201
|
Luo QJ, Mittal A, Jia F, Rock CD. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 80:117-29. [PMID: 21533841 PMCID: PMC3272322 DOI: 10.1007/s11103-011-9778-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/12/2011] [Indexed: 05/18/2023]
Abstract
miR828 in Arabidopsis triggers the cleavage of Trans-Acting SiRNA Gene 4 (TAS4) transcripts and production of small interfering RNAs (ta-siRNAs). One siRNA, TAS4-siRNA81(-), targets a set of MYB transcription factors including PAP1, PAP2, and MYB113 which regulate the anthocyanin biosynthesis pathway. Interestingly, miR828 also targets MYB113, suggesting a close relationship between these MYBs, miR828, and TAS4, but their evolutionary origins are unknown. We found that PAP1, PAP2, and TAS4 expression is induced specifically by exogenous treatment with sucrose and glucose in seedlings. The induction is attenuated in abscisic acid (ABA) pathway mutants, especially in abi3-1 and abi5-1 for PAP1 or PAP2, while no such effect is observed for TAS4. PAP1 is under regulation by TAS4, demonstrated by the accumulation of PAP1 transcripts and anthocyanin in ta-siRNA biogenesis pathway mutants. TAS4-siR81(-) expression is induced by physiological concentrations of Suc and Glc and in pap1-D, an activation-tagged line, indicating a feedback regulatory loop exists between PAP1 and TAS4. Bioinformatic analysis revealed MIR828 homologues in dicots and gymnosperms, but only in one basal monocot, whereas TAS4 is only found in dicots. Consistent with this observation, PAP1, PAP2, and MYB113 dicot paralogs show peptide and nucleotide footprints for the TAS4-siR81(-) binding site, providing evidence for purifying selection in contrast to monocots. Extended sequence similarities between MIR828, MYBs, and TAS4 support an inverted duplication model for the evolution of MIR828 from an ancestral gymnosperm MYB gene and subsequent formation of TAS4 by duplication of the miR828* arm. We obtained evidence by modified 5'-RACE for a MYB mRNA cleavage product guided by miR828 in Pinus resinosa. Taken together, our results suggest that regulation of anthocyanin biosynthesis by TAS4 and miR828 in higher plants is evolutionarily significant and consistent with the evolution of TAS4 since the dicot-monocot divergence.
Collapse
|
202
|
Arazi T. MicroRNAs in the moss Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2012; 80:55-65. [PMID: 21373961 DOI: 10.1007/s11103-011-9761-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/25/2011] [Indexed: 05/10/2023]
Abstract
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter's evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.
Collapse
Affiliation(s)
- Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
203
|
Yao Y, Sun Q. Exploration of small non coding RNAs in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2012; 80:67-73. [PMID: 22009635 DOI: 10.1007/s11103-011-9835-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 10/09/2011] [Indexed: 05/11/2023]
Abstract
Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed in animals and plants, which can function at the transcriptional or posttranscriptional level to negatively regulate or control genes, repetitive sequences, viruses, and mobile elements. With the identification of microRNA and siRNAs in diverse organisms, increasing evidences indicate that these short npcRNAs play important roles in development, stress response and diseases by cleavage of target mRNA or interfere with translation of target genes. To explore the small RNA transcriptome in wheat (Triticum aestivum L.), a couple of small RNA libraries were constructed and sequenced by high throughput sequencing method. In this review, we focused on the discovery of wheat small RNAs including miRNA and some other non coding small RNAs, then have a view of miRNAs conservations and differences among wheat and other plant species. We also summarized the developmental and stress responsive expression of wheat miRNAs and these observations could serve as a foundation for future functional studies.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
204
|
Sun YH, Shi R, Zhang XH, Chiang VL, Sederoff RR. MicroRNAs in trees. PLANT MOLECULAR BIOLOGY 2012; 80:37-53. [PMID: 22161564 DOI: 10.1007/s11103-011-9864-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide long molecules processed from a specific class of RNA polymerase II transcripts that mainly regulate the stability of mRNAs containing a complementary sequence by targeted degradation in plants. Many features of tree biology are regulated by miRNAs affecting development, metabolism, adaptation and evolution. MiRNAs may be modified and harnessed for controlled suppression of specific genes to learn about gene function, or for practical applications through genetic engineering. Modified (artificial) miRNAs act as dominant suppressors and are particularly useful in tree genetics because they bypass the generations of inbreeding needed for fixation of recessive mutations. The purpose of this review is to summarize the current status of information on miRNAs in trees and to guide future studies on the role of miRNAs in the biology of woody perennials and to illustrate their utility in directed genetic modification of trees.
Collapse
Affiliation(s)
- Ying-Hsuan Sun
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
205
|
Jones-Rhoades MW. Conservation and divergence in plant microRNAs. PLANT MOLECULAR BIOLOGY 2012; 80:3-16. [PMID: 21996939 DOI: 10.1007/s11103-011-9829-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression in eukaryotic cells. The past decade has seen an explosion in our understanding of the sets of miRNA genes encoded in the genomes in different species of plants and the mechanisms by which miRNAs interact with target RNAs. A subset of miRNA families (and their binding sites in target RNAs) are conserved between angiosperms and basal plants, suggesting they predate the divergence of existing lineages of plants. However, the majority of miRNA families expressed by any given plant species have a narrow phylogenetic distribution. As a group, these "young" miRNAs genes appear to be evolutionarily fluid and lack clearly understood biological function. The goal of this review is to summarize our understanding of the sets of miRNA genes and miRNA targets that exist in various plant species and to discuss hypotheses that explain the patterns of conservation and divergence observed among microRNAs in plants.
Collapse
|
206
|
Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 2012; 7:e43451. [PMID: 22952685 PMCID: PMC3430688 DOI: 10.1371/journal.pone.0043451] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense). METHODOLOGY/PRINCIPAL FINDINGS A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology. CONCLUSIONS Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.
Collapse
Affiliation(s)
- Tingting Li
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Shuai Qiu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Liwei Yang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
207
|
Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics 2012; 13:421. [PMID: 22920854 PMCID: PMC3599582 DOI: 10.1186/1471-2164-13-421] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46 miRNAs have been identified in B. napus. RESULTS Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences, were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by genome-scale sequencing of mRNA degradome. CONCLUSIONS This study describes large scale cloning and characterization of B. napus miRNAs and their potential targets, providing the foundation for further characterization of miRNA function in the regulation of diverse physiological processes in B. napus.
Collapse
Affiliation(s)
- Miao Y Xu
- Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC PLANT BIOLOGY 2012; 12:149. [PMID: 22909020 PMCID: PMC3542160 DOI: 10.1186/1471-2229-12-149] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/13/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have recently emerged as important gene regulators in plants. MiRNAs and their targets have been extensively studied in Arabidopsis and rice. However, relatively little is known about the characterization of miRNAs and their target genes in peach (Prunus persica), which is a complex crop with unique developmental programs. RESULTS We performed small RNA deep sequencing and identified 47 peach-specific and 47 known miRNAs or families with distinct expression patterns. Together, the identified miRNAs targeted 80 genes, many of which have not been reported previously. Like the model plant systems, peach has two of the three conserved trans-acting siRNA biogenesis pathways with similar mechanistic features and target specificity. Unique to peach, three of the miRNAs collectively target 49 MYBs, 19 of which are known to regulate phenylpropanoid metabolism, a key pathway associated with stone hardening and fruit color development, highlighting a critical role of miRNAs in the regulation of peach fruit development and ripening. We also found that the majority of the miRNAs were differentially regulated in different tissues, in part due to differential processing of miRNA precursors. Up to 16% of the peach-specific miRNAs were differentially processed from their precursors in a tissue specific fashion, which has been rarely observed in plant cells. The miRNA precursor processing activity appeared not to be coupled with its transcriptional activity but rather acted independently in peach. CONCLUSIONS Collectively, the data characterizes the unique expression pattern and processing regulation of peach miRNAs and demonstrates the presence of a complex, multi-level miRNA regulatory network capable of targeting a wide variety of biological functions, including phenylpropanoid pathways which play a multifaceted spatial-temporal role in peach fruit development.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Alson H. Smith Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, VA, 22602, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yong-qiang An
- USDA-ARS, Plant Genetic Research, Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Chris D Dardick
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ann M Callahan
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Zongrang Liu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| |
Collapse
|
209
|
Bazin J, Bustos-Sanmamed P, Hartmann C, Lelandais-Brière C, Crespi M. Complexity of miRNA-dependent regulation in root symbiosis. Philos Trans R Soc Lond B Biol Sci 2012; 367:1570-9. [PMID: 22527400 DOI: 10.1098/rstb.2011.0228] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of root systems may be strongly affected by the symbiotic interactions that plants establish with soil organisms. Legumes are able to develop symbiotic relationships with both rhizobial bacteria and arbuscular mycorrhizal fungi leading to the formation of nitrogen-fixing nodules and mycorrhizal arbuscules, respectively. Both of these symbiotic interactions involve complex cellular reprogramming and profound morphological and physiological changes in specific root cells. In addition, the repression of pathogenic defence responses seems to be required for successful symbiotic interactions. Apart from typical regulatory genes, such as transcription factors, microRNAs (miRNAs) are emerging as riboregulators that control gene networks in eukaryotic cells through interactions with specific target mRNAs. In recent years, the availability of deep-sequencing technologies and the development of in silico approaches have allowed for the identification of large sets of miRNAs and their targets in legumes. A number of conserved and legume-specific miRNAs were found to be associated with symbiotic interactions as shown by their expression patterns or actions on symbiosis-related targets. In this review, we combine data from recent literature and genomic and deep-sequencing data on miRNAs controlling nodule development or restricting defence reactions to address the diversity and specificity of miRNA-dependent regulation in legume root symbiosis. Phylogenetic analysis of miRNA isoforms and their potential targets suggests a role for miRNAs in the repression of plant defence during symbiosis and revealed the evolution of miRNA-dependent regulation in legumes to allow for the modification of root cell specification, such as the formation of mycorrhized roots and nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences SPS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
210
|
Mecchia MA, Debernardi JM, Rodriguez RE, Schommer C, Palatnik JF. MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mech Dev 2012; 130:2-13. [PMID: 22889666 DOI: 10.1016/j.mod.2012.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.
Collapse
Affiliation(s)
- Martin A Mecchia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
211
|
Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics 2012; 13:329. [PMID: 22823569 PMCID: PMC3431224 DOI: 10.1186/1471-2164-13-329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 06/29/2012] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits. Results We generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted. Conclusion High-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable variation within four cucurbit species with regards to expression of individual miRNAs.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
212
|
Akita T, Takuno S, Innan H. Modeling evolutionary growth of a microRNA-mediated regulation system. J Theor Biol 2012; 311:54-65. [PMID: 22820491 DOI: 10.1016/j.jtbi.2012.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Gene duplication plays a crucial role in the development of complex biosystems, but the evolutionary forces behind the growth of biosystems are poorly understood. In this work, we introduce a model for such a growth through gene duplication. Plant microRNAs (miRNAs) are considered as a model. miRNAs are one of the non-coding small RNAs (19-25 nucleotides), which are involved in the post-transcriptional gene regulation. A single kind of miRNAs can be encoded by multiple genomic regions called miRNA genes, and can regulate multiple kinds of functional gene families. It is assumed that a single miRNA system involves all these genes, miRNA genes and their target gene families. We are interested in how duplication of miRNA genes affects the evolution of the miRNA system by focusing on the numbers of miRNA genes and their target gene families, denoted by x and y, respectively. We here theoretically explore the evolutionary growth of (x,y); the former increases by duplication of the miRNA gene while the latter increases when an independent gene family acquires a novel binding site of the miRNA by mutations. We first investigate the evolutionary patterns of (x,y) under three commonly assumed scenarios for the evolution of duplicated genes, that is, the positive and negative dosage and neofunctionalization scenarios. The results indicate that under the three scenarios, the transient process of (x,y) is unidirectional, although the direction is different depending on the model. This pattern is not consistent with the observation in the Arabidopsis thaliana genome, suggesting that a model that incorporates at least two directional evolutionary forces is needed to explain the observation. Then, such a model called the "complexity growth model" is introduced, in which we assume that duplication of miRNA genes is evolutionary advantageous in that the system can encode a complex and sophisticated pattern of regulation because multiple miRNA genes can have different expression patterns. This is helpful to optimize the regulation of a few particular functional gene families, but there is a cost; once the system is optimized for one purpose, it could be difficult for other purposes to use it. That is, duplication of miRNA genes would narrow down the potential gene families that can join the system. Our theoretical analysis revealed that this model can explain the observation of Arabidopsis miRNAs. Although we consider plant miRNAs as an example in this work, the model can be readily applied to other regulation systems with some modifications. Further development of such models would provide insights into the evolutionary growth of the complexity of biosystems.
Collapse
Affiliation(s)
- Tetsuya Akita
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | | | | |
Collapse
|
213
|
Chorostecki U, Crosa VA, Lodeyro AF, Bologna NG, Martin AP, Carrillo N, Schommer C, Palatnik JF. Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Res 2012; 40:8893-904. [PMID: 22772987 PMCID: PMC3467045 DOI: 10.1093/nar/gks625] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions. Here, we developed a strategy to identify miRNA targets which is mainly based on the conservation of the potential regulation in different species. We applied the approach to expressed sequence tags datasets from angiosperms. Using this strategy, we predicted many new interactions and experimentally validated previously unknown miRNA targets in Arabidopsis thaliana. Newly identified targets that are broadly conserved include auxin regulators, transcription factors and transporters. Some of them might participate in the same pathways as the targets known before, suggesting that some miRNAs might control different aspects of a biological process. Furthermore, this approach can be used to identify targets present in a specific group of species, and, as a proof of principle, we analyzed Solanaceae-specific targets. The presented strategy can be used alone or in combination with other approaches to find miRNA targets in plants.
Collapse
Affiliation(s)
- Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Csukasi F, Donaire L, Casañal A, Martínez-Priego L, Botella MA, Medina-Escobar N, Llave C, Valpuesta V. Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. THE NEW PHYTOLOGIST 2012; 195:47-57. [PMID: 22494113 DOI: 10.1111/j.1469-8137.2012.04134.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• We have reported previously that the gibberellin (GA) content in strawberry receptacle is high, peaking at specific stages, pointing to a role of this hormone in fruit development. In Arabidopsis, miR159 levels are dependent on GA concentration. This prompted us to investigate the role of two members of the miR159 family and their putative strawberry target gene, GAMYB, in relation to changes in GA content during the course of fruit development. • The highest expression level of the two Fa-MIR159 genes was in the fruit's receptacle tissue, with dramatic changes observed throughout development. The lowest levels of total mature miR159 (a and b) were observed during the white stage of receptacle development, which was concurrent with the highest expression of Fa-GAMYB. A functional interaction between miR159 and Fa-GAMYB has been demonstrated in receptacle tissue. • The application of bioactive GA (i.e. GA(3) ) to strawberry plants caused the down-regulated expression of Fa-MIR159a, but the expression of Fa-MIR159b was not affected significantly. Clear discrepancies between Fa-MIR159b and mature Fa-miR159b levels were indicative of post-transcriptional regulation of Fa-MIR159b gene expression. • We propose that Fa-miR159a and Fa-miR159b interact with Fa-GAMYB during the course of strawberry receptacle development, and that they act in a cooperative fashion to respond, in part, to changes in GA endogenous levels.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012; 13:R47. [PMID: 22704043 PMCID: PMC3446319 DOI: 10.1186/gb-2012-13-6-r47] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. RESULTS We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. CONCLUSIONS Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
216
|
High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Genet Genomics 2012; 287:555-63. [DOI: 10.1007/s00438-012-0699-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/16/2012] [Indexed: 02/02/2023]
|
217
|
Abrouk M, Zhang R, Murat F, Li A, Pont C, Mao L, Salse J. Grass microRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole-genome duplication. THE PLANT CELL 2012; 24:1776-92. [PMID: 22589464 PMCID: PMC3442569 DOI: 10.1105/tpc.112.095752] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 05/21/2023]
Abstract
The recent availability of plant genome sequences, combined with a robust evolutionary scenario of the modern monocot and eudicot karyotypes from their diploid ancestors, offers an opportunity to gain insights into microRNA (miRNA) gene paleohistory in plants. Characterization and comparison of miRNAs and associated protein-coding targets in plants allowed us to unravel (1) contrasted genome conservation patterns of miRNAs in monocots and eudicots after whole-genome duplication (WGD), (2) an ancestral miRNA founder pool in the monocot genomes dating back to 100 million years ago, (3) miRNA subgenome dominance during the post-WGD diploidization process with selective miRNA deletion complemented with possible transposable element-mediated return flows, and (4) the miRNA/target interaction-directed differential loss/retention of miRNAs following the gene dosage balance rule. Together, our data suggest that overretained miRNAs in grass genomes may be implicated in connected gene regulations for stress responses, which is essential for plant adaptation and useful for crop variety innovation.
Collapse
Affiliation(s)
- Michael Abrouk
- Institut National de la Recherche Agronomique/Université Blaise Pascal, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Laboratory Paléogénomique des Plantes pour l’Amélioration Variétale, 63100 Clermont Ferrand, France
| | - Rongzhi Zhang
- Institut National de la Recherche Agronomique/Université Blaise Pascal, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Laboratory Paléogénomique des Plantes pour l’Amélioration Variétale, 63100 Clermont Ferrand, France
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Florent Murat
- Institut National de la Recherche Agronomique/Université Blaise Pascal, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Laboratory Paléogénomique des Plantes pour l’Amélioration Variétale, 63100 Clermont Ferrand, France
| | - Aili Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caroline Pont
- Institut National de la Recherche Agronomique/Université Blaise Pascal, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Laboratory Paléogénomique des Plantes pour l’Amélioration Variétale, 63100 Clermont Ferrand, France
| | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jérôme Salse
- Institut National de la Recherche Agronomique/Université Blaise Pascal, Unité Mixte de Recherche 1095, Génétique, Diversité et Ecophysiologie des Céréales, Laboratory Paléogénomique des Plantes pour l’Amélioration Variétale, 63100 Clermont Ferrand, France
- Address correspondence to
| |
Collapse
|
218
|
Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y. Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. PLANTA 2012; 235:873-83. [PMID: 22101925 DOI: 10.1007/s00425-011-1548-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/04/2011] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs, generally of 20-23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.
Collapse
Affiliation(s)
- Lei Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
219
|
Felippes FFD, Wang JW, Weigel D. MIGS: miRNA-induced gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:541-7. [PMID: 22211571 DOI: 10.1111/j.1365-313x.2011.04896.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gene silencing is an important tool in the study of gene function. Virus-induced gene silencing (VIGS) and hairpin RNA interference (hpRNAi), both of which rely on small interfering RNAs, together with artificial microRNAs (amiRNA), are amongst the most popular methods for reduction of gene activity in plants. However, all three approaches have limitations. Here, we introduce miRNA-induced gene silencing (MIGS). This method exploits a special 22-nucleotide miRNA of Arabidopsis thaliana, miR173, which can trigger production of another class of small RNAs called trans-acting small interfering RNAs (tasiRNAs). We show that fusion of gene fragments to an upstream miR173 target site is sufficient for effective silencing of the corresponding endogenous gene. MIGS can be reliably used for the knockdown of a single gene or of multiple unrelated genes. In addition, we show that MIGS can be applied to other species by co-expression of miR173.
Collapse
|
220
|
Joshi PK, Gupta D, Nandal UK, Khan Y, Mukherjee SK, Sanan-Mishra N. Identification of mirtrons in rice using MirtronPred: a tool for predicting plant mirtrons. Genomics 2012; 99:370-5. [PMID: 22546559 DOI: 10.1016/j.ygeno.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 12/21/2022]
Abstract
Studies from flies and insects have reported the existence of a special class of miRNA, called mirtrons that are produced from spliced-out introns in a DROSHA-independent manner. The spliced-out lariat is debranched and refolded into a stem-loop structure resembling the pre-miRNA, which can then be processed by DICER into mature ~21 nt species. The mirtrons have not been reported from plants. In this study, we present MirtronPred, a web based server to predict mirtrons from intronic sequences. We have used the server to predict 70 mirtrons in rice introns that were put through a stringent selection filter to shortlist 16 best sequences. The prediction accuracy was subsequently validated by northern analysis and RT-PCR of a predicted Os-mirtron-109. The target sequences for this mirtron were also found in the rice degradome database. The possible role of the mirtron in rice regulon is discussed. The MirtronPred web server is available at http://bioinfo.icgeb.res.in/mirtronPred.
Collapse
Affiliation(s)
- Pankaj Kumar Joshi
- Plant Molecular Biology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
221
|
Wang B, Dong M, Chen W, Liu X, Feng R, Xu T. Microarray identification of conserved microRNAs in Pinellia pedatisecta. Gene 2012; 498:36-40. [DOI: 10.1016/j.gene.2012.01.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/29/2011] [Accepted: 01/27/2012] [Indexed: 12/13/2022]
|
222
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012. [PMID: 22455456 DOI: 10.1186/1471‐2164‐13‐122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. RESULTS A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. CONCLUSIONS Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 2012; 13:122. [PMID: 22455456 PMCID: PMC3353164 DOI: 10.1186/1471-2164-13-122] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 03/29/2012] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Huang A, Wu X, Wang G, Jia Z, He L. Computational prediction of microRNAs and their targets from three unicellular algae species with complete genome sequences. Can J Microbiol 2012; 57:1052-61. [PMID: 22149261 DOI: 10.1139/w11-102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genome sequences of Phaeodactylum tricornutum, Thalassiosira pseudonana, and Cyanidioschyzon merolae have provided significant evidence for the secondary endosymbiosis of diatoms in regard to the genome. Yet little about their relationships in regard to gene regulation pattern, such as microRNA (miRNA), has been reported. Using a homology search based on genomic sequences, 13, 3, and 7 predicted miRNA genes were found in genomes from P. tricornutum, T. pseudonana, and C. merolae, respectively. Of the 23 miRNA genes, 18 had homology with animal miRNAs, implying that they are ancestral miRNAs. A phylogenetic tree based on common miRNA families shared by these three unicellular algae, higher plants, and animals showed that P. tricornutum shared most miRNAs with animals. The phylogenetic tree also showed that C. merolae shared more miRNAs with plants than did the two diatoms, and the majority of its miRNAs were shared with the two diatoms. Our results were consistent with diatoms originating from a secondary endosymbiosis.
Collapse
Affiliation(s)
- Aiyou Huang
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao 266071, People's Republic of China
| | | | | | | | | |
Collapse
|
225
|
Chen L, Wang T, Zhao M, Zhang W. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:14-9. [PMID: 22284705 DOI: 10.1016/j.plantsci.2011.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/29/2011] [Accepted: 11/10/2011] [Indexed: 05/08/2023]
Abstract
Ethylene is one of the classical plant hormones with a diverse function in plant growth and development. Root elongation is sensitive to ethylene such that treatments with ethylene and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit root growth. MicroRNA as one type of endogenous, non-coding small RNAs, plays an important role in regulation of plant growth, development and hormonal signaling by affecting expression of target genes. However, there has been no detailed study to evaluate the role of microRNAs in mediation of ethylene-dependent physiological processes in plants. Medicago truncatula is a model plant widely used for investigation of molecular biology in legume species. In this study, we constructed two small RNA libraries from roots of M. truncatula treated with and without ACC. High-throughput sequencing was employed to sequence the small RNA libraries, and more than 30 M raw reads were obtained. We annotated 301 known miRNAs and identified 3 new miRNAs in the two libraries. Treatment of M. truncatula with 10 μM ACC led to changes in expression of 8 miRNAs. The targets of the ethylene-responsive miRNAs were predicted by bioinformatic approach. The potential role of the ethylene-responsive miRNAs in the ethylene-induced inhibition of root elongation is discussed. These results are useful for functional characterization of miRNAs in mediation of ethylene-dependent physiological processes in general and root elongation in particular.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | |
Collapse
|
226
|
Varkonyi-Gasic E, Lough RH, Moss SMA, Wu R, Hellens RP. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. PLANT MOLECULAR BIOLOGY 2012; 78:417-29. [PMID: 22290408 DOI: 10.1007/s11103-012-9877-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/23/2011] [Indexed: 05/22/2023]
Abstract
In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant ‘Pukekohe dwarf’ with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
227
|
Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. THE PLANT CELL 2012; 24:859-74. [PMID: 22408077 PMCID: PMC3336131 DOI: 10.1105/tpc.111.095380] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 05/18/2023]
Abstract
Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack.
Collapse
|
228
|
Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. PLANT PHYSIOLOGY 2012; 158:1382-94. [PMID: 22271747 PMCID: PMC3291253 DOI: 10.1104/pp.111.190488] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/17/2012] [Indexed: 05/18/2023]
Abstract
The highly conserved plant microRNA, miR156, is an essential regulator for plant development. In Arabidopsis (Arabidopsis thaliana), miR156 modulates phase changing through its temporal expression in the shoot. In contrast to the gradual decrease over time in the shoot (or whole plant), we found that the miR156 level in rice (Oryza sativa) gradually increased from young leaf to old leaf after the juvenile stage. However, the miR156-targeted rice SQUAMOSA-promoter binding-like (SPL) transcription factors were either dominantly expressed in young leaves or not changed over the time of leaf growth. A comparison of the transcriptomes of early-emerged old leaves and later-emerged young leaves from wild-type and miR156 overexpression (miR156-OE) rice lines found that expression levels of 3,008 genes were affected in miR156-OE leaves. Analysis of temporal expression changes of these genes suggested that miR156 regulates gene expression in a leaf age-dependent manner, and miR156-OE attenuated the temporal changes of 2,660 genes. Interestingly, seven conserved plant microRNAs also showed temporal changes from young to old leaves, and miR156-OE also attenuated the temporal changes of six microRNAs. Consistent with global gene expression changes, miR156-OE plants resulted in dramatic changes including precocious leaf maturation and rapid leaf/tiller initiation. Our results indicate that another gradient of miR156 is present over time, a gradual increase during leaf growth, in addition to the gradual decrease during shoot growth. Gradually increased miR156 expression in the leaf might be essential for regulating the temporal expression of genes involved in leaf development.
Collapse
MESH Headings
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Microscopy, Electron, Scanning
- Oryza/genetics
- Oryza/growth & development
- Oryza/metabolism
- Plant Epidermis/genetics
- Plant Epidermis/metabolism
- Plant Epidermis/ultrastructure
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Shoots/genetics
- Plant Shoots/growth & development
- Plant Shoots/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptome
Collapse
|
229
|
Katiyar A, Smita S, Chinnusamy V, Pandey DM, Bansal K. Identification of miRNAs in sorghum by using bioinformatics approach. PLANT SIGNALING & BEHAVIOR 2012; 7:246-59. [PMID: 22415044 PMCID: PMC3405690 DOI: 10.4161/psb.18914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression mainly by post-transcriptional gene silencing (PTGS) and in some cases by transcriptional genes silencing (TGS). miRNAs play critical roles in developmental processes, nutrient homeostasis, abiotic stress and pathogen responses of plants. In contrast to the large number of miRNAs predicted in cereal model plant rice, only 148 miRNAs were predicted in sorghum till date (miRBase release 17). This suggested that miRNAs identified in sorghum is far from saturation. Hence, we developed a bioinformatics pipeline using an in-house PERL script and publicly available structure prediction tools to identify miRNAs and their target genes from publically available Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS). About 1379 known and unique plant miRNAs from 33 different crops were used to predict new miRNAs in sorghum. We identified 31 new miRNAs belonging to 10 different miRNA families. We predicted 72 potential target genes for 31 miRNAs, and most of these target genes are predicted to be involved in plant growth and development.These newly identified miRNAs add to the growing database of miRNA and lay the foundation for further understanding of miRNA function in sorghum plant development.
Collapse
Affiliation(s)
- Amit Katiyar
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | - Shuchi Smita
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | | | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra; Ranchi; Jharkhand, India
| | - Kailash Bansal
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
- Correspondence to: Kailash Bansal,
| |
Collapse
|
230
|
De Paola D, Cattonaro F, Pignone D, Sonnante G. The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 2012; 13:41. [PMID: 22272770 PMCID: PMC3285030 DOI: 10.1186/1471-2164-13-41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/24/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant microRNAs (miRNAs) are involved in post-transcriptional regulatory mechanisms of several processes, including the response to biotic and abiotic stress, often contributing to the adaptive response of the plant to adverse conditions. In addition to conserved miRNAs, found in a wide range of plant species a number of novel species-specific miRNAs, displaying lower levels of expression can be found. Due to low abundance, non conserved miRNAs are difficult to identify and isolate using conventional approaches. Conversely, deep-sequencing of small RNA (sRNA) libraries can detect even poorly expressed miRNAs.No miRNAs from globe artichoke have been described to date. We analyzed the miRNAome from artichoke by deep sequencing four sRNA libraries obtained from NaCl stressed and control leaves and roots. RESULTS Conserved and novel miRNAs were discovered using accepted criteria. The expression level of selected miRNAs was monitored by quantitative real-time PCR. Targets were predicted and validated for their cleavage site. A total of 122 artichoke miRNAs were identified, 98 (25 families) of which were conserved with other plant species, and 24 were novel. Some miRNAs were differentially expressed according to tissue or condition, magnitude of variation after salt stress being more pronounced in roots. Target function was predicted by comparison to Arabidopsis proteins; the 43 targets (23 for novel miRNAs) identified included transcription factors and other genes, most of which involved in the response to various stresses. An unusual cleaved transcript was detected for miR393 target, transport inhibitor response 1. CONCLUSIONS The miRNAome from artichoke, including novel miRNAs, was unveiled, providing useful information on the expression in different organs and conditions. New target genes were identified. We suggest that the generation of secondary short-interfering RNAs from miR393 target can be a general rule in the plant kingdom.
Collapse
Affiliation(s)
- Domenico De Paola
- Institute of Plant Genetics (IGV), National Research Council (CNR), Via Amendola 165/A, 70126 Bari - Italy
| | | | | | | |
Collapse
|
231
|
Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 2012; 8:e1002419. [PMID: 22242012 PMCID: PMC3252272 DOI: 10.1371/journal.pgen.1002419] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5′ portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant. Plants and other multicellular organisms need precise spatio-temporal control of gene expression, and this regulatory capacity depends, in part, on small RNAs. MicroRNAs (miRNAs) are one class of ∼21 nt small RNAs that originate from endogenous fold-back precursors found in plants and animals. They recognize complementary target sites in target mRNAs and guide them to cleavage or translational arrest. Studies of conserved miRNA networks in Arabidopsis and other plants have revealed that they fulfill essential regulatory roles. Most of the ancient miRNAs regulate transcription factors involved in plant development and hormone signaling. Here, we characterize the miR396 regulatory network. While miR396 regulates GRF transcription factors, at least in angiosperms and gymnosperms, this miRNA additionally regulates another transcription factor of the bHLH class but only in Arabidopsis thaliana and closely related species. Most conspicuously, the regulation of both conserved and new targets is important for leaf development in Arabidopsis. We also show that miRNA variants can exist in certain species and that they can display an enhanced activity towards their targets. In summary, we propose that conserved miRNA regulatory networks might expand their functions by the recruitment of additional targets as well as by slight variations in the small RNA sequences.
Collapse
Affiliation(s)
- Juan M Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | |
Collapse
|
232
|
Abstract
MicroRNAs (miRNAs) are among the most important regulatory elements of gene expression in animals and plants. However, their origin and evolutionary dynamics have not been studied systematically. In this paper, we identified putative miRNA genes in 11 plant species using the bioinformatic technique and examined their evolutionary changes. Our homology search indicated that no miRNA gene is currently shared between green algae and land plants. The number of miRNA genes has increased substantially in the land plant lineage, but after the divergence of eudicots and monocots, the number has changed in a lineage-specific manner. We found that miRNA genes have originated mainly by duplication of preexisting miRNA genes or protein-coding genes. Transposable elements also seem to have contributed to the generation of species-specific miRNA genes. The relative importance of these mechanisms in plants is quite different from that in Drosophila species, where the formation of hairpin structures in the genomes seems to be a major source of miRNA genes. This difference in the origin of miRNA genes between plants and Drosophila may be explained by the difference in the binding to target mRNAs between plants and animals. We also found that young miRNA genes are less conserved than old genes in plants as well as in Drosophila species. Yet, nearly half of the gene families in the ancestor of flowering plants have been lost in at least one species examined. This indicates that the repertoires of miRNA genes have changed more dynamically than previously thought during plant evolution.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Department of Biology, Institute of Molecular Evolutionary Genetics, Pennsylvania State University, PA, USA.
| | | | | |
Collapse
|
233
|
Schwab R. The Roles of miR156 and miR172 in Phase Change Regulation. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
234
|
Genetic and Molecular Approaches to Assess MicroRNA Function. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
235
|
Schommer C, Bresso EG, Spinelli SV, Palatnik JF. Role of MicroRNA miR319 in Plant Development. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
236
|
Zhu QH, Helliwell CA. Generation of plant small RNA cDNA libraries for high-throughput sequencing. Methods Mol Biol 2012; 894:123-137. [PMID: 22678577 DOI: 10.1007/978-1-61779-882-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in development and genome stability in plants. Conventional cloning and sequencing approaches have identified hundreds of miRNAs and a large number of siRNAs, but are no longer the best choices for identification of new miRNAs which are generally expressed at low abundance. The development of next-generation sequencing technologies has provided a powerful platform for the discovery of these small but vital RNA molecules. This chapter describes a protocol for the construction of small RNA cDNA libraries suitable for sequencing-by-synthesis (SBS) technologies, such as the Roche Genome Sequencer FLX and the Illumina Genome Analyzer platforms, which have been widely used to identify new miRNAs and other types of small RNAs.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- Division of Plant Industry, CSIRO, Canberra, ACT, Australia
| | | |
Collapse
|
237
|
Sahu S, Khushwaha A, Dixit R. Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel). Bioinformation 2011; 7:375-8. [PMID: 22347777 PMCID: PMC3280435 DOI: 10.6026/97320630007375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022] Open
Abstract
RNAs Interference plays a very important role in gene silencing. In vitro identification of miRNAs is a slow process as it is difficult to isolate them. Nucleotide sequences of miRNAs are highly conserved among the plants and, this form the key feature behind the identification of miRNAs in plant species by homology alignment. In silico identification of miRNAs from EST database is emerging as a novel, faster and reliable approach. Here EST sequences of Senecio vulgaris (Groundsel) were searched against known miRNA sequences by using BLASTN tool. A total of 10 miRNAs were identified from 1956 EST sequences and 115 GSS sequences. The most stable miRNA identified is svu-mir-1. This approach will accelerate advance research in regulation of gene expression in Groundsel by interfering RNAs.
Collapse
Affiliation(s)
- Sarika Sahu
- Centre for Bioinformatics, Faculty of Biological Engineering, Shobhit University, Meerut
| | - Anjana Khushwaha
- Centre for Bioinformatics, Faculty of Biological Engineering, Shobhit University, Meerut
| | - Rekha Dixit
- School of Biotechnology, Faculty of Biological Engineering, Shobhit University, Meerut
| |
Collapse
|
238
|
Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics 2011; 11:71-85. [PMID: 22184332 DOI: 10.1093/bfgp/elr039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs, including microRNA and short-interfering RNAs, play important roles in plants. In recent years, developments in sequencing technology have enabled the large-scale discovery of sRNAs in various cells, tissues and developmental stages and in response to various stresses. This review describes the bioinformatics challenges to analysing these large datasets of short-RNA sequences and some of the solutions to those challenges.
Collapse
|
239
|
Microarray-based identification of conserved microRNAs from Pinellia ternata. Gene 2011; 493:267-72. [PMID: 22166543 DOI: 10.1016/j.gene.2011.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/25/2011] [Indexed: 12/23/2022]
Abstract
A large number of microRNAs (miRNAs) reportedly play important roles in plant development; however, scarcely any of these have been found in Pinellia ternata, a herbaceous plant with special physiologic characteristics and important medicinal value. To detect P. ternata miRNAs, an in situ synthesized custom microarray of plant miRNAs was employed, following verification of the presence of the miRNAs through reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR) in the current study. A total of 54 miRNAs belonging to 23 miRNA families were identified. RT-PCR applied to the eight miRNAs validated the microarray results. qRT-PCR that targeted eleven miRNAs showed the presence of miRNAs in different tissues with different expression levels, especially, miRNA319 expression level in the tubers is nearly 10 times higher than that in the stalks and leaves. This is the first report on the miRNAs in P. ternata, which will enable further investigation of their roles in P. ternata.
Collapse
|
240
|
Donaire L, Pedrola L, de la Rosa R, Llave C. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS One 2011; 6:e27916. [PMID: 22140484 PMCID: PMC3225373 DOI: 10.1371/journal.pone.0027916] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.
Collapse
Affiliation(s)
- Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, The Spanish National Research Council, Madrid, Spain
| | - Laia Pedrola
- Lifesequencing S.L., Parc Científic Universitat de Valéncia, Valencia, Spain
| | | | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, The Spanish National Research Council, Madrid, Spain
- * E-mail:
| |
Collapse
|
241
|
Abstract
Plant development progresses through distinct phases: vegetative growth, followed by a reproductive phase and eventually seed set and senescence. The transitions between these phases are controlled by distinct genetic circuits that integrate endogenous and environmental cues. In recent years, however, it has become evident that the genetic networks that underlie these phase transitions share some common factors. Here, we review recent advances in the field of plant phase transitions, highlighting the role of two microRNAs - miR156 and miR172 - and their respective targets during these transitions. In addition, we discuss the evolutionary conservation of the functions of these miRNAs in regulating the control of plant developmental phase transitions.
Collapse
Affiliation(s)
- Peter Huijser
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | | |
Collapse
|
242
|
Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 2011; 6:e27530. [PMID: 22110666 PMCID: PMC3217988 DOI: 10.1371/journal.pone.0027530] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. Results A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Qingli Yang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, People's Republic of China
| | - Jinyan Wang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Yanan He
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, People's Republic of China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, People's Republic of China
- * E-mail:
| |
Collapse
|
243
|
Lenz D, May P, Walther D. Comparative analysis of miRNAs and their targets across four plant species. BMC Res Notes 2011; 4:483. [PMID: 22067256 PMCID: PMC3225354 DOI: 10.1186/1756-0500-4-483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
Background MicroRNA (miRNA) mediated regulation of gene expression has been recognized as a major posttranscriptional regulatory mechanism also in plants. We performed a comparative analysis of miRNAs and their respective gene targets across four plant species: Arabidopsis thaliana (Ath), Medicago truncatula(Mtr), Brassica napus (Bna), and Chlamydomonas reinhardtii (Cre). Results miRNAs were obtained from mirBase with 218 miRNAs for Ath, 375 for Mtr, 46 for Bna, and 73 for Cre, annotated for each species respectively. miRNA targets were obtained from available database annotations, bioinformatic predictions using RNAhybrid as well as predicted from an analysis of mRNA degradation products (degradome sequencing) aimed at identifying miRNA cleavage products. On average, and considering both experimental and bioinformatic predictions together, every miRNA was associated with about 46 unique gene transcripts with considerably variation across species. We observed a positive and linear correlation between the number miRNAs and the total number of transcripts across different plant species suggesting that the repertoire of miRNAs correlates with the size of the transcriptome of an organism. Conserved miRNA-target pairs were found to be associated with developmental processes and transcriptional regulation, while species-specific (in particular, Ath) pairs are involved in signal transduction and response to stress processes. Conserved miRNAs have more targets and higher expression values than non-conserved miRNAs. We found evidence for a conservation of not only the sequence of miRNAs, but their expression levels as well. Conclusions Our results support the notion of a high birth and death rate of miRNAs and that miRNAs serve many species specific functions, while conserved miRNA are related mainly to developmental processes and transcriptional regulation with conservation operating at both the sequence and expression level.
Collapse
Affiliation(s)
- Dorina Lenz
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
244
|
Abstract
Because of their sessile nature, plants are constantly exposed to a multitude of abiotic and biotic stresses. Great progress has been made in elucidating the complex stress response mechanisms in plants. MicroRNAs (miRNAs), recently recognized as important regulators of gene expression at the posttranscriptional level, have been found to be involved in plant stress responses. Most plant miRNAs usually mediate cleavage of their target mRNAs. The observation that some miRNAs are up- or downregulated in response to stress implies that miRNAs play vital roles in plant resistance to abiotic and biotic stresses. Manipulation of miRNA-guided gene regulation may represent a new way to engineer plants with improved stress tolerance. Among stress-responsive miRNAs, miRNA398 (miR398) is a miRNA proposed to be directly linked to the plant stress regulatory network and regulates plant responses to oxidative stress, water deficit, salt stress, abscisic acid stress, ultraviolet stress, copper and phosphate deficiency, high sucrose and bacterial infection. This review highlights recent progress in understanding the crucial role of miR398 in plant stress responses, and also includes a discussion of miR398-centered gene regulatory network.
Collapse
Affiliation(s)
- Cheng Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China.
| | | | | |
Collapse
|
245
|
Wang C, Wang X, Kibet NK, Song C, Zhang C, Li X, Han J, Fang J. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. PHYSIOLOGIA PLANTARUM 2011; 143:64-81. [PMID: 21496033 DOI: 10.1111/j.1399-3054.2011.01481.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA molecules which have significant gene regulation roles in organisms. The advent of new high-throughput sequencing technologies has enabled the discovery of novel miRNAs. Although there are two recent reports on high-throughput sequencing analysis of small RNA libraries from different organs of two wine grapevine varieties, there was a significant divergence in the number and kinds of miRNAs sequenced in these studies. More sequencing of small RNA libraries is still important for the discovery of novel miRNAs in grapevine. In this study, a total of 130 conserved grapevine Vitis vinifera miRNA (Vv-miRNA) belonging to 28 Vv-miRNA families were validated, other 80 unconserved Vv-miRNAs including 72 novel potential and 8 known but unconserved ones were found. Fifty-two (52.5%) of these 80 unconserved Vv-miRNAs exhibited differential poly(A)-tailed reverse transcriptase-polymerase chain reaction expression profiles in various grapevine tissues that could further confirm their existence in grapevine, among which 20 were expressed only in grapevine berries, indicating a degree of fruit-specificity. One hundred thirty target genes for 56 unconserved miRNAs could be predicted. The locations of these potential target genes on grapevine chromosomes and their complementary levels with the corresponding miRNAs were also analyzed. These results point to a regulatory role of miRNAs in grapevine berry development and response to various environments.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
D'haeseleer K, Den Herder G, Laffont C, Plet J, Mortier V, Lelandais-Brière C, De Bodt S, De Keyser A, Crespi M, Holsters M, Frugier F, Goormachtig S. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. THE NEW PHYTOLOGIST 2011; 191:647-661. [PMID: 21770944 DOI: 10.1111/j.1469-8137.2011.03719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.
Collapse
Affiliation(s)
- Katrien D'haeseleer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Griet Den Herder
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Carole Laffont
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Julie Plet
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Virginie Mortier
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Christine Lelandais-Brière
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
- Université Paris Diderot Paris 7, 75205 Paris Cedex 13, France
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Marcelle Holsters
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Florian Frugier
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
247
|
Wang C, Shangguan L, Kibet KN, Wang X, Han J, Song C, Fang J. Characterization of microRNAs identified in a table grapevine cultivar with validation of computationally predicted grapevine miRNAs by miR-RACE. PLoS One 2011; 6:e21259. [PMID: 21829435 PMCID: PMC3145640 DOI: 10.1371/journal.pone.0021259] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/25/2011] [Indexed: 11/19/2022] Open
Abstract
Background Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1–3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. Methodology/Principal Findings Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. ‘Summer Black’. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of ‘Summer Black’. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. Conclusion The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Korir Nicholas Kibet
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
248
|
Wang T, Chen L, Zhao M, Tian Q, Zhang WH. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 2011. [PMID: 21762498 DOI: 10.1186/1471‐2164‐12‐367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, Medicago truncatula. RESULTS Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation. CONCLUSIONS We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from M. truncatula. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | | | |
Collapse
|
249
|
Wang T, Chen L, Zhao M, Tian Q, Zhang WH. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 2011; 12:367. [PMID: 21762498 PMCID: PMC3160423 DOI: 10.1186/1471-2164-12-367] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/15/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, Medicago truncatula. RESULTS Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation. CONCLUSIONS We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from M. truncatula. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | - Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
250
|
MicroRNAs in tomato plants. SCIENCE CHINA-LIFE SCIENCES 2011; 54:599-605. [DOI: 10.1007/s11427-011-4188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/22/2011] [Indexed: 11/26/2022]
|