201
|
Structure of a PSI-LHCI-cyt b 6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc Natl Acad Sci U S A 2018; 115:10517-10522. [PMID: 30254175 DOI: 10.1073/pnas.1809973115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms to balance light energy absorption with cellular energy requirements under constantly changing light conditions. As LEF and CEF share many electron transfer components, a key question is how the same individual structural units contribute to these two different functional modes. Here, we report the structural identification of a photosystem I (PSI)-light harvesting complex I (LHCI)-cytochrome (cyt) b6f supercomplex isolated from the unicellular alga Chlamydomonas reinhardtii under anaerobic conditions, which induces CEF. This provides strong evidence for the model that enhanced CEF is induced by the formation of CEF supercomplexes, when stromal electron carriers are reduced, to generate additional ATP. The additional identification of PSI-LHCI-LHCII complexes is consistent with recent findings that both CEF enhancement and state transitions are triggered by similar conditions, but can occur independently from each other. Single molecule fluorescence correlation spectroscopy indicates a physical association between cyt b6f and fluorescent chlorophyll containing PSI-LHCI supercomplexes. Single particle analysis identified top-view projections of the corresponding PSI-LHCI-cyt b6f supercomplex. Based on molecular modeling and mass spectrometry analyses, we propose a model in which dissociation of LHCA2 and LHCA9 from PSI supports the formation of this CEF supercomplex. This is supported by the finding that a Δlhca2 knockout mutant has constitutively enhanced CEF.
Collapse
|
202
|
Crozet P, Navarro FJ, Willmund F, Mehrshahi P, Bakowski K, Lauersen KJ, Pérez-Pérez ME, Auroy P, Gorchs Rovira A, Sauret-Gueto S, Niemeyer J, Spaniol B, Theis J, Trösch R, Westrich LD, Vavitsas K, Baier T, Hübner W, de Carpentier F, Cassarini M, Danon A, Henri J, Marchand CH, de Mia M, Sarkissian K, Baulcombe DC, Peltier G, Crespo JL, Kruse O, Jensen PE, Schroda M, Smith AG, Lemaire SD. Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2018; 7:2074-2086. [PMID: 30165733 DOI: 10.1021/acssynbio.8b00251] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.
Collapse
Affiliation(s)
- Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | | | - Felix Willmund
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K
| | - Kamil Bakowski
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyle J. Lauersen
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany
| | - Maria-Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, 41092, Spain
| | - Pascaline Auroy
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues Cadarache, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Aleix Gorchs Rovira
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K
| | - Susana Sauret-Gueto
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K
| | - Justus Niemeyer
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Benjamin Spaniol
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Jasmine Theis
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Raphael Trösch
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Lisa-Desiree Westrich
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Baier
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, Department of Physics, Bielefeld University, Bielefeld, 33615, Germany
| | - Felix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Mathieu Cassarini
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Antoine Danon
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Julien Henri
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Christophe H. Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Marcello de Mia
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Kevin Sarkissian
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K
| | - Gilles Peltier
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues Cadarache, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - José-Luis Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, 41092, Spain
| | - Olaf Kruse
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33615, Germany
| | - Poul-Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Schroda
- Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, U.K
| | - Stéphane D. Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
203
|
Kamiya R, Shiba K, Inaba K, Kato-Minoura T. Release of Sticky Glycoproteins from Chlamydomonas Flagella During Microsphere Translocation on the Surface Membrane. Zoolog Sci 2018; 35:299-305. [DOI: 10.2108/zs180025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ritsu Kamiya
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka 415-0025, Japan
| | - Takako Kato-Minoura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
204
|
Kong F, Burlacot A, Liang Y, Légeret B, Alseekh S, Brotman Y, Fernie AR, Krieger-Liszkay A, Beisson F, Peltier G, Li-Beisson Y. Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. THE PLANT CELL 2018; 30:1824-1847. [PMID: 29997239 PMCID: PMC6139685 DOI: 10.1105/tpc.18.00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 05/17/2023]
Abstract
Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here, we show that knocking out the peroxisome-located MALATE DEHYDROGENASE2 (MDH2) of Chlamydomonas reinhardtii results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mdh2 mutants accumulated 50% more storage lipid and 2-fold more starch than the wild type during nitrogen deprivation. In parallel, mdh2 showed increased photosystem II yield and photosynthetic CO2 fixation. Metabolite analyses revealed a >60% reduction in malate, together with increased levels of NADPH and H2O2 in mdh2 Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the H2O2-producing peroxisomal ACYL-COA OXIDASE2 and on the effects of H2O2 supplementation, we propose that peroxisome-derived H2O2 acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle- and H2O2-based redox signaling.
Collapse
Affiliation(s)
- Fantao Kong
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Adrien Burlacot
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yuanxue Liang
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell, CEA Saclay, CNRS, University Paris-Sud, University Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fred Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Gilles Peltier
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
205
|
Heimerl N, Hommel E, Westermann M, Meichsner D, Lohr M, Hertweck C, Grossman AR, Mittag M, Sasso S. A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:268-281. [PMID: 29729034 DOI: 10.1111/tpj.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2-day-old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild-type zygospores contain knob-like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild-type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild-type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.
Collapse
Affiliation(s)
- Natalie Heimerl
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Elisabeth Hommel
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | | | - Doreen Meichsner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Martin Lohr
- Institute of Molecular Physiology, Plant Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | | | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Severin Sasso
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| |
Collapse
|
206
|
Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nat Commun 2018; 9:2439. [PMID: 29934511 PMCID: PMC6015050 DOI: 10.1038/s41467-018-04823-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
In oxygenic photosynthesis, light energy is converted into redox energy by two photosystems (PSI and PSII). PSI forms one of the largest multiprotein complexes in thylakoid membranes consisting of a core complex, peripheral light-harvesting complexes (LHCIs) and cofactors. Although the high-resolution structure of the PSI–LHCI complex has been determined, the assembly process remains unclear due to the rapid nature of the assembly process. Here we show that two conserved chloroplast-encoded auxiliary factors, Ycf3 and Ycf4, form modules that mediate PSI assembly. The first module consists of the tetratricopeptide repeat protein Ycf3 and its interacting partner, Y3IP1, and mainly facilitates the assembly of reaction center subunits. The second module consists of oligomeric Ycf4 and facilitates the integration of peripheral PSI subunits and LHCIs into the PSI reaction center subcomplex. We reveal that these two modules are major mediators of the PSI–LHCI assembly process. Photosystem I is a large multiprotein complex embedded in the chloroplast thylakoid membrane. Here the authors provide evidence for a modular assembly process, whereby Ycf3 facilitates assembly of the reaction center, while Ycf4 incorporates peripheral core and light harvesting complex subunits to the reaction center.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,JST-CREST, Tokyo, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan. .,JST-CREST, Tokyo, Japan.
| |
Collapse
|
207
|
Jokel M, Johnson X, Peltier G, Aro EM, Allahverdiyeva Y. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:822-835. [PMID: 29575329 DOI: 10.1111/tpj.13897] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms have evolved numerous photoprotective mechanisms and alternative electron sinks/pathways to fine-tune the photosynthetic apparatus under dynamic environmental conditions, such as varying carbon supply or fluctuations in light intensity. In cyanobacteria flavodiiron proteins (FDPs) protect the photosynthetic apparatus from photodamage under fluctuating light (FL). In Arabidopsis thaliana, which does not possess FDPs, the PGR5-related pathway enables FL photoprotection. The direct comparison of the pgr5, pgrl1 and flv knockout mutants of Chlamydomonas reinhardtii grown under ambient air demonstrates that all three proteins contribute to the survival of cells under FL, but to varying extents. The FDPs are crucial in providing a rapid electron sink, with flv mutant lines unable to survive even mild FL conditions. In contrast, the PGRL1 and PGR5-related pathways operate over relatively slower and longer time-scales. Whilst deletion of PGR5 inhibits growth under mild FL, the pgrl1 mutant line is only impacted under severe FL conditions. This suggests distinct roles, yet a close relationship, between the function of PGR5, PGRL1 and FDP proteins in photoprotection.
Collapse
Affiliation(s)
- Martina Jokel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Xenie Johnson
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Gilles Peltier
- Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
208
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
209
|
Breker M, Lieberman K, Cross FR. Comprehensive Discovery of Cell-Cycle-Essential Pathways in Chlamydomonas reinhardtii. THE PLANT CELL 2018; 30:1178-1198. [PMID: 29743196 PMCID: PMC6048789 DOI: 10.1105/tpc.18.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
We generated a large collection of temperature-sensitive lethal mutants in the unicellular green alga Chlamydomonas reinhardtii, focusing on mutations specifically affecting cell cycle regulation. We used UV mutagenesis and robotically assisted phenotypic screening to isolate candidates. To overcome the bottleneck at the critical step of molecular identification of the causative mutation ("driver"), we developed MAPS-SEQ (meiosis-assisted purifying selection sequencing), a multiplexed genetic/bioinformatics strategy. MAPS-SEQ allowed us to perform multiplexed simultaneous determination of the driver mutations from hundreds of neutral "passenger" mutations in each member of a large pool of mutants. This method should work broadly, including in multicellular diploid genetic systems, for any scorable trait. Using MAPS-SEQ, we identified essential genes spanning a wide range of molecular functions. Phenotypic clustering based on DNA content analysis and cell morphology indicated that the mutated genes function in the cell cycle at multiple points and by diverse mechanisms. The collection is sufficiently complete to allow specific conditional inactivation of almost all cell-cycle-regulatory pathways. Approximately seventy-five percent of the essential genes identified in this project had clear orthologs in land plant genomes, a huge enrichment compared with the value of ∼20% for the Chlamydomonas genome overall. Findings about these mutants will likely have direct relevance to essential cell biology in land plants.
Collapse
Affiliation(s)
- Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York 10065
| | - Kristi Lieberman
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York 10065
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
210
|
Kubo T, Hou Y, Cochran DA, Witman GB, Oda T. A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1). Mol Biol Cell 2018. [PMID: 29540525 PMCID: PMC5921573 DOI: 10.1091/mbc.e17-11-0689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
FAP44 and FAP43/FAP244 form a complex that tethers the Inner dynein subspecies f to the microtubule in Chlamydomonas flagella. The tether complex regulates flagellar motility by restraining conformational change in the dynein motor. Motility of cilia/flagella is generated by a coordinated activity of thousands of dyneins. Inner dynein arms (IDAs) are particularly important for the formation of ciliary/flagellar waveforms, but the molecular mechanism of IDA regulation is poorly understood. Here we show using cryoelectron tomography and biochemical analyses of Chlamydomonas flagella that a conserved protein FAP44 forms a complex that tethers IDA f (I1 dynein) head domains to the A-tubule of the axonemal outer doublet microtubule. In wild-type flagella, IDA f showed little nucleotide-dependent movement except for a tilt in the f β head perpendicular to the microtubule-sliding direction. In the absence of the tether complex, however, addition of ATP and vanadate caused a large conformational change in the IDA f head domains, suggesting that the movement of IDA f is mechanically restricted by the tether complex. Motility defects in flagella missing the tether demonstrates the importance of the IDA f-tether interaction in the regulation of ciliary/flagellar beating.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
211
|
Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song WY, Cho CH, Yoon HS, Kohno K, Lee Y. Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:91-104. [PMID: 29385296 DOI: 10.1111/tpj.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Chung H Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
212
|
Fu G, Wang Q, Phan N, Urbanska P, Joachimiak E, Lin J, Wloga D, Nicastro D. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol Biol Cell 2018. [PMID: 29514928 PMCID: PMC5921572 DOI: 10.1091/mbc.e18-02-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Qian Wang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
213
|
Can We Approach Theoretical Lipid Yields in Microalgae? Trends Biotechnol 2018; 36:265-276. [DOI: 10.1016/j.tibtech.2017.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/17/2022]
|
214
|
Atkins KC, Cross FR. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. THE PLANT CELL 2018; 30:429-446. [PMID: 29367304 PMCID: PMC5868683 DOI: 10.1105/tpc.17.00759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
The cyclin-dependent kinase CDK1 is essential for mitosis in fungi and animals. Plant genomes contain the CDK1 ortholog CDKA and a plant kingdom-specific relative, CDKB. The green alga Chlamydomonas reinhardtii has a long G1 growth period followed by rapid cycles of DNA replication and cell division. We show that null alleles of CDKA extend the growth period prior to the first division cycle and modestly extend the subsequent division cycles, but do not prevent cell division, indicating at most a minor role for the CDK1 ortholog in mitosis in Chlamydomonas. A null allele of cyclin A has a similar though less extreme phenotype. In contrast, both CDKB and cyclin B are essential for mitosis. CDK kinase activity measurements imply that the predominant in vivo complexes are probably cyclin A-CDKA and cyclin B-CDKB. We propose a negative feedback loop: CDKA activates cyclin B-CDKB. Cyclin B-CDKB in turn promotes mitotic entry and inactivates cyclin A-CDKA. Cyclin A-CDKA and cyclin B-CDKB may redundantly promote DNA replication. We show that the anaphase-promoting complex is required for inactivation of both CDKA and CDKB and is essential for anaphase. These results are consistent with findings in Arabidopsis thaliana and may delineate the core of plant kingdom cell cycle control that, compared with the well-studied yeast and animal systems, exhibits deep conservation in some respects and striking divergence in others.
Collapse
|
215
|
Gan Q, Jiang J, Han X, Wang S, Lu Y. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica. FRONTIERS IN PLANT SCIENCE 2018; 9:439. [PMID: 29696028 PMCID: PMC5904192 DOI: 10.3389/fpls.2018.00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation). Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Shifan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
- *Correspondence: Yandu Lu
| |
Collapse
|
216
|
Hammel A, Zimmer D, Sommer F, Mühlhaus T, Schroda M. Absolute Quantification of Major Photosynthetic Protein Complexes in Chlamydomonas reinhardtii Using Quantification Concatamers (QconCATs). FRONTIERS IN PLANT SCIENCE 2018; 9:1265. [PMID: 30214453 PMCID: PMC6125352 DOI: 10.3389/fpls.2018.01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 05/03/2023]
Abstract
For modeling approaches in systems biology, knowledge of the absolute abundances of cellular proteins is essential. One way to gain this knowledge is the use of quantification concatamers (QconCATs), which are synthetic proteins consisting of proteotypic peptides derived from the target proteins to be quantified. The QconCAT protein is labeled with a heavy isotope upon expression in E. coli and known amounts of the purified protein are spiked into a whole cell protein extract. Upon tryptic digestion, labeled and unlabeled peptides are released from the QconCAT protein and the native proteins, respectively, and both are quantified by LC-MS/MS. The labeled Q-peptides then serve as standards for determining the absolute quantity of the native peptides/proteins. Here, we have applied the QconCAT approach to Chlamydomonas reinhardtii for the absolute quantification of the major proteins and protein complexes driving photosynthetic light reactions in the thylakoid membranes and carbon fixation in the pyrenoid. We found that with 25.2 attomol/cell the Rubisco large subunit makes up 6.6% of all proteins in a Chlamydomonas cell and with this exceeds the amount of the small subunit by a factor of 1.56. EPYC1, which links Rubisco to form the pyrenoid, is eight times less abundant than RBCS, and Rubisco activase is 32-times less abundant than RBCS. With 5.2 attomol/cell, photosystem II is the most abundant complex involved in the photosynthetic light reactions, followed by plastocyanin, photosystem I and the cytochrome b6/f complex, which range between 2.9 and 3.5 attomol/cell. The least abundant complex is the ATP synthase with 2 attomol/cell. While applying the QconCAT approach, we have been able to identify many potential pitfalls associated with this technique. We analyze and discuss these pitfalls in detail and provide an optimized workflow for future applications of this technique.
Collapse
|
217
|
|
218
|
Mackinder LCM. The Chlamydomonas CO 2 -concentrating mechanism and its potential for engineering photosynthesis in plants. THE NEW PHYTOLOGIST 2018; 217:54-61. [PMID: 28833179 DOI: 10.1111/nph.14749] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
Contents Summary I. Introduction 54 II. Recent advances in our understanding of the Chlamydomonas CCM 55 III. Current gaps in our understanding of the Chlamydomonas CCM 58 IV. Approaches to rapidly advance our understanding of the Chlamydomonas CCM 58 V. Engineering a CCM into higher plants 58 VI. Conclusion and outlook 59 Acknowledgements 60 References 60 SUMMARY: To meet the food demands of a rising global population, innovative strategies are required to increase crop yields. Improvements in plant photosynthesis by genetic engineering show considerable potential towards this goal. One prospective approach is to introduce a CO2 -concentrating mechanism into crop plants to increase carbon fixation by supplying the central carbon-fixing enzyme, Rubisco, with a higher concentration of its substrate, CO2 . A promising donor organism for the molecular machinery of this mechanism is the eukaryotic alga Chlamydomonas reinhardtii. This review summarizes the recent advances in our understanding of carbon concentration in Chlamydomonas, outlines the most pressing gaps in our knowledge and discusses strategies to transfer a CO2 -concentrating mechanism into higher plants to increase photosynthetic performance.
Collapse
|
219
|
Abstract
The pyrenoid is a membrane-less organelle that exists in various photosynthetic organisms, such as algae, and wherein most global CO2 fixation occurs. Two papers from the Jonikas lab in this issue of Cell provide new insights into the structure, protein composition, and dynamics of this important organelle.
Collapse
|
220
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
221
|
Monitoring Autophagy in the Model Green Microalga Chlamydomonas reinhardtii. Cells 2017; 6:cells6040036. [PMID: 29065500 PMCID: PMC5755495 DOI: 10.3390/cells6040036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an intracellular catabolic system that delivers cytoplasmic constituents and organelles in the vacuole. This degradative process is mediated by a group of proteins coded by autophagy-related (ATG) genes that are widely conserved from yeasts to plants and mammals. Homologs of ATG genes have been also identified in algal genomes including the unicellular model green alga Chlamydomonas reinhardtii. The development of specific tools to monitor autophagy in Chlamydomonas has expanded our current knowledge about the regulation and function of this process in algae. Recent findings indicated that autophagy is regulated by redox signals and the TOR network in Chlamydomonas and revealed that this process may play in important role in the control of lipid metabolism and ribosomal protein turnover in this alga. Here, we will describe the different techniques and approaches that have been reported to study autophagy and autophagic flux in Chlamydomonas.
Collapse
|
222
|
Cavaiuolo M, Kuras R, Wollman F, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 2017; 45:10783-10799. [PMID: 28985404 PMCID: PMC5737564 DOI: 10.1093/nar/gkx668] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis‐André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
223
|
Blaby-Haas CE, Merchant SS. Regulating cellular trace metal economy in algae. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:88-96. [PMID: 28672168 PMCID: PMC5595633 DOI: 10.1016/j.pbi.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/05/2023]
Abstract
As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Building 463, Upton, NY 11973, USA.
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, USA; Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, USA
| |
Collapse
|
224
|
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. THE PLANT CELL 2017; 29:2498-2518. [PMID: 28978758 PMCID: PMC5774583 DOI: 10.1105/tpc.17.00659] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
The fast-growing biflagellated single-celled chlorophyte Chlamydomonas reinhardtii is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency. We optimized gene-editing protocols for several Chlamydomonas strains (including wild-type CC-125) using zinc-finger nucleases (ZFNs), genetically encoded CRISPR/associated protein 9 (Cas9) from Staphylococcus aureus and Streptococcus pyogenes, and recombinant Cas9 and developed protocols for rapidly isolating nonselectable gene mutants. Using this technique, we disrupted the photoreceptor genes COP1/2, COP3 (encoding channelrhodopsin 1 [ChR1]), COP4 (encoding ChR2), COP5, PHOT, UVR8, VGCC, MAT3, and aCRY and created the chr1 chr2 and uvr8 phot double mutants. Characterization of the chr1, chr2, and mat3 mutants confirmed the value of photoreceptor mutants for physiological studies. Genes of interest were disrupted in 5 to 15% of preselected clones (∼1 out of 4000 initial cells). Using ZFNs, genes were edited in a reliable, predictable manner via homologous recombination, whereas Cas9 primarily caused gene disruption via the insertion of cotransformed DNA. These methods should be widely applicable to research involving green algae.
Collapse
Affiliation(s)
- Andre Greiner
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Heide Evers
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| |
Collapse
|
225
|
Tammana D, Tammana TVS. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS One 2017; 12:e0185108. [PMID: 28931065 PMCID: PMC5607191 DOI: 10.1371/journal.pone.0185108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin polymerization promoting proteins (TPPPs) belong to a family of neomorphic moon lighting proteins, involved in various physiological and pathological conditions. In physiological conditions, TPPPs play an important role in microtubule dynamics regulating mitotic spindle assembly and in turn cell proliferation. In pathological situations, TPPPs interact with α-synuclein and β-amyloid and promote their aggregation leading to Parkinson’s disease and multiple system atrophy. Orthologs of TPPP family proteins were identified in ciliary proteomes from various organisms including Chlamydomonas but their role in ciliogenesis was not known. Here we showed that Flagellar Associated Protein, FAP265, a Chlamydomonas homologue of TPPP family proteins, localizes in the cytosol, at the basal bodies and in the flagella of vegetative Chlamydomonas cells. During cell division, the protein was found as a distinct spot in the nucleus and at the cleavage furrow which forms between the daughter cells. Further null mutants of Chlamydomonas FAP265 protein, fap265, showed severe defects in hatching from the mother sporangium. Daughter cells of fap265 were significantly larger in size compared with wild type cells. Moreover, the daughter cells present within the mother sporangium failed to form flagella before hatching. They reassembled their flagella only after hatching from the sporangium suggesting that FAP265 plays an important role in flagellar reassembly after cell division.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | | |
Collapse
|
226
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
227
|
Kim HS, Hsu S, Han S, Thapa HR, Guzman AR, Browne DR, Tatli M, Devarenne TP, Stern DB, Han A. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. PLANT DIRECT 2017; 1:e00011. [PMID: 31245660 PMCID: PMC6508572 DOI: 10.1002/pld3.11] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 05/21/2023]
Abstract
Biofuels derived from microalgal lipids have demonstrated a promising potential as future renewable bioenergy. However, the production costs for microalgae-based biofuels are not economically competitive, and one strategy to overcome this limitation is to develop better-performing microalgal strains that have faster growth and higher lipid content through genetic screening and metabolic engineering. In this work, we present a high-throughput droplet microfluidics-based screening platform capable of analyzing growth and lipid content in populations derived from single cells of a randomly mutated microalgal library to identify and sort variants that exhibit the desired traits such as higher growth rate and increased lipid content. By encapsulating single cells into water-in-oil emulsion droplets, each variant was separately cultured inside an individual droplet that functioned as an independent bioreactor. In conjunction with an on-chip fluorescent lipid staining process within droplets, microalgal growth and lipid content were characterized by measuring chlorophyll and BODIPY fluorescence intensities through an integrated optical detection system in a flow-through manner. Droplets containing cells with higher growth and lipid content were selectively retrieved and further analyzed off-chip. The growth and lipid content screening capabilities of the developed platform were successfully demonstrated by first carrying out proof-of-concept screening using known Chlamydomonas reinhardtii mutants. The platform was then utilized to screen an ethyl methanesulfonate (EMS)-mutated C. reinhardtii population, where eight potential mutants showing faster growth and higher lipid content were selected from 200,000 examined samples, demonstrating the capability of the platform as a high-throughput screening tool for microalgal biofuel development.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
- Korea Institute of Machinery and MaterialsDaegu Research Center for Medical Devices and RehabilitationDaeguSouth Korea
| | | | - Song‐I Han
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Hem R. Thapa
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Adrian R. Guzman
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Daniel R. Browne
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Mehmet Tatli
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Timothy P. Devarenne
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | | | - Arum Han
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
228
|
Shi J, Huang T, Chai S, Guo Y, Wei J, Dou S, Li L, Liu G. Identification of Reference and Biomarker Proteins in Chlamydomonas reinhardtii Cultured under Different Stress Conditions. Int J Mol Sci 2017; 18:ijms18081822. [PMID: 28829403 PMCID: PMC5578208 DOI: 10.3390/ijms18081822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Reference proteins and biomarkers are important for the quantitative evaluation of protein abundance. Chlamydomonasreinhardtii was grown under five stress conditions (dark, cold, heat, salt, and glucose supplementation), and the OD750 and total protein contents were evaluated on days 0, 1, 2, 4, and 6 of culture. Antibodies for 20 candidate proteins were generated, and the protein expression patterns were examined by western blotting. Reference protein(s) for each treatment were identified by calculating the Pearson’s correlation coefficient (PCC) between target protein abundance and total protein content. Histone H3, beta tubulin 1 (TUB-1), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RBCL), and mitochondrial F1F0 ATP synthase subunit 6 (ATPs-6) were the top reference proteins, because they were expressed stably under multiple stress conditions. The average relative-fold change (ARF) value of each protein was calculated to identify biomarkers. Heat shock protein 90B (HSP90B), flagellar associated protein (FAP127) and ATP synthase CF0 A subunit (ATPs-A) were suitable biomarkers for multiple treatments, while receptor of activated protein kinase C1 (RCK1), biotin carboxylase (BCR1), mitochondrial phosphate carrier protein (MPC1), and rubisco large subunit N-methyltransferase (RMT1) were suitable biomarkers for the dark, cold, heat, and glucose treatments, respectively.
Collapse
Affiliation(s)
- Jianan Shi
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Teng Huang
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Shuaijie Chai
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Yalu Guo
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Jian Wei
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Shijuan Dou
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Liyun Li
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Guozhen Liu
- Institute of Bioenergy, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
229
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
230
|
Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. Curr Biol 2017; 27:2486-2498.e6. [PMID: 28781053 PMCID: PMC6399476 DOI: 10.1016/j.cub.2017.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 11/21/2022]
Abstract
Centrioles are evolutionarily conserved macromolecular structures that are fundamental to form cilia, flagella, and centrosomes. Centrioles are 9-fold symmetrical microtubule-based cylindrical barrels comprising three regions that can be clearly distinguished in the Chlamydomonas reinhardtii organelle: an ∼100-nm-long proximal region harboring a cartwheel; an ∼250-nm-long central core region containing a Y-shaped linker; and an ∼150-nm-long distal region ending at the transitional plate. Despite the discovery of many centriolar components, no protein has been localized specifically to the central core region in Chlamydomonas thus far. Here, combining relative quantitative mass spectrometry and super-resolution microscopy on purified Chlamydomonas centrioles, we identified POB15 and POC16 as two proteins of the central core region, the distribution of which correlates with that of tubulin glutamylation. We demonstrated that POB15 is an inner barrel protein within this region. Moreover, we developed an assay to uncover temporal relationships between centriolar proteins during organelle assembly and thus established that POB15 is recruited after the cartwheel protein CrSAS-6 and before tubulin glutamylation takes place. Furthermore, we discovered that two poc16 mutants exhibit flagellar defects, indicating that POC16 is important for flagellum biogenesis. In addition, we discovered that WDR90, the human homolog of POC16, localizes to a region of human centrioles that we propose is analogous to the central core of Chlamydomonas centrioles. Moreover, we demonstrate that WDR90 is required for ciliogenesis, echoing the findings in Chlamydomonas. Overall, our work provides novel insights into the identity and function of centriolar central core components. Mapping of centriolar sub-regions using structured illumination microscopy Relative quantitative mass spectrometry reveals novel centriolar components Identification of Chlamydomonas central core proteins POB15 and POC16 POC16 and its human homolog WDR90 promote flagella/cilia formation
Collapse
|
231
|
Chaux F, Burlacot A, Mekhalfi M, Auroy P, Blangy S, Richaud P, Peltier G. Flavodiiron Proteins Promote Fast and Transient O 2 Photoreduction in Chlamydomonas. PLANT PHYSIOLOGY 2017; 174:1825-1836. [PMID: 28487478 PMCID: PMC5490913 DOI: 10.1104/pp.17.00421] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 05/18/2023]
Abstract
During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [18O]-labeled O2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O2, which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes.
Collapse
Affiliation(s)
- Frédéric Chaux
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Adrien Burlacot
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Malika Mekhalfi
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Pascaline Auroy
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Stéphanie Blangy
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Pierre Richaud
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, F-13108 France
| |
Collapse
|
232
|
Meyer MT, Whittaker C, Griffiths H. The algal pyrenoid: key unanswered questions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3739-3749. [PMID: 28911054 DOI: 10.1093/jxb/erx178] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The confinement of Rubisco in a chloroplast microcompartment, or pyrenoid, is a distinctive feature of most microalgae, and contributes to perhaps ~30 Pg of carbon fixed each year, yet our understanding of pyrenoid composition, regulation, and function remains fragmentary. Recently, significant progress in understanding the pyrenoid has arisen from studies using mutant lines, mass spectrometric analysis of isolated pyrenoids, and advanced ultrastructural imaging of the microcompartment in the model alga Chlamydomonas. The emergence of molecular details in other lineages provides a comparative framework for this review, and evidence that most pyrenoids function similarly, even in the absence of a common ancestry. The objective of this review is to explore pyrenoid diversity throughout key algal lineages and discuss whether common ultrastructural and cellular features are indicative of common functional processes. By characterizing pyrenoid origins in terms of mechanistic and structural parallels, we hope to provide key unanswered questions which will inform future research directions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Charles Whittaker
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
233
|
Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM, Duong PQ, Jones KC, Jiang L, Ruan D, Bauer D, Peng Y, Barry KW, Schmutz J, Ronald PC. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies. THE PLANT CELL 2017; 29:1218-1231. [PMID: 28576844 PMCID: PMC5502455 DOI: 10.1105/tpc.17.00154] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 05/19/2023]
Abstract
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.
Collapse
Affiliation(s)
- Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Nikki T Pham
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joel A Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Wendy S Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna M Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Phat Q Duong
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
| | - Kyle C Jones
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Liangrong Jiang
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Diane Bauer
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Yi Peng
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616
- Grass Genetics, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
234
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
235
|
Griffiths H, Meyer MT, Rickaby REM. Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3689-3695. [PMID: 28911058 PMCID: PMC5853259 DOI: 10.1093/jxb/erx278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | | |
Collapse
|
236
|
Kumar D, Strenkert D, Patel-King RS, Leonard MT, Merchant SS, Mains RE, King SM, Eipper BA. A bioactive peptide amidating enzyme is required for ciliogenesis. eLife 2017; 6. [PMID: 28513435 PMCID: PMC5461114 DOI: 10.7554/elife.25728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
The pathways controlling cilium biogenesis in different cell types have not been fully elucidated. We recently identified peptidylglycine α-amidating monooxygenase (PAM), an enzyme required for generating amidated bioactive signaling peptides, in Chlamydomonas and mammalian cilia. Here, we show that PAM is required for the normal assembly of motile and primary cilia in Chlamydomonas, planaria and mice. Chlamydomonas PAM knockdown lines failed to assemble cilia beyond the transition zone, had abnormal Golgi architecture and altered levels of cilia assembly components. Decreased PAM gene expression reduced motile ciliary density on the ventral surface of planaria and resulted in the appearance of cytosolic axonemes lacking a ciliary membrane. The architecture of primary cilia on neuroepithelial cells in Pam-/- mouse embryos was also aberrant. Our data suggest that PAM activity and alterations in post-Golgi trafficking contribute to the observed ciliogenesis defects and provide an unanticipated, highly conserved link between PAM, amidation and ciliary assembly.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States
| | - Ramila S Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Michael T Leonard
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States.,Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, United States.,Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
237
|
Cheng X, Liu G, Ke W, Zhao L, Lv B, Ma X, Xu N, Xia X, Deng X, Zheng C, Huang K. Building a multipurpose insertional mutant library for forward and reverse genetics in Chlamydomonas. PLANT METHODS 2017; 13:36. [PMID: 28515773 PMCID: PMC5430608 DOI: 10.1186/s13007-017-0183-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/02/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The unicellular green alga, Chlamydomonas reinhardtii, is a classic model for studying flagella and biofuel. However, precise gene editing, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas9) system, is not widely used in this organism. Screening of random insertional mutant libraries by polymerase chain reaction provides an alternate strategy to obtain null mutants of individual gene. But building, screening, and maintaining such a library was time-consuming and expensive. RESULTS By selecting a suitable parental strain, keeping individual mutants using the agar plate, and designing an insertion cassette-specific primer for library screening, we successfully generated and maintained ~150,000 insertional mutants of Chlamydomonas, which was used for both reverse and forward genetics analysis. We obtained 26 individual mutants corresponding to 20 genes and identified 967 motility-defect mutants including 10 mutants with defective accumulation of intraflagellar transport complex at the basal body. We also obtained 929 mutants defective in oil droplet assembly after nitrogen deprivation. Furthermore, a new insertion cassette with splicing donor sequences at both ends was also constructed, which increased the efficiency of gene interruption. CONCLUSION In summary, this library provides a multifunctional platform both for obtaining mutants of interested genes and for screening of mutants with specific phenotype.
Collapse
Affiliation(s)
- Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Wenting Ke
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Lijuan Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaocui Ma
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Nannan Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaoling Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Chunlei Zheng
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
238
|
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell 2017; 28:1652-1666. [PMID: 28428259 PMCID: PMC5469608 DOI: 10.1091/mbc.e17-01-0017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022] Open
Abstract
RABL2 interacts with the intraflagellar transport-B (IFT-B) complex and CEP19 in a mutually exclusive manner. A point mutation of RABL2 found in sperm motility–defective mice abolishes its binding to IFT-B but not to CEP19. A RABL2-defective Chlamydomonas strain exhibits a nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary assembly. Proteins localized to the basal body and the centrosome play crucial roles in ciliary assembly and function. Although RABL2 and CEP19 are conserved in ciliated organisms and have been implicated in ciliary/flagellar functions, their roles are poorly understood. Here we show that RABL2 interacts with CEP19 and is recruited to the mother centriole and basal body in a CEP19-dependent manner and that CEP19 is recruited to the centriole probably via its binding to the centrosomal protein FGFR1OP. Disruption of the RABL2 gene in Chlamydomonas reinhardtii results in the nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary/flagellar assembly. We also show that RABL2 interacts, in its GTP-bound state, with the intraflagellar transport (IFT)-B complex via the IFT74–IFT81 heterodimer and that the interaction is disrupted by a mutation found in male infertile mice (Mot mice) with a sperm flagella motility defect. Intriguingly, RABL2 binds to CEP19 and the IFT74–IFT81 heterodimer in a mutually exclusive manner. Furthermore, exogenous expression of the GDP-locked or Mot-type RABL2 mutant in human cells results in mild defects in ciliary assembly. These results indicate that RABL2 localized to the basal body plays crucial roles in ciliary/flagellar assembly via its interaction with the IFT-B complex.
Collapse
Affiliation(s)
- Yuya Nishijima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Hagiya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomohiro Kubo
- University of Yamanashi Graduate School of Medical Science, Chuo 409-3898, Japan
| | - Ryota Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
239
|
Kong F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:358-371. [PMID: 28142200 DOI: 10.1111/tpj.13498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 05/03/2023]
Abstract
Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA β-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Audrey Beyly-Adriano
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Stéphanie Blangy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
240
|
Shelton DE, Leslie MP, Michod RE. Models of cell division initiation in Chlamydomonas: A challenge to the consensus view. J Theor Biol 2017; 412:186-197. [PMID: 27816674 DOI: 10.1016/j.jtbi.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
We develop and compare two models for division initiation in cells of the unicellular green alga Chlamydomonas reinhardtii, a topic that has remained controversial in spite of years of empirical work. Achieving a better understanding of C. reinhardtii cell cycle regulation is important because this species is used in studies of fundamental eukaryotic cell features and in studies of the evolution of multicellularity. C. reinhardtii proliferates asexually by multiple fission, interspersing rapid rounds of symmetric division with prolonged periods of growth. Our Model 1 reflects major elements of the current consensus view on C. reinhardtii division initiation, with cells first growing to a specific size, then waiting for a particular time prior to division initiation. In Model 2, our proposed alternative, growing cells divide when they have reached a growth-rate-dependent target size. The two models imply a number of different empirical patterns. We highlight these differences alongside published data, which currently fall short of unequivocally distinguishing these differences in predicted cell behavior. Nevertheless, several lines of evidence are suggestive of more Model 2-like behavior than Model 1-like behavior. Our specification of these models adds rigor to issues that have too often been worked out in relation to loose, verbal models and is directly relevant to future development of informative experiments.
Collapse
Affiliation(s)
- Deborah E Shelton
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States.
| | - Martin P Leslie
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, United States; Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
241
|
Pollock SV, Mukherjee B, Bajsa-Hirschel J, Machingura MC, Mukherjee A, Grossman AR, Moroney JV. A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii. PLANT METHODS 2017; 13:22. [PMID: 28392829 PMCID: PMC5376698 DOI: 10.1186/s13007-017-0170-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/22/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Random insertional mutagenesis of Chlamydomonas reinhardtii using drug resistance cassettes has contributed to the generation of tens of thousands of transformants in dozens of labs around the world. In many instances these insertional mutants have helped elucidate the genetic basis of various physiological processes in this model organism. Unfortunately, the insertion sites of many interesting mutants are never defined due to experimental difficulties in establishing the location of the inserted cassette in the Chlamydomonas genome. It is fairly common that several months, or even years of work are conducted with no result. Here we describe a robust method to identify the location of the inserted DNA cassette in the Chlamydomonas genome. RESULTS Insertional mutants were generated using a DNA cassette that confers paromomycin resistance. This protocol identified the cassette insertion site for greater than 80% of the transformants. In the majority of cases the insertion event was found to be simple, without large deletions of flanking genomic DNA. Multiple insertions were observed in less than 10% of recovered transformants. CONCLUSION The method is quick, relatively inexpensive and does not require any special equipment beyond an electroporator. The protocol was tailored to ensure that the sequence of the Chlamydomonas genomic DNA flanking the random insertion is consistently obtained in a high proportion of transformants. A detailed protocol is presented to aid in the experimental design and implementation of mutant screens in Chlamydomonas.
Collapse
Affiliation(s)
- Steve V. Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Bratati Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Joanna Bajsa-Hirschel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Marylou C. Machingura
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ananya Mukherjee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Arthur R. Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 USA
| | - James V. Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
242
|
UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:14864-14869. [PMID: 27930292 DOI: 10.1073/pnas.1607695114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.
Collapse
|
243
|
Breker M, Lieberman K, Tulin F, Cross FR. High-Throughput Robotically Assisted Isolation of Temperature-sensitive Lethal Mutants in Chlamydomonas reinhardtii. J Vis Exp 2016. [PMID: 28060315 PMCID: PMC5226362 DOI: 10.3791/54831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Systematic identification and characterization of genetic perturbations have proven useful to decipher gene function and cellular pathways. However, the conventional approaches of permanent gene deletion cannot be applied to essential genes. We have pioneered a unique collection of ~70 temperature-sensitive (ts) lethal mutants for studying cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii1. These mutations identify essential genes, and the ts alleles can be conditionally inactivated by temperature shift, providing valuable tools to identify and analyze essential functions. Mutant collections are much more valuable if they are close to comprehensive, since scattershot collections can miss important components. However, this requires the efficient collection of a large number of mutants, especially in a wide-target screen. Here, we describe a robotics-based pipeline for generating ts lethal mutants and analyzing their phenotype in Chlamydomonas. This technique can be applied to any microorganism that grows on agar. We have collected over 3000 ts mutants, probably including mutations in most or all cell-essential pathways, including about 200 new candidate cell cycle mutations. Subsequent molecular and cellular characterization of these mutants should provide new insights in plant cell biology; a comprehensive mutant collection is an essential prerequisite to ensure coverage of a broad range of biological pathways. These methods are integrated with downstream genetics and bioinformatics procedures for efficient mapping and identification of the causative mutations that are beyond the scope of this manuscript.
Collapse
Affiliation(s)
- Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University
| | | | - Frej Tulin
- Sainsbury Laboratory, University of Cambridge
| | | |
Collapse
|
244
|
McCluskey K. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines. Biopreserv Biobank 2016; 15:20-30. [PMID: 27869477 PMCID: PMC5327032 DOI: 10.1089/bio.2016.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections.
Collapse
Affiliation(s)
- Kevin McCluskey
- Fungal Genetics Stock Center, Department of Plant Pathology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
245
|
The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int J Mol Sci 2016; 17:ijms17060962. [PMID: 27322258 PMCID: PMC4926494 DOI: 10.3390/ijms17060962] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.
Collapse
|
246
|
Identification and Characterization of a cis-Regulatory Element for Zygotic Gene Expression in Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:1541-8. [PMID: 27172209 PMCID: PMC4889651 DOI: 10.1534/g3.116.029181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upon fertilization Chlamydomonas reinhardtii zygotes undergo a program of differentiation into a diploid zygospore that is accompanied by transcription of hundreds of zygote-specific genes. We identified a distinct sequence motif we term a zygotic response element (ZYRE) that is highly enriched in promoter regions of C reinhardtii early zygotic genes. A luciferase reporter assay was used to show that native ZYRE motifs within the promoter of zygotic gene ZYS3 or intron of zygotic gene DMT4 are necessary for zygotic induction. A synthetic luciferase reporter with a minimal promoter was used to show that ZYRE motifs introduced upstream are sufficient to confer zygotic upregulation, and that ZYRE-controlled zygotic transcription is dependent on the homeodomain transcription factor GSP1. We predict that ZYRE motifs will correspond to binding sites for the homeodomain proteins GSP1-GSM1 that heterodimerize and activate zygotic gene expression in early zygotes.
Collapse
|
247
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
248
|
Goold HD, Nguyen HM, Kong F, Beyly-Adriano A, Légeret B, Billon E, Cuiné S, Beisson F, Peltier G, Li-Beisson Y. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii. Sci Rep 2016; 6:25209. [PMID: 27141848 PMCID: PMC4855234 DOI: 10.1038/srep25209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023] Open
Abstract
Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France.,Faculty of Agriculture and the Environment, University of Sydney, Australia
| | - Hoa Mai Nguyen
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fantao Kong
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Audrey Beyly-Adriano
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Bertrand Légeret
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Emmanuelle Billon
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Stéphan Cuiné
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fred Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Gilles Peltier
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Yonghua Li-Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| |
Collapse
|
249
|
Abstract
Jonikas’ career jumps have advanced Chlamydomonas systems biology.
Collapse
|
250
|
Guihéneuf F, Khan A, Tran LSP. Genetic Engineering: A Promising Tool to Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae. FRONTIERS IN PLANT SCIENCE 2016; 7:400. [PMID: 27066043 PMCID: PMC4815356 DOI: 10.3389/fpls.2016.00400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 05/03/2023]
Abstract
As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60-65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.
Collapse
Affiliation(s)
- Freddy Guihéneuf
- Botany and Plant Science, School of Natural Sciences, Ryan Institute, National University of Ireland GalwayGalway, Ireland
| | - Asif Khan
- Research Group Germline Biology, Centre for Organismal Studies (COS), Heidelberg UniversityHeidelberg, Germany
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceTsurumi, Japan
| |
Collapse
|