collapse
Affiliation(s)
- S Sherif
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., PO Box 7000, Vineland Station, ON L0R 2E0, Canada
| | | | | | | |
Collapse
|
216
|
Song Y, Xu ZF. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to Auxin. Int J Mol Sci 2013; 14:13645-56. [PMID: 23812082 PMCID: PMC3742208 DOI: 10.3390/ijms140713645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Auxin has pleiotropic effects on plant growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are short-lived transcriptional regulators that mediate auxin responses through interaction with an auxin receptor, the F-box protein transport inhibitor response 1 (TIR1). Most functions of Aux/IAA proteins have been identified in Arabidopsis by studying the gain-of-function mutants in domain II. In this study, we isolated and identified an Aux/IAA protein gene from rice, OsIAA4, whose protein contains a dominant mutation-type domain II. OsIAA4 has very low expression in the entire life cycle of rice. OsIAA4-overexpressing rice plants show dwarfism, increased tiller angles, reduced gravity response, and are less sensitive to synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D).
Collapse
Affiliation(s)
- Yaling Song
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | | |
Collapse
|
217
|
Huang H, Quint M, Gray WM. The eta7/csn3-3 auxin response mutant of Arabidopsis defines a novel function for the CSN3 subunit of the COP9 signalosome. PLoS One 2013; 8:e66578. [PMID: 23762492 PMCID: PMC3676356 DOI: 10.1371/journal.pone.0066578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/07/2013] [Indexed: 12/02/2022] Open
Abstract
The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCF(TIR1/AFB) ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCF(TIR1)-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.
Collapse
Affiliation(s)
- He Huang
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marcel Quint
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - William M. Gray
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
218
|
Wang S, Hagen G, Guilfoyle TJ. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression. PLANT SIGNALING & BEHAVIOR 2013; 8:e24526. [PMID: 23603958 PMCID: PMC3909085 DOI: 10.4161/psb.24526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Auxin response factors (ARFs), together with auxin/indole acetic acid proteins (Aux/IAAs), are transcription factors that play key roles in regulating auxin-responsive transcription in plants. Current models for auxin signaling predict that auxin response is dependent on ARF-Aux/IAA interactions mediated by the related protein-protein interaction domain (i.e., referred to as the CTD) found in the ARF and Aux/IAA C-terminal regions. When auxin concentrations in a cell are low, ARF activators residing on the promoters of auxin response genes are thought to be inactive because of the association with dominant Aux/IAA repressors. When auxin concentrations are elevated, the Aux/IAA repressors are recruited to auxin receptors and degraded via the ubiquitin-proteasome pathway. Destruction of the Aux/IAA repressors allows the ARF activators to function in derepressing/activating auxin response genes. While this auxin signaling pathway is simple and attractive, it is unclear whether auxin-regulated gene expression is solely dependent on ARF-Aux/IAA interactions. Here we show that auxin can affect the expression of auxin response genes in a manner that is independent of the ARF activator CTD.
Collapse
Affiliation(s)
- Shucai Wang
- Current affiliation: Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology; Northeast Normal University; Changchun, PR China
- Correspondence to: Shucai Wang,
| | - Gretchen Hagen
- Department of Biochemistry; University of Missouri; Columbia, MO USA
| | - Tom J. Guilfoyle
- Department of Biochemistry; University of Missouri; Columbia, MO USA
| |
Collapse
|
219
|
Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. PLANTA 2013; 237:1443-51. [PMID: 23420309 DOI: 10.1007/s00425-013-1852-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/23/2013] [Indexed: 05/26/2023]
Abstract
OsERF3 is a transcriptional repressor with an ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif (F/LDLNxxP), which transcriptionally represses the ethylene emission and drought tolerance in rice. However, its molecular mechanism to explore repression function remains unknown. Here, we first revealed that the expression of OsERF3 was induced by drought, salt, ACC and ABA treatment. In addition, it showed a higher expression level in the root and sheath than that in the leaf. Then, we generated transgenic rice overexpressing full-length OsERF3 (OE) and its mutation of EAR motif with the A 680/C substitution (mEAR), respectively. The physiological analyses showed that mEAR lines showed better drought tolerance and more ethylene emission compared with those of OE lines and wild type plants. Consistent with our previous research, the expression of ethylene synthesis genes, including ACO2, ACS2, and ACS6 was down-regulated in OE lines. However, the repression of OsERF3 was eliminated in mEAR lines. Specifically, ACS2 was up-regulated in mEAR lines compared with that in OE lines and WT plants, suggesting that the Leu/Ala substitution within the EAR motif resulted in loss of repression of OsERF3. Thus, our data reveal that the EAR motif is required for OsERF3 to transcriptionally regulate the ethylene synthesis and drought tolerance in rice, providing new insight to the roles of ethylene-response factor proteins in regulating ethylene biosynthesis and stress response.
Collapse
Affiliation(s)
- Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
220
|
Sanan-Mishra N, Varanasi SPRM, Mukherjee SK. Micro-regulators of auxin action. PLANT CELL REPORTS 2013; 32:733-40. [PMID: 23543387 DOI: 10.1007/s00299-013-1425-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
microRNAs (miRs) are 21- to 24-nucleotide-long RNA molecules that are mainly involved in regulating the gene expression at the post-transcriptional levels. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The identification of several diverging and converging functions of miRs indicates that they play versatile roles in regulating plant development including differentiation, organ development, phase change, signalling, disease resistance and response to environmental stresses. This article provides a concise update on the plant miR functions and their targets in the auxin pathway with focus on the interactions between miRs and auxin signalling to intricately regulate the plant responses.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | |
Collapse
|
221
|
Wang J, Yan DW, Yuan TT, Gao X, Lu YT. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level. PLANT MOLECULAR BIOLOGY 2013; 82:71-83. [PMID: 23483289 DOI: 10.1007/s11103-013-0039-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/05/2013] [Indexed: 05/21/2023]
Abstract
Auxin regulates a variety of physiological processes via its downstream factors included Aux/IAAs. In this study, one of these Aux/IAAs, IAA8 is shown to play its role in Arabidopsis development with transgenic plants expressing GFP-mIAA8 under the control of IAA8 promoter, in which IAA8 protein was mutated by changing Pro170 to Leu170 in its conserved domain II. These transgenic dwarfed plants had more lateral branches, short primary inflorescence stems, decreased shoot apical dominance, curled leaves and abnormal flower organs (short petal and stamen, and bent stigmas). Further experiments revealed that IAA8::GFP-mIAA8 plants functioned as gain-of-function mutation to increase GFP-mIAA8 amount probably by stabilizing IAA8 protein against proteasome-mediated protein degradation with IAA8::GFP-IAA8 plants as control. The searching for its downstream factors indicated its interaction with both ARF6 and ARF8, suggesting that IAA8 may involve in flower organ development. This was further evidenced by analyzing the expression of jasmonic acid (JA) biosynthetic genes and JA levels because ARF6 and ARF8 are required for normal JA production. These results indicated that in IAA8::GFP-mIAA8 plants, JA biosynthetic genes including DAD1 (AT2G44810), AOS (AT5G42650) and ORP3 (AT2G06050) were dramatically down-regulated and JA level in the flowers was reduced to 70 % of that in wild-type. Furthermore, exogenous JA application can partially rescue short petal and stamen observed IAA8::GFP-mIAA8 plants. Thus, IAA8 plays its role in floral organ development by changes in JA levels probably via its interaction with ARF6/8 proteins.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
222
|
Yu H, Moss BL, Jang SS, Prigge M, Klavins E, Nemhauser JL, Estelle M. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. PLANT PHYSIOLOGY 2013; 162:295-303. [PMID: 23539280 PMCID: PMC3641209 DOI: 10.1104/pp.113.215582] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phytohormone auxin regulates virtually every aspect of plant development. The hormone directly mediates the interaction between the two members of the auxin coreceptor complex, a TRANSPORT INHIBITOR RESPONSE (TIR1)/AUXIN SIGNALING F-BOX protein and an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressor. To learn more about the interaction between these proteins, a mutant screen was performed using the yeast (Saccharomyces cerevisiae) two-hybrid system in Arabidopsis (Arabidopsis thaliana). Two tir1 mutations were identified that increased interaction with Aux/IAAs. The D170E and M473L mutations increase affinity between TIR1 and the degron motif of Aux/IAAs and enhance the activity of the SCF(TIR1) complex. This resulted in faster degradation of Aux/IAAs and increased transcription of auxin-responsive genes in the plant. Plants carrying the pTIR1:tir1 D170E/M473L-Myc transgene exhibit diverse developmental defects during plant growth and display an auxin-hypersensitive phenotype. This work demonstrates that changes in the leucine-rich repeat domain of the TIR1 auxin coreceptor can alter the properties of SCF(TIR1).
Collapse
|
223
|
Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots. PLoS One 2013; 8:e58103. [PMID: 23472140 PMCID: PMC3589423 DOI: 10.1371/journal.pone.0058103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/03/2013] [Indexed: 12/23/2022] Open
Abstract
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Collapse
|
224
|
Wei H, Gou J, Yordanov Y, Zhang H, Thakur R, Jones W, Burton A. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth. JOURNAL OF PLANT RESEARCH 2013; 126:305-20. [PMID: 23065025 DOI: 10.1007/s10265-012-0524-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/07/2012] [Indexed: 05/14/2023]
Abstract
Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].
Collapse
Affiliation(s)
- Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | | | | | | | | | | | | |
Collapse
|
225
|
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 2013; 110:3167-72. [PMID: 23382237 DOI: 10.1073/pnas.1300359110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice. However, the molecular mechanism of how the expression of OsCKX2 is regulated in planta remains elusive. Here, we report that the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) directly regulates OsCKX2 expression in the reproductive meristem. DST-directed expression of OsCKX2 regulates CK accumulation in the SAM and, therefore, controls the number of the reproductive organs. We identify that DST(reg1), a semidominant allele of the DST gene, perturbs DST-directed regulation of OsCKX2 expression and elevates CK levels in the reproductive SAM, leading to increased meristem activity, enhanced panicle branching, and a consequent increase of grain number. Importantly, the DST(reg1) allele provides an approach to pyramid the Gn1a-dependent and Gn1a-independent effects on grain production. Our study reveals that, as a unique regulator of reproductive meristem activity, DST may be explored to facilitate the genetic enhancement of grain production in rice and other small grain cereals.
Collapse
|
226
|
Abstract
Organogenesis is the developmental process for producing new organs from undifferentiated cells. In plants, most organs are formed during postembryonic development. Shoot lateral organs are generated in the shoot apical meristem whereas lateral roots develop outside the root apical meristem. While lateral organ formation at the shoot and root might seem quite different, recent genetic studies have highlighted numerous parallels between these processes. In particular, the dynamic accumulation of auxin has been shown to play a crucial role both as a "morphogenetic trigger" and as a morphogen in both phenomena. This suggests that a unique model system could be adopted to study organogenesis in plants. In this chapter we describe the conceptual and technical advantages that support lateral root development as a good model system for studying organogenesis in plants.
Collapse
|
227
|
Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:839-63. [PMID: 23373699 DOI: 10.1146/annurev-arplant-042811-105606] [Citation(s) in RCA: 841] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
Collapse
Affiliation(s)
- Zheng Qing Fu
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation and Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
228
|
Wu X, Tang D, Li M, Wang K, Cheng Z. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. PLANT PHYSIOLOGY 2013; 161:317-29. [PMID: 23124325 PMCID: PMC3532263 DOI: 10.1104/pp.112.208496] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/01/2012] [Indexed: 05/18/2023]
Abstract
Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding.
Collapse
|
229
|
Hannapel DJ, Sharma P, Lin T. Phloem-mobile messenger RNAs and root development. FRONTIERS IN PLANT SCIENCE 2013; 4:257. [PMID: 23882275 PMCID: PMC3713340 DOI: 10.3389/fpls.2013.00257] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 05/03/2023]
Abstract
Numerous signal molecules move through the phloem to regulate development, including proteins, secondary metabolites, small RNAs and full-length transcripts. Several full-length mRNAs have been identified that move long distances in a shootward or rootward direction through the plant vasculature to modulate both floral and vegetative processes of growth. Here we discuss two recently discovered examples of long-distance transport of full-length mRNAs into roots and the potential target genes and pathways for these mobile signals. In both cases, the mobile RNAs regulate root growth. Previously, RNA movement assays demonstrated that transcripts of StBEL5, a transcription factor from the three-amino-loop-extension superclass, move through the phloem to stolon tips to enhance tuber formation in potato (Solanum tuberosum L.). StBEL5 mRNA originates in the leaf and its movement to stolons is induced by a short-day photoperiod. Movement of StBEL5 RNA to roots correlated with increased growth and the accumulation of several transcripts associated with hormone metabolism, including GA2-oxidase1, YUCCA1a and -c, several Aux/IAA types, and PIN1, -2, and -4 was observed. In another example, heterografting techniques were used to identify phloem-mobile Aux/IAA transcripts in Arabidopsis. Movement assays confirmed that these Aux/IAA transcripts are transported into the root system where they suppress lateral root formation. Phloem transport of both StBEL5 and Aux/IAA RNAs are linked to hormone metabolism and both target auxin synthesis genes or auxin signaling processes. The mechanisms of transport for these mobile RNAs, the impact they have on controlling root growth, and a potential transcriptional connection between the BEL1/KNOX complex and Aux/IAA genes are discussed.
Collapse
Affiliation(s)
- David J. Hannapel
- *Correspondence: David J. Hannapel, Plant Biology Major, Iowa State University, 253 Horticulture Hall, Ames, IA 50011-1100, USA e-mail:
| | | | | |
Collapse
|
230
|
Prasad K, Dhonukshe P. Polar Auxin Transport: Cell Polarity to Patterning. POLAR AUXIN TRANSPORT 2013. [DOI: 10.1007/978-3-642-35299-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
231
|
Pérez-Henríquez P, Raikhel NV, Norambuena L. Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana. MOLECULAR PLANT 2012; 5:1195-1209. [PMID: 22848095 DOI: 10.1093/mp/sss066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plants' developmental plasticity plays a pivotal role in responding to environmental conditions. One of the most plastic plant organs is the root system. Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients. It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified. Using chemical biology, we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCF(TIR). The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation, the mitotic activity. The compound did not display auxin activity. At the cellular level, Sortin2 accelerated endosomal trafficking, resulting in increased trafficking of plasma membrane recycling proteins to the vacuole. Sortin2 affected Late endosome/PVC/MVB trafficking and morphology. Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2-induced SCF(TIR)-independent lateral root initiation. Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCF(TIR).
Collapse
|
232
|
González-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Martínez-Laborda A. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit. PLoS Genet 2012; 8:e1003020. [PMID: 23133401 PMCID: PMC3486860 DOI: 10.1371/journal.pgen.1003020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/23/2012] [Indexed: 11/29/2022] Open
Abstract
The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes to the formation of the two lateral pattern elements, whereas the cooperating genes BREVIPEDICELLUS (BP) and REPLUMLESS (RPL) promote replum development. A recent model to explain pattern formation along the mediolateral axis hypothesizes that JAG/FIL activity and BP/RPL function as antagonistic lateral and medial factors, respectively, which tend to repress each other. In this work, we demonstrate the existence of mutual exclusion mechanisms between both kinds of factors, and how this determines the formation and size of the three territories. Medial factors autonomously constrain lateral factors so that they only express outside the replum, and lateral factors negatively regulate the medially expressed BP gene in a non-autonomous fashion to ensure correct replum development. We also have found that ASYMMETRIC LEAVES1 (AS1), previously shown to repress BP both in leaves and ovaries, collaborates with JAG/FIL activity, preventing its repression by BP and showing synergistic interactions with JAG/FIL activity genes. Therefore AS gene function (the function of the interacting genes AS1 and AS2) has been incorporated in the model as a new lateral factor. Our model of antagonistic factors provides explanation for mutant fruit phenotypes in Arabidopsis and also may help to understand natural variation of fruit shape in Brassicaceae and other species, since subtle changes in gene expression may cause conspicuous changes in the size of the different tissue types. There are three main pattern elements in the mediolateral axis of the Arabidopsis fruit. Two of them, the valves and the valve margins, are placed in lateral positions, while the third, called replum, is located in the medial plane of the flower. The replum expresses meristematic genes (medial factors) that specify its development, whereas the function of genes that work in leaves (lateral factors) determines the development of valves and valve margins. Consequently, medial and lateral pattern elements of fruits apparently mimic the antagonistic relationships between meristem and leaves. According to this, we propose a model for mediolateral patterning of fruits whereby the mutual opposing activities of medial and lateral factors drive the formation of replum, valves, and valve margins. We conclude that medial factors function in an autonomous fashion to prevent the expression of lateral factors in the replum, and that lateral factors repress medial factors by a non-autonomous mechanism to allow normal replum development. Our model provides explanation for changes in fruit shape in Brassicaceae and related organisms either by mutation within a species or by natural variation among different species.
Collapse
Affiliation(s)
| | - Juan José Ripoll
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Antonio Vera
- División de Genética, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin F. Yanofsky
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
233
|
Deng W, Chen G, Peng F, Truksa M, Snyder CL, Weselake RJ. Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. PLANT PHYSIOLOGY 2012; 160:978-89. [PMID: 22846192 PMCID: PMC3461570 DOI: 10.1104/pp.112.198713] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transparent Testa16 (TT16), a transcript regulator belonging to the B(sister) MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.
Collapse
|
234
|
Bassa C, Mila I, Bouzayen M, Audran-Delalande C. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. PLANT & CELL PHYSIOLOGY 2012; 53:1583-95. [PMID: 22764281 DOI: 10.1093/pcp/pcs101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.
Collapse
Affiliation(s)
- Carole Bassa
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
| | | | | | | |
Collapse
|
235
|
Nakasone A, Fujiwara M, Fukao Y, Biswas KK, Rahman A, Kawai-Yamada M, Narumi I, Uchimiya H, Oono Y. SMALL ACIDIC PROTEIN1 acts with RUB modification components, the COP9 signalosome, and AXR1 to regulate growth and development of Arabidopsis. PLANT PHYSIOLOGY 2012; 160:93-105. [PMID: 22576848 PMCID: PMC3440233 DOI: 10.1104/pp.111.188409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/09/2012] [Indexed: 05/25/2023]
Abstract
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.
Collapse
|
236
|
Abu-Abied M, Szwerdszarf D, Mordehaev I, Levy A, Stelmakh OR, Belausov E, Yaniv Y, Uliel S, Katzenellenbogen M, Riov J, Ophir R, Sadot E. Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:787-99. [PMID: 22519851 DOI: 10.1111/j.1365-313x.2012.05032.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The loss of rooting capability following the transition from the juvenile to the mature phase is a known phenomenon in woody plant development. Eucalyptus grandis was used here as a model system to study the differences in gene expression between juvenile and mature cuttings. RNA was prepared from the base of the two types of cuttings before root induction and hybridized to a DNA microarray of E. grandis. In juvenile cuttings, 363 transcripts were specifically upregulated, enriched in enzymes of oxidation/reduction processes. In mature cuttings, 245 transcripts were specifically upregulated, enriched in transcription factors involved in the regulation of secondary metabolites. A gene encoding for nitrate reductase (NIA), which is involved in nitric oxide (NO) production, was among the genes that were upregulated in juvenile cuttings. Concomitantly, a transient burst of NO was observed upon excision, which was higher in juvenile cuttings than in mature ones. Treatment with an NO donor improved rooting of both juvenile and mature cuttings. A single NIA gene was found in the newly released E. grandis genome sequence, the cDNA of which was isolated, overexpressed in Arabidopsis plants and shown to increase NO production in intact plants. Therefore, higher levels of NIA in E. grandis juvenile cuttings might lead to increased ability to produce NO and to form adventitious roots. Arabidopsis transgenic plants constantly expressing EgNIA did not exhibit a significantly higher lateral or adventitious root formation, suggesting that spatial and temporal rather than a constitutive increase in NO is favorable for root differentiation.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, Volcani Center, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Arase F, Nishitani H, Egusa M, Nishimoto N, Sakurai S, Sakamoto N, Kaminaka H. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS One 2012; 7:e43414. [PMID: 22912871 PMCID: PMC3422273 DOI: 10.1371/journal.pone.0043414] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
The expression of auxin-responsive genes is regulated by the TIR1/AFB auxin receptor-dependent degradation of Aux/IAA transcriptional repressors, which interact with auxin-responsive factors (ARFs). Most of the 29 Aux/IAA genes present in Arabidopsis have not been functionally characterized to date. IAA8 appears to have a distinct function from the other Aux/IAA genes, due to its unique transcriptional response to auxin and the stability of its encoded protein. In this study, we characterized the function of Arabidopsis IAA8 in various developmental processes governed by auxin and in the transcriptional regulation of the auxin response. Transgenic plants expressing estrogen-inducible IAA8 (XVE::IAA8) exhibited significantly fewer lateral roots than the wild type, and an IAA8 loss-of-function mutant exhibited significantly more. Ectopic overexpression of IAA8 resulted in abnormal gravitropism. The strong induction of early auxin-responsive marker genes by auxin treatment was delayed by IAA8 overexpression. GFP-fusion analysis revealed that IAA8 localized not only to the nucleus, but, in contrast to other Aux/IAAs, also to the cytosol. Furthermore, we demonstrated that IAA8 interacts with TIR1, in an auxin-dependent fashion, and with ARF proteins, both in yeast and in planta. Taken together, our results show that IAA8 is involved in lateral root formation, and that this process is regulated through the interaction with the TIR1 auxin receptor and ARF transcription factors in the nucleus.
Collapse
Affiliation(s)
- Fumi Arase
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroko Nishitani
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Mayumi Egusa
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Nami Nishimoto
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Sumiko Sakurai
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naho Sakamoto
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hironori Kaminaka
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
238
|
Ckurshumova W, Krogan NT, Marcos D, Caragea AE, Berleth T. Irrepressible, truncated auxin response factors: natural roles and applications in dissecting auxin gene regulation pathways. PLANT SIGNALING & BEHAVIOR 2012; 7:1027-30. [PMID: 22827953 PMCID: PMC3474672 DOI: 10.4161/psb.20366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport. ( 1) (,) ( 2) We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ), ( 3) which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP's role in vascular patterning, a previously characterized auxin dependent process. ( 4) (,) ( 5) Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools.
Collapse
|
239
|
Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 2012; 3:968. [PMID: 22828628 PMCID: PMC3556390 DOI: 10.1038/ncomms1962] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023] Open
Abstract
Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs.
Collapse
Affiliation(s)
- Le Cong
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
240
|
He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. PLANT CELL REPORTS 2012; 31:1199-217. [PMID: 22371255 DOI: 10.1007/s00299-012-1241-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 05/19/2023]
Abstract
UNLABELLED WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. KEY MESSAGE This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.
Collapse
Affiliation(s)
- Hongsheng He
- Lab of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | | | | | | | | | | | | |
Collapse
|
241
|
Tiwari SB, Belachew A, Ma SF, Young M, Ade J, Shen Y, Marion CM, Holtan HE, Bailey A, Stone JK, Edwards L, Wallace AD, Canales RD, Adam L, Ratcliffe OJ, Repetti PP. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:855-65. [PMID: 22321262 DOI: 10.1111/j.1365-313x.2012.04935.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.
Collapse
Affiliation(s)
- Shiv B Tiwari
- Mendel Biotechnology Inc., 3935 Point Eden Way, Hayward, CA 94545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Han X, Xu X, Fang DD, Zhang T, Guo W. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene 2012; 503:83-91. [PMID: 22575728 DOI: 10.1016/j.gene.2012.03.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Members of the Aux/IAA gene family encode proteins that mediate the responses of auxin-regulated gene expression and regulate various aspects of plant morphological development. Here, we provide the first identification and characterization of nine cDNAs encoding the complete open reading frame (ORF) of the Aux/IAA family in cotton. These were designated GhAux1 to GhAux9 (Gossypiumhirsutum Aux/IAA). The proteins encoded by these nine genes had either whole or partially conserved domains of the Aux/IAA superfamily, with sequence identity ranging from 14% to 69%. A pair of homeologs exists for each Aux/IAA in G. hirsutum acc. TM-1 with high identity both in ORF sequences and amino acid level. Tissue- and organ-specific analysis showed that transcripts of GhAux1, GhAux2, and GhAux3 were abundant in vegetative organs, whereas GhAux4, GhAux5, GhAux6, and GhAux7 were preferentially expressed in ovules on the day of anthesis. GhAux8 and GhIAA16 (previously reported) were also preferentially expressed during fiber developmental stages, especially GhAux8 in fiber early elongation stages, and GhIAA16 in fiber initiation and secondary cell wall thickening stage. GhAux9 was specifically expressed in developing fibers. During the fiber initiation stage, except for GhAux3 and GhAux6, the expression of the other eight GhAuxs in various lintless-fuzzless and linted-fuzzless mutants demonstrated that they were significantly up-regulated compared with linted-fuzzy TM-1.
Collapse
|
243
|
Deng W, Yang Y, Ren Z, Audran-Delalande C, Mila I, Wang X, Song H, Hu Y, Bouzayen M, Li Z. The tomato SlIAA15 is involved in trichome formation and axillary shoot development. THE NEW PHYTOLOGIST 2012; 194:379-390. [PMID: 22409484 DOI: 10.1111/j.1469-8137.2012.04053.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Aux/IAA genes encode a large family of short-lived proteins known to regulate auxin signalling in plants. Functional characterization of SlIAA15, a member of the tomato (Solanum lycopersicum) Aux/IAA family, shows that the encoded protein acts as a strong repressor of auxin-dependent transcription. The physiological significance of SlIAA15 was addressed by a reverse genetics approach, revealing that SlIAA15 plays multiple roles in plant developmental processes. The SlIAA15 down-regulated lines display lower trichome number, reduced apical dominance with associated modified pattern of axillary shoot development, increased lateral root formation and decreased fruit set. Moreover, the leaves of SlIAA15-inhibited plants are dark green and thick, with larger pavement cells, longer palisade cells and larger intercellular space of spongy mesophyll cells. The SlIAA15-suppressed plants exhibit a strong reduction in type I, V and VI trichome formation, suggesting that auxin-dependent transcriptional regulation is required for trichome initiation. Concomitant with reduced trichome formation, the expression of some R2R3 MYB genes, putatively involved in the control of trichome differentiation, is altered. These phenotypes uncover novel and specialized roles for Aux/IAAs in plant developmental processes, clearly indicating that members of the Aux/IAA gene family in tomato perform both overlapping and specific functions.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingwu Yang
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhenxin Ren
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Corinne Audran-Delalande
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Xinyu Wang
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Hongli Song
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yinghong Hu
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Zhengguo Li
- Key Laboratory of Functional Gene and Regulation Technologies under Chongqing Municipal Education Commission, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
244
|
Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. PLANT & CELL PHYSIOLOGY 2012; 53:659-72. [PMID: 22368074 DOI: 10.1093/pcp/pcs022] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Auxin is a central hormone that exerts pleiotropic effects on plant growth including the development of roots, shoots, flowers and fruit. The perception and signaling of the plant hormone auxin rely on the cooperative action of several components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play a pivotal role. In this study, we identified and comprehensively analyzed the entire Aux/IAA gene family in tomato (Solanum lycopersicum), a reference species for Solanaceae plants, and the model plant for fleshy fruit development. Functional characterization using a dedicated single cell system revealed that tomato Aux/IAA proteins function as active repressors of auxin-dependent gene transcription, with, however, different Aux/IAA members displaying varying levels of repression. Phylogenetic analysis indicated that the Aux/IAA gene family is slightly contracted in tomato compared with Arabidopsis, with a lower representation of non-canonical proteins. Sl-IAA genes display distinctive expression pattern in different tomato organs and tissues, and some of them display differential responses to auxin and ethylene, suggesting that Aux/IAAs may play a role in linking both hormone signaling pathways. The data presented here shed more light on Sl-IAA genes and provides new leads towards the elucidation of their function during plant development and in mediating hormone cross-talk.
Collapse
Affiliation(s)
- Corinne Audran-Delalande
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
245
|
Tang N, Zhang H, Li X, Xiao J, Xiong L. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. PLANT PHYSIOLOGY 2012; 158:1755-68. [PMID: 22301130 PMCID: PMC3320183 DOI: 10.1104/pp.111.190389] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/31/2012] [Indexed: 05/18/2023]
Abstract
OsbZIP46 is one member of the third subfamily of bZIP transcription factors in rice (Oryza sativa). It has high sequence similarity to ABA-responsive element binding factor (ABF/AREB) transcription factors ABI5 and OsbZIP23, two transcriptional activators positively regulating stress tolerance in Arabidopsis (Arabidopsis thaliana) and rice, respectively. Expression of OsbZIP46 was strongly induced by drought, heat, hydrogen peroxide, and abscisic acid (ABA) treatment; however, it was not induced by salt and cold stresses. Overexpression of the native OsbZIP46 gene increased ABA sensitivity but had no positive effect on drought resistance. The activation domain of OsbZIP46 was defined by a series of deletions, and a region (domain D) was identified as having a negative effect on the activation. We produced a constitutive active form of OsbZIP46 (OsbZIP46CA1) with a deletion of domain D. Overexpression of OsbZIP46CA1 in rice significantly increased tolerance to drought and osmotic stresses. Gene chip analysis of the two overexpressors (native OsbZIP46 and the constitutive active form OsbZIP46CA1) revealed that a large number of stress-related genes, many of them predicted to be downstream genes of ABF/AREBs, were activated in the OsbZIP46CA1 overexpressor but not (even down-regulated) in the OsbZIP46 overexpressor. OsbZIP46 can interact with homologs of SnRK2 protein kinases that phosphorylate ABFs in Arabidopsis. These results suggest that OsbZIP46 is a positive regulator of ABA signaling and drought stress tolerance of rice depending on its activation. The stress-related genes activated by OsbZIP46CA1 are largely different from those activated by the other rice ABF/AREB homologs (such as OsbZIP23), further implying the value of OsbZIP46CA1 in genetic engineering of drought tolerance.
Collapse
|
246
|
Krogan NT, Ckurshumova W, Marcos D, Caragea AE, Berleth T. Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. THE NEW PHYTOLOGIST 2012; 194:391-401. [PMID: 22320407 DOI: 10.1111/j.1469-8137.2012.04064.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development.
Collapse
Affiliation(s)
- Naden T Krogan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Wenzislava Ckurshumova
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Danielle Marcos
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Adriana E Caragea
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
247
|
Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics 2012; 287:295-11. [DOI: 10.1007/s00438-012-0675-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/10/2012] [Indexed: 01/18/2023]
|
248
|
Shyu C, Figueroa P, DePew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. THE PLANT CELL 2012; 24:536-50. [PMID: 22327740 PMCID: PMC3315231 DOI: 10.1105/tpc.111.093005] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/16/2011] [Accepted: 01/25/2012] [Indexed: 05/17/2023]
Abstract
The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.
Collapse
Affiliation(s)
- Christine Shyu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Pablo Figueroa
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Cody L. DePew
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas F. Cooke
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Laura B. Sheard
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Javier E. Moreno
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Leron Katsir
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ning Zheng
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gregg A. Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
249
|
Zhu ZX, Liu Y, Liu SJ, Mao CZ, Wu YR, Wu P. A gain-of-function mutation in OsIAA11 affects lateral root development in rice. MOLECULAR PLANT 2012; 5:154-61. [PMID: 21914651 DOI: 10.1093/mp/ssr074] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lateral roots are important to plants for the uptake of nutrients and water. Several members of the Aux/IAA family have been shown to play crucial roles in lateral root development. Here, a member of the rice Aux/IAA family genes, OsIAA11 (LOC_Os03g43400), was isolated from a rice mutant defective in lateral root development. The gain-of-function mutation in OsIAA11 strictly blocks the initiation of lateral root primordia, but it does not affect crown root development. The expression of OsIAA11 is defined in root tips, lateral root caps, steles, and lateral root primordia. The auxin reporter DR5-GUS (β-glucuronidase) was expressed at lower levels in the mutant than in wild-type, indicating that OsIAA11 is involved in auxin signaling in root caps. The transcript abundance of both OsPIN1b and OsPIN10a was diminished in root tips of the Osiaa11 mutant. Taken together, the results indicate that the gain-of-function mutation in OsIAA11 caused the inhibition of lateral root development in rice.
Collapse
Affiliation(s)
- Zhen-Xing Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
250
|
Wager A, Browse J. Social Network: JAZ Protein Interactions Expand Our Knowledge of Jasmonate Signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:41. [PMID: 22629274 PMCID: PMC3355530 DOI: 10.3389/fpls.2012.00041] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/18/2012] [Indexed: 05/17/2023]
Abstract
Members of the family of JASMONATE ZIM-DOMAIN (JAZ) proteins are key regulators of the jasmonate (JA) hormonal response. The 12-member family is characterized by three conserved domains, an N-terminal domain, a TIFY-containing ZINC-FINGER EXPRESSED IN INFLORESCENCE MERISTEM domain, and a C-terminal Jas domain. JAZ proteins regulate JA-responsive gene transcription by inhibiting DNA-binding transcription factors in the absence of JA. JAZ proteins interact in a hormone-dependent manner with CORONATINE INSENSITIVE 1 (COI1), the recognition component of the E3 ubiquitin ligase, SCF(COI1), resulting in the ubiquitination and subsequent degradation of JAZs via the 26S proteasome pathway. Since their discovery in 2007, JAZ proteins have been implicated in protein-protein interactions with multiple transcription factors. These studies have shed light on the mechanism by which JAZs repress transcription, are targeted for degradation, modulate the JA signaling response, and participate in crosstalk with other hormone signaling pathways. In this review, we will take a close look at the recent discoveries made possible by the characterization JAZ protein-protein interactions.
Collapse
Affiliation(s)
- Amanda Wager
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
- *Correspondence: John Browse, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA. e-mail:
| |
Collapse
|