201
|
The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J 2008; 27:1840-51. [PMID: 18528439 DOI: 10.1038/emboj.2008.107] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/07/2008] [Indexed: 12/23/2022] Open
Abstract
Complete and accurate chromosomal DNA replication is essential for the maintenance of the genetic integrity of all organisms. Errors in replication are buffered by the activation of DNA stress checkpoints; however, in plants, the relative importance of a coordinated induction of DNA repair and cell cycle-arresting genes in the survival of replication mutants is unknown. In a systematic screen for Arabidopsis thaliana E2F target genes, the E2F TARGET GENE 1 (ETG1) was identified as a novel evolutionarily conserved replisome factor. ETG1 was associated with the minichromosome maintenance complex and was crucial for efficient DNA replication. Plants lacking the ETG1 gene had serrated leaves due to cell cycle inhibition triggered by the DNA replication checkpoints, as shown by the transcriptional induction of DNA stress checkpoint genes. The importance of checkpoint activation was highlighted by double mutant analysis: whereas etg1 mutant plants developed relatively normally, a synthetically lethal interaction was observed between etg1 and the checkpoint mutants wee1 and atr, demonstrating that activation of a G2 cell cycle checkpoint accounts for survival of ETG1-deficient plants.
Collapse
|
202
|
Huang J, Ma L, Yang F, Fei SZ, Li L. 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS One 2008; 3:e2167. [PMID: 18478113 PMCID: PMC2366065 DOI: 10.1371/journal.pone.0002167] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Ma
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Yang
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shui-zhang Fei
- Department of Horticulture and Interdepartmental Plant Physiology and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lijia Li
- Key Laboratory of Ministry of Education (MOE) for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
203
|
ATM regulates the length of individual telomere tracts in Arabidopsis. Proc Natl Acad Sci U S A 2007; 104:18145-50. [PMID: 17989233 DOI: 10.1073/pnas.0704466104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres have the paradoxical ability of protecting linear chromosome ends from DNA damage sensors by using these same proteins as essential components of their maintenance machinery. We have previously shown that the absence of ataxia telangiectasia mutated (ATM), a central regulator of the DNA damage response, accelerates the onset of genome instability in telomerase-deficient Arabidopsis, without increasing the rate of bulk telomere shortening. Here, we examine individual telomere tracts through successive plant generations using both fluorescence situ in hybridization (FISH) and primer extension telomere repeat amplification (PETRA). Unexpectedly, we found that the onset of profound developmental defects and abundant end-to-end chromosome fusions in fifth generation (G(5)) atm tert mutants required the presence of only one critically shortened telomere. Parent progeny analysis revealed that the short telomere arose as a consequence of an unusually large telomere rapid deletion (TRD) event. The most dramatic TRD was detected in atm tert mutants that had undergone meiosis. Notably, in contrast to TRD, alternative lengthening of telomeres (ALT) was suppressed in the absence of ATM. Finally, we show that size differences between telomeres on homologous chromosome ends are greater for atm tert than tert plants. Altogether, these findings suggest a dual role for ATM in regulating telomere size by promoting elongation of short telomeres and by preventing the accumulation of cells that harbor large telomere deletions.
Collapse
|
204
|
Breuer C, Stacey NJ, West CE, Zhao Y, Chory J, Tsukaya H, Azumi Y, Maxwell A, Roberts K, Sugimoto-Shirasu K. BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. THE PLANT CELL 2007; 19:3655-68. [PMID: 18055605 PMCID: PMC2174874 DOI: 10.1105/tpc.107.054833] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/19/2007] [Accepted: 11/05/2007] [Indexed: 05/19/2023]
Abstract
How plant organs grow to reach their final size is an important but largely unanswered question. Here, we describe an Arabidopsis thaliana mutant, brassinosteroid-insensitive4 (bin4), in which the growth of various organs is dramatically reduced. Small organ size in bin4 is primarily caused by reduced cell expansion associated with defects in increasing ploidy by endoreduplication. Raising nuclear DNA content in bin4 by colchicine-induced polyploidization partially rescues the cell and organ size phenotype, indicating that BIN4 is directly and specifically required for endoreduplication rather than for subsequent cell expansion. BIN4 encodes a plant-specific, DNA binding protein that acts as a component of the plant DNA topoisomerase VI complex. Loss of BIN4 triggers an ATM- and ATR-dependent DNA damage response in postmitotic cells, and this response coincides with the upregulation of the cyclin B1;1 gene in the same cell types, suggesting a functional link between DNA damage response and endocycle control.
Collapse
Affiliation(s)
- Christian Breuer
- Department of Cell and Developmental Biology, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:41-52. [PMID: 17672843 DOI: 10.1111/j.1365-313x.2007.03220.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM. This study characterizes Arabidopsis and maize NBS1 orthologues that share conserved protein motifs with human NBS1. Both plant NBS1 proteins interact with the corresponding MRE11 orthologues, and deletion analysis of AtNBS1 defines a region towards the C-terminus (amino acids 465-500) that is required for interaction with AtMRE11. Arabidopsis lines homozygous for a T-DNA insertional mutation in AtNBS1 display hypersensitivity to the DNA cross-linking reagent mitomycin C, and this phenotype can be rescued by complementation with the wild-type gene, consistent with a function for AtNBS1 in plant DSB repair. Analysis of atnbs1-1 atatm double mutants revealed a role for AtNBS1 in meiotic recombination. While atatm mutants produce reduced seed numbers, plants deficient in both AtATM and AtNBS1 are completely infertile. Cytological analysis of these double mutants revealed incomplete chromosome pairing and synapsis in meiotic prophase, and extensive chromosome fragmentation in metaphase I and subsequent stages. These results suggest a novel role for AtNBS1 that is independent of AtATM-mediated signaling and functions in the very early stages of meiosis.
Collapse
Affiliation(s)
- Wanda M Waterworth
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Kirik V, Schrader A, Uhrig JF, Hulskamp M. MIDGET unravels functions of the Arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing. THE PLANT CELL 2007; 19:3100-10. [PMID: 17951446 PMCID: PMC2174703 DOI: 10.1105/tpc.107.054361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/21/2007] [Accepted: 09/21/2007] [Indexed: 05/19/2023]
Abstract
The plant homologs of the archaeal DNA topoisomerase VI complex are required for the progression of endoreduplication cycles. Here, we describe the identification of MIDGET (MID) as a novel component of topoisomerase VI. We show that mid mutants show the same phenotype as rhl1, rhl2, and top6B mutants and that MID protein physically interacts with RHL1. The phenotypic analysis revealed new phenotypes, indicating that topoisomerase VI is involved in chromatin organization and transcriptional silencing. In addition, genetic evidence is provided suggesting that the ATR-dependent DNA damage repair checkpoint is activated in mid mutants, and CYCB1;1 is ectopically activated. Finally, we demonstrate that overexpression of CYCB1;2 can rescue the endoreduplication defects in mid mutants, suggesting that in mid mutants, a specific checkpoint is activated preventing further progression of endoreduplication cycles.
Collapse
Affiliation(s)
- Viktor Kirik
- University of Cologne, Botanical Institute III, 50931 Cologne, Germany.
| | | | | | | |
Collapse
|
207
|
Abstract
Plant growth and development are driven by the continuous generation of new cells. Whereas much has been learned at a molecular level about the mechanisms that orchestrate progression through the different cell-cycle phases, little is known about how the cell-cycle machinery operates in the context of an entire plant and contributes to growth, cell differentiation and the formation of new tissues and organs. Here, we discuss how intrinsic developmental signals and environmental cues affect cell-cycle entry and exit.
Collapse
Affiliation(s)
- Lieven De Veylder
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | | |
Collapse
|
208
|
Rybaczek D, Bodys A, Maszewski J. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia. Histochem Cell Biol 2007; 128:227-41. [PMID: 17636317 DOI: 10.1007/s00418-007-0311-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 06/25/2007] [Indexed: 01/18/2023]
Abstract
Immunocytochemistry using alpha-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases alpha and delta, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX aggregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, University of Łódź, ul. Pilarskiego 14, 90231, Łódź, Poland.
| | | | | |
Collapse
|
209
|
del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. The E2FC-DPB Transcription Factor Controls Cell Division, Endoreplication and Lateral Root Formation in a SCF-Dependent Manner. PLANT SIGNALING & BEHAVIOR 2007; 2:273-4. [PMID: 19704635 PMCID: PMC2634164 DOI: 10.4161/psb.2.4.3897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 05/22/2023]
Abstract
Cell division is a highly regulated process that has to be coordinated with cell specification and differentiation for proper development and growth of the plants. Cell cycle regulation is carried out by key proteins that control cell cycle entry, progression and exit. This regulation is controlled at different stages such as gene expression, posttranslational modification of proteins and specific proteolysis. The G(1)/S and the G(2)/M transitions are critical checkpoints of the cell cycle that are controlled, among others, by the activity of cyclin-dependent kinases (CDK). Different CDK activities, still to be fully identified, impinge on the retinoblastoma (RBR)/E2F/DP pathway as well as on the programmed proteolysis pathway. The specific degradation of proteins through the ubiquitin pathway in plants, highly controlled in time and space, is emerging as a powerful mechanism to regulate the levels and the activity of several proteins, including many cell cycle regulators.
Collapse
Affiliation(s)
- Juan C del Pozo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria; Department Biotecnología (INIA); Madrid, Spain
| | - Sara Diaz-Trivino
- Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid; Madrid, Spain
| | - Nerea Cisneros
- Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid; Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa; Consejo Superior de Investigaciones Científicas; Universidad Autónoma de Madrid; Madrid, Spain
| |
Collapse
|
210
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007; 2:e430. [PMID: 17487278 PMCID: PMC1855986 DOI: 10.1371/journal.pone.0000430] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/19/2007] [Indexed: 11/19/2022] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of γ-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Olivier Pichon
- Unité de Recherche en Génomique Végétale, UMR INRA 1165 - CNRS 8114 - UEVE, Evry, France
| | - Sylvain Fochesato
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Philippe Ortet
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | - Marie-Hélène Montané
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
211
|
Ricaud L, Proux C, Renou JP, Pichon O, Fochesato S, Ortet P, Montané MH. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis. PLoS One 2007. [PMID: 17487278 DOI: 10.1371/.pone.0000430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
ATM (Ataxia Telangiectasia Mutated) is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT). To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT) and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR) that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of prolonged S-G2 phases that coincided with cell proliferation delay, or an anticipated subsequent auxin increase, accelerated cell differentiation or death, was used to link IR-regulated hallmark functions and tissue phenotypes after IR. The transcription burst was almost exclusively AtATM-dependent or weakly AtATR-dependent, and followed two major trends of expression in atm: (i)-loss or severe attenuation and delay, and (ii)-inverse and/or stochastic, as well as specific, enabling one to distinguish IR/ATM pathway constituents. Our data provide a large resource for studies on the interaction between plant checkpoints of the cell cycle, development, hormone response, and DNA repair functions, because IR-induced transcriptional changes partially overlap with the response to environmental stress. Putative connections of ATM to stem cell maintenance pathways after IR are also discussed.
Collapse
Affiliation(s)
- Lilian Ricaud
- CEA, DSV, Institut de Biologie Environnementale et de Biotechnologie (iBEB), Service de biologie végétale et de microbiologie environnementales (SBVME), Cadarache, Saint Paul-lez-Durance, France
| | | | | | | | | | | | | |
Collapse
|
212
|
Ramirez-Parra E, Gutierrez C. E2F regulates FASCIATA1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. PLANT PHYSIOLOGY 2007; 144:105-20. [PMID: 17351056 PMCID: PMC1913810 DOI: 10.1104/pp.106.094979] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Maintenance of genome integrity depends on histone chaperone-mediated chromatin reorganization. DNA replication-associated nucleosome deposition relies on chromatin assembly factor-1 (CAF-1). Depletion of CAF-1 in human cells leads to cell death, whereas in Arabidopsis (Arabidopsis thaliana), where it is involved in heterochromatin compaction and homologous recombination, plants are viable. The mechanism that makes the lack of CAF-1 activity compatible with development is not known. Here, we show that the FASCIATA1 (FAS1) gene, which encodes the CAF-1 large subunit, is a target of E2F transcription factors. Mutational studies demonstrate that one of the two E2F binding sites in its promoter has an activator role, whereas the other has a repressor function. Loss of FAS1 results in reduced type A cyclin-dependent kinase activity, inhibits mitotic progression, and promotes a precocious and systemic switch to the endocycle program. Selective up-regulation of the expression of a subset of genes, including those involved in activation of the G2 DNA damage checkpoint, also occurs upon FAS1 loss. This activation is not the result of a global change in chromatin structure, but depends on selective epigenetic changes in histone acetylation and methylation within a small region in their promoters. This suggests that correct chromatin assembly during the S-phase is required to prevent unscheduled changes in the epigenetic marks of target genes. Interestingly, activation of the endocycle switch as well as introduction of activating histone marks in the same set of G2 checkpoint genes are detected upon treatment of wild-type plants with DNA-damaging treatments. Our results are consistent with a model in which defects in chromatin assembly during the S-phase and DNA damage signaling share part of a pathway, which ultimately leads to mitotic arrest and triggers the endocycle program. Together, this might be a bypass mechanism that makes development compatible with cell division arrest induced by DNA damage stress.
Collapse
Affiliation(s)
- Elena Ramirez-Parra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
213
|
De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D, De Veylder L. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. THE PLANT CELL 2007; 19:211-25. [PMID: 17209125 PMCID: PMC1820959 DOI: 10.1105/tpc.106.045047] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.
Collapse
Affiliation(s)
- Kristof De Schutter
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB. ATR and ATM play both distinct and additive roles in response to ionizing radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:947-61. [PMID: 17227549 DOI: 10.1111/j.1365-313x.2006.02931.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ATR and ATM protein kinases are known to be involved in a wide variety of responses to DNA damage. The Arabidopsis thaliana genome includes both ATR and ATM orthologs, and plants with null alleles of these genes are viable. Arabidopsis atr and atm mutants display hypersensitivity to gamma-irradiation. To further characterize the roles of ATM and ATR in response to ionizing radiation, we performed a short-term global transcription analysis in wild-type and mutant lines. We found that hundreds of genes are upregulated in response to gamma-irradiation, and that the induction of virtually all of these genes is dependent on ATM, but not ATR. The transcript of CYCB1;1 is unique among the cyclin transcripts in being rapidly and powerfully upregulated in response to ionizing radiation, while other G(2)-associated transcripts are suppressed. We found that both ATM and ATR contribute to the induction of a CYCB1;1:GUS fusion by IR, but only ATR is required for the persistence of this response. We propose that this upregulation of CYCB1;1 does not reflect the accumulation of cells in G(2), but instead reflects a still unknown role for this cyclin in DNA damage response.
Collapse
Affiliation(s)
- Kevin M Culligan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | |
Collapse
|
215
|
Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara KI, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S. Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 2006; 25:5579-90. [PMID: 17110925 PMCID: PMC1679757 DOI: 10.1038/sj.emboj.7601434] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 10/11/2006] [Indexed: 11/08/2022] Open
Abstract
Chromatin assembly factor 1 (CAF-1) is involved in nucleo some assembly following DNA replication and nucleotide excision repair. In Arabidopsis thaliana, the three CAF-1 subunits are encoded by FAS1, FAS2 and, most likely, MSI1, respectively. In this study, we asked whether genomic stability is altered in fas1 and fas2 mutants that are lacking CAF-1 activity. Depletion of either subunit increased the frequency of somatic homologous recombination (HR) in planta approximately 40-fold. The frequency of transferred DNA (T-DNA) integration was also elevated. A delay in loading histones onto newly replicated or repaired DNA might make these DNA stretches more accessible, both to repair enzymes and to foreign DNA. Furthermore, fas mutants exhibited increased levels of DNA double-strand breaks, a G2-phase retardation that accelerates endoreduplication, and elevated levels of mRNAs coding for proteins involved in HR-all factors that could also contribute to upregulation of HR frequency in fas mutants.
Collapse
Affiliation(s)
- Masaki Endo
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Life Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Keishi Osakabe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Shigeki Nakayama
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hidetaka Kaya
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takashi Araki
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kiyomi Abe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | - Lisa Valentine
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Barbara Hohn
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Seiichi Toki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan. Tel.: +81 29 838 8450; Fax: +81 29 838 8450; E-mail:
| |
Collapse
|
216
|
Zhu Y, Dong A, Meyer D, Pichon O, Renou JP, Cao K, Shen WH. Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth. THE PLANT CELL 2006; 18:2879-92. [PMID: 17122067 PMCID: PMC1693930 DOI: 10.1105/tpc.106.046490] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) is conserved from yeast to human and was proposed to act as a histone chaperone. While budding yeast contains a single NAP1 gene, multicellular organisms, including plants and animals, contain several NAP1 and NAP1-RELATED PROTEIN (NRP) genes. However, the biological role of these genes has been largely unexamined. Here, we show that, in Arabidopsis thaliana, simultaneous knockout of the two NRP genes, NRP1 and NRP2, impaired postembryonic root growth. In the nrp1-1 nrp2-1 double mutant, arrest of cell cycle progression at G2/M and disordered cellular organization occurred in root tips. The mutant seedlings exhibit perturbed expression of approximately 100 genes, including some genes involved in root proliferation and patterning. The mutant plants are highly sensitive to genotoxic stress and show increased levels of DNA damage and the release of transcriptional gene silencing. NRP1 and NRP2 are localized in the nucleus and can form homomeric and heteromeric protein complexes. Both proteins specifically bind histones H2A and H2B and associate with chromatin in vivo. We propose that NRP1 and NRP2 act as H2A/H2B chaperones in the maintenance of dynamic chromatin in epigenetic inheritance.
Collapse
Affiliation(s)
- Yan Zhu
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventioné avec l'Université Louis Pasteur, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
217
|
Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, Sablowski R, Armstrong S, Schweizer D, Mercier R, Schlögelhofer P. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci 2006; 119:2486-96. [PMID: 16763194 DOI: 10.1242/jcs.02967] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mnd1 has recently been identified in yeast as a key player in meiotic recombination. Here we describe the identification and functional characterisation of the Arabidopsis homologue, AtMND1, which is essential for male and female meiosis and thus for plant fertility. Although axial elements are formed normally, sister chromatid cohesion is established and recombination initiation appears to be unaffected in mutant plants, chromosomes do not synapse. During meiotic progression, a mass of entangled chromosomes, interconnected by chromatin bridges, and severe chromosome fragmentation are observed. These defects depend on the presence of SPO11-1, a protein that initiates recombination by catalysing DNA double-strand break (DSB) formation. Furthermore, we demonstrate that the AtMND1 protein interacts with AHP2, the Arabidopsis protein closely related to budding yeast Hop2. These data demonstrate that AtMND1 plays a key role in homologous synapsis and in DSB repair during meiotic recombination.
Collapse
Affiliation(s)
- Claudia Kerzendorfer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Cao C, Shinohara ET, Subhawong TK, Geng L, Kim KW, Albert JM, Hallahan DE, Lu B. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther 2006; 5:411-7. [PMID: 16505116 DOI: 10.1158/1535-7163.mct-05-0356] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 plays a critical role in cell cycle arrest and induction of apoptosis. Certain malignancies carry wild-type p53, which is frequently down-regulated by murine double minute 2 (MDM2) overexpression. Availability of a small-molecule inhibitor against MDM2, nutlin, has made it feasible to evaluate the anti-MDM2-based therapeutic strategies. The rationale for the current study is that functional p53 has been linked with improved responses to radiation treatment. Hence, this study evaluates the use of nutlin, a small-molecule inhibitor that blocks the interaction of p53 and MDM2, in sensitizing cancer cells to radiation. Expression of MDM2, p53, and p21 in both p53 wild-type and p53-defective lung cancer cell lines was examined. Clonogenic and 7-amino-actinomycin D studies were used to determine possible mechanisms of cell death. The combined effect of MDM2 inhibition and radiation on cell cycle was also studied. We found that radiosensitization by nutlin occurs in lung cancer cells with wild-type p53. There were increased apoptosis and cell cycle arrest following administration of nutlin and radiation. Furthermore, the combination of nutlin and radiation decreased the ability of endothelial cells to form vasculature, as shown by Matrigel assays. Our data suggest that nutlin is an effective radiosensitizer of p53 wild-type cells. The radiosensitizing effect seems to be at least partially due to induction of apoptosis and cell cycle arrest. In addition, nutlin may be an effective radiosensitizer of tumor vasculature.
Collapse
Affiliation(s)
- Carolyn Cao
- Department of Radiation Oncology, B-902, The Vanderbilt Clinic, Vanderbilt University, 1301 22nd Avenue South, Nashville, TN 37232-5671, USA
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Inagaki S, Suzuki T, Ohto MA, Urawa H, Horiuchi T, Nakamura K, Morikami A. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. THE PLANT CELL 2006; 18:879-92. [PMID: 16517762 PMCID: PMC1425847 DOI: 10.1105/tpc.105.036798] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plant meristems, each cell divides and differentiates in a spatially and temporally regulated manner, and continuous organogenesis occurs using cells derived from the meristem. We report the identification of the Arabidopsis thaliana TEBICHI (TEB) gene, which is required for regulated cell division and differentiation in meristems. The teb mutants show morphological defects, such as short roots, serrated leaves, and fasciation, as well as defective patterns of cell division and differentiation in the meristem. The TEB gene encodes a homolog of Drosophila MUS308 and mammalian DNA polymerase theta, which prevent spontaneous or DNA damage-induced production of DNA double strand breaks. As expected from the function of animal homologs, teb mutants show constitutively activated DNA damage responses. Unlike other fasciation mutants with activated DNA damage responses, however, teb mutants do not activate transcriptionally silenced genes. teb shows an accumulation of cells expressing cyclinB1;1:GUS in meristems, suggesting that constitutively activated DNA damage responses in teb lead to a defect in G2/M cell cycle progression. Furthermore, other fasciation mutants, such as fasciata2 and tonsoku/mgoun3/brushy1, also show an accumulation of cells expressing cyclinB1;1:GUS in meristems. These results suggest that cell cycle progression at G2/M is important for the regulation of the pattern of cell division and of differentiation during plant development.
Collapse
Affiliation(s)
- Soichi Inagaki
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
220
|
Wang C, Liu Z. Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. THE PLANT CELL 2006; 18:350-65. [PMID: 16399800 PMCID: PMC1356544 DOI: 10.1105/tpc.105.037044] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ribonucleotide reductase (RNR), comprising two large (R1) and two small (R2) subunits, catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation, and p53-dependent apoptosis, whereas abnormally increased RNR activities led to higher mutation rates. Because plants are constantly exposed to environmental mutagens and plant cells are totipotent, an understanding of RNR function in plants is important. We isolated and characterized mutations in all three R2 genes (TSO2, RNR2A, and RNR2B) in Arabidopsis thaliana. tso2 mutants had reduced deoxyribonucleoside triphosphate (dNTP) levels and exhibited developmental defects, including callus-like floral organs and fasciated shoot apical meristems. tso2 single and tso2 rnr2a double mutants were more sensitive to UV-C light, and tso2 rnr2a seedlings exhibited increased DNA damage, massive programmed cell death, and release of transcriptional gene silencing. Analyses of single and double r2 mutants demonstrated that a normal dNTP pool and RNR function are critical for the plant response to mutagens and proper plant development. The correlation between DNA damage accumulation and the subsequent occurrence of apoptotic nuclei in tso2 rnr2a double mutants suggests that perhaps plants, like animals, can initiate programmed cell death upon sensing DNA damage.
Collapse
Affiliation(s)
| | - Zhongchi Liu
- To whom correspondence should be addressed. E-mail ; fax 301-314-9082
| |
Collapse
|
221
|
Templeton GW, Moorhead GB. The phosphoinositide-3-OH-kinase-related kinases of Arabidopsis thaliana. EMBO Rep 2006; 6:723-8. [PMID: 16065066 PMCID: PMC1369146 DOI: 10.1038/sj.embor.7400479] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/01/2005] [Indexed: 11/08/2022] Open
Abstract
The phosphoinositide-3-OH-kinase-related kinases (PIKKs) are atypical protein kinases exclusive to eukaryotes. They mediate the cellular response to a range of stresses, including genome and RNA surveillance and availability of nutrients for growth. Orthologues of five out of the six PIKK family members are present in plant genomes. Recent studies in plant PIKKs have revealed features unique to, and in common with, other PIKKs. This review summarizes the basic knowledge of these proteins in mammals and yeast in comparison with what is known for Arabidopsis and other plants.
Collapse
Affiliation(s)
- George W. Templeton
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W. Calgary, Alberta T2N 1N4, Canada
| | - Greg B.G. Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W. Calgary, Alberta T2N 1N4, Canada
- Tel: +1 (403) 220 6238; Fax: +1 (403) 289 9311;
| |
Collapse
|
222
|
Bray CM, West CE. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. THE NEW PHYTOLOGIST 2005; 168:511-28. [PMID: 16313635 DOI: 10.1111/j.1469-8137.2005.01548.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As obligate phototrophs, plants harness energy from sunlight to split water, producing oxygen and reducing power. This lifestyle exposes plants to particularly high levels of genotoxic stress that threatens genomic integrity, leading to mutation, developmental arrest and cell death. Plants, which with algae are the only photosynthetic eukaryotes, have evolved very effective pathways for DNA damage signalling and repair, and this review summarises our current understanding of these processes in the responses of plants to genotoxic stress. We also identify how the use of new and emerging technologies can complement established physiological and ecological studies to progress the application of this knowledge in biotechnology.
Collapse
Affiliation(s)
- Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
223
|
Vespa L, Couvillion M, Spangler E, Shippen DE. ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev 2005; 19:2111-5. [PMID: 16166376 PMCID: PMC1221882 DOI: 10.1101/gad.1333805] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we examine the function of ATM and ATR at telomeres in Arabidopsis. Although plants lacking ATM or ATR display wild-type telomere length homeostasis, chromosome end protection is compromised in atm atr mutants. Moreover, atm tert Arabidopsis experience an abrupt, early onset of genome instability, arguing that ATM is required for protection of short telomeres. ATR, by contrast, is required for maintenance of telomeric DNA as telomere shortening is dramatically accelerated in atr tert mutants relative to tert plants. Thus, ATM and ATR make essential and distinct contributions to chromosome end protection and telomere maintenance in higher eukaryotes.
Collapse
Affiliation(s)
- Laurent Vespa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
224
|
Zhang C, Gong FC, Lambert GM, Galbraith DW. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. PLANT METHODS 2005; 1:7. [PMID: 16270943 PMCID: PMC1277020 DOI: 10.1186/1746-4811-1-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value). Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. RESULTS We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. CONCLUSION The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Fang Cheng Gong
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
- Operon Biotechnologies, Inc., 2705 Artie Street Bldg. 400, Ste. 27, Huntsville, AL 35805, USA
| | - Georgina M Lambert
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - David W Galbraith
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
225
|
Ulm R, Nagy F. Signalling and gene regulation in response to ultraviolet light. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:477-82. [PMID: 16039155 DOI: 10.1016/j.pbi.2005.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/12/2005] [Indexed: 05/03/2023]
Abstract
In contrast to phytochrome-, cryptochrome- and phototropin-sensing systems, about which considerable knowledge has accumulated, the ultraviolet-B (UVB) photoreceptor is not yet known at the molecular level. Information about the downstream signalling events that underlie UVB-provoked physiological responses is limited. Recent whole-genome transcript profiling, isolation of mutants that are impaired in specific UVB-induced responses and detailed photobiological studies suggest that responses that are triggered by shorter wavelength UVB and longer wavelength UVB are mediated by two different sensory systems. The bZIP transcription factor HY5 was recently identified as an important player in the long-wavelength UVB-induced signal transduction cascade. Advances in the development of luciferase-reporter lines will make it feasible to perform high-throughput genetic screens to isolate novel mutants that are impaired in sensing or transducing signals downstream of the putative UVB photoreceptor(s).
Collapse
Affiliation(s)
- Roman Ulm
- Institute of Biology II/Botany, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| | | |
Collapse
|
226
|
Sahr T, Voigt G, Schimmack W, Paretzke HG, Ernst D. Low-level radiocaesium exposure alters gene expression in roots of Arabidopsis. THE NEW PHYTOLOGIST 2005; 168:141-8. [PMID: 16159328 DOI: 10.1111/j.1469-8137.2005.01485.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Radiocaesium is one of the main anthropogenic sources of internal and external exposure to beta- and gamma-radiation (e.g. from global fallout of atmospheric atomic bomb testing and from the Chernobyl reactor accident). Here we investigated gene expression by suppression subtractive hybridization (SSH) and reverse transcription-polymerase chain reaction (RT-PCR) in Arabidopsis thaliana, which was induced by the root uptake of 134Cs. SSH analysis resulted in the isolation of 46 clones that were differentially expressed at 30 Bq cm(-3) 134Cs. Most of the expressed sequence tags identified belonged to genes encoding proteins that were involved in cell growth, cell division and the development of plants, and in proteins controlling translation, general metabolism and stress defence, including a DNA excision repair protein. The accumulation of caesium in plant material was measured in plants grown for 5 wk on agar contaminated by up to 60 Bq cm(-3) 134Cs. 134Cs was found to accumulate, in particular, in leaf rosettes and was dependent on the activity concentration in the growth media. The data indicate that low-level ionizing radiation influences important cellular responses, resulting in a changed gene-expression profile.
Collapse
Affiliation(s)
- Tobias Sahr
- Institute of Biochemical Plant Pathology, GSF - National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
227
|
Hefner E, Huefner N, Britt AB. Tissue-specific regulation of cell-cycle responses to DNA damage in Arabidopsis seedlings. DNA Repair (Amst) 2005; 5:102-10. [PMID: 16199213 DOI: 10.1016/j.dnarep.2005.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/09/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
DNA damage-induced cell-cycle "checkpoint" responses reduce the mutagenic effects of this damage. However, the maintenance of genomic stability comes at a price: the slowing of growth and a delay in the development of critical tissues. In mammals, every mutated cell has the potential to become cancerous and therefore lethal. In plants, the risk of lethal cancers is essentially nil and the costs of delays in development are very high. Here, we investigate DNA damage checkpoint responses in meristematic (root and shoot tip) versus strictly somatic (stomatal and endoreduplicating) tissues in plants. We find that the ionizing radiation (IR)-induced cell-cycle responses observed in the root and shoot tip meristems do not apply to more differentiated tissues.
Collapse
Affiliation(s)
- Eli Hefner
- Graduate Group in Genetics, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
228
|
Abstract
Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
229
|
Suzuki T, Nakajima S, Inagaki S, Hirano-Nakakita M, Matsuoka K, Demura T, Fukuda H, Morikami A, Nakamura K. TONSOKU is expressed in S phase of the cell cycle and its defect delays cell cycle progression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2005; 46:736-42. [PMID: 15746155 DOI: 10.1093/pcp/pci082] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Friesner JD, Liu B, Culligan K, Britt AB. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 2005; 16:2566-76. [PMID: 15772150 PMCID: PMC1087258 DOI: 10.1091/mbc.e04-10-0890] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.
Collapse
Affiliation(s)
- Joanna D Friesner
- Genetics Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|