201
|
Drakakaki G, Dandekar A. Protein secretion: how many secretory routes does a plant cell have? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:74-8. [PMID: 23415330 DOI: 10.1016/j.plantsci.2012.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 05/19/2023]
Abstract
Conventional protein secretion is mediated by the endomembrane system. Secreted proteins are inserted into the endomembrane system through a N-terminal signal peptide and follow the endoplasmic reticulum to the Golgi trafficking pathway en route to the plasma membrane or the extracellular apoplastic space. In mammalian and yeast cells, unconventional secretion has been identified and relatively well studied. Also in plants, evidence of unconventional secretion mechanisms is accumulating. The ever-increasing number of leaderless proteins identified in proteomic studies indicates the importance of unconventional protein secretion in plants. Novel approaches, such as chemical genomics and vesicle proteomics might be able to provide new insights into unconventional protein secretion in plants.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
202
|
Chen BS, Yen JH. Effect of endocrine disruptor nonylphenol on physiologic features and proteome during growth in Arabidopsis thaliana. CHEMOSPHERE 2013; 91:468-474. [PMID: 23290178 DOI: 10.1016/j.chemosphere.2012.11.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
We studied the effects of nonylphenol (NP) on physiological features and proteome of Arabidopsis (Arabidopsis thaliana) during growth. Shoot biomass, root biomass and root length were decreased after 10d of NP treatment, especially in high NP concentration treatment (10 and 50 mg L(-1)). Levels of chlorophyll decreased but proline increased in leaves. NP caused oxidative stress; malondialdehyde content was increased with NP treatment, and the activities of ascorbate peroxidase, catalase, CuZnSOD and MnSOD were induced in leaves. The proteome of leaf tissue was analyzed by 2-D gel electrophoresis and mass spectrometry. NP might adversely affect the CO2 assimilation, signal transduction, the endomembrane system and photosynthetic oxygen evolution. NP affects the proteome and physiologic and morphological features of A. thaliana during growth at the concentration can be observed in the environment. Because plants might be exposed to NP for a long time in the surroundings, more attention needs to be paid to the effect of NP on plants.
Collapse
Affiliation(s)
- Bing-Sheng Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
203
|
Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:804-17. [PMID: 22998565 DOI: 10.1111/pce.12016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.
Collapse
Affiliation(s)
- Hélène Molins
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Induction of annexin by heavy metals and jasmonic acid in Zea mays. Funct Integr Genomics 2013; 13:241-51. [DOI: 10.1007/s10142-013-0316-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/22/2022]
|
205
|
|
206
|
Zipor G, Oren-Shamir M. Do vacuolar peroxidases act as plant caretakers? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:41-7. [PMID: 23265317 DOI: 10.1016/j.plantsci.2012.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 05/23/2023]
Abstract
Plant vacuolar peroxidases catalyze the reduction of toxic H(2)O(2) accumulated in the vacuoles by oxidizing a variety of secondary metabolites. The redundancy of peroxidases and their ability to react with a wide range of substrates have prevented the observation of a clear phenotypic effect by modifying a single gene. Here we review the correlative and partial data on vacuolar peroxidases, including evidence for genes encoding vacuolar localized peroxidases, and indications of peroxidase activity in the vacuole. Based on these data, we suggest that these enzymes are key players in the adaptation of plants to change and serve as plant caretakers. At the cellular level, peroxidases protect the plant by scavenging excess H(2)O(2) that accumulates in the vacuoles under stressful conditions. At the tissue level, they are responsible for the last steps in the synthesis of the phytoalexins that often accumulate following pathogen attack of the plant tissue. At the whole-plant level, we suggest that peroxidases are involved in controlling the quality and quantity of light reaching the photosynthetic apparatus as plants adapt to lower light intensities. Further characterization of peroxidases, based on high-throughput genomic and metabolomic data, will help elucidate the mechanisms by which plants adapt to change.
Collapse
Affiliation(s)
- Gadi Zipor
- Department of Ornamental Horticulture, Agriculture Research Organization, Israel
| | | |
Collapse
|
207
|
Li LJ, Ren F, Gao XQ, Wei PC, Wang XC. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. PLANT, CELL & ENVIRONMENT 2013; 36:484-97. [PMID: 22891733 DOI: 10.1111/j.1365-3040.2012.02592.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin-related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin-D-induced depolymerization or phalloidin-induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild-type (WT) Arabidopsis plants. Light-induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.
Collapse
Affiliation(s)
- Li-Juan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
208
|
Peshev D, Vergauwen R, Moglia A, Hideg É, Van den Ende W. Towards understanding vacuolar antioxidant mechanisms: a role for fructans? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1025-38. [PMID: 23349141 PMCID: PMC3580814 DOI: 10.1093/jxb/ers377] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent in vitro, in vivo, and theoretical experiments strongly suggest that sugar-(like) molecules counteract oxidative stress by acting as genuine reactive oxygen species (ROS) scavengers. A concept was proposed to include the vacuole as a part of the cellular antioxidant network. According to this view, sugars and sugar-like vacuolar compounds work in concert with vacuolar phenolic compounds and the 'classic' cytosolic antioxidant mechanisms. Among the biologically relevant ROS (H(2)O(2), O(2)·(-), and ·OH), hydroxyl radicals are the most reactive and dangerous species since there are no enzymatic systems known to neutralize them in any living beings. Therefore, it is important to study in more detail the radical reactions between ·OH and different biomolecules, including sugars. Here, Fenton reactions were used to compare the ·OH-scavenging capacities of a range of natural vacuolar compounds to establish relationships between antioxidant capacity and chemical structure and to unravel the mechanisms of ·OH-carbohydrate reactions. The in vitro work on the ·OH-scavenging capacity of sugars and phenolic compounds revealed a correlation between structure and ·OH-scavenging capacity. The number and position of the C=C type of linkages in phenolic compounds greatly influence antioxidant properties. Importantly, the splitting of disaccharides and oligosaccharides emerged as a predominant outcome of the ·OH-carbohydrate interaction. Moreover, non-enzymatic synthesis of new fructan oligosaccharides was found starting from 1-kestotriose. Based on these and previous findings, a working model is proposed describing the putative radical reactions involving fructans and secondary metabolites at the inner side of the tonoplast and in the vacuolar lumen.
Collapse
Affiliation(s)
- Darin Peshev
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Rudy Vergauwen
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Andrea Moglia
- University of Turin, DISAFA-Plant Genetics and Breeding, Via Leonardo da Vinci, 44, 10095 Grugliasco (TO), Italy
| | - Éva Hideg
- University of Pécs, Faculty of Science, Institute of Biology, Ifjusag u. 6. H-7624 Pecs, Hungary
| | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
209
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
210
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
211
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|
212
|
Trentmann O, Haferkamp I. Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole. FRONTIERS IN PLANT SCIENCE 2013; 4:34. [PMID: 23459586 PMCID: PMC3584717 DOI: 10.3389/fpls.2013.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/11/2013] [Indexed: 05/20/2023]
Abstract
Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g., isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity, and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes.
Collapse
Affiliation(s)
- Oliver Trentmann
- Pflanzenphysiologie, Technische Universität KaiserslauternKaiserslautern, Germany
- *Correspondence: Oliver Trentmann, Pflanzenphysiologie, Technische Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany. e-mail:
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität KaiserslauternKaiserslautern, Germany
| |
Collapse
|
213
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
214
|
Wang P, Li Z, Wei J, Zhao Z, Sun D, Cui S. A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. J Biol Chem 2012; 287:44062-70. [PMID: 23148213 DOI: 10.1074/jbc.m112.351643] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium ions (Ca(2+)) play a crucial role in many key physiological processes; thus, the maintenance of Ca(2+) homeostasis is of primary importance. Na(+)/Ca(2+) exchangers (NCXs) play an important role in Ca(2+) homeostasis in animal excitable cells. Bioinformatic analysis of the Arabidopsis genome suggested the existence of a putative NCX gene, Arabidopsis NCX-like (AtNCL), encoding a protein with an NCX-like structure and different from Ca(2+)/H(+) exchangers and Na(+)/H(+) exchangers previously identified in plant. AtNCL was identified to localize in the Arabidopsis cell membrane fraction, have the ability of binding Ca(2+), and possess NCX-like activity in a heterologous expression system of cultured mammalian CHO-K1 cells. AtNCL is broadly expressed in Arabidopsis, and abiotic stresses stimulated its transcript expression. Loss-of-function atncl mutants were less sensitive to salt stress than wild-type or AtNCL transgenic overexpression lines. In addition, the total calcium content in whole atncl mutant seedlings was higher than that in wild type by atomic absorption spectroscopy. The level of free Ca(2+) in the cytosol and Ca(2+) flux at the root tips of atncl mutant plants, as detected using transgenic aequorin and a scanning ion-selective electrode, required a longer recovery time following NaCl stress compared with that in wild type. All of these data suggest that AtNCL encodes a Na(+)/Ca(2+) exchanger-like protein that participates in the maintenance of Ca(2+) homeostasis in Arabidopsis. AtNCL may represent a new type of Ca(2+) transporter in higher plants.
Collapse
Affiliation(s)
- Peng Wang
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | |
Collapse
|
215
|
Fernández MB, Pagano MR, Daleo GR, Guevara MG. Hydrophobic proteins secreted into the apoplast may contribute to resistance against Phytophthora infestans in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:59-66. [PMID: 22902798 DOI: 10.1016/j.plaphy.2012.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/23/2012] [Indexed: 05/20/2023]
Abstract
During plant-pathogen interaction, oomycetes secrete effectors into the plant apoplast where they interact with host resistance proteins, which are accumulated after wounding or infection. Previous studies showed that the expression profile of pathogenesis related proteins is proportional to the resistance of different cultivars toward Phytophthora infestans infection. The aim of this work was to analyze the expression pattern of apoplastic hydrophobic proteins (AHPs), after 24 h of wounding or infection, in tubers from two potato cultivars with different resistance to P. infestans, Spunta (susceptible) and Innovator (resistant). Intercellular washing fluid (IWF) was extracted from tubers and chromatographed into a PepRPC™ HR5-5 column in FPLC eluted with a linear gradient of 75% acetonitrile. Then, AHPs were analyzed by SDS-PAGE and identified by MALDI-TOF-MS. Innovator cv. showed a higher basal AHP content compared to Spunta cv. In the latter, infection induced accumulation of patatins and protease inhibitors (PIs), whereas in Innovator cv. no changes in PIs accumulation were observed. In response to P. infestans infection, lipoxygenase, enolase, annexin p34 and glutarredoxin/cyclophilin were accumulated in both cultivars. These results suggest that the AHPs content may be related to the protection against the oomycete and with the degree of potato resistance to pathogens. Additionally, a considerable number of the proteins putatively identified lacked the signal peptide and, being SecretomeP positive, suggest unconventional protein secretion.
Collapse
Affiliation(s)
- María Belén Fernández
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
216
|
Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2012; 52:62-79. [PMID: 23089468 DOI: 10.1016/j.plipres.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
Abstract
Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Isolation and gene expression analysis of a papain-type cysteine protease in thermogenic skunk cabbage (Symplocarpus renifolius). Biosci Biotechnol Biochem 2012; 76:1990-2. [PMID: 23047088 DOI: 10.1271/bbb.120434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Skunk cabbage (Symplocarpus renifolius) spadices contain abundant transcripts for cysteine protease (CP). From thermogenic spadices, we isolated SrCPA, a highly expressed CP gene that encoded a papain-type CP. SrCPA is structurally similar to other plant CPs, including the senescence-associated CPs found in aroids. The expression of SrCPA increased during floral development, and was observed in all floral tissues except for the stamens.
Collapse
|
218
|
Jung HI, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter-binding protein-like 7. J Biol Chem 2012; 287:33252-67. [PMID: 22865877 DOI: 10.1074/jbc.m112.397810] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met(106) residue in the TM2 of COPT6 is functionally essential, the conserved Met(27) in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess.
Collapse
Affiliation(s)
- Ha-il Jung
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
219
|
Anand A, Srivastava PK. A molecular description of acid phosphatase. Appl Biochem Biotechnol 2012; 167:2174-97. [PMID: 22684363 DOI: 10.1007/s12010-012-9694-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Acid phosphatase is ubiquitous in distribution in various organisms. Although it catalyzes simple hydrolytic reactions, it is considered as an interesting enzyme in biological systems due to its involvement in different physiological activities. However, earlier reviews on acid phosphatase reveal some fragmentary information and do not give a holistic view on this enzyme. So, the present review summarizes studies on biochemical properties, structure, catalytic mechanism, and applications of acid phosphatase. Recent advancement of acid phosphatase in agricultural and clinical fields is emphasized where it is presented as potent agent for sustainable agricultural practices and diagnostic marker in bone metabolic disorders. Also, its significance in prostate cancer therapies as a therapeutic target has been discussed. At the end, current studies and prospects of immobilized acid phosphatase are included.
Collapse
Affiliation(s)
- Asha Anand
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
220
|
Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:315-21. [PMID: 22366488 DOI: 10.1016/j.pbi.2012.02.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/18/2023]
Abstract
Membrane proteins are essential to move amino acids in or out of plant cells as well as between organelles. While many putative amino acid transporters have been identified, function in nitrogen movement in plants has only been shown for a few proteins. Those studies demonstrate that import systems are fundamental in partitioning of amino acids at cellular and whole plant level. Physiological data further suggest that amino acid transporters are key-regulators in plant metabolism and that their activities affect growth and development. By contrast, knowledge on the molecular mechanisms of cellular export processes as well as on intracellular transport of amino acids is scarce. Similarly, little is known about the regulation of amino acid transporter function and involvement of the transporters in amino acid signaling. Future studies need to identify the missing components to elucidate the importance of amino acid transport processes for whole plant physiology and productivity.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
221
|
Veremeichik GN, Shkryl YN, Bulgakov VP, Avramenko TV, Zhuravlev YN. Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rolB gene in Rubia cordifolia transgenic callus cultures. PLANT CELL REPORTS 2012; 31:1009-19. [PMID: 22238062 DOI: 10.1007/s00299-011-1219-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/25/2011] [Accepted: 12/23/2011] [Indexed: 05/14/2023]
Abstract
Here, seven new class III peroxidase genes of Rubia cordifolia L., RcPrx01-RcPrx07, were isolated and characterized. Expression of the Prx genes was studied in R. cordifolia aerial organs as well as in cells transformed with the rolB and rolC genes of Agrobacterium rhizogenes and cells transformed with the wild-type A. rhizogenes A4 strain. In rolC- and rolB-transformed cells, the rol genes were expressed under the control of the 35S promoter, whereas in A. rhizogenes A4-transformed cells the rol genes were expressed under the control of their native promoters. All studied peroxidase genes were greatly upregulated in rolB-overexpressing cells. In contrast, overexpression of the rolC gene and expression of the rol genes under the control of their native promoters had little effect on the abundance of peroxidase transcripts. In accordance with this observation, peroxidase activity was substantially increased in rolB cells and was slightly affected in other transformed cells. Our results indicate that rolB strictly affects the regulation of a set of seven R. cordifolia class III peroxidases.
Collapse
Affiliation(s)
- G N Veremeichik
- Institute of Biology and Soil Science of the Far East Branch of Russian Academy of Sciences, 159 Stoletija Str., Vladivostok 690022, Russia
| | | | | | | | | |
Collapse
|
222
|
Tan YF, Millar AH, Taylor NL. Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses. J Proteome Res 2012; 11:3860-79. [PMID: 22574745 DOI: 10.1021/pr3003535] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant mitochondria are highly responsive organelles that vary their metabolism in response to a wide range of chemical and environmental conditions. Quantitative proteomics studies have begun to allow the analysis of these large-scale protein changes in mitochondria. However studies of the integral membrane proteome of plant mitochondria, arguably the site responsible for the most fundamental mitochondrial processes of oxidative phosphorylation, protein import and metabolite transport, remain a technical challenge. Here we have investigated the changes in protein abundance in response to a number of chemical stresses and cold. In addition to refining the subcellular localization of 66 proteins, we have been able to characterize 596 protein × treatment combinations following a range of stresses. To date it has been assumed that the main mitochondrial response to stress involved the induction of alternative respiratory proteins such as AOX, UCPs, and alternative NAD(P)H dehydrogenases; we now provide evidence for a number of very specific protein abundance changes that have not been highlighted previously by transcript studies. This includes both previously characterized stress responsive proteins as well as major components of oxidative phosphorylation, protein import/export, and metabolite transport.
Collapse
Affiliation(s)
- Yew-Foon Tan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | | | | |
Collapse
|
223
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loqué D, Heazlewood JL. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. PLANT PHYSIOLOGY 2012; 159:12-26. [PMID: 22430844 PMCID: PMC3375956 DOI: 10.1104/pp.111.193151] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/04/2012] [Indexed: 05/17/2023]
Abstract
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.
Collapse
|
225
|
Gu C, Shabab M, Strasser R, Wolters PJ, Shindo T, Niemer M, Kaschani F, Mach L, van der Hoorn RAL. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana. PLoS One 2012; 7:e32422. [PMID: 22396764 PMCID: PMC3292552 DOI: 10.1371/journal.pone.0032422] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/26/2012] [Indexed: 12/18/2022] Open
Abstract
RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs) or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-)activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.
Collapse
Affiliation(s)
- Christian Gu
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mohammed Shabab
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pieter J. Wolters
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takayuki Shindo
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Farnusch Kaschani
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
226
|
Ito-Inaba Y, Hida Y, Matsumura H, Masuko H, Yazu F, Terauchi R, Watanabe M, Inaba T. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. PLANT, CELL & ENVIRONMENT 2012; 35:554-566. [PMID: 21955303 DOI: 10.1111/j.1365-3040.2011.02435.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.
Collapse
Affiliation(s)
- Yasuko Ito-Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J Biol Chem 2012; 287:19008-17. [PMID: 22371505 DOI: 10.1074/jbc.m111.281873] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.
Collapse
Affiliation(s)
- Binyun Ma
- School of life Sciences, Lanzhou University, Lanzhou 730070, China
| | | | | | | | | | | |
Collapse
|
228
|
Lim S, Chisholm K, Coffin RH, Peters RD, Al-Mughrabi KI, Wang-Pruski G, Pinto DM. Protein Profiling in Potato (Solanum tuberosum L.) Leaf Tissues by Differential Centrifugation. J Proteome Res 2012; 11:2594-601. [DOI: 10.1021/pr201004k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sanghyun Lim
- Department of Plant and Animal
Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth Chisholm
- National Research Council Institute for Marine Biosciences, Halifax, Nova
Scotia, Canada
| | | | | | | | - Gefu Wang-Pruski
- Department of Plant and Animal
Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada
| | - Devanand M. Pinto
- National Research Council Institute for Marine Biosciences, Halifax, Nova
Scotia, Canada
| |
Collapse
|
229
|
Mendel RR, Kruse T. Cell biology of molybdenum in plants and humans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1568-79. [PMID: 22370186 DOI: 10.1016/j.bbamcr.2012.02.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 12/29/2022]
Abstract
The transition element molybdenum (Mo) needs to be complexed by a special cofactor in order to gain catalytic activity. With the exception of bacterial Mo-nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor Moco, which in different variants is the active compound at the catalytic site of all other Mo-containing enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also requires iron, ATP and copper. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. In humans, Moco deficiency is a severe inherited inborn error in metabolism resulting in severe neurodegeneration in newborns and causing early childhood death. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, 1 Humboldt Street, 38106 Braunschweig, Germany.
| | | |
Collapse
|
230
|
Weichert A, Brinkmann C, Komarova NY, Dietrich D, Thor K, Meier S, Suter Grotemeyer M, Rentsch D. AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. PLANTA 2012; 235:311-323. [PMID: 21904872 DOI: 10.1007/s00425-011-1508-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/12/2011] [Indexed: 05/31/2023]
Abstract
Members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6. AtPTR4 and AtPTR6 show distinct expression patterns, while AtPTR4 is expressed in the vasculature of the plants, AtPTR6 is highly expressed in pollen and during senescence. Phylogenetic analyses revealed that AtPTR2, 4 and 6 belong to one clade of subgoup II, whereas AtPTR1 and 5 are found in a second clade. Like AtPTR2, AtPTR4-GFP and AtPTR6-GFP fusion proteins are localized at the tonoplast. Vacuolar localization was corroborated by co-localization of AtPTR2-YFP with the tonoplast marker protein GFP-AtTIP2;1 and AtTIP1;1-GFP. This indicates that the two clades reflect different intracellular localization at the tonoplast (AtPTR2, 4, 6) and plasma membrane (AtPTR1, 5), respectively.
Collapse
Affiliation(s)
- Annett Weichert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 2012; 22:413-24. [PMID: 21826108 PMCID: PMC3271593 DOI: 10.1038/cr.2011.129] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/01/2011] [Accepted: 06/07/2011] [Indexed: 11/08/2022] Open
Abstract
The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
- Current address: Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Wilhelmina van de Ven
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Songqin Pan
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Yansong Miao
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
- Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Junqi Wang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Nana F Keinath
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Brent Weatherly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- NuSep Inc., Bogart, GA 30622, USA
| | - Liwen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Karin Schumacher
- Heidelberg Institute for Plant Science, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Glenn Hicks
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| | - Natasha Raikhel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, 4119C Genomics Building, University of California Riverside, CA 92521, USA
| |
Collapse
|
232
|
Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:529-41. [PMID: 21988472 DOI: 10.1111/j.1365-313x.2011.04812.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | | | | | | | | |
Collapse
|
233
|
Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RAL. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS One 2012; 7:e29317. [PMID: 22238602 PMCID: PMC3253073 DOI: 10.1371/journal.pone.0029317] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023] Open
Abstract
Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf) during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.
Collapse
Affiliation(s)
- Takayuki Shindo
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johana C. Misas-Villamil
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anja C. Hörger
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jing Song
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society and Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
234
|
Li XC, Zhu J, Yang J, Zhang GR, Xing WF, Zhang S, Yang ZN. Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. MOLECULAR PLANT 2012; 5:131-42. [PMID: 21746699 DOI: 10.1093/mp/ssr057] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial synthetic step for the formation of glycerolipids, which act as the major components of biological membranes and the principal stored forms of energy. GPAT6 is a member of the Arabidopsis GPAT family, which is crucial for cutin biosynthesis in sepals and petals. In this work, a functional analysis of GPAT6 in anther development and plant fertility was performed. GPAT6 was highly expressed in the tapetum and microspores during anther development. The knockout mutant, gpat6, caused a massive reduction in seed production. This report shows that the ablation of GPAT6 caused defective tapetum development with reduced endoplasmic reticulum (ER) profiles in the tapetum, which largely led to the abortion of pollen grains and defective pollen wall formation. In addition, pollen germination and pollen tube elongation were affected in the mutant plants. Furthermore, the double mutant analysis showed that GPAT6 and GPAT1 make joint effects on the release of microspores from tetrads and stamen filament elongation. This work shows that GPAT6 plays multiple roles in stamen development and fertility in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | |
Collapse
|
235
|
Hossain Z, Nouri MZ, Komatsu S. Plant Cell Organelle Proteomics in Response to Abiotic Stress. J Proteome Res 2011; 11:37-48. [DOI: 10.1021/pr200863r] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zahed Hossain
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Department of Botany, West Bengal State University, Kolkata-700126, West Bengal, India
| | - Mohammad-Zaman Nouri
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Rice Research Institute of Iran, Deputy of Mazandaran, Amol 46191-91951, Iran
| | | |
Collapse
|
236
|
Ibl V, Csaszar E, Schlager N, Neubert S, Spitzer C, Hauser MT. Interactome of the plant-specific ESCRT-III component AtVPS2.2 in Arabidopsis thaliana. J Proteome Res 2011; 11:397-411. [PMID: 22010978 PMCID: PMC3252797 DOI: 10.1021/pr200845n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0–II are important for cargo recognition and concentration via ubiquitin binding. Most of the membrane bending function is mediated by the large multimeric ESCRT-III complex and associated proteins. Here we present the first in vivo proteome analysis of a member of the ESCRT-III complex which is unique to the plant kingdom. We show with LC–MS/MS, yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) that coimmunoprecipitated proteins from Arabidopsisthaliana roots expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING 2.2 (AtVPS2.2) protein are members of the ESCRT-III complex and associated proteins. Therefore we propose that at least in plants the large ESCRT-III membrane scaffolding complex consists of a mixture of SNF7, VPS2 and the associated VPS46 and VPS60 proteins. Apart from transmembrane proteins, numerous membrane-associated but also nuclear and extracellular proteins have been identified, indicating that AtVPS2.2 might be involved in processes beyond the classical ESCRT role. This study is the first in vivo proteome analysis with a tagged ESCRT-III component demonstrating the feasibility of this approach and provides numerous starting points for the investigation of the biological process in which AtVPS2.2 is involved. The endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. Most of the membrane bending function is mediated by the ESCRT-III complex. Proteomic analysis was used to identify novel ESCRT-III interactors of Arabidopsis thaliana seedlings expressing a functional GFP-tagged VACUOLAR PROTEIN SORTING2.2 as bait. Some intractors were confirmed by yeast-two-hybrid and bimolecular fluorescence complementation and others will be the target for future investigations.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
237
|
Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie AR. Toward the storage metabolome: profiling the barley vacuole. PLANT PHYSIOLOGY 2011; 157:1469-82. [PMID: 21949213 PMCID: PMC3252150 DOI: 10.1104/pp.111.185710] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 05/18/2023]
Abstract
While recent years have witnessed dramatic advances in our capacity to identify and quantify an ever-increasing number of plant metabolites, our understanding of how metabolism is spatially regulated is still far from complete. In an attempt to partially address this question, we studied the storage metabolome of the barley (Hordeum vulgare) vacuole. For this purpose, we used highly purified vacuoles isolated by silicon oil centrifugation and compared their metabolome with that found in the mesophyll protoplast from which they were derived. Using a combination of gas chromatography-mass spectrometry and Fourier transform-mass spectrometry, we were able to detect 59 (primary) metabolites for which we know the exact chemical structure and a further 200 (secondary) metabolites for which we have strong predicted chemical formulae. Taken together, these metabolites comprise amino acids, organic acids, sugars, sugar alcohols, shikimate pathway intermediates, vitamins, phenylpropanoids, and flavonoids. Of the 259 putative metabolites, some 12 were found exclusively in the vacuole and 34 were found exclusively in the protoplast, while 213 were common in both samples. When analyzed on a quantitative basis, however, there is even more variance, with more than 60 of these compounds being present above the detection limit of our protocols. The combined data were also analyzed with respect to the tonoplast proteome in an attempt to infer specificities of the transporter proteins embedded in this membrane. Following comparison with recent observations made using nonaqueous fractionation of Arabidopsis (Arabidopsis thaliana), we discuss these data in the context of current models of metabolic compartmentation in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (T.T., A.N.-N., M.M., P.G., D.S., L.W., S.P., A.R.F.); Institute of Plant Biology, University of Zürich, 8008 Zurich, Switzerland (M.S.R., M.S., E.M.); Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France (M.S.R.); King Abdulaziz University, Jeddah 21589, Saudi Arabia (L.W.)
| |
Collapse
|
238
|
Jung C, Lee GJ, Jang M, Lee M, Lee J, Kang H, Sohn EJ, Hwang I. Identification of sorting motifs of AtβFruct4 for trafficking from the ER to the vacuole through the Golgi and PVC. Traffic 2011; 12:1774-92. [PMID: 21899678 DOI: 10.1111/j.1600-0854.2011.01276.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.
Collapse
Affiliation(s)
- Chanjin Jung
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O. The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 192:393-404. [PMID: 21692805 DOI: 10.1111/j.1469-8137.2011.03798.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Copper is an essential micronutrient for all organisms because it serves as a cofactor of several proteins involved in electron transfer. Elevated copper concentrations can cause toxic effects and organisms have established suitable mechanisms to regulate the uptake and internal distribution of copper to balance the content at an optimal concentration. In recent studies, a family of copper transporters (COPT) with high homology to other eukaryotic copper transporters (Ctr) has been identified in Arabidopsis thaliana. In this study we clarified the physiological function of COPT5. This carrier is located in the tonoplast and functions as a vacuolar copper exporter. Mutants lacking this transporter have altered copper contents in different organs when compared with wild-type plants. We were able to detect copper accumulation in the root and a decreased copper content in siliques and seeds when the COPT5 gene is mutated by T-DNA insertion. Vacuoles purified from copt5 T-DNA-insertion mutants show remarkably increased copper concentrations compared with wild-type organelles. We assume that on the cellular level COPT5 is important for copper export from the vacuole and on the level of the whole plant it is involved in the interorgan reallocation of copper ions from the root to reproductive organs.
Collapse
Affiliation(s)
- Sandra Klaumann
- Technische Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
240
|
Mendel RR. Cell biology of molybdenum in plants. PLANT CELL REPORTS 2011; 30:1787-1797. [PMID: 21660547 DOI: 10.1007/s00299-011-1100-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 05/30/2011] [Accepted: 05/30/2011] [Indexed: 05/30/2023]
Abstract
The transition element molybdenum (Mo) is of essential importance for (nearly) all biological systems as it is required by enzymes catalyzing important reactions within the cell. The metal itself is biologically inactive unless it is complexed by a special cofactor. With the exception of bacterial nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor (Moco) which is the active compound at the catalytic site of all other Mo-enzymes. In plants, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also includes iron as well as copper in an indispensable way. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins that also participate in Moco-insertion into the cognate apoproteins. Xanthine dehydrogenase and aldehyde oxidase, but not the other Mo-enzymes, require a final step of posttranslational activation of their catalytic Mo-center for becoming active.
Collapse
Affiliation(s)
- Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106, Braunschweig, Germany.
| |
Collapse
|
241
|
Affiliation(s)
- Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
242
|
Oomen RJFJ, Séveno-Carpentier E, Ricodeau N, Bournaud C, Conéjéro G, Paris N, Berthomieu P, Marquès L. Plant defensin AhPDF1.1 is not secreted in leaves but it accumulates in intracellular compartments. THE NEW PHYTOLOGIST 2011; 192:140-150. [PMID: 21679189 DOI: 10.1111/j.1469-8137.2011.03792.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Apart from their antifungal role, plant defensins have recently been shown to be involved in abiotic stress tolerance or in inhibition of root growth when added in plant culture medium. We studied the subcellular localization of these proteins, which may account for these different roles. • Stable and transient expression of AhPDF1.1::GFP (green fluorescent protein) fusion proteins were analysed in yeast and plants. Functional tests established that the GFP tag did not alter the action of the defensin. Subcellular localization of AhPDF1.1 was characterized: by imaging AhPDF1.1::GFP together with organelle markers; and by immunolabelling AhPDF1.1 in Arabidopsis halleri and Arabidopsis thaliana leaves using a polyclonal serum. • All our independent approaches demonstrated that AhPDF1.1 is retained in intracellular compartments on the way to the lytic vacuole, instead of being addressed to the apoplasm. • These findings challenge the commonly accepted idea of secretion of defensins. The subcellular localization highlighted in this study could partly explain the dual role of plant defensins on plant cells and is of major importance to unravel the mechanisms of action of these proteins at the cellular level.
Collapse
Affiliation(s)
- Ronald J F J Oomen
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Emilie Séveno-Carpentier
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Nicolas Ricodeau
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Caroline Bournaud
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Geneviève Conéjéro
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Nadine Paris
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Pierre Berthomieu
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| | - Laurence Marquès
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, UMR Université Montpellier 2, CNRS, INRA, Montpellier SupAgro, 2 place Viala, F-34060 Montpellier Cedex 02, France
| |
Collapse
|
243
|
Jørgensen M, Stensballe A, Welinder KG. Extensive post-translational processing of potato tuber storage proteins and vacuolar targeting. FEBS J 2011; 278:4070-87. [PMID: 21851554 DOI: 10.1111/j.1742-4658.2011.08311.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.
Collapse
Affiliation(s)
- Malene Jørgensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
244
|
Gasber A, Klaumann S, Trentmann O, Trampczynska A, Clemens S, Schneider S, Sauer N, Feifer I, Bittner F, Mendel RR, Neuhaus HE. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:710-8. [PMID: 21815974 DOI: 10.1111/j.1438-8677.2011.00448.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants represent an important source of molybdenum in the human diet. Recently, MOT1 has been identified as a transport protein responsible for molybdate import in Arabidopsis thaliana L.; however, the function of the homologous protein MOT2 has not been resolved. Interestingly, MOT2-GFP analysis indicated a vacuolar location of this carrier protein. By site directed mutagenesis at the N-terminal end of MOT2, we identified a di-leucine motif that is essential for driving the protein into the vacuolar membrane. Molybdate quantification in isolated vacuoles showed that this organelle serves as an important molybdate store in Arabidopsis cells. When grown on soil, leaves from mot2 T-DNA mutants contained more molybdate, whereas mot2 seeds contained significantly less molybdate than corresponding wild-type (Wt) tissues. Remarkably, MOT2 mRNA accumulates in senescing leaves and mot2 leaves from plants that had finished their life cycle had 15-fold higher molybdate levels than Wt leaves. Reintroduction of the endogenous MOT2 gene led to a Wt molybdate phenotype. Thus, mot2 mutants exhibit impaired inter-organ molybdate allocation. As total concentrations of the molybdenum cofactor (Moco) and its precursor MPT correlates with leaf molybdate levels, we present novel evidence for an adjustment of Moco biosynthesis in response to cellular MoO₄²⁻ levels. We conclude that MOT2 is important for vacuolar molybdate export, an N-terminal di-leucine motif is critical for correct subcellular localisation of MOT2 and activity of this carrier is required for accumulation of molybdate in Arabidopsis seeds. MOT2 is a novel element in inter-organ translocation of an essential metal ion.
Collapse
Affiliation(s)
- A Gasber
- Plant Physiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. PLANT PHYSIOLOGY 2011; 157:328-40. [PMID: 21742814 PMCID: PMC3165882 DOI: 10.1104/pp.111.178756] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/07/2011] [Indexed: 05/20/2023]
Abstract
The formation of nitrogen-fixing nodules in legumes is tightly controlled by a long-distance signaling system in which nodulating roots signal to shoot tissues to suppress further nodulation. A screen for supernodulating Medicago truncatula mutants defective in this regulatory behavior yielded loss-of-function alleles of a gene designated ROOT DETERMINED NODULATION1 (RDN1). Grafting experiments demonstrated that RDN1 regulatory function occurs in the roots, not the shoots, and is essential for normal nodule number regulation. The RDN1 gene, Medtr5g089520, was identified by genetic mapping, transcript profiling, and phenotypic rescue by expression of the wild-type gene in rdn1 mutants. A mutation in a putative RDN1 ortholog was also identified in the supernodulating nod3 mutant of pea (Pisum sativum). RDN1 is predicted to encode a 357-amino acid protein of unknown function. The RDN1 promoter drives expression in the vascular cylinder, suggesting RDN1 may be involved in initiating, responding to, or transporting vascular signals. RDN1 is a member of a small, uncharacterized, highly conserved gene family unique to green plants, including algae, that we have named the RDN family.
Collapse
|
246
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Zienkiewicz K, Zienkiewicz A, Rodríguez-García MI, Castro AJ. Characterization of a caleosin expressed during olive (Olea europaea L.) pollen ontogeny. BMC PLANT BIOLOGY 2011; 11:122. [PMID: 21884593 PMCID: PMC3180362 DOI: 10.1186/1471-2229-11-122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/31/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND The olive tree is an oil-storing species, with pollen being the second most active site in storage lipid biosynthesis. Caleosins are proteins involved in storage lipid mobilization during seed germination. Despite the existence of different lipidic structures in the anther, there are no data regarding the presence of caleosins in this organ to date. The purpose of the present work was to characterize a caleosin expressed in the olive anther over different key stages of pollen ontogeny, as a first approach to unravel its biological function in reproduction. RESULTS A 30 kDa caleosin was identified in the anther tissues by Western blot analysis. Using fluorescence and transmission electron microscopic immunolocalization methods, the protein was first localized in the tapetal cells at the free microspore stage. Caleosins were released to the anther locule and further deposited onto the sculptures of the pollen exine. As anthers developed, tapetal cells showed the presence of structures constituted by caleosin-containing lipid droplets closely packed and enclosed by ER-derived cisternae and vesicles. After tapetal cells lost their integrity, the caleosin-containing remnants of the tapetum filled the cavities of the mature pollen exine, forming the pollen coat. In developing microspores, this caleosin was initially detected on the exine sculptures. During pollen maturation, caleosin levels progressively increased in the vegetative cell, concurrently with the number of oil bodies. The olive pollen caleosin was able to bind calcium in vitro. Moreover, PEGylation experiments supported the structural conformation model suggested for caleosins from seed oil bodies. CONCLUSIONS In the olive anther, a caleosin is expressed in both the tapetal and germ line cells, with its synthesis independently regulated. The pollen oil body-associated caleosin is synthesized by the vegetative cell, whereas the protein located on the pollen exine and its coating has a sporophytic origin. The biological significance of the caleosin in the reproductive process in species possessing lipid-storing pollen might depend on its subcellular emplacement. The pollen inner caleosin may be involved in OB biogenesis during pollen maturation. The protein located on the outside might rather play a function in pollen-stigma interaction during pollen hydration and germination.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87-100, Toruń, Poland
| | - Agnieszka Zienkiewicz
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
- Chair of Plant Physiology and Biochemistry, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gargarina 9, 87-100, Toruń, Poland
| | - María Isabel Rodríguez-García
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Antonio J Castro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
248
|
Kota U, Goshe MB. Advances in qualitative and quantitative plant membrane proteomics. PHYTOCHEMISTRY 2011; 72:1040-60. [PMID: 21367437 DOI: 10.1016/j.phytochem.2011.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 05/08/2023]
Abstract
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.
Collapse
Affiliation(s)
- Uma Kota
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
249
|
Abstract
The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV) channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | | |
Collapse
|
250
|
Affiliation(s)
- Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA.
| |
Collapse
|