201
|
Feng S, Liu Z, Hu Y, Tian J, Yang T, Wei A. Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper. HORTICULTURE RESEARCH 2020; 7:158. [PMID: 33082965 PMCID: PMC7527552 DOI: 10.1038/s41438-020-00376-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 05/26/2023]
Abstract
Chinese pepper, mainly including Zanthoxylum bungeanum and Zanthoxylum armatum, is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses. Numerous cultivars of Chinese pepper have been developed in China through long-term domestication. To better understand the population structure, demographic history, and speciation of Chinese pepper, we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genome-wide genotyping-by-sequencing (GBS) approach. Our analysis provides genetic evidence of multiple splitting events occurring between and within species, resulting in at least four clades in Z. bungeanum and two clades in Z. armatum. Despite no evidence of recent admixture between species, we detected substantial gene flow within species. Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene (including the Penultimate Glaciation and the Last Glacial Maximum) and recent domestication events together shaped the demography and evolution of Chinese pepper. Our analyses also suggest that southeastern Gansu province is the most likely origin of Z. bungeanum in China. These findings provide comprehensive insights into genetic diversity, population structure, demography, and adaptation in Zanthoxylum.
Collapse
Affiliation(s)
- Shijing Feng
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, 712100 Shaanxi China
| | - Zhenshan Liu
- College of Life Science, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yang Hu
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, 712100 Shaanxi China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, 712100 Shaanxi China
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, 712100 Shaanxi China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, 712100 Shaanxi China
| |
Collapse
|
202
|
Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 2020; 369:578-581. [PMID: 32732426 DOI: 10.1126/science.abb4484] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Understanding how alpine biotas formed in response to historical environmental change may improve our ability to predict and mitigate the threats to alpine species posed by global warming. In the world's richest temperate alpine flora, that of the Tibet-Himalaya-Hengduan region, phylogenetic reconstructions of biome and geographic range evolution show that extant lineages emerged by the early Oligocene and diversified first in the Hengduan Mountains. By the early to middle Miocene, accelerated diversification and colonization of adjacent regions were likely driven jointly by mountain building and intensification of the Asian monsoon. The alpine flora of the Hengduan Mountains has continuously existed far longer than any other alpine flora on Earth and illustrates how modern biotas have been shaped by past geological and climatic events.
Collapse
Affiliation(s)
- Wen-Na Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard H Ree
- Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA.
| | - Robert A Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,School of Environment, Earth, and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Yao-Wu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China. .,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
203
|
Feng Y, Comes HP, Qiu YX. Phylogenomic insights into the temporal-spatial divergence history, evolution of leaf habit and hybridization in Stachyurus (Stachyuraceae). Mol Phylogenet Evol 2020; 150:106878. [DOI: 10.1016/j.ympev.2020.106878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
204
|
Päckert M, Favre A, Schnitzler J, Martens J, Sun Y, Tietze DT, Hailer F, Michalak I, Strutzenberger P. "Into and Out of" the Qinghai-Tibet Plateau and the Himalayas: Centers of origin and diversification across five clades of Eurasian montane and alpine passerine birds. Ecol Evol 2020; 10:9283-9300. [PMID: 32953061 PMCID: PMC7487248 DOI: 10.1002/ece3.6615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Encompassing some of the major hotspots of biodiversity on Earth, large mountain systems have long held the attention of evolutionary biologists. The region of the Qinghai-Tibet Plateau (QTP) is considered a biogeographic source for multiple colonization events into adjacent areas including the northern Palearctic. The faunal exchange between the QTP and adjacent regions could thus represent a one-way street ("out of" the QTP). However, immigration into the QTP region has so far received only little attention, despite its potential to shape faunal and floral communities of the QTP. In this study, we investigated centers of origin and dispersal routes between the QTP, its forested margins and adjacent regions for five clades of alpine and montane birds of the passerine superfamily Passeroidea. We performed an ancestral area reconstruction using BioGeoBEARS and inferred a time-calibrated backbone phylogeny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid to late Miocene (12-7 Ma). The inferred centers of origin and diversification for some of our target clades matched the "out of Tibet hypothesis' or the "out of Himalayas hypothesis" for others they matched the "into Tibet hypothesis." Three radiations included multiple independent Pleistocene colonization events to regions as distant as the Western Palearctic and the Nearctic. We conclude that faunal exchange between the QTP and adjacent regions was bidirectional through time, and the QTP region has thus harbored both centers of diversification and centers of immigration.
Collapse
Affiliation(s)
- Martin Päckert
- Senckenberg Natural History Collections, Museum of ZoologyDresdenGermany
| | - Adrien Favre
- Entomology IIISenckenberg Research Institute and Natural History Museum FrankfurtFrankfurt am MainGermany
| | - Jan Schnitzler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ)Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Jochen Martens
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg‐UniversitätMainzGermany
| | - Yue‐Hua Sun
- Key Laboratory of Animal Ecology and ConservationInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Dieter Thomas Tietze
- Natural History Museum BaselBaselSwitzerland
- Centrum für NaturkundeUniversität HamburgHamburgGermany
| | - Frank Hailer
- School of BiosciencesCardiff UniversityCardiffUK
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Ingo Michalak
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ)Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Patrick Strutzenberger
- Senckenberg Natural History Collections, Museum of ZoologyDresdenGermany
- Department of Botany and Biodiversity ResearchUniversität WienWienAustria
| |
Collapse
|
205
|
Yin H, Wang L, Shi Y, Qian C, Zhou H, Wang W, Ma XF, Tran LSP, Zhang B. The East Asian Winter Monsoon Acts as a Major Selective Factor in the Intraspecific Differentiation of Drought-Tolerant Nitraria tangutorum in Northwest China. PLANTS 2020; 9:plants9091100. [PMID: 32867062 PMCID: PMC7570063 DOI: 10.3390/plants9091100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The influence of Quaternary climate fluctuation on the geographical structure and genetic diversity of species distributed in the regions of the Qinghai–Tibet Plateau (QTP) has been well established. However, the underlying role of the East Asian monsoon system (EAMS) in shaping the genetic structure of the population and the demography of plants located in the arid northwest of China has not been explored. In the present study, Nitraria tangutorum, a drought-tolerant desert shrub that is distributed in the EAMS zone and has substantial ecological and economic value, was profiled to better understand the influence of EAMS evolution on its biogeographical patterns and demographic history. Thus, the phylogeographical structure and historical dynamics of this plant species were elucidated using its five chloroplast DNA (cpDNA) fragments. Hierarchical structure analysis revealed three distinct, divergent lineages: West, East-A, and East-B. The molecular dating was carried out using a Bayesian approach to estimate the time of intraspecies divergence. Notably, the eastern region, which included East-A and East-B lineages, was revealed to be the original center of distribution and was characterized by a high level of genetic diversity, with the intraspecific divergence time dated to be around 2.53 million years ago (Ma). These findings, combined with the data obtained by ecological niche modeling analysis, indicated that the East lineages have undergone population expansion and differentiation, which were closely correlated with the development of the EAMS, especially the East Asian winter monsoon (EAWM). The West lineage appears to have originated from the migration of N. tangutorum across the Hexi corridor at around 1.85 Ma, and subsequent colonization of the western region. These results suggest that the EAWM accelerated the population expansion of N. tangutorum and subsequent intraspecific differentiation. These findings collectively provide new information on the impact of the evolution of the EAMS on intraspecific diversification and population demography of drought-tolerant plant species in northwest China.
Collapse
Affiliation(s)
- Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Lirong Wang
- College of Ecological Environment and Resources, Qinghai Nationalities University, Xining 810007, China;
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Huakun Zhou
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China;
| | - Wenying Wang
- Department of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Correspondence: (L.-S.P.T.); (B.Z.)
| | - Benyin Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Correspondence: (L.-S.P.T.); (B.Z.)
| |
Collapse
|
206
|
Xiao JH, Ding X, Li L, Ma H, Ci XQ, van der Merwe M, Conran JG, Li J. Miocene diversification of a golden-thread nanmu tree species ( Phoebe zhennan, Lauraceae) around the Sichuan Basin shaped by the East Asian monsoon. Ecol Evol 2020; 10:10543-10557. [PMID: 33072279 PMCID: PMC7548194 DOI: 10.1002/ece3.6710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding the role of climate changes and geography as drivers of population divergence and speciation is a long‐standing goal of evolutionary biology and can inform conservation. In this study, we used restriction site‐associated DNA sequencing (RAD‐seq) to evaluate genetic diversity, population structure, and infer demographic history of the endangered tree, Phoebe zhennan which is distributed around the Sichuan Basin. Genomic patterns revealed two distinct clusters, each largely confined to the West and East. Despite sympatry of the two genomic clusters at some sites, individuals show little or no evidence of genomic introgression. Demographic modeling supported an initial divergence time between the West and East lineages at ~15.08 Ma with further diversification within the West lineage at ~7.12 Ma. These times largely coincide with the two independent intensifications of the East Asian monsoon that were initiated during the middle (Langhian) and late Miocene (Messinian), respectively. These results suggest that the Miocene intensification phases of the East Asian monsoon played a pivotal role in shaping the current landscape‐level patterns of genetic diversity within P. zhennan, as has been found for the interspecific divergence of other subtropical Chinese plants. Based on isolation‐by‐distance and species distribution modeling, we hypothesize that P. zhennan followed a ring diversification which was facilitated by the Sichuan Basin acting as barrier to gene flow. In situ and ex situ conservation management plans should consider the results obtained in this study to help secure the future of this beautiful and culturally significant endangered tree.
Collapse
Affiliation(s)
- Jian-Hua Xiao
- Plant Phylogenetics and Conservation Group Centre for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China.,University of Chinese Academy of Sciences Beijing China
| | - Xin Ding
- Department of Landscape Architecture Guangdong Eco-engineering Polytechnic Guangzhou China
| | - Lang Li
- Plant Phylogenetics and Conservation Group Centre for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China.,Center of Conservation Biology Core Botanical Gardens Chinese Academy of Sciences Mengla China
| | - Hui Ma
- Plant Phylogenetics and Conservation Group Centre for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group Centre for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China.,Center of Conservation Biology Core Botanical Gardens Chinese Academy of Sciences Mengla China
| | - Marlien van der Merwe
- Research Centre for Ecological Resilience Australian Institute of Botanical Science The Royal Botanic Garden Sydney Sydney NSW Australia
| | - John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity (ACEBB) Sprigg Geobiology Centre (SGC) School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group Centre for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China.,Center of Conservation Biology Core Botanical Gardens Chinese Academy of Sciences Mengla China
| |
Collapse
|
207
|
Yang J, Guo YF, Chen XD, Zhang X, Ju MM, Bai GQ, Liu ZL, Zhao GF. Framework Phylogeny, Evolution and Complex Diversification of Chinese Oaks. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1024. [PMID: 32823635 PMCID: PMC7464331 DOI: 10.3390/plants9081024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Oaks (Quercus L.) are ideal models to assess patterns of plant diversity. We integrated the sequence data of five chloroplast and two nuclear loci from 50 Chinese oaks to explore the phylogenetic framework, evolution and diversification patterns of the Chinese oak's lineage. The framework phylogeny strongly supports two subgenera Quercus and Cerris comprising four infrageneric sections Quercus, Cerris, Ilex and Cyclobalanopsis for the Chinese oaks. An evolutionary analysis suggests that the two subgenera probably split during the mid-Eocene, followed by intergroup divergence within the subgenus Cerris around the late Eocene. The initial diversification of sections in the subgenus Cerris was dated between the mid-Oligocene and the Oligocene-Miocene boundary, while a rapid species radiation in section Quercus started in the late Miocene. Diversification simulations indicate a potential evolutionary shift on section Quercus, while several phenotypic shifts likely occur among all sections. We found significant negative correlations between rates of the lineage diversification and phenotypic turnover, suggesting a complex interaction between the species evolution and morphological divergence in Chinese oaks. Our infrageneric phylogeny of Chinese oaks accords with the recently proposed classification of the genus Quercus. The results point to tectonic activity and climatic change during the Tertiary as possible drivers of evolution and diversification in the Chinese oak's lineage.
Collapse
Affiliation(s)
- Jia Yang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Yu-Fan Guo
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Xiao-Dan Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Xiao Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Miao-Miao Ju
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Guo-Qing Bai
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
- Institute of Botany of Shaanxi Province, Xi’an 710061, China
| | - Zhan-Lin Liu
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| | - Gui-Fang Zhao
- College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.-F.G.); (X.-D.C.); (X.Z.); (M.-M.J.); (G.-Q.B.); (Z.-L.L.)
| |
Collapse
|
208
|
Yan P, Pan T, Wu G, Kang X, Ali I, Zhou W, Li J, Wu X, Zhang B. Species Delimitation and Evolutionary History of Tree Frogs in the Hyla chinensis Group (Hylidae, Amphibian). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
209
|
Spicer RA, Farnsworth A, Su T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. PLANT DIVERSITY 2020; 42:229-254. [PMID: 33094197 PMCID: PMC7567768 DOI: 10.1016/j.pld.2020.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
The biodiversity of the Himalaya, Hengduan Mountains and Tibet, here collectively termed the Tibetan Region, is exceptional in a global context. To contextualize and understand the origins of this biotic richness, and its conservation value, we examine recent fossil finds and review progress in understanding the orogeny of the Tibetan Region. We examine the deep-time origins of monsoons affecting Asia, climate variation over different timescales, and the establishment of environmental niche heterogeneity linked to topographic development. The origins of the modern biodiversity were established in the Eocene, concurrent with the formation of pronounced topographic relief across the Tibetan Region. High (>4 km) mountains to the north and south of what is now the Tibetan Plateau bounded a Paleogene central lowland (<2.5 km) hosting moist subtropical vegetation influenced by an intensifying monsoon. In mid Miocene times, before the Himalaya reached their current elevation, sediment infilling and compressional tectonics raised the floor of the central valley to above 3000 m, but central Tibet was still moist enough, and low enough, to host a warm temperate angiosperm-dominated woodland. After 15 Ma, global cooling, the further rise of central Tibet, and the rain shadow cast by the growing Himalaya, progressively led to more open, herb-rich vegetation as the modern high plateau formed with its cool, dry climate. In the moist monsoonal Hengduan Mountains, high and spatially extensive since the Eocene but subsequently deeply dissected by river incision, Neogene cooling depressed the tree line, compressed altitudinal zonation, and created strong environmental heterogeneity. This served as a cradle for the then newly-evolving alpine biota and favoured diversity within more thermophilic vegetation at lower elevations. This diversity has survived through a combination of minimal Quaternary glaciation, and complex relief-related environmental niche heterogeneity. The great antiquity and diversity of the Tibetan Region biota argues for its conservation, and the importance of that biota is demonstrated through our insights into its long temporal gestation provided by fossil archives and information written in surviving genomes. These data sources are worthy of conservation in their own right, but for the living biotic inventory we need to ask what it is we want to conserve. Is it 1) individual taxa for their intrinsic properties, 2) their services in functioning ecosystems, or 3) their capacity to generate future new biodiversity? If 2 or 3 are our goal then landscape conservation at scale is required, and not just seed banks or botanical/zoological gardens.
Collapse
Affiliation(s)
- Robert A. Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
- School of Environmental, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | | | - Tao Su
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| |
Collapse
|
210
|
He J, Lin S, Li J, Yu J, Jiang H. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau. Commun Biol 2020; 3:415. [PMID: 32737418 PMCID: PMC7395132 DOI: 10.1038/s42003-020-01154-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
The Tibetan Plateau (TP) and surrounding regions have one of the most complex biotas on Earth. However, the evolutionary history of these regions in deep time is poorly understood. Here, we quantify the temporal changes in beta dissimilarities among zoogeographical regions during the Cenozoic using 4,966 extant terrestrial vertebrates and 1,278 extinct mammal genera. We identify ten present-day zoogeographical regions and find that they underwent a striking change over time. Specifically, the fauna on the TP was close to the Oriental realm in deep time but became more similar to the Palearctic realms more recently. The present-day zoogeographical regions generally emerged during the Miocene/Pliocene boundary (ca. 5 Ma). These results indicate that geological events such as the Indo-Asian Collision, the TP uplift, and the aridification of the Asian interior underpinned the evolutionary history of the zoogeographical regions surrounding the TP over different time periods.
Collapse
Affiliation(s)
- Jiekun He
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Siliang Lin
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Jiatang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Jiehua Yu
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Haisheng Jiang
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
211
|
Rong G, Zhang Y, Ma Y, Chen S, Wang Y. The Clinical and Molecular Characterization of Gastric Cancer Patients in Qinghai-Tibetan Plateau. Front Oncol 2020; 10:1033. [PMID: 32695679 PMCID: PMC7339979 DOI: 10.3389/fonc.2020.01033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer was the fifth most common malignancy and the third deadliest cancer (738,000 deaths in 2018) in the world. The analysis of its molecular characteristics has been complicated by histological and intratumor heterogeneity. Furthermore, the previous studies indicate that the incidence of gastric cancer shows wide geographical variation. As the largest and highest region in China, Qinghai-Tibetan Plateau (QTP) is one of the important global biodiversity hotspots. Here, to better understand the mechanism of gastric cancer and offer the targeted therapeutic strategies specially designed for patients in QTP, we collect tumor and blood samples from 30 primary gastric adenocarcinoma cancer patients at Qinghai Provincial People's Hospital. We discuss the clinical and molecular characteristics for these patients that have been ascribed to the unique features in this place, including high altitude (the average height above sea level is around 4,000 m), multi-ethnic groups, and the specific ways of life or habits (such as eating too much beef and mutton, have alcohol and cigarette problem, et al.). By comparing with the western gastric cancer patients collected from TCGA data portal, some unique characteristics for patients in QTP are suggested. They include high incidence in younger people, most of tumor are located in body, most of SNP are detected in chromosome 7, and the very different molecular atlas in minor ethnic groups and Han Chinese. These characteristics will provide the unprecedented opportunity to increase the efficacy for diagnosis and prognosis of gastric cancer in QTP. Furthermore, to suggest the targeted therapeutics specially designed for these 30 patients, an adapted kernel-based learning model and a compilation of pharmacogenomics data of 462 patient-derived tumor cells (PDCs) that illustrate the diverse genetic and molecular backgrounds of cancer patients, were introduced. In conclusion, our study offers a big opportunity to better understand the mechanism of gastric cancer in QTP and guide the optimal patient-tailored therapy for them.
Collapse
Affiliation(s)
- Guanghong Rong
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, China
| | - Yongxia Zhang
- Department of Gynecology, Qinghai Provincial People's Hospital, Xining, China
| | - Yingcai Ma
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Yongcui Wang
- Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
212
|
Yang Y, Zhou Z, Li Y, Lv Y, Yang D, Yang S, Wu J, Li X, Gu Z, Sun X, Yang Y. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4159-4170. [PMID: 32309855 PMCID: PMC7475244 DOI: 10.1093/jxb/eraa194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 06/02/2023]
Abstract
Natural selection drives local adaptations of species to biotic or abiotic environmental stresses. As a result, adaptive phenotypic divergence can evolve among related species living in different habitats. However, the genetic foundation of this divergence process remains largely unknown. Two closely related alpine grass species, Stipa capillacea and Stipa purpurea, are distributed in different rainfall regions of northern Tibet. Here, we analyzed the drought tolerance of these two closely related Stipa species, and found that S. purpurea was more resistance to drought stress than S. capillacea. To further understand the genetic diversity behind their adaptation to drought environments, a comprehensive gene repertoire was generated using PacBio isoform and Illumina RNA sequencing technologies. Bioinformatics analyses revealed that differential transcripts were mainly enriched in the wax synthetic pathway, and a threonine residue at position 239 of WSD1 was identified as having undergone positive selection in S. purpurea. Using heterologous expression in the Saccharomyces cerevisiae mutant H1246, site-directed mutagenesis studies demonstrated that a positive selection site results in changes to the wax esters profile. This difference may play an important role in S. purpurea in response to drought conditions, indicating that S. purpurea has evolved specific strategies involving its wax biosynthetic pathway as part of its long-term adaptation to the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yunqiang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhili Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Lv
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Danni Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihai Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianshuang Wu
- Functional Biodiversity, Dahlem Center of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Xiong Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Xudong Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
213
|
Ren G, Mateo RG, Conti E, Salamin N. Population Genetic Structure and Demographic History of Primula fasciculata in Southwest China. FRONTIERS IN PLANT SCIENCE 2020; 11:986. [PMID: 32714358 PMCID: PMC7351516 DOI: 10.3389/fpls.2020.00986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Understanding the factors that drive the genetic structure of a species and its responses to past climatic changes is an important first step in modern population management. The response to the last glacial maximum (LGM) has been well studied, however, the effect of previous glaciation periods on plant demographic history is still not well studied. Here we investigated the population structure and demographic history of Primula fasciculata that widely occurs in the Hengduan Mountains and Qinghai-Tibetan Plateau. We obtained genomic data for 234 samples of the species using restriction site-associated DNA (RAD) sequencing and combined approximate Bayesian computation (ABC) and species distribution modeling (SDM) to evaluate the effects of multiple glaciation periods by testing several population divergence models and demographic scenarios. The analyses of population structure showed that P. fasciculata displays a striking population structure with six groups that could be identified genetically. Our ABC modeling suggested that the current groups diverged from ancestral populations located in the eastern Hengduan Mountains after the largest glaciation occurred in the region (~ 0.8-0.5 million years ago), which is consistent with the result of SDMs. Each current group has survived in different glacial refugia during the LGM and experienced expansions and/or bottlenecks since their divergence during or across the following Quaternary glacial cycles. Our study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes in alpine plant species with shallow population structure.
Collapse
Affiliation(s)
- Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou, China
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Rubén G. Mateo
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanic Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
214
|
Climate change and spatial distribution shaped the life-history traits of schizothoracine fishes on the Tibetan Plateau and its adjacent areas. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
215
|
Sun Y, Deng T, Zhang A, Moore MJ, Landis JB, Lin N, Zhang H, Zhang X, Huang J, Zhang X, Sun H, Wang H. Genome Sequencing of the Endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of Evolutionary Specialization. iScience 2020; 23:101124. [PMID: 32428861 PMCID: PMC7232092 DOI: 10.1016/j.isci.2020.101124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Kingdonia uniflora, an alpine herb, has an extremely narrow distribution and represents a model for studying evolutionary mechanisms of species that have adapted to undisturbed environments for evolutionarily long periods of time. We assembled a 1,004.7-Mb draft genome (encoding 43,301 genes) of K. uniflora and found significant overrepresentation in gene families associated with DNA repair, underrepresentation in gene families associated with stress response, and loss of most plastid ndh genes. During the evolutionary process, the overrepresentation of gene families involved in DNA repair could help asexual K. uniflora reduce the accumulation of deleterious mutations, while reducing genetic diversity, which is important in responding to environment fluctuations. The underrepresentation of gene families related to stress response and functional loss of ndh genes could be due to lack or loss of ability to respond to environmental changes caused by long-term adaptation to a relatively stable ecological environment.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Jacob B Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
216
|
Yu H, Miao S, Xie G, Guo X, Chen Z, Favre A. Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
217
|
Feng L, Ruhsam M, Wang YH, Li ZH, Wang XM. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region. Mol Ecol 2020; 29:1791-1805. [PMID: 32306487 DOI: 10.1111/mec.15448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Allopatric divergence is often initiated by geological uplift and restriction to sky-islands, climate oscillations, or river capture. However, it can be difficult to establish which mechanism was the most likely to generate the current phylogeographical structure of a species. Recently, genomic data in conjunction with a model testing framework have been applied to address this issue in animals. To test whether such an approach is also likely to be successful in plants, we used population genomic data of the Rheum palmatum complex from the Eastern Asiatic Region, in conjunction with biogeographical reconstruction and demographic model selection, to identify the potential mechanism(s) which have led to the current level of divergence. Our results indicate that the R. palmatum complex originated in the central Hengduan Mts and possibly in regions further east, and then dispersed westward and eastward resulting in genetically distinct lineages. Populations are likely to have diverged in refugia during climate oscillations followed by subsequent expansion and secondary contact. However, model simulations within the western lineage of the R. palmatum complex cannot reject a restriction to sky-islands as a possible mechanism of diversification due to the genetically ambiguous position of one population. This highlights that genetically mixed populations might introduce ambiguity regarding the best diversification model in some cases. Although it might be possible to resolve this ambiguity using other data, sometimes this could prove to be difficult in complex biogeographical areas.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | | | - Yi-Han Wang
- College of Life Sciences, Henan Agriculture University, Zhengzhou, China
| | - Zhong-Hu Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xu-Mei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Qiyao Resources and Anti-tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
218
|
Wen J, Yu Y, Xie DF, Peng C, Liu Q, Zhou SD, He XJ. A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae). ANNALS OF BOTANY 2020; 125:937-953. [PMID: 32016402 PMCID: PMC7218814 DOI: 10.1093/aob/mcaa011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/28/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS A long-standing controversy in the subfamily Apioideae concerns relationships among the major lineages, which has prevented a comprehensive study of their fruits and evolutionary history. Here we use single copy genes (SCGs) generated from transcriptome datasets to generate a reliable species tree and explore the evolutionary history of Apioideae. METHODS In total, 3351 SCGs were generated from 27 transcriptome datasets and one genome, and further used for phylogenetic analysis using coalescent-based methods. Fruit morphology and anatomy were studied in combination with the species tree. Eleven SCGs were screened out for dating analysis with two fossils selected for calibration. KEY RESULTS A well-supported species tree was generated with a topology [Chamaesieae, (Bupleureae, (Pleurospermeae, (Physospermopsis Clade, (Group C, (Group A, Group B)))))] that differed from previous trees. Daucinae and Torilidinae were not in the tribe Scandiceae and existed as sister groups to the Acronema Clade. Five branches (I-V) of the species tree showed low quartet support but strong local posterior probabilities. Dating analysis suggested that Apioideae originated around 56.64 Mya (95 % highest posterior density interval, 45.18-73.53 Mya). CONCLUSIONS This study resolves a controversial phylogenetic relationship in Apioideae based on 3351 SCGs and coalescent-based species tree estimation methods. Gene trees that contributed to the species tree may undergoing rapid evolutionary divergence and incomplete lineage sorting. Fruits of Apioideae might have evolved in two directions, anemochorous and hydrochorous, with epizoochorous as a derived mode. Molecular and morphological evidence suggests that Daucinae and Torilidinae should be restored to the tribe level. Our results provide new insights into the morphological evolution of this subfamily, which may contribute to a better understanding of species diversification in Apioideae. Molecular dating analysis suggests that uplift of the Qinghai-Tibetan Plateau (QTP) and climate changes probably drove rapid speciation and diversification of Apioideae in the QTP region.
Collapse
Affiliation(s)
- Jun Wen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, P.R. China
| | - Yan Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Chang Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, P.R. China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xing-Jin He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
219
|
Li Q, Guo X, Niu J, Duojie D, Li X, Opgenoorth L, Zou J. Molecular Phylogeography and Evolutionary History of the Endemic Species Corydalis hendersonii (Papaveraceae) on the Tibetan Plateau Inferred From Chloroplast DNA and ITS Sequence Variation. FRONTIERS IN PLANT SCIENCE 2020; 11:436. [PMID: 32328081 PMCID: PMC7160248 DOI: 10.3389/fpls.2020.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In response to past climatic changes, the species with different habits or adaptive traits likely have experienced very different evolutionary histories, especially for species that restricted to high mountain areas. In order to trace how Quaternary climatic oscillations affected range distributions and intraspecific divergence of such alpine plants on the Tibetan Plateau, here, we investigated maternally inherited chloroplast DNA (cpDNA) markers and biparentally inherited nuclear ribosomal internal transcribed spacer (ITS) DNA variations and aimed to explore the phylogeographic history of the endemic alpine species Corydalis hendersonii Hemsl. (Papaveraceae). We sequenced four cpDNA fragments (trnS-trnG, trnT-trnL, atpH-atpI, and psbE-petL) and also the nuclear (ITS) region in 368 individuals from 30 populations across the species' range. The network and phylogenetic analysis based on cpDNA variations identified 15 chlorotypes that cluster into three distinct clades. However, our nuclear DNA results demonstrated that there were four genetic/geographical groups within C. hendersonii. Some common and highly divergent cpDNA and ITS haplotypes were distributed in the populations of central and northeastern Tibetan Plateau, and the highest nucleotide diversity and genetic differentiation were detected in the central region. Demographic tests further indicated that the populations of southwestern and western Tibet may have experienced recent range expansion, which most likely occurred during the last glacial maximum (LGM) and continued its expansion after the beginning of the Holocene. These two different groups of this species may have derived from potential refugia that existed in the central and/or northeastern regions of Tibet during recent interglacial periods. In addition, our AMOVA analyses detected high genetic differentiation along with the whole sampling range. Also, distinct phylogeographic structures were detected among populations of C. hendersonii based on both of cpDNA and ITS variation. These findings shed new light on the importance of climatic oscillations during Quaternary and complex local topography as causes of intraspecific diversification and demographic changes within cold-tolerant herbs in the Tibetan Plateau biodiversity hotspot.
Collapse
Affiliation(s)
- Qien Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Tibetan Medicine Research Center of Qinghai University, State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University Tibetan Medical College, Xining, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University Tibetan Medical College, Xining, China
| | - Junfeng Niu
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Dongzhu Duojie
- State Key Laboratory of Tibetan Medicine Research and Development, Qinghai Tibetan Medicine Research Institute, Xining, China
| | - Xianjia Li
- Tibetan Medicine Research Center of Qinghai University, State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University Tibetan Medical College, Xining, China
| | - Lars Opgenoorth
- Department of Ecology, University of Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jiabin Zou
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Tibetan Medicine Research Center of Qinghai University, State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University Tibetan Medical College, Xining, China
| |
Collapse
|
220
|
Ye JF, Liu Y, Chen ZD. Dramatic impact of metric choice on biogeographical regionalization. PLANT DIVERSITY 2020; 42:67-73. [PMID: 32373764 PMCID: PMC7195599 DOI: 10.1016/j.pld.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 06/11/2023]
Abstract
For a quantitative biogeographical regionalization, the choice of an appropriate dissimilarity index to measure pairwise distances is crucial. Several different metrics have been used, but there is no specific study to test the impact of metric choice on biogeographical regionalization. We herein applied a hierarchical cluster analysis on the mean nearest taxon distance (MNTD) and the phylogenetic turnover component of the Sørensen dissimilarity index (pβsim) pairwise distances to generate two schemes of phylogenetic regionalization of the Chinese flora, and then evaluated the effect of metric choice. Floristic regionalization based on MNTD was influenced by richness differences, but regionalization based on pβsim can clearly reflect the evolutionary history of the Chinese flora. We provided a brief description of the five regions identified by pβsim, and the regionalization can help develop strategies to effectively conserve the taxa and floristic regions with different origins and evolutionary histories.
Collapse
Affiliation(s)
- Jian-Fei Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
221
|
Genomic signature of accelerated evolution in a saline-alkaline lake-dwelling Schizothoracine fish. Int J Biol Macromol 2020; 149:341-347. [DOI: 10.1016/j.ijbiomac.2020.01.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
|
222
|
Li J, Milne RI, Ru D, Miao J, Tao W, Zhang L, Xu J, Liu J, Mao K. Allopatric divergence and hybridization withinCupressus chengiana(Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Mol Ecol 2020; 29:1250-1266. [DOI: 10.1111/mec.15407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| | - Dafu Ru
- State Key Laboratory of Grassland Agro‐Ecosystem Institute of Innovation Ecology Lanzhou University Lanzhou China
| | - Jibin Miao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Wenjing Tao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Lei Zhang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Jingjing Xu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Jianquan Liu
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| | - Kangshan Mao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education College of Life Sciences State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China
| |
Collapse
|
223
|
Fu PC, Sun SS, Khan G, Dong XX, Tan JZ, Favre A, Zhang FQ, Chen SL. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. ANNALS OF BOTANY 2020; 125:677-690. [PMID: 31922527 PMCID: PMC7103000 DOI: 10.1093/aob/mcaa003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/08/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hosting several global biodiversity hotspots, the region of the Qinghai-Tibetan Plateau (QTP) is exceptionally species-rich and harbours a remarkable level of endemism. Yet, despite a growing number of studies, factors fostering divergence, speciation and ultimately diversity remain poorly understood for QTP alpine plants. This is particularly the case for the role of hybridization. Here, we explored the evolutionary history of three closely related Gentiana endemic species, and tested whether our results supported the mountain geo-biodiversity hypothesis (MGH). METHODS We genotyped 69 populations across the QTP with one chloroplast marker and 12 nuclear microsatellite loci. We performed phylogeographical analysis, Bayesian clustering, approximate Bayesian computation and principal components analysis to explore their genetic relationship and evolutionary history. In addition, we modelled their distribution under different climates. KEY RESULTS Each species was composed of two geographically distinct clades, corresponding to the south-eastern and north-western parts of their distribution. Thus Gentiana veitchiorum and G. lawrencei var. farreri, which diverged recently, appear to have shared at least refugia in the past, from which their range expanded later on. Indeed, climatic niche modelling showed that both species went through continuous expansion from the Last Interglacial Maximum to the present day. Moreover, we have evidence of hybridization in the northwest clade of G. lawrencei var. farreri, which probably occurred in the refugium located on the plateau platform. Furthermore, phylogenetic and population genetic analyses suggested that G. dolichocalyx should be a geographically limited distinct species with low genetic differentiation from G. lawrencei var. farreri. CONCLUSIONS Climatic fluctuations in the region of the QTP have played an important role in shaping the current genetic structure of G. lawrencei var. farreri and G. veitchiorum. We argue that a species pump effect did occur prior to the Last Interglacial Maximum, thus lending support to the MGH. However, our results do depart from expectations as suggested in the MGH for more recent distribution range and hybridization dynamics.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse, Oldenburg, Germany
| | - Xiao-Xia Dong
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Jin-Zhou Tan
- School of Life Science, Luoyang Normal University, Luoyang, P. R. China
| | - Adrien Favre
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage, Frankfurt am Main, Germany
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, P. R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, P. R. China
| |
Collapse
|
224
|
A combined approach of mitochondrial DNA and anchored nuclear phylogenomics sheds light on unrecognized diversity, phylogeny, and historical biogeography of the torrent frogs, genus Amolops (Anura: Ranidae). Mol Phylogenet Evol 2020; 148:106789. [PMID: 32173414 DOI: 10.1016/j.ympev.2020.106789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
The genus Amolops ("torrent frogs") is one of the most species-rich genera in Ranidae, with 59 recognized species. This genus currently includes six species groups diagnosed mainly by morphology. Several recent molecular studies indicated that the classification of species groups within Amolops remains controversial, and key nodes in the phylogeny have been inadequately resolved. In addition, the diversity of Amolops remains poorly understood, especially for those from incompletely sampled regions. Herein, we investigate species-level diversity within the genus Amolops throughout southern China and Southeast Asia, and infer evolutionary relationships among the species using mtDNA data (16S, COI, and ND2). Molecular analyses indicate nine unnamed species, mostly distributed in the Himalayas. We then utilized anchored hybrid enrichment to generate a dataset representing the major mitochondrial lineages to resolve phylogenetic relationships, biogeography, and pattern of species diversification. Our resulting phylogeny strongly supports the monophyly of four previously identified species groups (the A. ricketti, A. daiyunensis, A. hainanensis, and A. monticola groups), but paraphyly for the A. mantzorum and A. marmoratus groups, as previously defined. We erect one new species group, the A. viridimaculatus group, and recognize Dubois' (1992) subgenus Amo as the A. larutensis species group. Biogeographic analysis suggests that Amolops originated on the Indo-Burma/Thai-Malay Peninsula at the Eocene/Oligocene boundary, and dispersed outward, exemplifying a common pattern observed for the origin of Asian biodiversity. The early divergence within Amolops coincides with the Himalayan uplift and the lateral extrusion of Indochina at the Oligocene/Miocene boundary. Our results show that paleoclimatic and geomorphological events have profoundly influenced the patterns of lineage diversification within Amolops.
Collapse
|
225
|
Liu Y, Pham HT, He Z, Wei C. Phylogeography of the cicada Platypleura hilpa in subtropical and tropical East Asia based on mitochondrial and nuclear genes and microsatellite markers. Int J Biol Macromol 2020; 151:529-544. [PMID: 32084484 DOI: 10.1016/j.ijbiomac.2020.02.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Climate change and geographical events play key roles in driving population genetic structure of organisms, but different scenarios were suggested for species occurring in tropical and subtropical areas. We investigated the population genetic structure, diversity and demographic history of the cicada Platypleura hilpa which occurs in coastal areas of southern China and northeastern Indo-Burma, and analysed the potential impact of climate change and geological events on its evolutionary history. Our data imply that P. hilpa comprises five main lineages with nearly unique sets of haplotypes and distinct geographic distributions. A major split of the lineages occurred in the Pleistocene. Geographic distance and geomorphic barriers serve as the primary factors shaping the genetic population structure, and several climatic factors are associated with the divergence. The potential range during the Last Glacial Maximum has apparently increased in south China and the exposed South China Sea Shelf. The Pleistocene sea-level fluctuations had profound effects on the regional genetic structure. The Beibu Gulf represents a more important geographic barrier than the Qiongzhou Strait in blocking gene flow among populations. These results contribute to a better understanding of the pressure climatic change and geographical events impose on insects in coastal areas of East Asia.
Collapse
Affiliation(s)
- Yunxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Thai Pham
- Vietnam National Museum of Nature Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Zhiqiang He
- College of Plant Science, Tarim University, Alar, Xinjiang 843300, China
| | - Cong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
226
|
Li X, Guo B. Substantially adaptive potential in polyploid cyprinid fishes: evidence from biogeographic, phylogenetic and genomic studies. Proc Biol Sci 2020; 287:20193008. [PMID: 32075533 DOI: 10.1098/rspb.2019.3008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Whole genome duplication (WGD) is commonly believed to play key roles in vertebrate evolution. However, nowadays polyploidy exists in a few fish, amphibian and reptile groups only, and seems to be an evolutionary dead end in vertebrates. We investigate the evolutionary significance of polyploidization in Cyprinidae-a fish family that contains more polyploid species than any other vertebrate group-with integrated biogeographic, phylogenetic and genomic analyses. First, polyploid species are found to be significantly frequent in areas of higher altitude and lower mean annual temperature compared with diploid species in Cyprinidae. Second, a polyploidy-related diversification rate shift is observed in Cyprinidae. This increased net diversification rate is only seen in three polyploid lineages, and other polyploid lineages have similar net diversification rate as well as diploid lineages in Cyprinidae. Interestingly, significant 'lag times' existed between polyploidization and radiation in Cyprinidae. Multiple polyploid lineages were established approximately 15 Ma through recurrent allopolyploidization events, but the net diversification rate did not start to increase until approximately 5 Ma-long after polyploidization events. Environmental changes associated with the continuous uplift of the Tibetan Plateau and climate change have probably promoted the initial establishment and subsequent radiation of polyploidy in Cyprinidae. Finally, the unique retention of duplicated genes in polyploid cyprinids adapted to harsh environments is found. Taken together, our results suggest that polyploidy in Cyprinidae is far more than an evolutionary dead end, but rather shows substantially adaptive potential. Polyploid cyprinids thus constitute an ideal model system for unveiling largely unexplored consequences of WGD in vertebrates, from genomic evolution to species diversification.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
227
|
Zeng Z, Liang D, Li J, Lyu Z, Wang Y, Zhang P. Phylogenetic relationships of the Chinese torrent frogs (Ranidae: Amolops) revealed by phylogenomic analyses of AFLP-Capture data. Mol Phylogenet Evol 2020; 146:106753. [PMID: 32028033 DOI: 10.1016/j.ympev.2020.106753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
The torrent frog genus Amolops contains nearly sixty species distributed in swift mountain streams throughout southeast Asia. The taxonomy of this genus has proven complicated due to unstable morphological diagnostic characters. The relationships of Amolops species and species groups were not readily resolved with a small number of molecular markers. Here, we applied the novel AFLP-Capture approach and acquired two large datasets (242 anonymous nuclear sequences and the mitochondrial genome) from 70 Chinese Amolops samples to study their relationships. The phylogenies inferred from the nuclear data and the mitochondrial data were both robust and revealed a primary phylogenetic split between eastern and western Chinese Amolops species. The relationships of the six species groups were clarified. While the three species groups in east China (the A. ricketti, A. daiyunensis and A. hainanensis groups) were monophyletic, the three species groups in the west (the A. mantzorum, A. monticola and A. marmoratus groups) were not monophyletic, suggesting a need for further investigation and revision. The robust phylogenies also provided new insights into species relationships, especially for the A. mantzorum group, which has been difficult to resolve due to multiple speciation events occurring approximately 7-8 million years ago. The divergence times estimated with the nuclear data indicated that the ancestor of the Chinese Amolops appeared in the late Eocene or early Oligocene, and that speciation events in the Chinese Amolops were often related to geological events (e.g. the uprising of mountains and the formation of islands). By including the mitochondrial sequences from GenBank, a more comprehensive Amolops phylogeny was constructed that reflected the origin of the Chinese Amolops. Based on all these results, a dispersal scenario of the torrent frogs was hypothesized. Our research serves as the first example of using AFLP-Capture to obtain a large amount of data for shallow-scale phylogenetic and taxonomic studies, which should be useful for other nonmodel organism groups.
Collapse
Affiliation(s)
- Zhaochi Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaxuan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhitong Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingyong Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Peng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
228
|
Ding L, Liao J, Liu N. The uplift of the Qinghai-Tibet Plateau and glacial oscillations triggered the diversification of Tetraogallus (Galliformes, Phasianidae). Ecol Evol 2020; 10:1722-1736. [PMID: 32076546 PMCID: PMC7029067 DOI: 10.1002/ece3.6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP) plays an important role in avian diversification. To reveal the relationship between the QTP uplift and avian diversification since the Late Cenozoic, here, we analyzed the phylogenetic relationship and biogeographical pattern of the genus Tetraogallus (Galliformes, Phasianidae) and the probable factors of speciation in the period of the QTP uplift inferred from concatenated data of four nuclear and five mitochondrial genes using the method of the Bayesian inference. Phylogenetic analysis indicated that T. himalayensis had a close relationship with T. altaicus and conflicted with the previous taxonomy of dark-bellied and white-bellied groups. The molecular clock showed that the speciation of Tetraogallus was profoundly affected by the uplift of the QTP and glacial oscillations. Biogeographic analysis suggested that the extant snowcocks originated from the QTP, and the QTP uplift and glacial oscillations triggered the diversification of Tetraogallus ancestor. Specifically, the uplift of the mountain provided a prerequisite for the colonization of snowcocks Tetraogallus as a result of the collision between the Indian and the Arab plates and the Eurasian plate, in which ecological isolation (the glacial and interglacial periods alternate) and geographical barrier had accelerated the Tetraogallus diversification process. Interestingly, we discovered hybrids between T. tibetanus and T. himalayensis for the first time and suggested that T. tibetanus and T. himalayensis hybridized after a second contact during the glacial period. Here, we proposed that the hybrid offspring was the ancestor of the T. altaicus. In conclusion, the uplift of QTP and glacial oscillations triggered the snowcocks colonization, and then, isolation and introgression hybridization promoted diversification.
Collapse
Affiliation(s)
- Li Ding
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jicheng Liao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Naifa Liu
- School of Life SciencesLanzhou UniversityLanzhouChina
| |
Collapse
|
229
|
Rana HK, Luo D, Rana SK, Sun H. Geological and Climatic Factors Affect the Population Genetic Connectivity in Mirabilis himalaica (Nyctaginaceae): Insight From Phylogeography and Dispersal Corridors in the Himalaya-Hengduan Biodiversity Hotspot. FRONTIERS IN PLANT SCIENCE 2020; 10:1721. [PMID: 32076425 PMCID: PMC7006540 DOI: 10.3389/fpls.2019.01721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/06/2019] [Indexed: 06/02/2023]
Abstract
The genetic architecture within a species in the Himalaya-Hengduan Mountains (HHM) region was considered as the consolidated consequence of historical orogenesis and climatic oscillations. The visualization of dispersal corridors as the function of population genetic connectivity became crucial to elucidate the spatiotemporal dynamics of organisms. However, geodiversity and physical barriers created by paleo geo-climatic events acted vigorously to impact notable alterations in the phylogeographic pattern and dispersal corridors. Therefore, to achieve detailed phylogeography, locate dispersal corridors and estimate genetic connectivity, we integrated phylogeography with species distribution modelling and least cost path of Mirabilis himalaica (Edgew.) Heimerl in the HHM. We amplified four cpDNA regions (petL-psbE, rps16-trnK, rps16 intron, trnS-trnG), and a low copy nuclear gene (G3pdh) from 241 individuals of 29 populations. SAMOVA, genealogical relationships, and phylogenetic analysis revealed four spatially structured phylogroups for M. himalaica with the onset of diversification in late Pliocene (c. 3.64 Ma). No recent demographic growth was supported by results of neutrality tests, mismatch distribution analysis and Bayesian skyline plot. Paleo-distribution modelling revealed the range dynamics of M. himalaica to be highly sensitive to geo-climatic change with limited long-distance dispersal ability and potential evolutionary adaptation. Furthermore, river drainage systems, valleys and mountain gorges were identified as the corridors for population genetic connectivity among the populations. It is concluded that recent intense mountain uplift and subsequent climatic alterations including monsoonal changes since Pliocene or early Pleistocene formulated fragmented habitats and diverse ecology that governed the habitat connectivity, evolutionary and demographic history of M. himalaica. The integrative genetic and geospatial method would bring new implications for the evolutionary process and conservation priority of HHM endemic species.
Collapse
Affiliation(s)
- Hum Kala Rana
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| | - Santosh Kumar Rana
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China
| |
Collapse
|
230
|
Deng JY, Fu RH, Compton SG, Liu M, Wang Q, Yuan C, Zhang LS, Chen Y. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol Ecol 2020; 29:762-782. [PMID: 31943487 DOI: 10.1111/mec.15353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/26/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
The dynamics of populations and their divergence over time have shaped current levels of biodiversity and in the case of the "sky islands" of mountainous southwest (SW) China have resulted in an area of exceptional botanical diversity. Ficus tikoua is a prostrate fig tree subendemic to the area that displays unique intraspecific diversity, producing figs typical of different pollination modes in different parts of its range. By combining climate models, genetic variation in populations of the tree's obligate fig wasp pollinators and distributions of the different plant phenotypes, we examined how this unusual situation may have developed. We identified three genetically distinct groups of a single Ceratosolen pollinator species that have largely parapatric distributions. The complex topography of the region contributed to genetic divergence among the pollinators by facilitating geographical isolation and providing refugia. Migration along elevations in response to climate oscillations further enhanced genetic differentiation of the three pollinator groups. Their distributions loosely correspond to the distributions of the functionally significant morphological differences in the male figs of their host plants, but postglacial expansion of one group has not been matched by spread of its associated plant phenotype, possibly due to a major river barrier. The results highlight how interplay between the complex topography of the "sky island" complex and climate change has shaped intraspecies differentiation and relationships between the plant and its pollinator. Similar processes may explain the exceptional botanical diversity of SW China.
Collapse
Affiliation(s)
- Jun-Yin Deng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China.,Division of Genetics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rong-Hua Fu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Mei Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Qin Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Chuan Yuan
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lu-Shui Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
231
|
Hrivniak Ľ, Sroka P, Bojková J, Godunko RJ, Soldán T, Staniczek AH. The impact of Miocene orogeny for the diversification of Caucasian Epeorus (Caucasiron) mayflies (Ephemeroptera: Heptageniidae). Mol Phylogenet Evol 2020; 146:106735. [PMID: 32001364 DOI: 10.1016/j.ympev.2020.106735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
A common hypothesis for the high biodiversity of mountains is the diversification driven by orogeny creating conditions for rapid in situ speciation of resident lineages. The Caucasus is a young mountain system considered as a biodiversity hotspot; however, the origin and evolution of its diversity remain poorly understood. This study focuses on mayflies of the subgenus Caucasiron, one of the most diversified stenotopic mayflies inhabiting various types of streams throughout the Caucasus. Using the time-calibrated phylogeny based on two mitochondrial (COI, 16S) and three nuclear (EF-1α, wg, 28S) gene fragments, we tested the role of Caucasian orogeny in biogeography, diversification patterns, and altitudinal diversification of Caucasiron mayflies. We found that orogeny promoted the lineage diversification of Caucasiron in the Miocene. The highest diversification rate corresponding with the uplift of mountains was followed by a significant slowdown towards the present suggesting minor influence of Pleistocene climatic oscillations on the speciation. The Caucasiron lineages cluster into three principal clades originating in the Upper Miocene. We found a strong support that one of the three clades diversified via allopatric speciation in the Greater Caucasus isolated in the Parathetys Sea. The other two clades originating most likely outside the Greater Caucasus diversified towards high and low altitude, respectively, indicating possible role of climatic factors and/or passive uplift on their differentiation. Current high Caucasiron diversity in the Greater Caucasus is a result of in situ speciation and later immigration from adjacent mountain ranges after the Parathetys Sea retreat. Our phylogeny supported the monophyly of Rhithrogeninae, Epeorus s.l., Caucasiron, and Iron. Epeorus subgenus Ironopsis was found paraphyletic, with its European representatives more closely related to Epeorus s.str. than to Iron. Therefore, we re-arranged taxa treated within Ironopsis to comply with the phylogeny recovered herein.
Collapse
Affiliation(s)
- Ľuboš Hrivniak
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Pavel Sroka
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jindřiška Bojková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman J Godunko
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic; Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90237 Łódź, Poland
| | - Tomáš Soldán
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Arnold H Staniczek
- Department of Entomology, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| |
Collapse
|
232
|
Kou Y, Zhang L, Fan D, Cheng S, Li D, Hodel RGJ, Zhang Z. Evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae), in south-east China during the late Neogene: old lineage, young populations. ANNALS OF BOTANY 2020; 125:105-117. [PMID: 31765468 PMCID: PMC6948213 DOI: 10.1093/aob/mcz153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). METHODS DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). KEY RESULTS Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. CONCLUSIONS These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.
Collapse
Affiliation(s)
- Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Li Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dengmei Fan
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shanmei Cheng
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dezhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Richard G J Hodel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Zhang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
233
|
Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, Fu Y, Wang J, Peng S, Bilyk KT, Murphy KR, Zhuang X, Hune M, Zhai W, Wang W, Xu Q, Cheng CHC. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. Gigascience 2019; 8:5304890. [PMID: 30715292 PMCID: PMC6457430 DOI: 10.1093/gigascience/giz016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood. Results We sequenced and compared 2 notothenioid genomes—the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys–transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism. Conclusions Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.
Collapse
Affiliation(s)
- Liangbiao Chen
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Lu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yandong Ren
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Mengchao Yu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Yanxia Fu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Sihua Peng
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Kevin T Bilyk
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Katherine R Murphy
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Mathias Hune
- Fundación Ictiológica, Providencia, Santiago, Chile
| | - Wanying Zhai
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kuming, China
| | - Qianghua Xu
- Internal Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) and International Research Center for Marine Biosciences (Ministry of Science and Technology) at Shanghai Ocean University, Shanghai, China
| | - Chi-Hing Christina Cheng
- Department of Animal Biology, University of Illinois at Urbana-Champaign, IL, USA.,Fundación Ictiológica, Providencia, Santiago, Chile
| |
Collapse
|
234
|
Ji Y, Yang L, Chase MW, Liu C, Yang Z, Yang J, Yang JB, Yi TS. Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC PLANT BIOLOGY 2019; 19:543. [PMID: 31805856 PMCID: PMC6896732 DOI: 10.1186/s12870-019-2147-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Lifang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS UK
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
235
|
Jia Y, Kennard MJ, Liu Y, Sui X, Chen Y, Li K, Wang G, Chen Y. Understanding invasion success of Pseudorasbora parva in the Qinghai-Tibetan Plateau: Insights from life-history and environmental filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133739. [PMID: 31756834 DOI: 10.1016/j.scitotenv.2019.133739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Understanding mechanisms of fish invasion success is crucial to controlling existing invasions and preventing potential future spread. Despite considerable advances in explaining successful fish invasions, little is known about how non-native fish successfully invade alpine freshwater ecosystems. Here, we explore the role of fish life history and environmental factors in contributing to invasion success of Pseudorasbora parva on the Qinghai-Tibet Plateau. We compared life history trait differences between native populations in lowland China with introduced populations in lowland Europe and the high elevation Qinghai-Tibet Plateau. Linear mixed-effects models were used to analyse life-history trait variation across elevation gradients. A random forest model was developed to identify the key environmental filters influencing P. parva invasion success. Life history characteristics differed substantially between native and introduced populations. Compared with native Chinese populations, introduced populations in lowland Europe had smaller body size, higher fecundity, smaller oocytes and earlier maturation. Introduced populations in the Qinghai-Tibet Plateau had smaller body size, lower fecundity, smaller oocytes and later maturation compared with native populations. 1-Year-Length and fecundity in all age classes of females significantly increased with increasing elevation. 2-Year-Length and 3-Year-Length of male significantly increased while maximal longevity and length at first maturity were significantly decreased with the elevation gradient. Habitat type, annual mean temperature, elevation, annual precipitation and precipitation seasonality, were the 5 most important predictors for the occurrence of the P. parva. Our study indicates that invasive P. parva adopt different life history strategies on the plateau compared with invasive populations at low elevations, highlighting that more studies are required for a better understanding of biological invasion under extreme conditions. Considering the ongoing hydrologic alteration and climate change, our study also highlighted that P. parva may expand their distribution range in the future on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mark J Kennard
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Yuhan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Sui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yiyu Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kemao Li
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, China
| | - Yifeng Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
236
|
Sun Y, Hou N, Woeste K, Zhang C, Yue M, Yuan X, Zhao P. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China. Ecol Evol 2019; 9:14154-14166. [PMID: 31938510 PMCID: PMC6953554 DOI: 10.1002/ece3.5850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/07/2022] Open
Abstract
Southwestern (SW) China is an area of active tectonism and erosion, yielding a dynamic, deeply eroded landscape that influences the genetic structure of the resident populations of plants and animals. Iron walnut (Juglans regia subsp. sigillata) is a deciduous tree species endemic to this region of China and cultivated there for its edible nuts. We sampled 36 iron walnut populations from locations throughout the species' range in SW China and genotyped a total of 765 individuals at five chloroplast DNA regions and 22 nuclear microsatellite loci. Species distribution models were produced to predict the evolution and historical biogeography of iron walnut and to estimate the impacts of climate oscillations and orographic environments on the species' demography. Our results indicated that J. regia subsp. sigillata had relatively low genetic diversity, high interpopulation genetic differentiation, and asymmetric interpopulation gene flow. Based on DIYABC analysis, we identified two lineages of J. sigillata in southwestern China. The lineages (subpopulations) diverge during the last glacial period (~1.34 Ma). Southwestern China was a glacial refuge during the last glacial period, but increasingly colder and arid climates might have fostered the fragmentation of J. regia subsp. sigillata within this refugium. Finally, we found that recent habitat fragmentation has led to a reduction in population connectivity and increased genetic differentiation by genetic drift in isolated populations. Our results support a conclusion that geological and climatic factors since the Miocene triggered the differentiation, evolutionary origin, and range shifts of J. sigillata in the studied region.
Collapse
Affiliation(s)
- Yi‐Wei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Na Hou
- Guizhou Academy of ForestryGuiyangChina
| | - Keith Woeste
- Department of Forestry and Natural ResourcesUSDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC)Purdue UniversityWest LafayetteINUSA
| | - Chuchu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
- Xi'an Botanical Garden of Shaanxi ProvinceXi'anChina
| | - Xiao‐Ying Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| |
Collapse
|
237
|
Xiong Q, Halmy MWA, Dakhil MA, Pandey B, Zhang F, Zhang L, Pan K, Li T, Sun X, Wu X, Xiao Y. Concealed truth: Modeling reveals unique Quaternary distribution dynamics and refugia of four related endemic keystone Abies taxa on the Tibetan Plateau. Ecol Evol 2019; 9:14295-14316. [PMID: 31938520 PMCID: PMC6953664 DOI: 10.1002/ece3.5866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/25/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022] Open
Abstract
Understanding the factors driving the Quaternary distribution of Abies in the Tibetan Plateau (TP) is crucial for biodiversity conservation and for predicting future anthropogenic impacts on ecosystems. Here, we collected Quaternary paleo-, palynological, and phylogeographical records from across the TP and applied ecological niche models (ENMs) to obtain a profound understanding of the different adaptation strategies and distributional changes in Abies trees in this unique area. We identified environmental variables affecting the different historical biogeographies of four related endemic Abies taxa and rebuilt their distribution patterns over different time periods, starting from the late Pleistocene. In addition, modeling and phylogeographic results were used to predict suitable refugia for Abies forrestii, A. forrestii var. georgei, A. fargesii var. faxoniana, and A. recurvata. We supplemented the ENMs by investigating pollen records and diversity patterns of cpDNA for them. The overall reconstructed distributions of these Abies taxa were dramatically different when the late Pleistocene was compared with the present. All Abies taxa gradually receded from the south toward the north in the last glacial maximum (LGM). The outcomes showed two well-differentiated distributions: A. fargesii var. faxoniana and A. recurvata occurred throughout the Longmen refuge, a temporary refuge for the LGM, while the other two Abies taxa were distributed throughout the Heqing refuge. Both the seasonality of precipitation and the mean temperature of the driest quarter played decisive roles in driving the distribution of A. fargesii var. faxoniana and A. recurvata, respectively; the annual temperature range was also a key variable that explained the distribution patterns of the other two Abies taxa. Different adaptation strategies of trees may thus explain the differing patterns of distribution over time at the TP revealed here for endemic Abies taxa.
Collapse
Affiliation(s)
- Qinli Xiong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Marwa Waseem A. Halmy
- Department of Environmental SciencesFaculty of ScienceAlexandria UniversityAlexandriaEgypt
| | - Mohammed A. Dakhil
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
- Botany and Microbiology DepartmentFaculty of ScienceHelwan UniversityCairoEgypt
| | - Bikram Pandey
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Ting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Yang Xiao
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- College of Biology and Environmental SciencesJishou UniversityJishouChina
| |
Collapse
|
238
|
Hofmann S, Baniya CB, Litvinchuk SN, Miehe G, Li J, Schmidt J. Phylogeny of spiny frogs Nanorana (Anura: Dicroglossidae) supports a Tibetan origin of a Himalayan species group. Ecol Evol 2019; 9:14498-14511. [PMID: 31938536 PMCID: PMC6953589 DOI: 10.1002/ece3.5909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
Recent advances in the understanding of the evolution of the Asian continent challenge the long-held belief of a faunal immigration into the Himalaya. Spiny frogs of the genus Nanorana are a characteristic faunal group of the Himalaya-Tibet orogen (HTO). We examine the phylogeny of these frogs to explore alternative biogeographic scenarios for their origin in the Greater Himalaya, namely, immigration, South Tibetan origin, strict vicariance. We sequenced 150 Nanorana samples from 62 localities for three mitochondrial (1,524 bp) and three nuclear markers (2,043 bp) and complemented the data with sequence data available from GenBank. We reconstructed a gene tree, phylogenetic networks, and ancestral areas. Based on the nuDNA, we also generated a time-calibrated species tree. The results revealed two major clades (Nanorana and Quasipaa), which originated in the Lower Miocene from eastern China and subsequently spread into the HTO (Nanorana). Five well-supported subclades are found within Nanorana: from the East, Central, and Northwest Himalaya, the Tibetan Plateau, and the southeastern Plateau margin. The latter subclade represents the most basal group (subgenus Chaparana), the Plateau group (Nanorana) represents the sister clade to all species of the Greater Himalaya (Paa). We found no evidence for an east-west range expansion of Paa along the Himalaya, nor clear support for a strict vicariance model. Diversification in each of the three Himalayan subclades has probably occurred in distinct areas. Specimens from the NW Himalaya are placed basally relative to the highly diverse Central Himalayan group, while the lineage from the Tibetan Plateau is placed within a more terminal clade. Our data indicate a Tibetan origin of Himalayan Nanorana and support a previous hypothesis, which implies that a significant part of the Himalayan biodiversity results from primary diversification of the species groups in South Tibet before this part of the HTO was uplifted to its recent heights.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Department of Conservation BiologyUFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany
| | | | | | - Georg Miehe
- Faculty of GeographyPhilipps University MarburgMarburgGermany
| | - Jia‐Tang Li
- Department of HerpetologyChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Joachim Schmidt
- Institute of Biosciences, General and Systematic ZoologyUniversity of RostockRostockGermany
| |
Collapse
|
239
|
Chen JH, Huang Y, Brachi B, Yun QZ, Zhang W, Lu W, Li HN, Li WQ, Sun XD, Wang GY, He J, Zhou Z, Chen KY, Ji YH, Shi MM, Sun WG, Yang YP, Zhang RG, Abbott RJ, Sun H. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nat Commun 2019; 10:5230. [PMID: 31745089 PMCID: PMC6864086 DOI: 10.1038/s41467-019-13128-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
The Hengduan Mountains (HDM) biodiversity hotspot exhibits exceptional alpine plant diversity. Here, we investigate factors driving intraspecific divergence within a HDM alpine species Salix brachista (Cushion willow), a common component of subnival assemblages. We produce a high-quality genome assembly for this species and characterize its genetic diversity, population structure and pattern of evolution by resequencing individuals collected across its distribution. We detect population divergence that has been shaped by a landscape of isolated sky island-like habitats displaying strong environmental heterogeneity across elevational gradients, combined with population size fluctuations that have occurred since approximately the late Miocene. These factors are likely important drivers of intraspecific divergence within Cushion willow and possibly other alpine plants with a similar distribution. Since intraspecific divergence is often the first step toward speciation, the same factors can be important contributors to the high alpine species diversity in the HDM.
Collapse
Affiliation(s)
- Jia-Hui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, 650092, Kunming, Yunnan, P. R. China
| | | | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, 100871, Beijing, P.R. China
- School of Life Sciences, Peking University, 100871, Beijing, P.R. China
| | - Wei Lu
- School of Life Sciences, Peking University, 100871, Beijing, P.R. China
| | - Hong-Na Li
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Wen-Qing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Xu-Dong Sun
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Guang-Yan Wang
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Jun He
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Kai-Yun Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Yun-Heng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Ming-Ming Shi
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Wen-Guang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Yong-Ping Yang
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| | - Ren-Gang Zhang
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Richard J Abbott
- School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, UK.
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| |
Collapse
|
240
|
Yan M, Liu R, Li Y, Hipp AL, Deng M, Xiong Y. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol Biol 2019; 19:202. [PMID: 31684859 PMCID: PMC6829957 DOI: 10.1186/s12862-019-1523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the origin of genetic variation is the key to predict how species will respond to future climate change. The genus Quercus is a species-rich and ecologically diverse woody genus that dominates a wide range of forests and woodland communities of the Northern Hemisphere. Quercus thus offers a unique opportunity to investigate how adaptation to environmental changes has shaped the spatial genetic structure of closely related lineages. Furthermore, Quercus provides a deep insight into how tree species will respond to future climate change. This study investigated whether closely related Quercus lineages have similar spatial genetic structures and moreover, what roles have their geographic distribution, ecological tolerance, and historical environmental changes played in the similar or distinct genetic structures. RESULTS Despite their close relationships, the three main oak lineages (Quercus sections Cyclobalanopsis, Ilex, and Quercus) have different spatial genetic patterns and occupy different climatic niches. The lowest level and most homogeneous pattern of genetic diversity was found in section Cyclobalanopsis, which is restricted to warm and humid climates. The highest genetic diversity and strongest geographic genetic structure were found in section Ilex, which is due to their long-term isolation and strong local adaptation. The widespread section Quercus is distributed across the most heterogeneous range of environments; however, it exhibited moderate haplotype diversity. This is likely due to regional extinction during Quaternary climatic fluctuation in Europe and North America. CONCLUSIONS Genetic variations of sections Ilex and Quercus were significantly predicted by geographic and climate variations, while those of section Cyclobalanopsis were poorly predictable by geographic or climatic diversity. Apart from the different historical environmental changes experienced by different sections, variation of their ecological or climatic tolerances and physiological traits induced varying responses to similar environment changes, resulting in distinct spatial genetic patterns.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Ruibin Liu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Li
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- The Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| | - Min Deng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Yanshi Xiong
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
241
|
Zhong L, Barrett SCH, Wang XJ, Wu ZK, Sun HY, Li DZ, Wang H, Zhou W. Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. THE NEW PHYTOLOGIST 2019; 224:1290-1303. [PMID: 31077611 DOI: 10.1111/nph.15905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Evolutionary transitions from outcrossing to selfing often occur in heterostylous plants. Selfing homostyles originate within distylous populations and frequently evolve to become reproductively isolated species. We investigated this process in 10 species of Primula section Obconicolisteri using phylogenomic approaches and inferred how often homostyly originated from distyly and its consequences for population genetic diversity and floral trait evolution. We estimated phylogenetic relationships and reconstructed character evolution using the whole plastome comprised of 76 protein-coding genes. To investigate mating patterns and genetic diversity we screened 15 microsatellite loci in 40 populations. We compared floral traits among distylous and homostylous populations to determine how phenotypically differentiated homostyles were from their distylous ancestors. Section Obconicolisteri was monophyletic and we estimated multiple independent transitions from distyly to homostyly. High selfing rates characterised homostylous populations and this was associated with reduced genetic diversity. Flower size and pollen production were reduced in homostylous populations, but pollen size was significantly larger in some homostyles than in distylous morphs. Repeated transitions to selfing in section Obconicolisteri are likely to have been fostered by the complex montane environments that species occupy. Unsatisfactory pollinator service is likely to have promoted reproductive assurance in homostyles leading to subsequent population divergence through isolation.
Collapse
Affiliation(s)
- Li Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Xin-Jia Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Hua-Ying Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| | - Wei Zhou
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
242
|
Pan T, Wang H, Duan S, Ali I, Yan P, Cai R, Wang M, Zhang J, Zhang H, Zhang B, Wu X. Historical population decline and habitat loss in a critically endangered species, the Chinese alligator (Alligator sinensis). Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
243
|
Xu LS, Herrando-Moraira S, Susanna A, Galbany-Casals M, Chen YS. Phylogeny, origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data. Mol Phylogenet Evol 2019; 141:106613. [PMID: 31525421 DOI: 10.1016/j.ympev.2019.106613] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022]
Abstract
Saussurea is one of the largest genera of the tribe Cardueae of Asteraceae, comprising about 460 species from the Northern Hemisphere with most species distributed in QTPss and adjacent areas. Here, we established a well-supported phylogenetic framework for Saussurea based on whole chloroplast genomes of 136 taxa plus 16 additional taxa of Cardueae using Bayesian inference and Maximum Likelihood. Our phylogenetic results are inconsistent with previous subgeneric classifications of Saussurea. We nearly completely delimited subgen. Eriocoryne, and found that subgen. Theodorea, subgen. Saussurea section Laguranthera and Rosulascentes are closely related to each other. Based on our phylogenetic results, we performed biogeographic analyses and inferred that the genus Saussurea arose during early-middle Miocene within the Hengduan Mountains. We expect that landscape heterogeneity within the QTPss and adjacent areas, such as the Hengduan Mountains, played an important role in the evolution of Saussurea. Following its evolutionary origin, the genus underwent rapid diversification in situs and dispersed northwards in several migrational patterns. Both continuous uplift of the QTPss and adjacent areas as well as global cooling since mid-Miocene probably led to geographic expansion and diffusion of Saussurea, with the latter, in particular, resulting in the northward dispersal.
Collapse
Affiliation(s)
- Lian-Sheng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Spain
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
244
|
Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Rasmussen CMØ, Richardson K, Rosing MT, Whittaker RJ, Fjeldså J. Building mountain biodiversity: Geological and evolutionary processes. Science 2019; 365:1114-1119. [DOI: 10.1126/science.aax0151] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023]
Abstract
Mountain regions are unusually biodiverse, with rich aggregations of small-ranged species that form centers of endemism. Mountains play an array of roles for Earth’s biodiversity and affect neighboring lowlands through biotic interchange, changes in regional climate, and nutrient runoff. The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes. High diversity in most tropical mountains is tightly linked to bedrock geology—notably, areas comprising mafic and ultramafic lithologies, rock types rich in magnesium and poor in phosphate that present special requirements for plant physiology. Mountain biodiversity bears the signature of deep-time evolutionary and ecological processes, a history well worth preserving.
Collapse
|
245
|
Feng C, Tang Y, Liu S, Tian F, Zhang C, Zhao K. Multiple convergent events created a nominal widespread species: Triplophysa stoliczkae (Steindachner, 1866) (Cobitoidea: Nemacheilidae). BMC Evol Biol 2019; 19:177. [PMID: 31484504 PMCID: PMC6724303 DOI: 10.1186/s12862-019-1503-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Triplophysa stoliczkae is the most widespread species in the genus Triplophysa and may have originated from morphological convergence. To understand the evolutionary history of T. stoliczkae, we employed a multilocus approach to investigate the phylogenetics and the morphological evolution of T. stoliczkae on the Qinghai-Tibetan Plateau. RESULTS All phylogenetic analyses (two mitochondrial and five nuclear loci), a genealogical sorting index and species tree inferences suggested that T. stoliczkae consists of distinct lineages that were not closest relatives. The time estimation indicated that the divergence events between "T. stoliczkae" and other Triplophysa species occurred from approximately 0.10 to 4.51 Ma. The ancestral state analyses supported the independent evolution of T. stoliczkae morphology in distinct lineages. The morphometric analysis and convergence estimates demonstrated significant phenotypic convergence among "T. stoliczkae" lineages. CONCLUSIONS Triplophysa stoliczkae includes 4 different lineages with similar morphologies. The increasingly harsh environments that have occurred since the Pliocene have driven the occurrences of scrape-feeding fish in the genus Triplophysa. Morphological adaptations associated with scrape-feeding behavior resulted in convergences and the artificial lumping of four different species in the nominal taxon T. stoliczkae. A taxonomic revision for T. stoliczkae is needed.
Collapse
Affiliation(s)
- Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, and Laboratory of Plateau Fish Evolutionary and Functional Genomics, and Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.
| |
Collapse
|
246
|
Zu K, Luo A, Shrestha N, Liu B, Wang Z, Zhu X. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai-Tibetan Plateau. Ecol Evol 2019; 9:9586-9596. [PMID: 31534677 PMCID: PMC6745871 DOI: 10.1002/ece3.5483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 01/16/2023] Open
Abstract
The mechanisms underlying elevation patterns in species and phylogenetic diversity remain a central issue in ecology and are vital for effective biodiversity conservation in the mountains. Gongga Mountain, located in the southeastern Qinghai-Tibetan Plateau, represents one of the longest elevational gradients (ca. 6,500 m, from ca. 1,000 to 7,556 m) in the world for studying species diversity patterns. However, the elevational gradient and conservation of plant species diversity and phylogenetic diversity in this mountain remain poorly studied. Here, we compiled the elevational distributions of 2,667 native seed plant species occurring in Gongga Mountain, and estimated the species diversity, phylogenetic diversity, species density, and phylogenetic relatedness across ten elevation belts and five vegetation zones. The results indicated that species diversity and phylogenetic diversity of all seed plants showed a hump-shaped pattern, peaking at 1,800-2,200 m. Species diversity was significantly correlated with phylogenetic diversity and species density. The floras in temperate coniferous broad-leaved mixed forests, subalpine coniferous forests, and alpine shrublands and meadows were significantly phylogenetically clustered, whereas the floras in evergreen broad-leaved forests had phylogenetically random structure. Both climate and human pressure had strong correlation with species diversity, phylogenetic diversity, and phylogenetic structure of seed plants. Our results suggest that the evergreen broad-leaved forests and coniferous broad-leaved mixed forests at low to mid elevations deserve more conservation efforts. This study improves our understanding on the elevational gradients of species and phylogenetic diversity and their determinants and provides support for improvement of seed plant conservation in Gongga Mountain.
Collapse
Affiliation(s)
- Kuiling Zu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ao Luo
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
| | - Nawal Shrestha
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
| | - Bo Liu
- Minzu University of ChinaBeijingChina
| | - Zhiheng Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of EducationPeking UniversityBeijingChina
| | - Xiangyun Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Southeast Asia Biodiversity Research InstituteChinese Academy of SciencesNay Pyi TawMyanmar
| |
Collapse
|
247
|
Rüber L, Tan HH, Britz R. Snakehead (Teleostei: Channidae) diversity and the Eastern Himalaya biodiversity hotspot. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lukas Rüber
- Naturhistorisches Museum Bern Bern Switzerland
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum National University of Singapore Singapore Singapore
| | - Ralf Britz
- Department of Life Sciences The Natural History Museum London UK
| |
Collapse
|
248
|
Distinctiveness, speciation and demographic history of the rare endemic conifer Juniperus erectopatens in the eastern Qinghai-Tibet Plateau. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01211-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
249
|
Azani N, Bruneau A, Wojciechowski MF, Zarre S. Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilionoideae). Mol Phylogenet Evol 2019; 137:210-221. [DOI: 10.1016/j.ympev.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
250
|
Liu ML, He YL, López-Pujol J, Jia Y, Li ZH. Complex population evolutionary history of four cold-tolerant Notopterygium herb species in the Qinghai-Tibetan Plateau and adjacent areas. Heredity (Edinb) 2019; 123:242-263. [PMID: 30742051 PMCID: PMC6781143 DOI: 10.1038/s41437-019-0186-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023] Open
Abstract
Historical geological and climatic events are the most important drivers of population expansions/contractions, range shifts, and interspecific divergence in plants. However, the species divergence and spatiotemporal population dynamics of alpine cold-tolerant herbal plants in the high-altitude Qinghai-Tibetan Plateau (QTP) and adjacent areas remain poorly understood. In this study, we investigated population evolutionary history of four endangered Notopterygium herb species in the QTP and adjacent regions. We sequenced 10 nuclear loci, 2 mitochondrial DNA regions, and 4 chloroplast DNA regions in a total of 72 natural populations from the 4 species, and tested the hypothesis that the population history of these alpine herbs was markedly affected by the Miocene-Pliocene QTP uplifts and Quaternary climatic oscillations. We found that the four Notopterygium species had generally low levels of nucleotide variability within populations. Molecular dating and isolation-with-migration analyses suggested that Notopterygium species diverged ~1.74-7.82 million years ago and their differentiation was significantly associated with recent uplifts of the eastern margin of the QTP. In addition, ecological niche modeling and population history analysis showed that N. incisum and N. franchetii underwent considerable demographic expansions during the last glacial period of the Pleistocene, whereas a demographic contraction and a expansion occurred for N. forrestii and N. oviforme during the antepenultimate interglacial period and penultimate glacial period, respectively. These findings highlight the importance of geological and climatic changes during the Miocene-Pliocene and Pleistocene as causes of species divergence and changes in population structure within cold-tolerant herbs in the QTP biodiversity hotspot.
Collapse
Affiliation(s)
- Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan-Ling He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Barcelona, 08038, Spain
| | - Yun Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|