201
|
Cambiagno DA, Torres JR, Alvarez ME. Convergent Epigenetic Mechanisms Avoid Constitutive Expression of Immune Receptor Gene Subsets. FRONTIERS IN PLANT SCIENCE 2021; 12:703667. [PMID: 34557212 PMCID: PMC8452986 DOI: 10.3389/fpls.2021.703667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 05/14/2023]
Abstract
The gene pool encoding PRR and NLR immune receptors determines the ability of a plant to resist microbial infections. Basal expression of these genes is prevented by diverse mechanisms since their hyperactivity can be harmful. To approach the study of epigenetic control of PRR/NLR genes we here analyzed their expression in mutants carrying abnormal repressive 5-methyl cytosine (5-mC) and histone 3 lysine 9 dimethylation (H3K9me2) marks, due to lack of MET1, CMT3, MOM1, SUVH4/5/6, or DDM1. At optimal growth conditions, none of the mutants showed basal expression of the defense gene marker PR1, but all of them had greater resistance to Pseudomonas syringae pv. tomato than wild type plants, suggesting they are primed to stimulate immune cascades. Consistently, analysis of available transcriptomes indicated that all mutants showed activation of particular PRR/NLR genes under some growth conditions. Under low defense activation, 37 PRR/NLR genes were expressed in these plants, but 29 of them were exclusively activated in specific mutants, indicating that MET1, CMT3, MOM1, SUVH4/5/6, and DDM1 mediate basal repression of different subsets of genes. Some epigenetic marks present at promoters, but not gene bodies, could explain the activation of these genes in the mutants. As expected, suvh4/5/6 and ddm1 activated genes carrying 5-mC and H3K9me2 marks in wild type plants. Surprisingly, all mutants expressed genes harboring promoter H2A.Z/H3K27me3 marks likely affected by the chromatin remodeler PIE1 and the histone demethylase REF6, respectively. Therefore, MET1, CMT3, MOM1, SUVH4/5/6, and DDM1, together with REF6, seemingly contribute to the establishment of chromatin states that prevent constitutive PRR/NLR gene activation, but facilitate their priming by modulating epigenetic marks at their promoters.
Collapse
Affiliation(s)
- Damián Alejandro Cambiagno
- Unidad de Estudios Agropecuarios (UDEA), INTA-CONICET, Córdoba, Argentina
- *Correspondence: Damián Alejandro Cambiagno,
| | - José Roberto Torres
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Elena Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- María Elena Alvarez,
| |
Collapse
|
202
|
Campbell C, Marchildon F, Michaels AJ, Takemoto N, van der Veeken J, Schizas M, Pritykin Y, Leslie CS, Intlekofer AM, Cohen P, Rudensky AY. FXR mediates T cell-intrinsic responses to reduced feeding during infection. Proc Natl Acad Sci U S A 2020; 117:33446-33454. [PMID: 33318189 PMCID: PMC7776647 DOI: 10.1073/pnas.2020619117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reduced nutrient intake is a widely conserved manifestation of sickness behavior with poorly characterized effects on adaptive immune responses. During infectious challenges, naive T cells encountering their cognate antigen become activated and differentiate into highly proliferative effector T cells. Despite their evident metabolic shift upon activation, it remains unclear how effector T cells respond to changes in nutrient availability in vivo. Here, we show that spontaneous or imposed feeding reduction during infection decreases the numbers of splenic lymphocytes. Effector T cells showed cell-intrinsic responses dependent on the nuclear receptor Farnesoid X Receptor (FXR). Deletion of FXR in T cells prevented starvation-induced loss of lymphocytes and increased effector T cell fitness in nutrient-limiting conditions, but imparted greater weight loss to the host. FXR deficiency increased the contribution of glutamine and fatty acids toward respiration and enhanced cell survival under low-glucose conditions. Provision of glucose during anorexia of infection rescued effector T cells, suggesting that this sugar is a limiting nutrient for activated lymphocytes and that alternative fuel usage may affect cell survival in starved animals. Altogether, we identified a mechanism by which the host scales immune responses according to food intake, featuring FXR as a T cell-intrinsic sensor.
Collapse
Affiliation(s)
- Clarissa Campbell
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Francois Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065
| | - Anthony J Michaels
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
| | - Naofumi Takemoto
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Joris van der Veeken
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michail Schizas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065
| | - Alexander Y Rudensky
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
- Howard Hughes Medical Institute, Sloan Kettering Institute, New York, NY 10065
- Immunology Program, Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
203
|
Pontiggia D, Benedetti M, Costantini S, De Lorenzo G, Cervone F. Dampening the DAMPs: How Plants Maintain the Homeostasis of Cell Wall Molecular Patterns and Avoid Hyper-Immunity. FRONTIERS IN PLANT SCIENCE 2020; 11:613259. [PMID: 33391327 PMCID: PMC7773757 DOI: 10.3389/fpls.2020.613259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Several oligosaccharide fragments derived from plant cell walls activate plant immunity and behave as typical damage-associated molecular patterns (DAMPs). Some of them also behave as negative regulators of growth and development, and due to their antithetic effect on immunity and growth, their concentrations, activity, time of formation, and localization is critical for the so-called "growth-defense trade-off." Moreover, like in animals, over accumulation of DAMPs in plants provokes deleterious physiological effects and may cause hyper-immunity if the cellular mechanisms controlling their homeostasis fail. Recently, a mechanism has been discovered that controls the activity of two well-known plant DAMPs, oligogalacturonides (OGs), released upon hydrolysis of homogalacturonan (HG), and cellodextrins (CDs), products of cellulose breakdown. The potential homeostatic mechanism involves specific oxidases belonging to the family of berberine bridge enzyme-like (BBE-like) proteins. Oxidation of OGs and CDs not only inactivates their DAMP activity, but also makes them a significantly less desirable food source for microbial pathogens. The evidence that oxidation and inactivation of OGs and CDs may be a general strategy of plants for controlling the homeostasis of DAMPs is discussed. The possibility exists of discovering additional oxidative and/or inactivating enzymes targeting other DAMP molecules both in the plant and in animal kingdoms.
Collapse
Affiliation(s)
- Daniela Pontiggia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica e Scienze della Vita e dell’Ambiente, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Sara Costantini
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
204
|
Xu SY, Weng J. Climate change shapes the future evolution of plant metabolism. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10022. [PMID: 36619247 PMCID: PMC9744464 DOI: 10.1002/ggn2.10022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
Planet Earth has experienced many dramatic atmospheric and climatic changes throughout its 4.5-billion-year history that have profoundly impacted the evolution of life as we know it. Photosynthetic organisms, and specifically plants, have played a paramount role in shaping the Earth's atmosphere through oxygen production and carbon sequestration. In turn, the diversity of plants has been shaped by historical atmospheric and climatic changes: plants rose to this challenge by evolving new developmental and metabolic traits. These adaptive traits help plants to thrive in diverse growth conditions, while benefiting humanity through the production of food, raw materials, and medicines. However, the current rapid rate of climate change caused by human activities presents unprecedented new challenges to the future of plants. Here, we discuss the potential effects of modern climate change on plants, with specific attention to plant specialized metabolism. We explore potential avenues of future scientific investigations, powered by cutting-edge methods such as synthetic biology and genome engineering, to better understand and mitigate the consequences of rapid climate change on plant fitness and plant usage by humans.
Collapse
Affiliation(s)
- Sophia Y. Xu
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
205
|
Florencio-Ortiz V, Novák O, Casas JL. Phytohormone responses in pepper (Capsicum annuum L.) leaves under a high density of aphid infestation. PHYSIOLOGIA PLANTARUM 2020; 170:519-527. [PMID: 32794184 DOI: 10.1111/ppl.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The time course response of selected phytohormones has been evaluated in sweet pepper plants (Capsicum annuum L.) submitted to a high density (200 aphids/plant) of aphid (Myzus persicae Sulzer) infestation. Abscisic acid (ABA), salicylic acid (SA), indole-3-acetic acid (IAA), and jasmonates (JAs), including jasmonic acid (JA), jasmonoyl-l-isoleucine (JA-Ile), and cis-OPDA have been simultaneously identified and quantitated by UHPLC-MS/MS in pepper leaf tissue harvested at 3, 8 hours post-infestation (hpi), 1, 2, 4 and 7 days post-infestation (dpi). Infested plants showed a reduction in stem length at 7 dpi and in the number of leaves and leaf width from 4 dpi onwards. JA and JA-Ile significantly increased very early (from 3 hpi) while SA only accumulated at 7 dpi. Despite the high density of infestation, the aphid-induced accumulation of JAs was much lower than the burst typically induced by chewing herbivores. On the other side, ABA peaked in aphid-infested plants at 2 and 4 dpi, while IAA content did not change significantly at any time point. Growth inhibition may be partially explained by the high levels of JAs found in aphid-infested plants. The possibility that the obtained results support the hypothesis of the aphid manipulation of plant metabolism is discussed.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, CZ-78371, Czech Republic
| | - José L Casas
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| |
Collapse
|
206
|
HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proc Natl Acad Sci U S A 2020; 117:30805-30815. [PMID: 33199617 PMCID: PMC7720166 DOI: 10.1073/pnas.2016049117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immune responses protect organisms against biotic challenges but can also produce deleterious effects, such as inflammation and necrosis. This growth-defense trade-off necessitates fine control of immune responses, including the activation of defense gene expression. The transcriptional coactivator NPR1 is a key regulatory hub of immune activation in plant cells. Surprisingly, full activation of NPR1-activated defense genes requires proteasome-mediated degradation of NPR1 induced by a CUL3-based E3 ubiquitin ligase complex. Our work demonstrates that HOS15 is the specificity determinant of a CUL1-based E3 ubiquitin ligase complex that limits defense gene expression by targeting NPR1 for proteasome-mediated degradation. Thus, distinct ubiquitin-based degradation pathways coordinately modulate the timing and amplitude of transcriptional outputs during plant defense. Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.
Collapse
|
207
|
Kuźniak E, Kopczewski T. The Chloroplast Reactive Oxygen Species-Redox System in Plant Immunity and Disease. FRONTIERS IN PLANT SCIENCE 2020; 11:572686. [PMID: 33281842 PMCID: PMC7688986 DOI: 10.3389/fpls.2020.572686] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 05/29/2023]
Abstract
Pathogen infections limit plant growth and productivity, thus contributing to crop losses. As the site of photosynthesis, the chloroplast is vital for plant productivity. This organelle, communicating with other cellular compartments challenged by infection (e.g., apoplast, mitochondria, and peroxisomes), is also a key battlefield in the plant-pathogen interaction. Here, we focus on the relation between reactive oxygen species (ROS)-redox signaling, photosynthesis which is governed by redox control, and biotic stress response. We also discuss the pathogen strategies to weaken the chloroplast-mediated defense responses and to promote pathogenesis. As in the next decades crop yield increase may depend on the improvement of photosynthetic efficiency, a comprehensive understanding of the integration between photosynthesis and plant immunity is required to meet the future food demand.
Collapse
|
208
|
Ghareeb H, El-Sayed M, Pound M, Tetyuk O, Hanika K, Herrfurth C, Feussner I, Lipka V. Quantitative Hormone Signaling Output Analyses of Arabidopsis thaliana Interactions With Virulent and Avirulent Hyaloperonospora arabidopsidis Isolates at Single-Cell Resolution. FRONTIERS IN PLANT SCIENCE 2020; 11:603693. [PMID: 33240308 PMCID: PMC7677359 DOI: 10.3389/fpls.2020.603693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The phytohormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are central regulators of biotic and abiotic stress responses in Arabidopsis thaliana. Here, we generated modular fluorescent protein-based reporter lines termed COLORFUL-PR1pro, -VSP2pro, and -PDF1.2apro. These feature hormone-controlled nucleus-targeted transcriptional output sensors and the simultaneous constitutive expression of spectrally separated nuclear reference and plasma membrane-localized reporters. This set-up allowed the study of cell-type specific hormone activities, cellular viability and microbial invasion. Moreover, we developed a software-supported high-throughput confocal microscopy imaging protocol for output quantification to resolve the spatio-temporal dynamics of respective hormonal signaling activities at single-cell resolution. Proof-of-principle analyses in A. thaliana leaves revealed distinguished hormone sensitivities in mesophyll, epidermal pavement and stomatal guard cells, suggesting cell type-specific regulatory protein activities. In plant-microbe interaction studies, we found that virulent and avirulent Hyaloperonospora arabidopsidis (Hpa) isolates exhibit different invasion dynamics and induce spatio-temporally distinct hormonal activity signatures. On the cellular level, these hormone-controlled reporter signatures demarcate the nascent sites of Hpa entry and progression, and highlight initiation, transduction and local containment of immune signals.
Collapse
Affiliation(s)
- Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Michael Pound
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Olena Tetyuk
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Katharina Hanika
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
209
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
210
|
Gilardi G, Chitarra W, Moine A, Mezzalama M, Boccacci P, Pugliese M, Gullino ML, Gambino G. Biological and molecular interplay between two viruses and powdery and downy mildews in two grapevine cultivars. HORTICULTURE RESEARCH 2020; 7:188. [PMID: 33328482 PMCID: PMC7603506 DOI: 10.1038/s41438-020-00413-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 05/04/2023]
Abstract
Grapevine may be affected simultaneously by several pathogens whose complex interplay is largely unknown. We studied the effects of infection by two grapevine viruses on powdery mildew and downy mildew development and the molecular modifications induced in grapevines by their multiple interactions. Grapevine fanleaf virus (GFLV) and grapevine rupestris stem pitting-associated virus (GRSPaV) were transmitted by in vitro-grafting to Vitis vinifera cv Nebbiolo and Chardonnay virus-free plantlets regenerated by somatic embryogenesis. Grapevines were then artificially inoculated in the greenhouse with either Plasmopara viticola or Erysiphe necator spores. GFLV-infected plants showed a reduction in severity of the diseases caused by powdery and downy mildews in comparison to virus-free plants. GFLV induced the overexpression of stilbene synthase genes, pathogenesis-related proteins, and influenced the genes involved in carbohydrate metabolism in grapevine. These transcriptional changes suggest improved innate plant immunity, which makes the GFLV-infected grapevines less susceptible to other biotic attacks. This, however, cannot be extrapolated to GRSPaV as it was unable to promote protection against the fungal/oomycete pathogens. In these multiple interactions, the grapevine genotype seemed to have a crucial role: in 'Nebbiolo', the virus-induced molecular changes were different from those observed in 'Chardonnay', suggesting that different metabolic pathways may be involved in protection against fungal/oomycete pathogens. These results indicate that complex interactions do exist between grapevine and its different pathogens and represent the first study on a topic that still is largely unexplored.
Collapse
Affiliation(s)
- Giovanna Gilardi
- Centre of Competence for the Innovation in the Agro-Environmental sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015, Conegliano, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Monica Mezzalama
- Centre of Competence for the Innovation in the Agro-Environmental sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy
| | - Massimo Pugliese
- Centre of Competence for the Innovation in the Agro-Environmental sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-Environmental sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
211
|
Nasim Z, Fahim M, Gawarecka K, Susila H, Jin S, Youn G, Ahn JH. Role of AT1G72910, AT1G72940, and ADR1-LIKE 2 in Plant Immunity under Nonsense-Mediated mRNA Decay-Compromised Conditions at Low Temperatures. Int J Mol Sci 2020; 21:E7986. [PMID: 33121126 PMCID: PMC7663611 DOI: 10.3390/ijms21217986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar 25120, Pakistan;
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| |
Collapse
|
212
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
213
|
Thordal-Christensen H. A holistic view on plant effector-triggered immunity presented as an iceberg model. Cell Mol Life Sci 2020; 77:3963-3976. [PMID: 32277261 PMCID: PMC7532969 DOI: 10.1007/s00018-020-03515-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The immune system of plants is highly complex. It involves pattern-triggered immunity (PTI), which is signaled and manifested through branched multi-step pathways. To counteract this, pathogen effectors target and inhibit individual PTI steps. This in turn can cause specific plant cytosolic nucleotide-binding leucine-rich repeat (NLR) receptors to activate effector-triggered immunity (ETI). Plants and pathogens have many genes encoding NLRs and effectors, respectively. Yet, only a few segregate genetically as resistance (R) genes and avirulence (Avr) effector genes in wild-type populations. In an attempt to explain this contradiction, a model is proposed where far most of the NLRs, the effectors and the effector targets keep one another in a silent state. In this so-called "iceberg model", a few NLR-effector combinations are genetically visible above the surface, while the vast majority is hidden below. Besides, addressing the existence of many NLRs and effectors, the model also helps to explain why individual downregulation of many effectors causes reduced virulence and why many lesion-mimic mutants are found. Finally, the iceberg model accommodates genuine plant susceptibility factors as potential effector targets.
Collapse
Affiliation(s)
- Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
214
|
Meng F, Yang C, Cao J, Chen H, Pang J, Zhao Q, Wang Z, Qing Fu Z, Liu J. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1552-1573. [PMID: 32129570 DOI: 10.1111/jipb.12922] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Crosstalk between plant hormone signaling pathways is vital for controlling the immune response during pathogen invasion. Salicylic acid (SA) and jasmonic acid (JA) often play important but antagonistic roles in the immune responses of higher plants. Here, we identify a basic helix-loop-helix transcription activator, OsbHLH6, which confers disease resistance in rice by regulating SA and JA signaling via nucleo-cytosolic trafficking in rice (Oryza sativa). OsbHLH6 expression was upregulated during Magnaporthe oryzae infection. Transgenic rice plants overexpressing OsbHLH6 display increased JA responsive gene expression and enhanced disease susceptibility to the pathogen. Nucleus-localized OsbHLH6 activates JA signaling and suppresses SA signaling; however, the SA regulator OsNPR1 (Nonexpressor of PR genes 1) sequesters OsbHLH6 in the cytosol to alleviate its effect. Our data suggest that OsbHLH6 controls disease resistance by dynamically regulating SA and JA signaling.
Collapse
Affiliation(s)
- Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jidong Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Chen
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiqi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Inner Mongolia, Hohhot, 010021, China
| | - Zongyi Wang
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, 102206, China
| | - Zheng Qing Fu
- Department of Biological Science, University of South Carolina, Columbia, SC, 29028, USA
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
215
|
Gupta R, Pizarro L, Leibman‐Markus M, Marash I, Bar M. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. MOLECULAR PLANT PATHOLOGY 2020; 21:1287-1306. [PMID: 32841497 PMCID: PMC7488468 DOI: 10.1111/mpp.12978] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 05/26/2023]
Abstract
Plant immunity is often defined by the immunity hormones: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These hormones are well known for differentially regulating defence responses against pathogens. In recent years, the involvement of other plant growth hormones such as auxin, gibberellic acid, abscisic acid, and cytokinins (CKs) in biotic stresses has been recognized. Previous reports have indicated that endogenous and exogenous CK treatment can result in pathogen resistance. We show here that CK induces systemic immunity in tomato (Solanum lycopersicum), modulating cellular trafficking of the pattern recognition receptor (PRR) LeEIX2, which mediates immune responses to Xyn11 family xylanases, and promoting resistance to Botrytis cinerea and Oidium neolycopersici in an SA- and ET-dependent mechanism. CK perception within the host underlies its protective effect. Our results support the notion that CK promotes pathogen resistance by inducing immunity in the host.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Lorena Pizarro
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
- Present address:
Institute of Agri‐food, Animal and Environmental SciencesUniversidad de O'HigginsChile
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| | - Iftah Marash
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
- School of Plant Sciences and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchInstitute of Plant ProtectionAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
216
|
Schenke D, Cai D. Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience 2020; 23:101478. [PMID: 32891884 PMCID: PMC7479627 DOI: 10.1016/j.isci.2020.101478] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistance. We describe here strategies to identify new targets for resistance breeding with focus on interruption of the compatible plant-pathogen interaction by CRISPR/Cas-mediated genome editing. Basically, crop genome editing can be applied in several ways to achieve this goal. The most common approach focuses on the "simple" knockout by non-homologous end joining repair of plant susceptibility factors required for efficient host colonization. However, genome re-writing via homology-directed repair or base editing can also prevent host manipulation by changing the targets of pathogen-derived effectors or molecules beyond recognition, which also decreases plant susceptibility. We conclude that genome editing by CRISPR/Cas will become increasingly indispensable to generate in relatively short time beneficial resistance traits in crops to meet upcoming challenges.
Collapse
Affiliation(s)
- Dirk Schenke
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| | - Daguang Cai
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| |
Collapse
|
217
|
de Leone MJ, Hernando CE, Mora-García S, Yanovsky MJ. It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. Transcription 2020; 11:100-116. [PMID: 32936724 DOI: 10.1080/21541264.2020.1820300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Santiago Mora-García
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| |
Collapse
|
218
|
Lai Y, Lu XM, Daron J, Pan S, Wang J, Wang W, Tsuchiya T, Holub E, McDowell JM, Slotkin RK, Le Roch KG, Eulgem T. The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genet 2020; 16:e1008993. [PMID: 32925902 PMCID: PMC7529245 DOI: 10.1371/journal.pgen.1008993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Plant NLR-type receptors serve as sensitive triggers of host immunity. Their expression has to be well-balanced, due to their interference with various cellular processes and dose-dependency of their defense-inducing activity. A genetic “arms race” with fast-evolving pathogenic microbes requires plants to constantly innovate their NLR repertoires. We previously showed that insertion of the COPIA-R7 retrotransposon into RPP7 co-opted the epigenetic transposon silencing signal H3K9me2 to a new function promoting expression of this Arabidopsis thaliana NLR gene. Recruitment of the histone binding protein EDM2 to COPIA-R7-associated H3K9me2 is required for optimal expression of RPP7. By profiling of genome-wide effects of EDM2, we now uncovered additional examples illustrating effects of transposons on NLR gene expression, strongly suggesting that these mobile elements can play critical roles in the rapid evolution of plant NLR genes by providing the “raw material” for gene expression mechanisms. We further found EDM2 to have a global role in NLR expression control. Besides serving as a positive regulator of RPP7 and a small number of other NLR genes, EDM2 acts as a suppressor of a multitude of additional NLR genes. We speculate that the dual functionality of EDM2 in NLR expression control arose from the need to compensate for fitness penalties caused by high expression of some NLR genes by suppression of others. Moreover, we are providing new insights into functional relationships of EDM2 with its interaction partner, the RNA binding protein EDM3/AIPP1, and its target gene IBM1, encoding an H3K9-demethylase. We previously found the Arabidopsis thaliana PHD-finger protein EDM2 to serve as a chromatin-associated factor controlling expression of the NLR-type immune receptor gene RPP7. EDM2 binds to the transposon-silencing signal H3K9me2 and affects levels of this epigenetic mark at various loci. By genome-wide profiling of transcript- and H3K9me2-levels we now found EDM2 to have a broader role in controlling NLR gene expression. In order to mitigate fitness costs caused by its promoting effects on RPP7 expression and that of several other NLR genes, EDM2 seems to suppress expression of many additional members of this gene family. This observation is in line with multiple reports demonstrating the need for balanced expression of NLRs, which can substantially reduce overall plant fitness, but need to be present at certain minimal levels to confer sufficient immune protection. Our previous results demonstrated that the influence of EDM2 on RPP7 expression was co-opted to this immune receptor gene by the insertion of an EDM2-controlled transposon. Here, we are providing additional examples for transposon-associated effects on NLR gene expression, suggesting that these mobile elements play an important role for NLR genes by equipping members of this rapidly evolving gene family with regulatory mechanisms needed for balanced expression.
Collapse
Affiliation(s)
- Yan Lai
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Xueqing Maggie Lu
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
| | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Songqin Pan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Jianqiang Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
| | - Wei Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Eric Holub
- School of Life Sciences, University of Warwick, Wellesbourne campus, United Kingdom
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - R. Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Karine G. Le Roch
- Center for Infectious Disease and Vector Research, Institute of Integrative Genome Biology, Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plan Sciences, University of California at Riverside, Riverside, CA, United States of America
- * E-mail: (KGLR); (TE)
| |
Collapse
|
219
|
Ye CY, Wu D, Mao L, Jia L, Qiu J, Lao S, Chen M, Jiang B, Tang W, Peng Q, Pan L, Wang L, Feng X, Guo L, Zhang C, Kellogg EA, Olsen KM, Bai L, Fan L. The Genomes of the Allohexaploid Echinochloa crus-galli and Its Progenitors Provide Insights into Polyploidization-Driven Adaptation. MOLECULAR PLANT 2020; 13:1298-1310. [PMID: 32622997 DOI: 10.1016/j.molp.2020.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 05/20/2023]
Abstract
The hexaploid species Echinochloa crus-galli is one of the most detrimental weeds in crop fields, especially in rice paddies. Its evolutionary history is similar to that of bread wheat, arising through polyploidization after hybridization between a tetraploid and a diploid species. In this study, we generated and analyzed high-quality genome sequences of diploid (E. haploclada), tetraploid (E. oryzicola), and hexaploid (E. crus-galli) Echinochloa species. Gene family analysis showed a significant loss of disease-resistance genes such as those encoding NB-ARC domain-containing proteins during Echinochloa polyploidization, contrary to their significant expansionduring wheat polyploidization, suggesting that natural selection might favor reduced investment in resistance in this weed to maximize its growth and reproduction. In contrast to the asymmetric patterns of genome evolution observed in wheat and other crops, no significant differences in selection pressure were detected between the subgenomes in E. oryzicola and E. crus-galli. In addition, distinctive differences in subgenome transcriptome dynamics during hexaploidization were observed between E. crus-galli and bread wheat. Collectively, our study documents genomic mechanisms underlying the adaptation of a major agricultural weed during polyploidization. The genomic and transcriptomic resources of three Echinochloa species and new insights into the polyploidization-driven adaptive evolution would be useful for future breeding cereal crops.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lingfeng Mao
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Lei Jia
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Sangting Lao
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Meihong Chen
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Bowen Jiang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiong Peng
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Lang Pan
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chulong Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China.
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
220
|
Chen S, Zhang Y, Zhao Y, Xu W, Li Y, Xie J, Zhang D. Key Genes and Genetic Interactions of Plant-Pathogen Functional Modules in Poplar Infected by Marssonina brunnea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1080-1090. [PMID: 32392451 DOI: 10.1094/mpmi-11-19-0325-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Marssonina brunnea, the causative pathogen of Marssonina leaf spot of poplars (MLSP), devastates poplar plantations by forming black spots on leaves and defoliating trees. Although MLSP has been studied for over 30 years, the key genes that function during M. brunnea infection and their effects on plant growth are poorly understood. Here, we used multigene association studies to investigate the effects of key genes in the plant-pathogen interaction pathway, as revealed by transcriptome analysis, on photosynthesis and growth in a natural population of 435 Populus tomentosa individuals. By analyzing transcriptomic changes during three stages of infection, we detected 628 transcription factor genes among the 7,611 differentially expressed genes that might be associated with basal defense responses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that transcriptomic changes across different stages of infection lead to the reprogramming of metabolic processes possibly related to defense activation. We identified 29,399 common single-nucleotide polymorphisms (SNPs) within 221 full-length genes in plant-pathogen interaction pathways that were significantly associated with photosynthetic and growth traits. We also detected 4,460 significant epistatic pairs associated with stomatal conductance, tree diameter, and tree height. Epistasis analysis uncovered significant interactions between 2,561 SNP-SNP pairs from different functional modules in the plant-pathogen interaction pathway, revealing possible genetic interactions. This analysis revealed many key genes that function during M. brunnea infection and their potential roles in mediating photosynthesis and plant growth, shedding light on genetic interactions between functional modules in the plant-pathogen interaction pathway.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yanfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deiqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
221
|
Foliar application of specific yeast derivative enhances anthocyanins accumulation and gene expression in Sangiovese cv (Vitis vinifera L.). Sci Rep 2020; 10:11627. [PMID: 32669579 PMCID: PMC7363895 DOI: 10.1038/s41598-020-68479-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 11/08/2022] Open
Abstract
The effect of elicitors on secondary metabolism in vines is receiving much interest, since it has been shown that they are able to increase the accumulation of phenolics, especially anthocyanins. This research aims to investigate the biochemical and molecular effects of the application of a commercial yeast derivative (Saccharomyces cerevisiae) on the accumulation of anthocyanins in potted Sangiovese vines. Experiments were performed on three consecutive years and the yeast derivative was applied at the beginning and at the end of veraison. Technological ripening, accumulation of anthocyanins and expression of the main genes involved in their biosynthesis were assessed. Technological ripening proceeded in a similar way in both treated and untreated berries in the three years. A significant increase in the concentration of anthocyanins was instead detected, following the induction by the yeast derivative of the expression of the genes involved in their biosynthesis. The research highlights the possibility of applying a specific inactivated yeast to increase the anthocyanin concentration even under the current climate change conditions, in Sangiovese, a cultivar extremely sensitive to high temperatures.
Collapse
|
222
|
Tan C, Peiffer ML, Ali JG, Luthe DS, Felton GW. Top‐down effects from parasitoids may mediate plant defence and plant fitness. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ching‐Wen Tan
- Department of Entomology Penn State University University Park PA USA
| | | | - Jared G. Ali
- Department of Entomology Penn State University University Park PA USA
| | - Dawn S. Luthe
- Department of Plant Science Penn State University University Park PA USA
| | - Gary W. Felton
- Department of Entomology Penn State University University Park PA USA
| |
Collapse
|
223
|
Wang Y, Wang Y, Wang Y. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants. PLANT COMMUNICATIONS 2020; 1:100085. [PMID: 33367249 PMCID: PMC7748006 DOI: 10.1016/j.xplc.2020.100085] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 05/23/2023]
Abstract
Plants associate with diverse microbes that exert beneficial, neutral, or pathogenic effects inside the host. During the initial stages of invasion, the plant apoplast constitutes a hospitable environment for invading microbes, providing both water and nutrients. In response to microbial infection, a number of secreted proteins from host cells accumulate in the apoplastic space, which is related to microbial association or colonization processes. However, the molecular mechanisms underlying plant modulation of the apoplast environment and how plant-secreted proteases are involved in pathogen resistance are still poorly understood. Recently, several studies have reported the roles of apoplastic proteases in plant resistance against bacteria, fungi, and oomycetes. On the other hand, microbe-secreted proteins directly and/or indirectly inhibit host-derived apoplastic proteases to promote infection. These findings illustrate the importance of apoplastic proteases in plant-microbe interactions. Therefore, understanding the protease-mediated apoplastic battle between hosts and pathogens is of fundamental importance for understanding plant-pathogen interactions. Here, we provide an overview of plant-microbe interactions in the apoplastic space. We define the apoplast, summarize the physical and chemical properties of these structures, and discuss the roles of plant apoplastic proteases and pathogen protease inhibitors in host-microbe interactions. Challenges and future perspectives for research into protease-mediated apoplastic interactions are discussed, which may facilitate the engineering of resistant crops.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
224
|
Islam MT, Gan HM, Ziemann M, Hussain HI, Arioli T, Cahill D. Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2020; 11:852. [PMID: 32765538 PMCID: PMC7381280 DOI: 10.3389/fpls.2020.00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species Ascophyllum nodosum or Durvillaea potatorum to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from A. nodosum and D. potatorum to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of Arabidopsis thaliana following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen Phytophthora cinnamomi. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (PR1, PR5, and NPR1) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed P. cinnamomi growth within the roots of inoculated A. thaliana by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.
Collapse
Affiliation(s)
- Md Tohidul Islam
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | | | - Tony Arioli
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Seasol International R&D Department, Bayswater, VIC, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| |
Collapse
|
225
|
Lee KP, Liu K, Kim EY, Medina-Puche L, Dong H, Duan J, Li M, Dogra V, Li Y, Lv R, Li Z, Lozano-Duran R, Kim C. PLANT NATRIURETIC PEPTIDE A and Its Putative Receptor PNP-R2 Antagonize Salicylic Acid-Mediated Signaling and Cell Death. THE PLANT CELL 2020; 32:2237-2250. [PMID: 32409317 PMCID: PMC7346577 DOI: 10.1105/tpc.20.00018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
The plant stress hormone salicylic acid (SA) participates in local and systemic acquired resistance, which eventually leads to whole-plant resistance to bacterial pathogens. However, if SA-mediated signaling is not appropriately controlled, plants incur defense-associated fitness costs such as growth inhibition and cell death. Despite its importance, to date only a few components counteracting the SA-primed stress responses have been identified in Arabidopsis (Arabidopsis thaliana). These include other plant hormones such as jasmonic acid and abscisic acid, and proteins such as LESION SIMULATING DISEASE1, a transcription coregulator. Here, we describe PLANT NATRIURETIC PEPTIDE A (PNP-A), a functional analog to vertebrate atrial natriuretic peptides, that appears to antagonize the SA-mediated plant stress responses. While loss of PNP-A potentiates SA-mediated signaling, exogenous application of synthetic PNP-A or overexpression of PNP-A significantly compromises the SA-primed immune responses. Moreover, we identify a plasma membrane-localized receptor-like protein, PNP-R2, that interacts with PNP-A and is required to initiate the PNP-A-mediated intracellular signaling. In summary, our work identifies a peptide and its putative cognate receptor as counteracting both SA-mediated signaling and SA-primed cell death in Arabidopsis.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaiwei Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haihong Dong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingrui Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqing Lv
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
226
|
Nanofibrillation Is an Effective Method to Produce Chitin Derivatives for Induction of Plant Responses in Soybean. PLANTS 2020; 9:plants9070810. [PMID: 32605205 PMCID: PMC7411678 DOI: 10.3390/plants9070810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023]
Abstract
Chitin, an N-acetylglucosamine polymer, is well-known to have unique biological functions, such as growth promotion and disease resistance induction in plants. Chitin has been expectedly used for improving crop yield using its functions; however, chitin derivatives, such as chitin oligosaccharide (CO) and chitosan, are widely used instead since chitin is difficult to handle because of its insolubility. Chitin nanofiber (CNF), produced from chitin through nanofibrillation, retains its polymeric structure and can be dispersed uniformly even in water. Here, the effects of CO and CNF on plant responses were directly compared in soybeans (Glycine max) to define the most effective method to produce chitin derivatives for plant response induction. The growth promotion of aerial parts was observed only in CNF-treated plants. The transcriptome analysis showed that the number of differentially expressed genes (DEGs) in CNF-treated soybeans was higher than in CO-treated soybeans. Notably, the expression patterns of DEGs were mostly similar but were strongly induced by CNF treatment as compared with the CO group. These results reveal that CNF can induce stronger plant response to chitin than CO in soybeans, suggesting nanofibrillation, rather than oligomerization, as a more effective method to produce chitin derivatives for plant response induction.
Collapse
|
227
|
Zhang L, Gleason C. Enhancing potato resistance against root-knot nematodes using a plant-defence elicitor delivered by bacteria. NATURE PLANTS 2020; 6:625-629. [PMID: 32514146 DOI: 10.1038/s41477-020-0689-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
The root-knot nematode Meloidogyne chitwoodi is a pest that affects potato production in the Pacific Northwest of the United States. Here, to develop new strategies against M. chitwoodi infection of potato, we engineered Bacillus subtilis to secrete the plant-defence elicitor peptide StPep1. Pre-treatment of potato roots with the bacteria secreting StPep1 substantially reduced root galling, indicating that a bacterial secretion of a plant elicitor is an effective strategy for plant protection.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
228
|
Major IT, Guo Q, Zhai J, Kapali G, Kramer DM, Howe GA. A Phytochrome B-Independent Pathway Restricts Growth at High Levels of Jasmonate Defense. PLANT PHYSIOLOGY 2020; 183:733-749. [PMID: 32245790 PMCID: PMC7271779 DOI: 10.1104/pp.19.01335] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
The plant hormone jasmonate (JA) promotes resistance to biotic stress by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which relieves repression on MYC transcription factors that execute defense programs. JA-triggered depletion of JAZ proteins in Arabidopsis (Arabidopsis thaliana) is also associated with reduced growth and seed production, but the mechanisms underlying these pleiotropic growth effects remain unclear. Here, we investigated this question using an Arabidopsis JAZ-deficient mutant (jazD; jaz1-jaz7, jaz9, jaz10, and jaz 13) that exhibits high levels of defense and strong growth inhibition. Genetic suppressor screens for mutations that uncouple growth-defense tradeoffs in the jazD mutant identified nine independent causal mutations in the red-light receptor phytochrome B (phyB). Unlike the ability of the phyB mutations to completely uncouple the mild growth-defense phenotypes in a jaz mutant (jazQ) defective in JAZ1, JAZ3, JAZ4, JAZ9, and JAZ10, phyB null alleles only weakly alleviated the growth and reproductive defects in the jazD mutant. phyB-independent growth restriction of the jazD mutant was tightly correlated with upregulation of the Trp biosynthetic pathway but not with changes in central carbon metabolism. Interestingly, jazD and jazD phyB plants were insensitive to a chemical inhibitor of Trp biosynthesis, which is a phenotype previously observed in plants expressing hyperactive MYC transcription factors that cannot bind JAZ repressors. These data provide evidence that the mechanisms underlying JA-mediated growth-defense balance depend on the level of defense, and they further establish an association between growth inhibition at high levels of defense and dysregulation of Trp biosynthesis.
Collapse
Affiliation(s)
- Ian T Major
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Qiang Guo
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jinling Zhai
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - George Kapali
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| | - David M Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 42284
| |
Collapse
|
229
|
Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proc Natl Acad Sci U S A 2020; 117:12017-12028. [PMID: 32434917 DOI: 10.1073/pnas.2003742117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic chemical elicitors, so called plant strengtheners, can protect plants from pests and pathogens. Most plant strengtheners act by modifying defense signaling pathways, and little is known about other mechanisms by which they may increase plant resistance. Moreover, whether plant strengtheners that enhance insect resistance actually enhance crop yields is often unclear. Here, we uncover how a mechanism by which 4-fluorophenoxyacetic acid (4-FPA) protects cereals from piercing-sucking insects and thereby increases rice yield in the field. Four-FPA does not stimulate hormonal signaling, but modulates the production of peroxidases, H2O2, and flavonoids and directly triggers the formation of flavonoid polymers. The increased deposition of phenolic polymers in rice parenchyma cells of 4-FPA-treated plants is associated with a decreased capacity of the white-backed planthopper (WBPH) Sogatella furcifera to reach the plant phloem. We demonstrate that application of 4-PFA in the field enhances rice yield by reducing the abundance of, and damage caused by, insect pests. We demonstrate that 4-FPA also increases the resistance of other major cereals such as wheat and barley to piercing-sucking insect pests. This study unravels a mode of action by which plant strengtheners can suppress herbivores and increase crop yield. We postulate that this represents a conserved defense mechanism of plants against piercing-sucking insect pests, at least in cereals.
Collapse
|
230
|
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1541-1568. [PMID: 31900498 DOI: 10.1007/s00122-019-03525-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.
Collapse
Affiliation(s)
- Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Quan Xie
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiyang Zhou
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
231
|
Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Sechet J, Mouille G, Heilmann I, De Jaeger G, Ludwig-Müller J, Benková E. SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 2020; 11:2170. [PMID: 32358503 PMCID: PMC7195429 DOI: 10.1038/s41467-020-15895-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Candela Cuesta
- Institute of Science and Technology, Klosterneuburg, Austria
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Krisztina Ötvös
- Institute of Science and Technology, Klosterneuburg, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Jerome Duclercq
- Unité 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN UMR CNRS 7058 CNRS), Université du Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | | | - Marçal Gallemí
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Hana Semerádová
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Thomas Rauter
- Institute of Science and Technology, Klosterneuburg, Austria
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freia Benade
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Rishikesh Bhalearo
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83, Umeå, Sweden
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - András Gorzsás
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Eva Benková
- Institute of Science and Technology, Klosterneuburg, Austria.
| |
Collapse
|
232
|
Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, Choi ES, Lee E, Man Kim K, Yang SH, Jeon JS, Lee SC, Kim SH. Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. THE PLANT CELL 2020; 32:1081-1101. [PMID: 32086363 PMCID: PMC7145493 DOI: 10.1105/tpc.19.00631] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.
Collapse
Affiliation(s)
- Ho Won Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Gagan Kumar Panigrahi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
- School of Applied Sciences, Centurion University of Technology and Management, Odisha 752050, India
| | - Ga Young Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Yu Jeong Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ki Hun Shin
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Annapurna Sahoo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Eun Su Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Eunji Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Kyung Man Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang Hyon Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
233
|
Kawa D. Security Notice: This Plant Immunity Is under mRNA Surveillance. THE PLANT CELL 2020; 32:803-804. [PMID: 32111665 PMCID: PMC7145464 DOI: 10.1105/tpc.20.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome CenterUniversity of California, Davis
| |
Collapse
|
234
|
Alexandersson E, Kushwaha S, Subedi A, Weighill D, Climer S, Jacobson D, Andreasson E. Linking crop traits to transcriptome differences in a progeny population of tetraploid potato. BMC PLANT BIOLOGY 2020; 20:120. [PMID: 32183694 PMCID: PMC7079428 DOI: 10.1186/s12870-020-2305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. RESULTS A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. CONCLUSION In our study, we identify 100's of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.
Collapse
Affiliation(s)
- Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 10, Alnarp, Sweden.
- Present address: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Sandeep Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Uppsala, Sweden
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Aastha Subedi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 10, Alnarp, Sweden
| | - Deborah Weighill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, USA
| | | | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 10, Alnarp, Sweden
| |
Collapse
|
235
|
Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties. Int J Mol Sci 2020; 21:ijms21051807. [PMID: 32155710 PMCID: PMC7084713 DOI: 10.3390/ijms21051807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Roots anchor plants and take up water and nutrients from the soil; therefore, root development strongly affects plant growth and productivity. Moreover, increasing evidence indicates that root development is deeply involved in plant tolerance to abiotic stresses such as drought and salinity. These findings suggest that modulating root growth and development provides a potentially useful approach to improve plant abiotic stress tolerance. Such targeted approaches may avoid the yield penalties that result from growth-defense trade-offs produced by global induction of defenses against abiotic stresses. This review summarizes the developmental mechanisms underlying root development and discusses recent studies about modulation of root growth and stress tolerance in rice.
Collapse
|
236
|
Zhou J, Liu Z, Wang S, Li J, Li Y, Chen WK, Wang R. Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environ Microbiol 2020; 22:1421-1434. [PMID: 32090436 DOI: 10.1111/1462-2920.14958] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Lycoris radiata is a main source of Amaryllidaceae alkaloids; however, the low content of these alkaloids in planta remains a limit to their pharmaceutical development and utilization. The accumulation of secondary metabolites can be enhanced in plants inoculated with fungal endophytes. In this study, we analysed the diversity of culturable fungal endophytes in different organs of L. radiata. Then, by analysing the correlation between the detectable rate of each fungal species and the content of each tested alkaloid, we proposed several fungal candidates implicated in the increase of alkaloid accumulation. This was verified by inoculating these candidates to L. radiata plants. Based on the results of two independent experiments conducted in May 2018 and October 2019, the individual inoculation of nine fungal endophytes significantly increased the total content of the tested alkaloids in the entire L. radiata plants. This is the first study in L. radiata to show that fungal endophytes are able to improve the accumulation of various alkaloids. Therefore, our results provide insights into a better understanding of interactions between plants and fungal endophytes and suggest an effective strategy for enhancing the alkaloid content in the cultivation of L. radiata.
Collapse
Affiliation(s)
- Jiayu Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Zhilin Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Songfeng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Jie Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yikui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Wei-Kang Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
237
|
Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lv Q, Luo L, Liu R, Yan L, Zhou Z, Lucas WJ, Zhang X. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol 2020; 18:e3000671. [PMID: 32203514 PMCID: PMC7117775 DOI: 10.1371/journal.pbio.3000671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/02/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
Collapse
Affiliation(s)
- Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kang Ning
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Lian Ding
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qingyang Lv
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Renyi Liu
- College of Horticulture, and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - William John Lucas
- Department of Plant Biology, University of California, Davis, California, United States of America
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
238
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
239
|
Zhang N, Zhou S, Yang D, Fan Z. Revealing Shared and Distinct Genes Responding to JA and SA Signaling in Arabidopsis by Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:908. [PMID: 32670328 PMCID: PMC7333171 DOI: 10.3389/fpls.2020.00908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
Plant resistance against biotrophic and necrotrophic pathogens is mediated by mutually synergistic and antagonistic effects of salicylic acid (SA) and jasmonic acid (JA) signals. However, the unique and shared genes responding to the defense mediated by JA/SA signals were largely unclear. To reveal discrete, synergistic and antagonistic JA/SA responsive genes in Arabidopsis thaliana, Meta-Analysis was employed with 257 publicly available Arabidopsis thaliana RNA-Seq gene expression profiles following treatment of mock, JA or SA analogs. JA/SA signalings were found to co-induce broad-spectrum disease-response genes, co-repress the genes related to photosynthesis, auxin, and gibberellin, and reallocate resources of growth toward defense. JA might attenuate SA induced immune response by inhibiting the expression of resistance genes and receptor-like proteins/kinases. Strikingly, co-expression network analysis revealed that JA/SA uniquely regulated genes showing highly coordinated co-expression only in their respective treatment. Using principal component analysis, and hierarchical cluster analysis, JA/SA analogs were segregated into separate entities based on the global differential expression matrix rather than the expression matrix. To accurately classify JA/SA analogs with as few genes as possible, 87 genes, including the SA receptor NPR4, and JA biosynthesis gene AOC1 and JA response biomarkers VSP1/2, were identified by three feature selection algorithms as JA/SA markers. The results were confirmed by independent datasets and provided valuable resources for further functional analyses in JA- or SA- mediated plant defense. These methods would provide cues to build a promising approach for probing the mode of action of potential elicitors.
Collapse
|
240
|
Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRITICAL REVIEWS IN PLANT SCIENCES 2020; 39:72-100. [PMID: 33343063 PMCID: PMC7748258 DOI: 10.1080/07352689.2020.1757829] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Huan Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
241
|
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses. THE NEW PHYTOLOGIST 2020; 225:87-104. [PMID: 31209880 DOI: 10.1111/nph.15989] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
242
|
Teshome DT, Zharare GE, Naidoo S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. FRONTIERS IN PLANT SCIENCE 2020; 11:601009. [PMID: 33329666 PMCID: PMC7733969 DOI: 10.3389/fpls.2020.601009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Plants encounter several biotic and abiotic stresses, usually in combination. This results in major economic losses in agriculture and forestry every year. Climate change aggravates the adverse effects of combined stresses and increases such losses. Trees suffer even more from the recurrence of biotic and abiotic stress combinations owing to their long lifecycle. Despite the effort to study the damage from individual stress factors, less attention has been given to the effect of the complex interactions between multiple biotic and abiotic stresses. In this review, we assess the importance, impact, and mitigation strategies of climate change driven interactions between biotic and abiotic stresses in forestry. The ecological and economic importance of biotic and abiotic stresses under different combinations is highlighted by their contribution to the decline of the global forest area through their direct and indirect roles in forest loss and to the decline of biodiversity resulting from local extinction of endangered species of trees, emission of biogenic volatile organic compounds, and reduction in the productivity and quality of forest products and services. The abiotic stress factors such as high temperature and drought increase forest disease and insect pest outbreaks, decrease the growth of trees, and cause tree mortality. Reports of massive tree mortality events caused by "hotter droughts" are increasing all over the world, affecting several genera of trees including some of the most important genera in plantation forests, such as Pine, Poplar, and Eucalyptus. While the biotic stress factors such as insect pests, pathogens, and parasitic plants have been reported to be associated with many of these mortality events, a considerable number of the reports have not taken into account the contribution of such biotic factors. The available mitigation strategies also tend to undermine the interactive effect under combined stresses. Thus, this discussion centers on mitigation strategies based on research and innovation, which build on models previously used to curb individual stresses.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- *Correspondence: Sanushka Naidoo,
| |
Collapse
|
243
|
The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proc Natl Acad Sci U S A 2019; 117:1799-1805. [PMID: 31852823 DOI: 10.1073/pnas.1917577116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are important transducers of receptor signaling, functioning in plants with CLAVATA receptors in controlling shoot meristem size and with pathogen-associated molecular pattern receptors in basal immunity. However, whether specific members of the heterotrimeric complex potentiate cross-talk between development and defense, and the extent to which these functions are conserved across species, have not yet been addressed. Here we used CRISPR/Cas9 to knock out the maize G protein β subunit gene (Gβ) and found that the mutants are lethal, differing from those in Arabidopsis, in which homologous mutants have normal growth and fertility. We show that lethality is caused not by a specific developmental arrest, but by autoimmunity. We used a genetic diversity screen to suppress the lethal Gβ phenotype and also identified a maize Gβ allele with weak autoimmune responses but strong development phenotypes. Using these tools, we show that Gβ controls meristem size in maize, acting epistatically with G protein α subunit gene (Gα), suggesting that Gβ and Gα function in a common signaling complex. Furthermore, we used an association study to show that natural variation in Gβ influences maize kernel row number, an important agronomic trait. Our results demonstrate the dual role of Gβ in immunity and development in a cereal crop and suggest that it functions in cross-talk between these competing signaling networks. Therefore, modification of Gβ has the potential to optimize the trade-off between growth and defense signaling to improve agronomic production.
Collapse
|
244
|
"Salicylic Acid Mutant Collection" as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. Int J Mol Sci 2019; 20:ijms20246365. [PMID: 31861218 PMCID: PMC6941003 DOI: 10.3390/ijms20246365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also “non-typical” ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kβ1β2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.
Collapse
|
245
|
Gupta M, Sharma G, Saxena D, Budhwar R, Vasudevan M, Gupta V, Gupta A, Gupta R, Chandran D. Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen effector candidates. Genomics 2019; 112:2130-2145. [PMID: 31837401 DOI: 10.1016/j.ygeno.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Powdery mildew (PM) is a serious fungal disease of legumes. To gain novel insights into PM pathogenesis and host resistance/susceptibility, we used dual RNA-Seq to simultaneously capture host and pathogen transcriptomes at 1 d post-inoculation of resistant and susceptible Medicago truncatula genotypes with the PM Erysiphe pisi (Ep). Differential expression analysis indicates that R-gene mediated resistance against Ep involves extensive transcriptional reprogramming. Functional enrichment of differentially expressed host genes and in silico analysis of co-regulated promoters suggests that amplification of PTI, activation of the JA/ET signaling network, and regulation of growth-defense balance correlate with resistance. In contrast, processes that favor biotrophy, including suppression of defense signaling and programmed cell death, and weaker cell wall defenses are important susceptibility factors. Lastly, Ep effector candidates and genes with known/putative virulence functions were identified, representing a valuable resource that can be leveraged to improve our understanding of legume-PM interactions.
Collapse
Affiliation(s)
- Megha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Gunjan Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Saxena
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd., Kasturi Nagar, Bangalore, India
| | | | - Varsha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Arunima Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rashi Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
246
|
Engelberth J. Primed to grow: a new role for green leaf volatiles in plant stress responses. PLANT SIGNALING & BEHAVIOR 2019; 15:1701240. [PMID: 31814504 PMCID: PMC7012090 DOI: 10.1080/15592324.2019.1701240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 05/27/2023]
Abstract
Green leaf volatiles (GLV) have been well described to prime plants against biotic and abiotic stresses resulting in an accelerated and/or enhanced protective response. Since investments in priming are considered to be minor, it has been assumed that costs for plants using this mechanism are negligible. By analyzing the costs of defense priming by GLV, we found that while initially growth rates of plants were reduced within the first hours after treatment, significantly increased growth rates were found at later time points. This primed growth response in maize seedlings differs from primed defense responses in that it also affects systemic parts of the plant and suggests a metabolic component to be involved in the regulation of this process.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
247
|
Li Y, Yang Y, Hu Y, Liu H, He M, Yang Z, Kong F, Liu X, Hou X. DELLA and EDS1 Form a Feedback Regulatory Module to Fine-Tune Plant Growth-Defense Tradeoff in Arabidopsis. MOLECULAR PLANT 2019; 12:1485-1498. [PMID: 31382023 DOI: 10.1016/j.molp.2019.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/04/2019] [Accepted: 07/27/2019] [Indexed: 05/03/2023]
Abstract
Plants maintain a dynamic balance between growth and defense , and optimize allocation of resources for survival under constant pathogen infections. However, the underlying molecular regulatory mechanisms, especially in response to biotrophic bacterial infection, remain elusive. Here, we demonstrate that DELLA proteins and EDS1, an essential resistance regulator, form a central module modulating plant growth-defense tradeoffs via direct interaction. When infected by Pst DC3000, EDS1 rapidly promotes salicylic acid (SA) biosynthesis and resistance-related gene expression to prime defense response, while pathogen infection stabilizes DELLA proteins RGA and RGL3 to restrict growth in a partially EDS1-dependent manner, which facilitates plants to develop resistance to pathogens. However, the increasingly accumulated DELLAs interact with EDS1 to suppress SA overproduction and excessive resistance response. Taken together, our findings reveal a DELLA-EDS1-mediated feedback regulatory loop by which plants maintain the subtle balance between growth and defense to avoid excessive growth or defense in response to constant biotrophic pathogen attack.
Collapse
Affiliation(s)
- Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hailun Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ming He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
248
|
Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, Jha G, Tuteja N. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. PLANTA 2019; 250:1505-1520. [PMID: 31332521 DOI: 10.1007/s00425-019-03241-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (β) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravindra Kumar Chandan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujrat, Sector-30, Gandhinagar, 382030, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
249
|
Song H, Cai Z, Liao J, Tang D, Zhang S. Sexually differential gene expressions in poplar roots in response to nitrogen deficiency. TREE PHYSIOLOGY 2019; 39:1614-1629. [PMID: 31115478 DOI: 10.1093/treephys/tpz057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a key nutrient impacting plant growth and physiological processes. However, the supply of N is often not sufficient to meet the requirements of trees in many terrestrial ecosystems. Because of differences in production costs, male and female plants have evolved different stress resistance strategies for N limitation. However, little is known about differential gene expression according to sex in poplars responding to N limitation. To explore sex-related constitutive defenses, Populus cathayana Rehder transcriptomic, proteomic and metabolic analyses were performed on the roots of male and female Populus cathayana. We detected 16,816 proteins and 37,286 transcripts, with 2797 overlapping proteins and mRNAs in the roots. In combination with the identification of 90 metabolites, we found that N deficiency greatly altered gene expression related to N metabolism as well as carbohydrate metabolism, secondary metabolism and stress-related processes in both sexes. Nitrogen-deficient P. cathayana females exhibited greater root biomass and less inhibition of citric acid production and glycolysis as well as higher secondary metabolic activity and abscisic acid contents than N-deficient P. cathayana males. Interestingly, males presented a better osmotic adjustment ability and higher expression of resistance genes, suggesting that P. cathayana males exhibit a better stress tolerance ability and can invest fewer resources in defense compared with females. Therefore, our study provides new molecular evidence that P. cathayana males and females adopt different resistance strategies to cope with N deficiency in their roots.
Collapse
Affiliation(s)
- Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoteng Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
250
|
Critchlow JT, Norris A, Tate AT. The legacy of larval infection on immunological dynamics over metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190066. [PMID: 31438817 PMCID: PMC6711287 DOI: 10.1098/rstb.2019.0066] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Insect metamorphosis promotes the exploration of different ecological niches, as well as exposure to different parasites, across life stages. Adaptation should favour immune responses that are tailored to specific microbial threats, with the potential for metamorphosis to decouple the underlying genetic or physiological basis of immune responses in each stage. However, we do not have a good understanding of how early-life exposure to parasites influences immune responses in subsequent life stages. Is there a developmental legacy of larval infection in holometabolous insect hosts? To address this question, we exposed flour beetle (Tribolium castaneum) larvae to a protozoan parasite that inhabits the midgut of larvae and adults despite clearance during metamorphosis. We quantified the expression of relevant immune genes in the gut and whole body of exposed and unexposed individuals during the larval, pupal and adult stages. Our results suggest that parasite exposure induces the differential expression of several immune genes in the larval stage that persist into subsequent stages. We also demonstrate that immune gene expression covariance is partially decoupled among tissues and life stages. These results suggest that larval infection can leave a lasting imprint on immune phenotypes, with implications for the evolution of metamorphosis and immune systems. This article is part of the theme issue ‘The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Justin T Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adriana Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|