201
|
Gene coexpression network analysis and tissue-specific profiling of gene expression in jute (Corchorus capsularis L.). BMC Genomics 2020; 21:406. [PMID: 32546133 PMCID: PMC7298812 DOI: 10.1186/s12864-020-06805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jute (Corchorus spp.), belonging to the Malvaceae family, is an important natural fiber crop, second only to cotton, and a multipurpose economic crop. Corchorus capsularis L. is one of the only two commercially cultivated species of jute. Gene expression is spatiotemporal and is influenced by many factors. Therefore, to understand the molecular mechanisms of tissue development, it is necessary to study tissue-specific gene expression and regulation. We used weighted gene coexpression network analysis, to predict the functional roles of gene coexpression modules and individual genes, including those underlying the development of different tissue types. Although several transcriptome studies have been conducted on C. capsularis, there have not yet been any systematic and comprehensive transcriptome analyses for this species. RESULTS There was significant variation in gene expression between plant tissues. Comparative transcriptome analysis and weighted gene coexpression network analysis were performed for different C. capsularis tissues at different developmental stages. We identified numerous tissue-specific differentially expressed genes for each tissue, and 12 coexpression modules, comprising 126 to 4203 genes, associated with the development of various tissues. There was high consistency between the genes in modules related to tissues, and the candidate upregulated genes for each tissue. Further, a gene network including 21 genes directly regulated by transcription factor OMO55970.1 was discovered. Some of the genes, such as OMO55970.1, OMO51203.1, OMO50871.1, and OMO87663.1, directly involved in the development of stem bast tissue. CONCLUSION We identified genes that were differentially expressed between tissues of the same developmental stage. Some genes were consistently up- or downregulated, depending on the developmental stage of each tissue. Further, we identified numerous coexpression modules and genes associated with the development of various tissues. These findings elucidate the molecular mechanisms underlying the development of each tissue, and will promote multipurpose molecular breeding in jute and other fiber crops.
Collapse
|
202
|
Promoter and Terminator Optimization for DNA Methylation Targeting in Arabidopsis. EPIGENOMES 2020; 4:epigenomes4020009. [PMID: 34968243 PMCID: PMC8594676 DOI: 10.3390/epigenomes4020009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/05/2022] Open
Abstract
DNA methylation is an important epigenetic mark involved in gene regulation and silencing of transposable elements. The presence or absence of DNA methylation at specific sites can influence nearby gene expression and cause phenotypic changes that remain stable over generations. Recently, development of new technologies has enabled the targeted addition or removal of DNA methylation at specific sites of the genome. Of these new technologies, the targeting of the catalytic domain of Nicotiana tabacum DOMAINS REARRANGED METHYLTRANSFERASE 2 (ntDRM2cd) offers a promising tool for the addition of DNA methylation as it can directly methylate DNA. However, the methylation targeting efficiency of constructs using ntDRM2cd thus far has been relatively low. Previous studies have shown that the use of different promoters or terminators can greatly improve genome-editing efficiencies. In this study, we systematically survey a variety of promoter and terminator combinations to identify optimal combinations to use when targeting the addition of DNA methylation in Arabidopsis thaliana.
Collapse
|
203
|
Wu TY, Krishnamoorthi S, Goh H, Leong R, Sanson AC, Urano D. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3227-3239. [PMID: 32107545 PMCID: PMC7260721 DOI: 10.1093/jxb/eraa108] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 05/10/2023]
Abstract
Nutrient stresses induce foliar chlorosis and growth defects. Here we propose heterotrimeric G proteins as signaling mediators of various nutrient stresses, through meta-analyses of >20 transcriptomic data sets associated with nutrient stresses or G protein mutations. Systematic comparison of transcriptomic data yielded 104 genes regulated by G protein subunits under common nutrient stresses: 69 genes under Gβ subunit (AGB1) control and 35 genes under Gα subunit (GPA1) control. Quantitative real-time PCR experiments validate that several transcription factors and metal transporters changed in expression level under suboptimal iron, zinc, and/or copper concentrations, while being misregulated in the Arabidopsis Gβ-null (agb1) mutant. The agb1 mutant had altered metal ion profiles and exhibited severe growth arrest under zinc stress, and aberrant root waving under iron and zinc stresses, while the Gα-null mutation attenuated leaf chlorosis under iron deficiency in both Arabidopsis and rice. Our transcriptional network analysis inferred computationally that WRKY-family transcription factors mediate the AGB1-dependent nutrient responses. As corroborating evidence of our inference, ectopic expression of WRKY25 or WRKY33 rescued the zinc stress phenotypes and the expression of zinc transporters in the agb1-2 background. These results, together with Gene Ontology analyses, suggest two contrasting roles for G protein-coupled signaling pathways in micronutrient stress responses: one enhancing general stress tolerance and the other modulating ion homeostasis through WRKY transcriptional regulatory networks. In addition, tolerance to iron stress in the rice Gα mutant provides an inroad to improve nutrient stress tolerance of agricultural crops by manipulating G protein signaling.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore
- Correspondence: or
| | | | | | | | - Amy Catherine Sanson
- Temasek Life Sciences Laboratory, Singapore
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Correspondence: or
| |
Collapse
|
204
|
Lu F, Wei Z, Luo Y, Guo H, Zhang G, Xia Q, Wang Y. SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Res 2020; 48:D749-D755. [PMID: 31642484 PMCID: PMC7145608 DOI: 10.1093/nar/gkz919] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
SilkDB is an open-accessibility database and powerful platform that provides comprehensive information on the silkworm (Bombyx mori) genome. Since SilkDB 2.0 was released 10 years ago, vast quantities of data about multiple aspects of the silkworm have been generated, including genome, transcriptome, Hi-C and pangenome. To visualize data at these different biological levels, we present SilkDB 3.0 (https://silkdb.bioinfotoolkits.net), a visual analytic tool for exploring silkworm data through an interactive user interface. The database contains a high-quality chromosome-level assembly of the silkworm genome, and its coding sequences and gene sets are more accurate than those in the previous version. SilkDB 3.0 provides a view of the information for each gene at the levels of sequence, protein structure, gene family, orthology, synteny, genome organization and gives access to gene expression information, genetic variation and genome interaction map. A set of visualization tools are available to display the abundant information in the above datasets. With an improved interactive user interface for the integration of large data sets, the updated SilkDB 3.0 database will be a valuable resource for the silkworm and insect research community.
Collapse
Affiliation(s)
- Fang Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Zhaoyuan Wei
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yongjiang Luo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hailong Guo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Guoqing Zhang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
205
|
Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res 2020; 47:D1155-D1163. [PMID: 30395277 PMCID: PMC6323957 DOI: 10.1093/nar/gky1081] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN.itps.ncku.edu.tw/) is an effective resource for predicting regulatory elements and reconstructing transcriptional regulatory networks for plant genes. In this release (PlantPAN 3.0), 17 230 TFs were collected from 78 plant species. To explore regulatory landscapes, genomic locations of TFBSs have been captured from 662 public ChIP-seq samples using standard data processing. A total of 1 233 999 regulatory linkages were identified from 99 regulatory factors (TFs, histones and other DNA-binding proteins) and their target genes across seven species. Additionally, this new version added 2449 matrices extracted from ChIP-seq peaks for cis-regulatory element prediction. In addition to integrated ChIP-seq data, four major improvements were provided for more comprehensive information of TF binding events, including (i) 1107 experimentally verified TF matrices from the literature, (ii) gene regulation network comparison between two species, (iii) 3D structures of TFs and TF-DNA complexes and (iv) condition-specific co-expression networks of TFs and their target genes extended to four species. The PlantPAN 3.0 can not only be efficiently used to investigate critical cis- and trans-regulatory elements in plant promoters, but also to reconstruct high-confidence relationships among TF–targets under specific conditions.
Collapse
Affiliation(s)
- Chi-Nga Chow
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu-Cheng Hung
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Guan-Zhen Li
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Chieh Tseng
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Li Kuo
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Qin Zheng
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chi Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan.,Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
206
|
Zhu S, Estévez JM, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, Guo H, Yu F. The RALF1-FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. MOLECULAR PLANT 2020; 13:698-716. [PMID: 31904511 DOI: 10.1016/j.molp.2019.12.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 05/04/2023]
Abstract
The molecular links between extracellular signals and the regulation of localized protein synthesis in plant cells are poorly understood. Here, we show that in Arabidopsis thaliana, the extracellular peptide RALF1 and its receptor, the FERONIA receptor kinase, promote root hair (RH) tip growth by modulating protein synthesis. We found that RALF1 promotes FERONIA-mediated phosphorylation of eIF4E1, a eukaryotic translation initiation factor that plays a crucial role in the control of mRNA translation rate. Phosphorylated eIF4E1 increases mRNA affinity and modulates mRNA translation and, thus, protein synthesis. The mRNAs targeted by the RALF1-FERONIA-eIF4E1 module include ROP2 and RSL4, which are important regulators of RH cell polarity and growth. RALF1 and FERONIA are expressed in a polar manner in RHs, which facilitate eIF4E1 polar localization and thus may control local ROP2 translation. Moreover, we demonstrated that high-level accumulation of RSL4 exerts negative-feedback regulation of RALF1 expression by directly binding the RALF1 gene promoter, determining the final RH size. Our study reveals that the link between RALF1-FERONIA signaling and protein synthesis constitutes a novel component regulating cell expansion in these polar growing cells.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - José Manuel Estévez
- Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago RM 8370146, Chile
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Yonghua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Tao Yang
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P.R. China
| | - Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Lan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Javier Martinez Pacheco
- Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China.
| |
Collapse
|
207
|
Lou YR, Ahmed S, Yan J, Adio AM, Powell HM, Morris PF, Jander G. Arabidopsis ADC1 functions as an N δ -acetylornithine decarboxylase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:601-613. [PMID: 31081586 DOI: 10.1111/jipb.12821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Polyamines are small aliphatic amines found in almost all organisms, ranging from bacteria to plants and animals. In most plants, putrescine, the metabolic precursor for longer polyamines, such as spermidine and spermine, is produced from arginine, with either agmatine or ornithine as intermediates. Here we show that Arabidopsis thaliana (Arabidopsis) arginine decarboxylase 1 (ADC1), one of the two known arginine decarboxylases in Arabidopsis, not only synthesizes agmatine from arginine, but also converts Nδ -acetylornithine to N-acetylputrescine. Phylogenetic analyses indicate that duplication and neofunctionalization of ADC1 and NATA1, the enzymes that synthesize Nδ -acetylornithine in Arabidopsis, co-occur in a small number of related species in the Brassicaceae. Unlike ADC2, which is localized in the chloroplasts, ADC1 is in the endoplasmic reticulum together with NATA1, an indication that these two enzymes have access to the same substrate pool. Together, these results are consistent with a model whereby NATA1 and ADC1 together provide a pathway for the synthesis of N-acetylputrescine in Arabidopsis.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Sheaza Ahmed
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Adewale M Adio
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Hannah M Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| |
Collapse
|
208
|
Roussin-Léveillée C, Silva-Martins G, Moffett P. ARGONAUTE5 Represses Age-Dependent Induction of Flowering through Physical and Functional Interaction with miR156 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:957-966. [PMID: 32105323 DOI: 10.1093/pcp/pcaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/20/2020] [Indexed: 05/22/2023]
Abstract
Flowering time is a finely tuned process in plants, in part controlled by the age-regulated microRNA156 (miR156), which functions by suppressing the transcripts of SQUAMOSA-PROMOTER BINDING LIKE (SPL) transcription factors. ARGONAUTE (AGO) proteins are essential effectors of miRNA-mediated gene regulation. However, which AGO(s) mediate(s) the control of flowering time remains unclear. Here, we demonstrate a role of AGO5 in controlling flowering time by modulating the expression of SPL transcription factors. We show that AGO5 interacts physically and functionally with miR156 and that ago5 mutants present an early flowering phenotype in Arabidopsis. Furthermore, in ago5 mutants, the repression of flowering caused by miR156 overexpression is largely reversed, whereas leaf morphology remains unaffected. Our results thus indicate a specific role for AGO5 in mediating miR156 activity in meristematic, but not vegetative, tissue. As such, our data suggest a spatiotemporal regulation of the miR156 aging pathway mediated through different AGO proteins in different tissues.
Collapse
Affiliation(s)
- Charles Roussin-Léveillée
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| | - Guilherme Silva-Martins
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| | - Peter Moffett
- Centre S�VE, D�partement de Biologie, Universit� de Sherbrooke, Sherbrooke, Qu�bec J1K 2R1, Canada
| |
Collapse
|
209
|
Hidalgo Martinez D, Payyavula RS, Kudithipudi C, Shen Y, Xu D, Warek U, Strickland JA, Melis A. Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum). PLANTA 2020; 251:92. [PMID: 32242247 DOI: 10.1007/s00425-020-03387-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION The role of six alkaloid biosynthesis genes in the process of nicotine accumulation in tobacco was investigated. Downregulation of ornithine decarboxylase, arginine decarboxylase, and aspartate oxidase resulted in viable plants with a significantly lower nicotine content. Attenuation of nicotine accumulation in Nicotiana tabacum was addressed upon the application of RNAi technologies. The approach entailed a downregulation in the expression of six different alkaloid biosynthesis genes encoding upstream enzymes that are thought to function in the pathway of alkaloid and nicotine biosynthesis. Nine different RNAi constructs were designed to lower the expression level of the genes that encode the enzymes arginine decarboxylase, agmatine deiminase, aspartate oxidase, arginase, ornithine decarboxylase, and SAM synthase. Agrobacterium-based transformation of tobacco leaves was applied, and upon kanamycin selection, T0 and subsequently T1 generation seeds were produced. Mature T1 plants in the greenhouse were topped to prevent flowering and leaf nos. 3 and 4 below the topping point were tested for transcript levels and product accumulation. Down-regulation in arginine decarboxylase, aspartate oxidase, and ornithine decarboxylase consistently resulted in lower levels of nicotine in the leaves of the corresponding plants. Transformants with the aspartate oxidase RNAi construct showed the lowest nicotine level in the leaves, which varied from below the limit of quantification (20 μg per g dry leaf weight) to 1.3 mg per g dry leaf weight. The amount of putrescine, the main polyamine related to nicotine biosynthesis, showed a qualitative correlation with the nicotine content in the arginine decarboxylase and ornithine decarboxylase RNAi-expressing transformants. A putative early senescence phenotype and lower viability of the older leaves was observed in some of the transformant lines. The results are discussed in terms of the role of the above-mentioned genes in the alkaloid biosynthetic pathway and may serve to guide efforts to attenuate nicotine content in tobacco leaves.
Collapse
Affiliation(s)
- Diego Hidalgo Martinez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720‑3102, USA
| | - Raja S Payyavula
- Eurofins Lancaster Laboratories, Professional Scientific Service Division, 2425 New Holland Pike, Lancaster, PA, 17605, USA
| | - Chengalrayan Kudithipudi
- Biotechnology Division, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Yanxin Shen
- Biotechnology Division, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Dongmei Xu
- Biotechnology Division, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Ujwala Warek
- Biotechnology Division, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - James A Strickland
- Biotechnology Division, Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720‑3102, USA.
| |
Collapse
|
210
|
Fernandez MA, Belda-Palazon B, Julian J, Coego A, Lozano-Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez PL. RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. PLANT PHYSIOLOGY 2020; 182:1723-1742. [PMID: 31699847 PMCID: PMC7140949 DOI: 10.1104/pp.19.00898] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
The turnover of abscisic acid (ABA) signaling core components modulates the plant's response to ABA and is regulated by ubiquitination. We show that Arabidopsis (Arabidopsis thaliana) RING Finger ABA-Related1 (RFA1) and RFA4 E3 ubiquitin ligases, members of the RING between RING fingers (RBR)-type RSL1/RFA family, are key regulators of ABA receptor stability in root and leaf tissues, targeting ABA receptors for degradation in different subcellular locations. RFA1 is localized both in the nucleus and cytosol, whereas RFA4 shows specific nuclear localization and promotes nuclear degradation of ABA receptors. Therefore, members of the RSL1/RFA family interact with ABA receptors at plasma membrane, cytosol, and nucleus, targeting them for degradation via the endosomal/vacuolar RSL1-dependent pathway or 26S proteasome. Additionally, we provide insight into the physiological function of the relatively unexplored plant RBR-type E3 ligases, and through mutagenesis and biochemical assays we identified cysteine-361 in RFA4 as the putative active site cysteine, which is a distinctive feature of RBR-type E3 ligases. Endogenous levels of PYR1 and PYL4 ABA receptors were higher in the rfa1 rfa4 double mutant than in wild-type plants. UBC26 was identified as the cognate nuclear E2 enzyme that interacts with the RFA4 E3 ligase and forms UBC26-RFA4-receptor complexes in nuclear speckles. Loss-of-function ubc26 alleles and the rfa1 rfa4 double mutant showed enhanced sensitivity to ABA and accumulation of ABA receptors compared with the wild type. Together, our results reveal a sophisticated mechanism by which ABA receptors are targeted by ubiquitin at different subcellular locations, in which the complexity of the ABA receptor family is mirrored in the partner RBR-type E3 ligases.
Collapse
Affiliation(s)
- Maria Angeles Fernandez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jose Julian
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
211
|
García Bossi J, Kumar K, Barberini ML, Domínguez GD, Rondón Guerrero YDC, Marino-Buslje C, Obertello M, Muschietti JP, Estevez JM. The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1239-1248. [PMID: 31740935 DOI: 10.1093/jxb/erz521] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
As sessile organisms, plants have evolved mechanisms to adapt to variable and rapidly fluctuating environmental conditions. Calcium (Ca2+) in plant cells is a versatile intracellular second messenger that is essential for stimulating short- and long-term responses to environmental stresses through changes in its concentration in the cytosol ([Ca2+]cyt). Increases in [Ca2+]cyt direct the strength and length of these stimuli. In order to terminate them, the cells must then remove the cytosolic Ca2+ against a concentration gradient, either taking it away from the cell or storing it in organelles such as the endoplasmic reticulum (ER) and/or vacuoles. Here, we review current knowledge about the biological roles of plant P-type Ca2+-ATPases as potential actors in the regulation of this cytosolic Ca2+ efflux, with a focus the IIA ER-type Ca2+-ATPases (ECAs) and the IIB autoinhibited Ca2+-ATPases (ACAs). While ECAs are analogous proteins to animal sarcoplasmic-endoplasmic reticulum Ca2+-ATPases (SERCAs), ACAs are equivalent to animal plasma membrane-type ATPases (PMCAs). We examine their expression patterns in cells exhibiting polar growth and consider their appearance during the evolution of the plant lineage. Full details of the functions and coordination of ECAs and ACAs during plant growth and development have not yet been elucidated. Our current understanding of the regulation of fluctuations in Ca2+ gradients in the cytoplasm and organelles during growth is in its infancy, but recent technological advances in Ca2+ imaging are expected to shed light on this subject.
Collapse
Affiliation(s)
- Julián García Bossi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Krishna Kumar
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Molecular Plant Biology and Biotechnology Laboratory, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, GKVK Post, Bengaluru, India
| | - María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gabriela Díaz Domínguez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | | | - Cristina Marino-Buslje
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
212
|
Yang JF, Chen MX, Zhang JH, Hao GF, Yang GF. Genome-wide phylogenetic and structural analysis reveals the molecular evolution of the ABA receptor gene family. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1322-1336. [PMID: 31740933 DOI: 10.1093/jxb/erz511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role during the plant life cycle as well as in adaptive responses to environmental stresses. The core regulatory components of ABA signaling in plants are the pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor family (PYLs), which comprise the largest plant hormone receptor family known. They act as negative regulators of members of the protein phosphatase type 2C family. Due to the biological importance of PYLs, many researchers have focused on their genetic redundancy and consequent functional divergence. However, little is understood of their evolution and its impact on the generation of regulatory diversity. In this study, we identify positive selection and functional divergence in PYLs through phylogenetic reconstruction, gene structure and expression pattern analysis, positive selection analysis, functional divergence analysis, and structure comparison. We found the correlation of desensitization of PYLs under specific modifications in the molecular recognition domain with functional diversification. Hence, an interesting antagonistic co-evolutionary mechanism is proposed for the functional diversification of ABA receptor family proteins. We believe a compensatory evolutionary pathway may have occurred.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
| | - Mo-Xian Chen
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Jian-Hua Zhang
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, P. R. China
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
- State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P. R. China
| |
Collapse
|
213
|
Han Q, Qi J, Hao G, Zhang C, Wang C, Dirk LMA, Downie AB, Zhao T. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize. PLANT & CELL PHYSIOLOGY 2020; 61:331-341. [PMID: 31638155 DOI: 10.1093/pcp/pcz200] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Raffinose accumulation is positively correlated with plant chilling stress tolerance; however, the understanding of the function and regulation of raffinose metabolism under chilling stress remains in its infancy. RAFFINOSE SYNTHASE (RAFS) is the key enzyme for raffinose biosynthesis. In this study, we report that two independent maize (Zea mays) zmrafs mutant lines, in which raffinose was completely abolished, were more sensitive to chilling stress and their net photosynthetic product (total soluble sugars and starch) accumulation was significantly decreased compared with controls after chilling stress. A similar characterization of the maize dehydration responsive element (DRE)-binding protein 1A mutant (zmdreb1a) showed that ZmRAFS expression and raffinose content were significantly decreased compared with its control under chilling stress. Overexpression of maize ZmDREB1A in maize leaf protoplasts increased ZmDREB1A amounts, which consequently upregulated the expression of maize ZmRAFS and the Renilla LUCIFERASE (Rluc), which was controlled by the ZmRAFS promoter. Deletion of the single dehydration-responsive element (DRE) in the ZmRAFS promoter abolished ZmDREB1A's influence on Rluc expression, while addition of three copies of the DRE in the ZmRAFS promoter dramatically increased Rluc expression when ZmDREB1A was simultaneously overexpressed. Electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative PCR demonstrated that ZmDREB1A directly binds to the DRE motif in the promoter of ZmRAFS both in vitro and in vivo. These data demonstrate that ZmRAFS, which was directly regulated by ZmDREB1A, enhances both raffinose biosynthesis and plant chilling stress tolerance.
Collapse
Affiliation(s)
- Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junlong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanglong Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunmei Wang
- The Biology Teaching and Research Core Facility, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
214
|
Rich-Griffin C, Stechemesser A, Finch J, Lucas E, Ott S, Schäfer P. Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional Genomics. TRENDS IN PLANT SCIENCE 2020; 25:186-197. [PMID: 31780334 DOI: 10.1016/j.tplants.2019.10.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 05/19/2023]
Abstract
Plant function is the result of the concerted action of single cells in different tissues. Advances in RNA-seq technologies and tissue processing allow us now to capture transcriptional changes at single-cell resolution. The incredible potential of single-cell RNA-seq lies in the novel ability to study and exploit regulatory processes in complex tissues based on the behaviour of single cells. Importantly, the independence from reporter lines allows the analysis of any given tissue in any plant. While there are challenges associated with the handling and analysis of complex datasets, the opportunities are unique to generate knowledge of tissue functions in unprecedented detail and to facilitate the application of such information by mapping cellular functions and interactions in a plant cell atlas.
Collapse
Affiliation(s)
| | - Annika Stechemesser
- Warwick Mathematics Institute, The University of Warwick, Coventry CV4 7AL, UK
| | - Jessica Finch
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Emma Lucas
- Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK
| | - Sascha Ott
- Department of Computer Science, The University of Warwick, Coventry CV4 7AL, UK.
| | - Patrick Schäfer
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK; Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
215
|
Barker R, Lombardino J, Rasmussen K, Gilroy S. Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments. FRONTIERS IN PLANT SCIENCE 2020; 11:147. [PMID: 32265943 PMCID: PMC7076552 DOI: 10.3389/fpls.2020.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 05/04/2023]
Abstract
Recent advances in the routine access to space along with increasing opportunities to perform plant growth experiments on board the International Space Station have led to an ever-increasing body of transcriptomic, proteomic, and epigenomic data from plants experiencing spaceflight. These datasets hold great promise to help understand how plant biology reacts to this unique environment. However, analyses that mine across such expanses of data are often complex to implement, being impeded by the sheer number of potential comparisons that are possible. Complexities in how the output of these multiple parallel analyses can be presented to the researcher in an accessible and intuitive form provides further barriers to such research. Recent developments in computational systems biology have led to rapid advances in interactive data visualization environments designed to perform just such tasks. However, to date none of these tools have been tailored to the analysis of the broad-ranging plant biology spaceflight data. We have therefore developed the Test Of Arabidopsis Space Transcriptome (TOAST) database (https://astrobiology.botany.wisc.edu/astrobotany-toast) to address this gap in our capabilities. TOAST is a relational database that uses the Qlik database management software to link plant biology, spaceflight-related omics datasets, and their associated metadata. This environment helps visualize relationships across multiple levels of experiments in an easy to use gene-centric platform. TOAST draws on data from The US National Aeronautics and Space Administration's (NASA's) GeneLab and other data repositories and also connects results to a suite of web-based analytical tools to facilitate further investigation of responses to spaceflight and related stresses. The TOAST graphical user interface allows for quick comparisons between plant spaceflight experiments using real-time, gene-specific queries, or by using functional gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, or other filtering systems to explore genetic networks of interest. Testing of the database shows that TOAST confirms patterns of gene expression already highlighted in the literature, such as revealing the modulation of oxidative stress-related responses across multiple plant spaceflight experiments. However, this data exploration environment can also drive new insights into patterns of spaceflight responsive gene expression. For example, TOAST analyses highlight changes to mitochondrial function as likely shared responses in many plant spaceflight experiments.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Jonathan Lombardino
- Department of Botany, University of Wisconsin, Madison, WI, United States
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, United States
| | - Kai Rasmussen
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, United States
- *Correspondence: Simon Gilroy,
| |
Collapse
|
216
|
Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y. Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:237-248. [PMID: 31494994 DOI: 10.1111/tpj.14526] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 05/19/2023]
Abstract
High-throughput technology has become a powerful approach for routine plant research. Interpreting the biological significance of high-throughput data has largely focused on the functional characterization of a large gene list or genomic loci that involves the following two aspects: the functions of the genes or loci and how they are regulated as a whole, i.e. searching for the upstream regulators. Traditional platforms for functional annotation largely help resolving the first issue. Addressing the second issue is essential for a global understanding of the regulatory mechanism, but is more challenging, and requires additional high-throughput experimental evidence and a unified statistical framework for data-mining. The rapid accumulation of 'omics data provides a large amount of experimental data. We here present Plant Regulomics, an interface that integrates 19 925 transcriptomic and epigenomic data sets and diverse sources of functional evidence (58 112 terms and 695 414 protein-protein interactions) from six plant species along with the orthologous genes from 56 whole-genome sequenced plant species. All pair-wise transcriptomic comparisons with biological significance within the same study were performed, and all epigenomic data were processed to genomic loci targeted by various factors. These data were well organized to gene modules and loci lists, which were further implemented into the same statistical framework. For any input gene list or genomic loci, Plant Regulomics retrieves the upstream factors, treatments, and experimental/environmental conditions regulating the input from the integrated 'omics data. Additionally, multiple tools and an interactive visualization are available through a user-friendly web interface. Plant Regulomics is available at http://bioinfo.sibs.ac.cn/plant-regulomics.
Collapse
Affiliation(s)
- Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meifang Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfei Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
217
|
Seck W, Torkamaneh D, Belzile F. Comprehensive Genome-Wide Association Analysis Reveals the Genetic Basis of Root System Architecture in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:590740. [PMID: 33391303 PMCID: PMC7772222 DOI: 10.3389/fpls.2020.590740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 05/17/2023]
Abstract
Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.
Collapse
Affiliation(s)
- Waldiodio Seck
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Davoud Torkamaneh
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de phytologie, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Quebec, QC, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, QC, Canada
- *Correspondence: François Belzile,
| |
Collapse
|
218
|
Diaz‐Granados A, Sterken MG, Overmars H, Ariaans R, Holterman M, Pokhare SS, Yuan Y, Pomp R, Finkers‐Tomczak A, Roosien J, Slootweg E, Elashry A, Grundler FM, Xiao F, Goverse A, Smant G. The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. MOLECULAR PLANT PATHOLOGY 2020; 21:66-82. [PMID: 31756029 PMCID: PMC6913204 DOI: 10.1111/mpp.12880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.
Collapse
Affiliation(s)
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Hein Overmars
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Roel Ariaans
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Somnath S. Pokhare
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- ICAR National Rice Research InstituteCuttack753006India
| | - Yulin Yuan
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Rikus Pomp
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Anna Finkers‐Tomczak
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
- KeyGene N.V.WageningenNetherlands
| | - Jan Roosien
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Erik Slootweg
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Abdenaser Elashry
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Strube Research GmbHHauptstrasse 138387SöllingenGermany
| | | | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowUSA
| | - Aska Goverse
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University and ResearchWageningenNetherlands
| |
Collapse
|
219
|
Rathgeb U, Chen M, Buron F, Feddermann N, Schorderet M, Raisin A, Häberli GY, Marc-Martin S, Keller J, Delaux PM, Schaefer DG, Reinhardt D. VAPYRIN-like is required for development of the moss Physcomitrella patens. Development 2020; 147:dev.184762. [DOI: 10.1242/dev.184762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/19/2020] [Indexed: 12/28/2022]
Abstract
The VAPYRIN (VPY) gene in Medicago truncatula and Petunia hybrida is required for arbuscular mycorrhizal (AM) symbiosis. The moss Physcomitrella patens has a close homologue (VPY-like, VPYL), although it does not form AM. Here, we explore the phylogeny of VPY and VPYL in land plants, and we study the expression and developmental function of VPYL in P. patens. We show that PpVPYL is expressed primarily in the protonema, the early filamentous stage of moss development, and later in rhizoids arising from the leafy gametophores and in adult phyllids. Knockout mutants have specific phenotypes in branching of the protonema and in cell division of the leaves (phyllids) in gametophores. The mutants are responsive to auxin and strigolactone, which are involved in the regulation of protonemal branching, indicating that the mutants are not affected in hormonal signaling. Taken together, these results suggest that PpVPYL exerts negative regulation of protonemal branching and of cell division in phyllids. We discuss VPY and VPYL phylogeny and function in land plants in the context of AM symbiosis in angiosperms, and of development in the moss.
Collapse
Affiliation(s)
- Ursina Rathgeb
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | - Min Chen
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | - Flavien Buron
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Axelle Raisin
- Dept. of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Auzeville, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Auzeville, Castanet-Tolosan, France
| | | | | |
Collapse
|
220
|
Luo J, Wei C, Liu H, Cheng S, Xiao Y, Wang X, Yan J, Liu J. MaizeCUBIC: a comprehensive variation database for a maize synthetic population. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5857845. [PMID: 32548639 PMCID: PMC7297647 DOI: 10.1093/database/baaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022]
Abstract
MaizeCUBIC is a free database that describes genomic variations, gene expression, phenotypes and quantitative trait locus (QTLs) for a maize CUBIC population (24 founders and 1404 inbred offspring). The database not only includes information for over 14M single nucleotide polymorphism (SNPs) and 43K indels previously identified but also contains 660K structure variations (SVs) and 600M novel sequences newly identified in the present study, which represents a comprehensive high-density variant map for a diverse population. Based on these genomic variations, the database would demonstrate the mosaic structure for each progeny, reflecting a high-resolution reshuffle across parental genomes. A total of 23 agronomic traits measured on parents and progeny in five locations, where are representative of the maize main growing regions in China, were also included in the database. To further explore the genotype–phenotype relationships, two different methods of genome-wide association studies (GWAS) were employed for dissecting the genetic architecture of 23 agronomic traits. Additionally, the Basic Local Alignment Search Tool and primer design tools are developed to promote follow-up analysis and experimental verification. All the original data and corresponding analytical results can be accessed through user-friendly online queries and web interface dynamic visualization, as well as downloadable files. These data and tools provide valuable resources on genetic and genomic studies of maize and other crops.
Collapse
Affiliation(s)
- Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengcheng Wei
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.,Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria
| | - Shikun Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.,College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
221
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
222
|
Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:187-198. [PMID: 31148337 DOI: 10.1111/tpj.14425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/05/2018] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.
Collapse
Affiliation(s)
- Feng Y Cao
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Madiha Khan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Masatoshi Taniguchi
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Armand Mirmiran
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
223
|
Gene Expression Maps in Plants: Current State and Prospects. PLANTS 2019; 8:plants8090309. [PMID: 31466308 PMCID: PMC6784182 DOI: 10.3390/plants8090309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
For many years, progress in the identification of gene functions has been based on classical genetic approaches. However, considerable recent omics developments have brought to the fore indirect but high-resolution methods of gene function identification such as transcriptomics, proteomics, and metabolomics. A transcriptome map is a powerful source of functional information and the result of the genome-wide expression analysis of a broad sampling of tissues and/or organs from different developmental stages and/or environmental conditions. In plant science, the application of transcriptome maps extends from the inference of gene regulatory networks to evolutionary studies. However, only some of these data have been integrated into databases, thus enabling analyses to be conducted without raw data; without this integration, extensive data preprocessing is required, which limits data usability. In this review, we summarize the state of plant transcriptome maps, analyze the problems associated with the combined analysis of large-scale data from various studies, and outline possible solutions to these problems.
Collapse
|
224
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
225
|
Alvarez-Buylla ER, García-Ponce B, Sánchez MDLP, Espinosa-Soto C, García-Gómez ML, Piñeyro-Nelson A, Garay-Arroyo A. MADS-box genes underground becoming mainstream: plant root developmental mechanisms. THE NEW PHYTOLOGIST 2019; 223:1143-1158. [PMID: 30883818 DOI: 10.1111/nph.15793] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 05/19/2023]
Abstract
Plant growth is largely post-embryonic and depends on meristems that are active throughout the lifespan of an individual. Developmental patterns rely on the coordinated spatio-temporal expression of different genes, and the activity of transcription factors is particularly important during most morphogenetic processes. MADS-box genes constitute a transcription factor family in eukaryotes. In Arabidopsis, their proteins participate in all major aspects of shoot development, but their role in root development is still not well characterized. In this review we synthetize current knowledge pertaining to the function of MADS-box genes highly expressed in roots: XAL1, XAL2, ANR1 and AGL21, as well as available data for other MADS-box genes expressed in this organ. The role of Trithorax group and Polycomb group complexes on MADS-box genes' epigenetic regulation is also discussed. We argue that understanding the role of MADS-box genes in root development of species with contrasting architectures is still a challenge. Finally, we propose that MADS-box genes are key components of the gene regulatory networks that underlie various gene expression patterns, each one associated with the distinct developmental fates observed in the root. In the case of XAL1 and XAL2, their role within these networks could be mediated by regulatory feedbacks with auxin.
Collapse
Affiliation(s)
- Elena R Alvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Berenice García-Ponce
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - María de la Paz Sánchez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Carlos Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí, CP 78290, Mexico
| | - Mónica L García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, 04960, Mexico
| | - Adriana Garay-Arroyo
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Ciudad Universitaria, Coyoacán, D.F. 04510, Mexico
| |
Collapse
|
226
|
Hamm MO, Moss BL, Leydon AR, Gala HP, Lanctot A, Ramos R, Klaeser H, Lemmex AC, Zahler ML, Nemhauser JL, Wright RC. Accelerating structure-function mapping using the ViVa webtool to mine natural variation. PLANT DIRECT 2019; 3:e00147. [PMID: 31372596 PMCID: PMC6658840 DOI: 10.1002/pld3.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 05/13/2023]
Abstract
Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in the Arabidopsis thaliana 1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well-studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well-studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less-studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project ( http://snp-seek.irri.org/) and human genetic variation ( https://www.ncbi.nlm.nih.gov/clinvar/).
Collapse
Affiliation(s)
- Morgan O. Hamm
- Department of BiologyUniversity of WashingtonSeattleWashington
| | | | | | - Hardik P. Gala
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Amy Lanctot
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Román Ramos
- Department of BiologyUniversity of WashingtonSeattleWashington
| | - Hannah Klaeser
- Department of BiologyWhitman CollegeWalla WallaWashington
| | | | | | | | - R. Clay Wright
- Biological Systems EngineeringVirginia TechBlacksburgVirginia
| |
Collapse
|
227
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
228
|
Falter-Braun P, Brady S, Gutiérrez RA, Coruzzi GM, Krouk G. iPlant Systems Biology (iPSB): An International Network Hub in the Plant Community. MOLECULAR PLANT 2019; 12:727-730. [PMID: 31125688 DOI: 10.1016/j.molp.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München (HMGU), 85764, München-Neuherberg, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, 82152 Planegg-Martinsried, Germany
| | - Siobhan Brady
- Department of Plant Biology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Gabriel Krouk
- B&PMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
| |
Collapse
|
229
|
Wang Y, Salasini BC, Khan M, Devi B, Bush M, Subramaniam R, Hepworth SR. Clade I TGACG-Motif Binding Basic Leucine Zipper Transcription Factors Mediate BLADE-ON-PETIOLE-Dependent Regulation of Development. PLANT PHYSIOLOGY 2019; 180:937-951. [PMID: 30923069 PMCID: PMC6548253 DOI: 10.1104/pp.18.00805] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/12/2019] [Indexed: 05/13/2023]
Abstract
Lateral organs formed by the shoot apical meristem (SAM) are separated from surrounding stem cells by regions of low growth called boundaries. Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2 represent a class of genes important for boundary patterning in land plants. Members of this family lack a DNA-binding domain and interact with TGACG-motif binding (TGA) basic Leu zipper (bZIP) transcription factors for recruitment to DNA. Here, we show that clade I bZIP transcription factors TGA1 and TGA4, previously associated with plant defense, are essential cofactors in BOP-dependent regulation of development. TGA1 and TGA4 are expressed at organ boundaries and function in the same genetic pathways as BOP1 and BOP2 required for SAM maintenance, flowering, and inflorescence architecture. Further, we show that clade I TGAs interact constitutively with BOP1 and BOP2, contributing to activation of ARABIDOPSIS THALIANA HOMEOBOX GENE1, which is needed for boundary establishment. These studies expand the functional repertoire of clade I TGA factors in development and defense.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Brenda C Salasini
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bhaswati Devi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Michael Bush
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
230
|
Yan H, Sheng M, Wang C, Liu Y, Yang J, Liu F, Xu W, Su Z. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:238-246. [PMID: 31128694 DOI: 10.1016/j.plantsci.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence is the final stage of leaf growth, a highly coordinated and complicated process. Phosphorus as an essential macronutrient for plant growth is remobilized from senescing leaves to other vigorous parts of the plant. In this study, through data mining, we found some phosphate starvation induced genes such as AtSPX1, were significantly induced in aging leaves in Arabidopsis. We applied a reverse genetics approach to investigate the phenotypes of transgenic plants and mutant plants, and the results showed that the overexpression of AtSPX1 accelerated leaf senescence, suppressed Pi accumulation, promoted SA production and H2O2 levels in leaves, while the mutant lines of AtSPX1 showed slightly delayed leaf senescence. We conducted RNA-seq-based transcriptome analysis together with GO and GSEA enrichment analyses for transgenic vs. wild-type plants to elucidate the possible underlying regulatory mechanism. The 558 genes that were up-regulated in the overexpression plants 35S::AtSPX1/WT, were significantly enriched in the process of leaf senescence, Pi starvation responses and SA signaling pathways, as were the target genes of some transcription factors such as WRKYs and NACs. In a word, we characterized AtSPX1 as a key regulator, which mediated the crosstalks among leaf senescence, Pi starvation and SA signaling pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
231
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
232
|
Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP. Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development 2019; 146:dev.177105. [PMID: 31043420 DOI: 10.1242/dev.177105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
In plants, cells do not migrate. Tissues are frequently arranged in concentric rings; thus, expansion of inner layers is coordinated with cell division and/or expansion of cells in outer layers. In Arabidopsis stems, receptor kinases, PXY and ER, genetically interact to coordinate vascular proliferation and organisation via inter-tissue signalling. The contribution of PXY and ER paralogues to stem patterning is not known, nor is their function understood in hypocotyls, which undergo considerable radial expansion. Here, we show that removal of all PXY and ER gene-family members results in profound cell division and organisation defects. In hypocotyls, these plants failed to transition to true radial growth. Gene expression analysis suggested that PXY and ER cross- and inter-family transcriptional regulation occurs, but it differs between stem and hypocotyl. Thus, PXY and ER signalling interact to coordinate development in a distinct manner in different organs. We anticipate that such specialised local regulatory relationships, where tissue growth is controlled via signals moving across tissue layers, may coordinate tissue layer expansion throughout the plant body.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.,College of Life Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | | | - Rebecca E Doherty
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Johannes T Kroon
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Katherine A Connor
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xiao Y Wang
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Wei Wang
- College of Life Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Ian H Jermyn
- Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon R Turner
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
233
|
Zheng X, Jehanzeb M, Zhang Y, Li L, Miao Y. Characterization of S40-like proteins and their roles in response to environmental cues and leaf senescence in rice. BMC PLANT BIOLOGY 2019; 19:174. [PMID: 31046677 PMCID: PMC6498481 DOI: 10.1186/s12870-019-1767-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Senescence affects the quality and yield of plants by regulating different traits of plants. A few members of S40 gene family, the barley HvS40 and the Arabidopsis AtS40-3, have been shown to play a role in leaf senescence in Barley and Arabidopsis. Although we previously reported that S40 family exist in most of plants, up to now, no more function of S40 members in plant has been demonstrated. The aim of this study was to provide the senescence related information of S40 gene family in rice as rice is a major crop that feeds about half of the human population in the world. RESULTS A total of 16 OsS40 genes were identified from the genome database of Oryza sativa L. japonica by bioinformatics analysis. Phylogenetic analysis reveals that the 16 OsS40 proteins are classified into five groups, and 4 of the 16 members belong to group I to which also the HvS40 and AtS40-3 is assigned. S40 genes of rice show high structural similarities, as 13 out of the 16 genes have no intron and the other 3 genes have only 1 or 2 introns. The expression patterns of OsS40 genes were analyzed during natural as well as stress-induced leaf senescence in correspondence with senescence marker genes. We found that 6 of them displayed differential but clearly up-regulated transcript profiles under diverse situations of senescence, including darkness, nitrogen deficiency, hormone treatments as well as pathogen infection. Furthermore, three OsS40 proteins were identified as nuclear located proteins by transient protoplast transformation assay. CONCLUSIONS Taking all findings together, we concluded that OsS40-1, OsS40-2, OsS40-12 and OsS40-14 genes have potential regulatory function of crosstalk among abiotic, biotic and developmental senescence in rice. Our results provide valuable baseline for functional validation studies of the rice S40 genes in rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Muhammad Jehanzeb
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Li Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
234
|
Rhee SY, Birnbaum KD, Ehrhardt DW. Towards Building a Plant Cell Atlas. TRENDS IN PLANT SCIENCE 2019; 24:303-310. [PMID: 30777643 PMCID: PMC7449582 DOI: 10.1016/j.tplants.2019.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 05/03/2023]
Abstract
Enormous societal challenges, such as feeding and providing energy for a growing population in a dramatically changing climate, necessitate technological advances in plant science. Plant cells are fundamental organizational units that mediate the production, transport, and storage of our primary food sources, and they sequester a significant proportion of the world's carbon. New technologies allow comprehensive descriptions of cells that could accelerate research across fields of plant science. Complementary to the efforts towards understanding the cellular diversity in human brain and immune systems, a Plant Cell Atlas (PCA) that maps molecular machineries to cellular and subcellular domains, follows their dynamic movements, and describes their interactions would accelerate discovery in plant science and help to solve imminent societal problems.
Collapse
Affiliation(s)
- Seung Y Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA.
| | | | - David W Ehrhardt
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA.
| |
Collapse
|
235
|
Sussmilch FC, Roelfsema MRG, Hedrich R. On the origins of osmotically driven stomatal movements. THE NEW PHYTOLOGIST 2019; 222:84-90. [PMID: 30444541 DOI: 10.1111/nph.15593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Contents Summary 84 I. Introduction 84 II. Stomatal form and biomechanics 85 III. Stomatal function 86 IV. Evolution of guard cell ion channels 87 V. Conclusions 88 Acknowledgements 88 Author contributions 88 References 88 SUMMARY: Stomatal pores with apertures that can be adjusted by changes in guard cell turgor have facilitated plant success in dry environments. We explore their evolutionary origins, considering recent findings from bryophytes. Unlike vascular plant stomata, which close to prevent water loss, bryophyte stomata become locked open to promote spore desiccation. We find that the families of ion channels, known to control stomatal movements in angiosperms, are ancient and represented across extant land plants. However, although angiosperm guard cells express specific ion channel genes, none appear specifically expressed in stomata-bearing moss tissues. Given the evolutionary shift in stomatal function from promotion to prevention of water loss, we postulate that ion channels adopted guard cell-specific functions after the divergence of bryophytes.
Collapse
Affiliation(s)
- Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| | - M Rob G Roelfsema
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082, Würzburg, Germany
| |
Collapse
|
236
|
Dong S, Lau V, Song R, Ierullo M, Esteban E, Wu Y, Sivieng T, Nahal H, Gaudinier A, Pasha A, Oughtred R, Dolinski K, Tyers M, Brady SM, Grene R, Usadel B, Provart NJ. Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. PLANT PHYSIOLOGY 2019; 179:1893-1907. [PMID: 30679268 PMCID: PMC6446796 DOI: 10.1104/pp.18.01216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 05/04/2023]
Abstract
Determining the complete Arabidopsis (Arabidopsis thaliana) protein-protein interaction network is essential for understanding the functional organization of the proteome. Numerous small-scale studies and a couple of large-scale ones have elucidated a fraction of the estimated 300,000 binary protein-protein interactions in Arabidopsis. In this study, we provide evidence that a docking algorithm has the ability to identify real interactions using both experimentally determined and predicted protein structures. We ranked 0.91 million interactions generated by all possible pairwise combinations of 1,346 predicted structure models from an Arabidopsis predicted "structure-ome" and found a significant enrichment of real interactions for the top-ranking predicted interactions, as shown by cosubcellular enrichment analysis and yeast two-hybrid validation. Our success rate for computationally predicted, structure-based interactions was 63% of the success rate for published interactions naively tested using the yeast two-hybrid system and 2.7 times better than for randomly picked pairs of proteins. This study provides another perspective in interactome exploration and biological network reconstruction using protein structural information. We have made these interactions freely accessible through an improved Arabidopsis Interactions Viewer and have created community tools for accessing these and ∼2.8 million other protein-protein and protein-DNA interactions for hypothesis generation by researchers worldwide. The Arabidopsis Interactions Viewer is freely available at http://bar.utoronto.ca/interactions2/.
Collapse
Affiliation(s)
- Shaowei Dong
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Vincent Lau
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard Song
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Matthew Ierullo
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yingzhou Wu
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Teeratham Sivieng
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Hardeep Nahal
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Asher Pasha
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rose Oughtred
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- IBG-2: Plant Sciences, Leo-Brandt-Strasse, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey 08544
| | - Kara Dolinski
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- IBG-2: Plant Sciences, Leo-Brandt-Strasse, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey 08544
| | - Mike Tyers
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, 101H Price Hall, Mail Code: 0331, 170 Drillfield Drive, Blacksburg, Virginia 24061
| | - Björn Usadel
- Institute for Biology I/Sammelbau Biologie II, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, 25 Willcocks St., University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
237
|
Subba P, Narayana Kotimoole C, Prasad TSK. Plant Proteome Databases and Bioinformatic Tools: An Expert Review and Comparative Insights. ACTA ACUST UNITED AC 2019; 23:190-206. [PMID: 31009332 DOI: 10.1089/omi.2019.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
238
|
de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:901-922. [PMID: 30457178 DOI: 10.1111/tpj.14169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.
Collapse
Affiliation(s)
- Marcos V V de Oliveira
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xing Jin
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xuan Chen
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Daniel Griffith
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Sai Batchu
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
- Department of Biology, The College of New Jersey, Biology Building, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
239
|
Flores-Herrera C, Preciado-Linares G, Gonzalez-Vizueth I, Corona de la Peña N, Gutiérrez-Aguilar M. In situ assessment of mitochondrial calcium transport in tobacco pollen tubes. PROTOPLASMA 2019; 256:503-509. [PMID: 30288611 DOI: 10.1007/s00709-018-1316-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Pollen tubes require functional mitochondria in order to achieve fast and sustained growth. In addition, cell wall expansion requires a calcium gradient in the tube apex formed by a dedicated array of calcium pumps and channels. Most studies have traditionally focused on the molecular aspects of calcium interactions and transport across the pollen tube plasmalemma. However, calcium transients across mitochondrial membranes from pollen tubes are beginning to be studied. Here, we report the presence of a ruthenium red-sensitive mitochondrial calcium uniporter-like activity in tobacco pollen tubes with functional oxidative phosphorylation. The present study provides a framework to measure in situ specifics of mitochondrial transport and respiration in pollen tubes from different plants. The relevance of a mitochondrial calcium uniporter for pollen tube growth is discussed.
Collapse
Affiliation(s)
- Cesar Flores-Herrera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Gisela Preciado-Linares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Israel Gonzalez-Vizueth
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Norma Corona de la Peña
- Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital Carlos McGregor, México City, Mexico
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.
| |
Collapse
|
240
|
Yuan J, Kessler SA. A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007934. [PMID: 30742622 PMCID: PMC6386413 DOI: 10.1371/journal.pgen.1007934] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Ovules contain the female gametophytes which are fertilized during pollination to initiate seed development. Thus, the number of ovules that are produced during flower development is an important determinant of seed crop yield and plant fitness. Mutants with pleiotropic effects on development often alter the number of ovules, but specific regulators of ovule number have been difficult to identify in traditional mutant screens. We used natural variation in Arabidopsis accessions to identify new genes involved in the regulation of ovule number. The ovule numbers per flower of 189 Arabidopsis accessions were determined and found to have broad phenotypic variation that ranged from 39 ovules to 84 ovules per pistil. Genome-Wide Association tests revealed several genomic regions that are associated with ovule number. T-DNA insertion lines in candidate genes from the most significantly associated loci were screened for ovule number phenotypes. The NEW ENHANCER of ROOT DWARFISM (NERD1) gene was found to have pleiotropic effects on plant fertility that include regulation of ovule number and both male and female gametophyte development. Overexpression of NERD1 increased ovule number per fruit in a background-dependent manner and more than doubled the total number of flowers produced in all backgrounds tested, indicating that manipulation of NERD1 levels can be used to increase plant productivity.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana United States of America
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana United States of America
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana United States of America
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana United States of America
| |
Collapse
|
241
|
Bassil E, Zhang S, Gong H, Tajima H, Blumwald E. Cation Specificity of Vacuolar NHX-Type Cation/H + Antiporters. PLANT PHYSIOLOGY 2019; 179:616-629. [PMID: 30498025 PMCID: PMC6426403 DOI: 10.1104/pp.18.01103] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 05/02/2023]
Abstract
Cation/H+ (NHX-type) antiporters are important regulators of intracellular ion homeostasis and are critical for cell expansion and plant stress acclimation. In Arabidopsis (Arabidopsis thaliana), four distinct NHX isoforms, named AtNHX1 to AtNHX4, locate to the tonoplast. To determine the concerted roles of all tonoplast NHXs on vacuolar ion and pH homeostasis, we examined multiple knockout mutants lacking all but one of the four vacuolar isoforms and quadruple knockout plants lacking any vacuolar NHX activity. The nhx triple and quadruple knockouts displayed reduced growth phenotypes. Exposure to sodium chloride improved growth while potassium chloride was deleterious to some knockouts. Kinetic analysis of K+ and Na+ transport indicated that AtNHX1 and AtNHX2 are the main contributors to both vacuolar pH and K+ and Na+ uptake, while AtNHX3 and AtNHX4 differ in Na+/K+ selectivity. The lack of any vacuolar NHX activity resulted in no K+ uptake, highly acidic vacuoles, and reduced but not abolished vacuolar Na+ uptake. Additional K+/H+ and Na+/H+ exchange activity assays in the quadruple knockout indicated Na+ uptake that was not H+ coupled, suggesting the existence of an alternative, cation/H+-independent, Na+ conductive pathway in vacuoles. These results highlight the importance of NHX-type cation/H+ antiporters in the maintenance of cellular cation homeostasis and in growth and development.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
- Horticultural Sciences Department and Tropical Research and Education Center, University of Florida, Homestead, Florida 33031
| | - Shiqi Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Haijun Gong
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
242
|
Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res 2019. [PMID: 30395277 DOI: 10.1093/nar/gky1081chu] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN.itps.ncku.edu.tw/) is an effective resource for predicting regulatory elements and reconstructing transcriptional regulatory networks for plant genes. In this release (PlantPAN 3.0), 17 230 TFs were collected from 78 plant species. To explore regulatory landscapes, genomic locations of TFBSs have been captured from 662 public ChIP-seq samples using standard data processing. A total of 1 233 999 regulatory linkages were identified from 99 regulatory factors (TFs, histones and other DNA-binding proteins) and their target genes across seven species. Additionally, this new version added 2449 matrices extracted from ChIP-seq peaks for cis-regulatory element prediction. In addition to integrated ChIP-seq data, four major improvements were provided for more comprehensive information of TF binding events, including (i) 1107 experimentally verified TF matrices from the literature, (ii) gene regulation network comparison between two species, (iii) 3D structures of TFs and TF-DNA complexes and (iv) condition-specific co-expression networks of TFs and their target genes extended to four species. The PlantPAN 3.0 can not only be efficiently used to investigate critical cis- and trans-regulatory elements in plant promoters, but also to reconstruct high-confidence relationships among TF-targets under specific conditions.
Collapse
Affiliation(s)
- Chi-Nga Chow
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu-Cheng Hung
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Guan-Zhen Li
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Chieh Tseng
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Li Kuo
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Qin Zheng
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Chi Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Taiwan
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
243
|
Ibáñez S, Ruiz-Cano H, Fernández MÁ, Sánchez-García AB, Villanova J, Micol JL, Pérez-Pérez JM. A Network-Guided Genetic Approach to Identify Novel Regulators of Adventitious Root Formation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:461. [PMID: 31057574 PMCID: PMC6478000 DOI: 10.3389/fpls.2019.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 05/05/2023]
Abstract
Adventitious roots (ARs) are formed de novo during post-embryonic development from non-root tissues, in processes that are highly dependent on environmental inputs. Whole root excision from young seedlings has been previously used as a model to study adventitious root formation in Arabidopsis thaliana hypocotyls. To identify novel regulators of adventitious root formation, we analyzed adventitious rooting in the hypocotyl after whole root excision in 112 T-DNA homozygous leaf mutants, which were selected based on the dynamic expression profiles of their annotated genes during hormone-induced and wound-induced tissue regeneration. Forty-seven T-DNA homozygous lines that displayed low rooting capacity as regards their wild-type background were dubbed as the less adventitious roots (lars) mutants. We identified eight lines with higher rooting capacity than their wild-type background that we named as the more adventitious roots (mars) mutants. A relatively large number of mutants in ribosomal protein-encoding genes displayed a significant reduction in adventitious root number in the hypocotyl after whole root excision. In addition, gene products related to gibberellin (GA) biosynthesis and signaling, auxin homeostasis, and xylem differentiation were confirmed to participate in adventitious root formation. Nearly all the studied mutants tested displayed similar rooting responses from excised whole leaves, which suggest that their affected genes participate in shared regulatory pathways required for de novo organ formation in different organs.
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Helena Ruiz-Cano
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - María Á. Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- IDAI Nature S.L., La Pobla de Vallbona, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- *Correspondence: José Manuel Pérez-Pérez, ; arolab.edu.umh.es
| |
Collapse
|
244
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
245
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
246
|
Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F. EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 2018; 16:e2006340. [PMID: 30339663 PMCID: PMC6195255 DOI: 10.1371/journal.pbio.2006340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.
Collapse
Affiliation(s)
- Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaonan Qiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Yuan Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|
247
|
Biology in Bloom: A Primer on the Arabidopsis thaliana Model System. Genetics 2018; 208:1337-1349. [PMID: 29618591 DOI: 10.1534/genetics.118.300755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis thaliana could have easily escaped human scrutiny. Instead, Arabidopsis has become the most widely studied plant in modern biology despite its absence from the dinner table. Pairing diminutive stature and genome with prodigious resources and tools, Arabidopsis offers a window into the molecular, cellular, and developmental mechanisms underlying life as a multicellular photoautotroph. Many basic discoveries made using this plant have spawned new research areas, even beyond the verdant fields of plant biology. With a suite of resources and tools unmatched among plants and rivaling other model systems, Arabidopsis research continues to offer novel insights and deepen our understanding of fundamental biological processes.
Collapse
|
248
|
Robinson AJ, Tamiru M, Salby R, Bolitho C, Williams A, Huggard S, Fisch E, Unsworth K, Whelan J, Lewsey MG. AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC PLANT BIOLOGY 2018; 18:200. [PMID: 30231853 PMCID: PMC6146512 DOI: 10.1186/s12870-018-1406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND The genome-wide expression profile of genes in different tissues/cell types and developmental stages is a vital component of many functional genomic studies. Transcriptome data obtained by RNA-sequencing (RNA-Seq) is often deposited in public databases that are made available via data portals. Data visualization is one of the first steps in assessment and hypothesis generation. However, these databases do not typically include visualization tools and establishing one is not trivial for users who are not computational experts. This, as well as the various formats in which data is commonly deposited, makes the processes of data access, sharing and utility more difficult. Our goal was to provide a simple and user-friendly repository that meets these needs for data-sets from major agricultural crops. DESCRIPTION AgriSeqDB ( https://expression.latrobe.edu.au/agriseqdb ) is a database for viewing, analysing and interpreting developmental and tissue/cell-specific transcriptome data from several species, including major agricultural crops such as wheat, rice, maize, barley and tomato. The disparate manner in which public transcriptome data is often warehoused and the challenge of visualizing raw data are both major hurdles to data reuse. The popular eFP browser does an excellent job of presenting transcriptome data in an easily interpretable view, but previous implementation has been mostly on a case-by-case basis. Here we present an integrated visualisation database of transcriptome data-sets from six species that did not previously have public-facing visualisations. We combine the eFP browser, for gene-by-gene investigation, with the Degust browser, which enables visualisation of all transcripts across multiple samples. The two visualisation interfaces launch from the same point, enabling users to easily switch between analysis modes. The tools allow users, even those without bioinformatics expertise, to mine into data-sets and understand the behaviour of transcripts of interest across samples and time. We have also incorporated an additional graphic download option to simplify incorporation into presentations or publications. CONCLUSION Powered by eFP and Degust browsers, AgriSeqDB is a quick and easy-to-use platform for data analysis and visualization in five crops and Arabidopsis. Furthermore, it provides a tool that makes it easy for researchers to share their data-sets, promoting research collaborations and data-set reuse.
Collapse
Affiliation(s)
| | - Muluneh Tamiru
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Rachel Salby
- Library, La Trobe University, Melbourne, Australia
| | | | | | | | - Eva Fisch
- Library, La Trobe University, Melbourne, Australia
| | | | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
249
|
Chen W, Salari H, Taylor MC, Jost R, Berkowitz O, Barrow R, Qiu D, Branco R, Masle J. NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction. PLANT PHYSIOLOGY 2018; 177:1605-1628. [PMID: 29777000 PMCID: PMC6084668 DOI: 10.1104/pp.18.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 05/24/2023]
Abstract
Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hooman Salari
- Agronomy and Plant Breeding Department, Razi University, Kermanshah 67155, Iran
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | - Ricarda Jost
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Russell Barrow
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rémi Branco
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
250
|
Tenorio-Berrío R, Pérez-Alonso MM, Vicente-Carbajosa J, Martín-Torres L, Dreyer I, Pollmann S. Identification of Two Auxin-Regulated Potassium Transporters Involved in Seed Maturation. Int J Mol Sci 2018; 19:E2132. [PMID: 30037141 PMCID: PMC6073294 DOI: 10.3390/ijms19072132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The seed is the most important plant reproductive unit responsible for the evolutionary success of flowering plants. Aside from its essential function in the sexual reproduction of plants, the seed also represents the most economically important agricultural product worldwide, providing energy, nutrients, and raw materials for human nutrition, livestock feed, and countless manufactured goods. Hence, improvements in seed quality or size are highly valuable, due to their economic potential in agriculture. Recently, the importance of indolic compounds in regulating these traits has been reported for Arabidopsis thaliana. The transcriptional and physiological mechanisms involved, however, remain largely undisclosed. Potassium transporters have been suggested as possible mediators of embryo cell size, controlling turgor pressure during seed maturation. In addition, it has been demonstrated that the expression of K⁺ transporters is effectively regulated by auxin. Here, we provide evidence for the identification of two Arabidopsis K⁺ transporters, HAK/KT12 (At1g60160) and KUP4 (At4g23640), that are likely to be implicated in determining seed size during seed maturation and, at the same time, show a differential regulation by indole-3-acetic acid and indole-3-acetamide.
Collapse
Affiliation(s)
- Rubén Tenorio-Berrío
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Leticia Martín-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile.
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|