201
|
Ghaly TM, Geoghegan JL, Alroy J, Gillings MR. High diversity and rapid spatial turnover of integron gene cassettes in soil. Environ Microbiol 2019; 21:1567-1574. [PMID: 30724441 DOI: 10.1111/1462-2920.14551] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 12/01/2022]
Abstract
Integrons are genetic elements that promote rapid adaptation in bacteria by capturing exogenous, mobile gene cassettes. Recently, a subset of gene cassettes has facilitated the global spread of antibiotic resistance. However, outside clinical settings, very little is known about their diversity and spatial ecology. To address this question, we sequenced integron gene cassettes from soils sampled across Australia and Antarctica. We recovered 44 970 open reading frames that encoded 27 215 unique proteins, representing an order of magnitude more cassettes than previous sequencing efforts. We found that cassettes have extremely high local richness, significantly greater than previously predicted, with estimates ranging from 4000 to 18 000 unique cassettes per 0.3 g of soil. We show that cassettes have a heterogeneous distribution across space, and that they exhibit rapid turnover with distance. Similarity between samples drops to between 0.1% and 10% at distances of as little as 100 m. Together, these data provide key insights into the ecology and size of the gene cassette metagenome.
Collapse
Affiliation(s)
- Timothy M Ghaly
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jemma L Geoghegan
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - John Alroy
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael R Gillings
- Department of Biological Science, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
202
|
Arnott A, Wang Q, Bachmann N, Sadsad R, Biswas C, Sotomayor C, Howard P, Rockett R, Wiklendt A, Iredell JR, Sintchenko V. Multidrug-Resistant Salmonella enterica 4,[5],12:i:- Sequence Type 34, New South Wales, Australia, 2016-2017. Emerg Infect Dis 2019; 24:751-753. [PMID: 29553318 PMCID: PMC5875280 DOI: 10.3201/eid2404.171619] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Multidrug- and colistin-resistant Salmonella enterica serotype 4,[5],12:i:- sequence type 34 is present in Europe and Asia. Using genomic surveillance, we determined that this sequence type is also endemic to Australia. Our findings highlight the public health benefits of genome sequencing–guided surveillance for monitoring the spread of multidrug-resistant mobile genes and isolates.
Collapse
|
203
|
Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol 2019; 94:4689093. [PMID: 29228229 PMCID: PMC5812508 DOI: 10.1093/femsec/fix172] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently, we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five diverse Pseudomonas species in environments with and without mercury selection. Plasmid fitness effects and stability varied extensively between host species and environments, as did the propensity for chromosomal capture of the Tn5042 mercury resistance transposon associated with loss of the plasmid. Whereas Pseudomonas fluorescens and Pseudomonas savastanoi stably maintained the plasmid in both environments, the plasmid was highly unstable in Pseudomonas aeruginosa and Pseudomonas putida, where plasmid-free genotypes with Tn5042 captured to the chromosome invaded to higher frequency under mercury selection. These data confirm that plasmid stability is dependent upon the specific genetic interaction of the plasmid and host chromosome rather than being a property of plasmids alone, and moreover imply that MGE dynamics in diverse natural communities are likely to be complex and driven by a subset of species capable of stably maintaining plasmids that would then act as hubs of HGT.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Corresponding author: Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. Tel: +44 (0)1142220051; E-mail:
| |
Collapse
|
204
|
Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M, Darling AE, Chapman TA, Djordjevic SP. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2019; 3. [PMID: 29306352 PMCID: PMC5761274 DOI: 10.1099/mgen.0.000143] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.
Collapse
Affiliation(s)
- Cameron J Reid
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ethan R Wyrsch
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiziana Zingali
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Liu
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Aaron E Darling
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toni A Chapman
- 2NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Steven P Djordjevic
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
205
|
Roh HJ, Kim BS, Kim A, Kim NE, Lee Y, Chun WK, Ho TD, Kim DH. Whole-genome analysis of multi-drug-resistant Aeromonas veronii isolated from diseased discus (Symphysodon discus) imported to Korea. JOURNAL OF FISH DISEASES 2019; 42:147-153. [PMID: 30350465 DOI: 10.1111/jfd.12908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Heyong Jin Roh
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Bo-Seong Kim
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Ahran Kim
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Nam Eun Kim
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Yoonhang Lee
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Won-Kyong Chun
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Tho Diem Ho
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| | - Do-Hyung Kim
- Department of Aquatic life medicine, Pukyong National University, Busan, Korea
| |
Collapse
|
206
|
Bie L, Fang M, Li Z, Wang M, Xu H. Identification and Characterization of New Resistance-Conferring SGI1s ( Salmonella Genomic Island 1) in Proteus mirabilis. Front Microbiol 2018; 9:3172. [PMID: 30619228 PMCID: PMC6305713 DOI: 10.3389/fmicb.2018.03172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacEΔ1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria.
Collapse
Affiliation(s)
- Luyao Bie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhiqiang Li
- Advanced Research Center for Optics, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
207
|
Zhu D, Chen QL, Li H, Yang XR, Christie P, Ke X, Zhu YG. Land Use Influences Antibiotic Resistance in the Microbiome of Soil Collembolans Orchesellides sinensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14088-14098. [PMID: 30481457 DOI: 10.1021/acs.est.8b05116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous studies have investigated the composition and diversity of antibiotic resistance genes (ARGs) in multiple environments but the pattern of ARGs in field-collected soil fauna remains poorly understood. In the present study soil collembolans were collected from six sites with three different land use types (parkway land, park land, and arable land) and 285 ARGs and 10 mobile genetic elements (MGEs) in the microbiome of these "wild" collembolans were quantified by high-throughput quantitative PCR. A total of 76 unique ARGs and 5 MGEs were detected. There were significant differences between collection sites in the antibiotic resistome in the collembolans. Land use significantly altered the distribution patterns of collembolan ARGs. Thirty shared ARGs and three shared MGEs were identified. The co-occurrences of shared resistomes were largely random, and more positive relationships were found in the coassociation network. Partial redundancy analysis confirms that the changes in bacterial communities explained 27.77% of the variation in ARGs. These findings suggest that resistance genes are pervasive in the microbiome associated with the field collembolan and the activity of the collembolans may contribute to the spread and dissemination of resistance genes in the environment, an aspect of ARGs that has until now been largely overlooked.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Hu Li
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
| | - Peter Christie
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institute of Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment, Chinese Academy of Sciences , 1799 Jimei Road , Xiamen 361021 , China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
208
|
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. THE ISME JOURNAL 2018; 12:3014-3024. [PMID: 30097663 PMCID: PMC6246594 DOI: 10.1038/s41396-018-0224-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Horizontal gene transfer (HGT) mediated by the spread of plasmids fuels evolution in prokaryotes. Although plasmids provide bacteria with new adaptive genes, they also produce physiological alterations that often translate into a reduction in bacterial fitness. The fitness costs associated with plasmids represent an important limit to plasmid maintenance in bacterial communities, but their molecular origins remain largely unknown. In this work, we combine phenomics, transcriptomics and metabolomics to study the fitness effects produced by a collection of diverse plasmids in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Using this approach, we scan the physiological changes imposed by plasmids and test the generality of some main mechanisms that have been proposed to explain the cost of HGT, including increased biosynthetic burden, reduced translational efficiency, and impaired chromosomal replication. Our results suggest that the fitness effects of plasmids have a complex origin, since none of these mechanisms could individually provide a general explanation for the cost of plasmid carriage. Interestingly, our results also showed that plasmids alter the expression of a common set of metabolic genes in PAO1, and produce convergent changes in host cell metabolism. These surprising results suggest that there is a common metabolic response to plasmids in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Network Research Centre for Epidemiology and Public Health (CIBERESP), 28034, Madrid, Spain.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Qin Qi
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
209
|
Zhou ZC, Feng WQ, Han Y, Zheng J, Chen T, Wei YY, Gillings M, Zhu YG, Chen H. Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. ENVIRONMENT INTERNATIONAL 2018; 121:1155-1161. [PMID: 30420129 DOI: 10.1016/j.envint.2018.10.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Qiu Feng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Han
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Zheng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Yuan Wei
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
210
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
211
|
Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS One 2018; 13:e0208269. [PMID: 30496274 PMCID: PMC6264143 DOI: 10.1371/journal.pone.0208269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x106 and 1.2x108 for sul1, 1.1x107 and 1x108 for sul2, and 5.3x105 and 1.9x107 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10-3 to 10-1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRI-resistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1|dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Therese Helbig
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Biology/Microbiology Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Instrumental & Environmental Technology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Franziska Reincke
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
212
|
Antibiotic-resistant indicator bacteria in irrigation water: High prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. PLoS One 2018; 13:e0207857. [PMID: 30475879 PMCID: PMC6258136 DOI: 10.1371/journal.pone.0207857] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022] Open
Abstract
Irrigation water is a major source of fresh produce contamination with undesired microorganisms including antibiotic-resistant bacteria (ARB), and contaminated fresh produce can transfer ARB to the consumer especially when consumed raw. Nevertheless, no legal guidelines exist so far regulating quality of irrigation water with respect to ARB. We therefore examined irrigation water from major vegetable growing areas for occurrence of antibiotic-resistant indicator bacteria Escherichia coli and Enterococcus spp., including extended-spectrum β-lactamase (ESBL)-producing E. coli and vancomycin-resistant Enterococcus spp. Occurrence of ARB strains was compared to total numbers of the respective species. We categorized water samples according to total numbers and found that categories with higher total E. coli or Enterococcus spp. numbers generally had an increased proportion of respective ARB-positive samples. We further detected high prevalence of ESBL-producing E. coli with eight positive samples of thirty-six (22%), while two presumptive vancomycin-resistant Enterococcus spp. were vancomycin-susceptible in confirmatory tests. In disk diffusion assays all ESBL-producing E. coli were multidrug-resistant (n = 21) and whole-genome sequencing of selected strains revealed a multitude of transmissible resistance genes (ARG), with blaCTX-M-1 (4 of 11) and blaCTX-M-15 (3 of 11) as the most frequent ESBL genes. Overall, the increased occurrence of indicator ARB with increased total indicator bacteria suggests that the latter might be a suitable estimate for presence of respective ARB strains. Finally, the high prevalence of ESBL-producing E. coli with transmissible ARG emphasizes the need to establish legal critical values and monitoring guidelines for ARB in irrigation water.
Collapse
|
213
|
Guo XP, Liu X, Niu ZS, Lu DP, Zhao S, Sun XL, Wu JY, Chen YR, Tou FY, Hou L, Liu M, Yang Y. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:576-584. [PMID: 30014935 DOI: 10.1016/j.envpol.2018.06.099] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/26/2023]
Abstract
Antibiotics resistance genes (ARGs) are considered as an emerging pollutant among various environments. As a sink of ARGs, a comprehensive study on the spatial and temporal distribution of ARGs in the estuarine sediments is needed. In the present study, six ARGs were determined in sediments taken along the Yangtze Estuary temporally and spatially. The sulfonamides, tetracyclines and fluoroquinolones resistance genes including sul1, sul2, tetA, tetW, aac(6')-Ib, and qnrS, were ubiquitous, and the average abundances of most ARGs showed significant seasonal differences, with relative low abundances in winter and high abundances in summer. Moreover, the relative high abundances of ARGs were found at Shidongkou (SDK) and Wusongkou (WSK), which indicated that the effluents from the wastewater treatment plant upstream and inland river discharge could influence the abundance of ARGs in sediments. The positive correlation between intI1 and sul1 implied intI1 may be related to the occurrence and propagation of sulfonamides resistance genes. Correlation analysis and redundancy discriminant analysis showed that antibiotic concentrations had no significant correlation to their corresponding ARGs, while the total extractable metal, especially the bioavailable metals, as well as other environmental factors including temperature, clay, total organic carbon and total nitrogen, could regulate the occurrence and distribution of ARGs temporally and spatially. Our findings suggested the comprehensive effects of multiple pressures on the distribution of ARGs in the sediments, providing new insight into the distribution and dissemination of ARGs in estuarine sediments, spatially and temporally.
Collapse
Affiliation(s)
- Xing-Pan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Da-Pei Lu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Sai Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao-Li Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia-Yuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yu-Ru Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
214
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1345] [Impact Index Per Article: 192.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
215
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
216
|
López-García A, Rocha-Gracia RDC, Bello-López E, Juárez-Zelocualtecalt C, Sáenz Y, Castañeda-Lucio M, López-Pliego L, González-Vázquez MC, Torres C, Ayala-Nuñez T, Jiménez-Flores G, Arenas-Hernández MMDLP, Lozano-Zarain P. Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infect Drug Resist 2018; 11:1523-1536. [PMID: 30288063 PMCID: PMC6160278 DOI: 10.2147/idr.s173455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Pseudomonas aeruginosa infections in hospitals constitute an important problem due to the increasing multidrug resistance (MDR) and carbapenems resistance. The knowledge of resistance mechanisms in Pseudomonas strains is an important issue for an adequate antimicrobial treatment. Therefore, the objective was to investigate other antimicrobial resistance mechanisms in MDR P. aeruginosa strains carrying blaIMP, make a partial plasmids characterization, and determine if modifications in oprD gene affect the expression of the OprD protein. Methodology Susceptibility testing was performed by Kirby Baüer and by Minimum Inhibitory Concentration (presence/absence of efflux pump inhibitor); molecular typing by Pulsed-field gel electrophoresis (PFGE), resistance genotyping and integrons by PCR and sequencing; OprD expression by Western blot; plasmid characterization by MOB Typing Technique, molecular size by PFGE-S1; and blaIMP location by Southern blot. Results Among the 59 studied P. aeruginosa isolates, 41 multidrug resistance and carbapenems resistance isolates were detected and classified in 38 different PFGE patterns. Thirteen strains carried blaIMP; 16 blaGES and four carried both genes. This study centered on the 17 strains har-boring blaIMP. New variants of β-lactamases were identified (blaGES-32, blaIMP-56, blaIMP-62) inside of new arrangements of class 1 integrons. The presence of blaIMP gene was detected in two plasmids in the same strain. The participation of the OprD protein and efflux pumps in the resistance to carbapenems and quinolones is shown. No expression of the porin OprD due to stop codon or IS in the gene was found. Conclusions This study shows the participation of different resistance mechanisms, which are reflected in the levels of MIC to carbapenems. This is the first report of the presence of three new variants of β-lactamases inside of new arrangements of class 1 integrons, as well as the presence of two plasmids carrying blaIMP in the same P. aeruginosa strain isolated in a Mexican hospital.
Collapse
Affiliation(s)
- Alma López-García
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Rosa Del Carmen Rocha-Gracia
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Elena Bello-López
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Claudia Juárez-Zelocualtecalt
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Yolanda Sáenz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Miguel Castañeda-Lucio
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Liliana López-Pliego
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - María Cristina González-Vázquez
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Carmen Torres
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Teolincacihuatl Ayala-Nuñez
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Guadalupe Jiménez-Flores
- Laboratorio de Análisis Clínicos, Sección de Microbiología, Hospital Regional Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Puebla, Mexico
| | - Margarita María de la Paz Arenas-Hernández
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| | - Patricia Lozano-Zarain
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Complejo de Ciencias, Ciudad Universitaria. Col San Manuel CP, Puebla, Mexico, ;
| |
Collapse
|
217
|
Cai Q, Hu J. Effect of UVA/LED/TiO 2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. WATER RESEARCH 2018; 140:251-260. [PMID: 29723814 DOI: 10.1016/j.watres.2018.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Controlling of antibiotics is the crucial step for preventing antibiotic resistance genes (ARGs) dissemination; UV photocatalysis has been identified as a promising pre-treatment technology for antibiotics removal. However, information about the effects of intermediates present in the treated antibiotics wastewater on the downstream biological treatment processes or ARGs development is very limited. In the present study, continuous UVA/LED/TiO2 photocatalysis removed more than 90% of 100 ppb sulfamethoxazole (SMX)/trimethoprim (TMP), the treated wastewater was fed into SBR systems for over one year monitoring. Residual SMX/TMP (2-3 ppb) and intermediates present in the treated wastewater did not adversely affect SBR performance in terms of TOC and TN removal. SMX and TMP resistance genes (sulI, sulII, sulIII, dfrII, dfrV and dfr13) were also quantified in SBRs microbial consortia. Results suggested that continuous feeding of treated SMX/TMP containing wastewaters did not trigger any ARGs promotion during the one year operation. By stopping the input of 100 ppb SMX/TMP, abundance of sulII and dfrV genes were reduced by 83% and 100%, respectively. sulI gene was identified as the most persistence ARG, and controlling of 100 ppb SMX input did not achieve significant removal of sulI gene. A significant correlation between sulI gene and class 1 integrons was found at the level of p = 1.4E-10 (r = 0.94), and sulII gene positively correlated with the plasmid transfer efficiency (r = 2.442E-10, r = 0.87). Continuous input of 100 ppb SMX enhanced plasmid transfer efficiency in the SBR system, resulting in sulII gene abundance increasing more than 40 times.
Collapse
Affiliation(s)
- Qinqing Cai
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
218
|
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063-1073. [PMID: 30127495 PMCID: PMC6787116 DOI: 10.1038/s41564-018-0217-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
The dynamics of antimicrobial resistance (AMR) in developing countries are poorly understood, especially in community settings, due to a sparsity of data on AMR prevalence and genetics. We used a combination of phenotyping, genomics and antimicrobial usage data to investigate patterns of AMR amongst atypical enteropathogenic Escherichia coli (aEPEC) strains isolated from children younger than five years old in seven developing countries (four in sub-Saharan Africa and three in South Asia) over a three-year period. We detected high rates of AMR, with 65% of isolates displaying resistance to three or more drug classes. Whole-genome sequencing revealed a diversity of known genetic mechanisms for AMR that accounted for >95% of phenotypic resistance, with comparable rates amongst aEPEC strains associated with diarrhoea or asymptomatic carriage. Genetic determinants of AMR were associated with the geographic location of isolates, not E. coli lineage, and AMR genes were frequently co-located, potentially enabling the acquisition of multi-drug resistance in a single step. Comparison of AMR with antimicrobial usage data showed that the prevalence of resistance to fluoroquinolones and third-generation cephalosporins was correlated with usage, which was higher in South Asia than in Africa. This study provides much-needed insights into the frequency and mechanisms of AMR in intestinal E. coli in children living in community settings in developing countries.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myron M Levine
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen L Kotloff
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Roy M Robins-Browne
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
219
|
Jong MC, Su JQ, Bunce JT, Harwood CR, Snape JR, Zhu YG, Graham DW. Co-optimization of sponge-core bioreactors for removing total nitrogen and antibiotic resistance genes from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1417-1423. [PMID: 29710641 DOI: 10.1016/j.scitotenv.2018.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Inadequate sanitation can lead to the spread of infectious diseases and antimicrobial resistance (AMR) via contaminated water. Unfortunately, wastewater treatment is not universal in many developing and emerging countries, especially in rural and peri-urban locations that are remote from central sewers. As such, small-scale, more sustainable treatment options are needed, such as aerobic-Denitrifying Downflow Hanging Sponge (DDHS) bioreactors. In this study, DDHS reactors were assessed for such applications, and achieved over 79% and 84% removal of Chemical Oxygen Demand and Ammonium, respectively, and up to 71% removal of Total Nitrogen (TN) from domestic wastes. Elevated TN removals were achieved via bypassing a fraction of raw wastewater around the top layer of the DDHS system to promote denitrification. However, it was not known how this bypass impacts AMR gene (ARG) and mobile genetic element (MGE) levels in treated effluents. High-throughput qPCR was used to quantify ARG and MGE levels in DDHS bioreactors as a function of percent bypass (0, 10, 20 and 30% by volume). All systems obtained over 90% ARG reduction, although effluent ARG and TN levels differed among bypass regimes, with co-optimal reductions occurring at ~20% bypass. ARG removal paralleled bacterial removal rate, although effluent bacteria tended to have greater genetic plasticity based on higher apparent MGE levels per cell. Overall, TN removal increased and ARG removal decreased with increasing bypass, therefore co-optimization is needed in each DDHS application to achieve locally targeted TN and AMR effluent levels.
Collapse
Affiliation(s)
- Mui-Choo Jong
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Joshua T Bunce
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Colin R Harwood
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jason R Snape
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK; AstraZeneca UK Limited, Global Environment, Alderley Park, UK; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
220
|
Guo Y, Liu M, Liu L, Liu X, Chen H, Yang J. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. ENVIRONMENT INTERNATIONAL 2018; 117:107-115. [PMID: 29734061 DOI: 10.1016/j.envint.2018.04.045] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/26/2023]
Abstract
In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom event than PA bacteria. Therefore, we emphasized the bacterial lifestyles as an important mechanism, giving rise to different responses of antibiotic resistant community to the cyanobacterial bloom.
Collapse
Affiliation(s)
- Yunyan Guo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
221
|
De la Cruz Barrón M, Merlin C, Guilloteau H, Montargès-Pelletier E, Bellanger X. Suspended Materials in River Waters Differentially Enrich Class 1 Integron- and IncP-1 Plasmid-Carrying Bacteria in Sediments. Front Microbiol 2018; 9:1443. [PMID: 30013540 PMCID: PMC6036612 DOI: 10.3389/fmicb.2018.01443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Aquatic ecosystems are frequently considered as the final receiving environments of anthropogenic pollutants such as pharmaceutical residues or antibiotic resistant bacteria, and as a consequence tend to form reservoirs of antibiotic resistance genes. Considering the global threat posed by the antibiotic resistance, the mechanisms involved in both the formation of such reservoirs and their remobilization are a concern of prime importance. Antibiotic resistance genes are strongly associated with mobile genetic elements that are directly involved in their dissemination. Most mobile genetic element-mediated gene transfers involve replicative mechanisms and, as such, localized gene transfers should participate in the local increase in resistance gene abundance. Additionally, the carriage of conjugative mobile elements encoding cell appendages acting as adhesins has already been demonstrated to increase biofilm-forming capability of bacteria and, therefore, should also contribute to their selective enrichment on surfaces. In the present study, we investigated the occurrence of two families of mobile genetic elements, IncP-1 plasmids and class 1 integrons, in the water column and bank sediments of the Orne River, in France. We show that these mobile elements, especially IncP-1 plasmids, are enriched in the bacteria attached on the suspended matters in the river waters, and that a similar abundance is found in freshly deposited sediments. Using the IncP-1 plasmid pB10 as a model, in vitro experiments demonstrated that local enrichment of plasmid-bearing bacteria on artificial surfaces mainly resulted from an increase in bacterial adhesion properties conferred by the plasmid rather than an improved dissemination frequency of the plasmid between surface-attached bacteria. We propose plasmid-mediated adhesion to particles to be one of the main contributors in the formation of mobile genetic element-reservoirs in sediments, with adhesion to suspended matter working as a selective enrichment process of antibiotic resistant genes and bacteria.
Collapse
|
222
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
223
|
Yang Y, Shi W, Lu SY, Liu J, Liang H, Yang Y, Duan G, Li Y, Wang H, Zhang A. Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:835-841. [PMID: 29396344 DOI: 10.1016/j.scitotenv.2018.01.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 05/04/2023]
Abstract
To better understand the role that bacteriophages play in antibiotic resistance genes (ARGs) dissemination in the aquatic environment, 36 water samples were collected from the Funan River in Sichuan, China. The occurrence of 15 clinically relevant ARGs and one class 1 integron gene int1 in phage-particle DNA were evaluated by PCR. The abundance of ARGs (blaCTX-M, sul1, and aac-(6')-1b-cr) was determined by quantitative PCR (qPCR). High prevalence of the int1 gene (66.7%) was found in the phage-particle DNA of tested samples, followed by sul1 (41.7%), sul2 (33.3%), blaCTX-M (33.3%), aac-(6')-lb-cr (25%), aph(3')-IIIa (16.7%), and ermF (8.3%). The qPCR data showed higher gene copy (GC) numbers in samples collected near a hospital (site 7) and a wastewater treatment plant (WWTP) (site 10) (P < .05). Particularly the absolute abundance of aac-(6')-lb-cr gene was significantly higher than the blaCTX-M and sul1 genes with the gene copy (GC) numbers of 5.73 log10 copy/mL for site 7 and 4.99 log10 copy/mL for site 10. To our best knowledge, this is the first study to report the presence of sul2, aac-(6')-lb-cr, ermF and aph(3')-IIIa genes in bacteriophage DNA derived from aquatic environments. Our findings highlight the potential of ARGs to be transmitted via bacteriophages in the aquatic environment.
Collapse
Affiliation(s)
- Yanxian Yang
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Wenjin Shi
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Shao-Yeh Lu
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Jinxin Liu
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Huihui Liang
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Yifan Yang
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Guowei Duan
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Yunxia Li
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China
| | - Anyun Zhang
- College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, PR China.
| |
Collapse
|
224
|
Hu H, Wang J, Singh BK, Liu Y, Chen Y, Zhang Y, He J. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol 2018; 20:3186-3200. [DOI: 10.1111/1462-2920.14248] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Hang‐Wei Hu
- State Key Laboratory of Urban and Regional EcologyResearch Centre for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkville Victoria 3010 Australia
| | - Jun‐Tao Wang
- State Key Laboratory of Urban and Regional EcologyResearch Centre for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
| | - Brajesh K. Singh
- Hawkersbury Institute for the EnvironmentWestern Sydney UniversityPenrith South DC NSW 2751 Australia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrith South DC NSW 2751 Australia
| | - Yu‐Rong Liu
- State Key Laboratory of Urban and Regional EcologyResearch Centre for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
| | - Yong‐Liang Chen
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botany, Chinese Academy of SciencesBeijing 100093 China
| | - Yu‐Jing Zhang
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkville Victoria 3010 Australia
| | - Ji‐Zheng He
- State Key Laboratory of Urban and Regional EcologyResearch Centre for Eco‐Environmental Sciences, Chinese Academy of SciencesBeijing 100085 China
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkville Victoria 3010 Australia
| |
Collapse
|
225
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK
| |
Collapse
|
226
|
Comparative ecology of Escherichia coli in endangered Australian sea lion (Neophoca cinerea) pups. INFECTION GENETICS AND EVOLUTION 2018; 62:262-269. [PMID: 29730275 DOI: 10.1016/j.meegid.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The dissemination of human-associated bacteria into the marine environment has the potential to expose wildlife populations to atypical microbes that can alter the composition of the gut microbiome or act as pathogens. The objective of the study was to determine whether endangered Australian sea lion (Neophoca cinerea) pups from two South Australian colonies, Seal Bay, Kangaroo Island and Dangerous Reef, Spencer Gulf, have been colonised by human-associated Escherichia coli. Faecal samples (n = 111) were collected to isolate E. coli, and molecular screening was applied to assign E. coli isolates (n = 94) to phylotypes and detect class 1 integrons; mobile genetic elements that confer resistance to antimicrobial agents. E. coli phylotype distribution and frequency differed significantly between colonies with phylotypes B2 and D being the most abundant at Seal Bay, Kangaroo Island (55% and 7%) and Dangerous Reef, Spencer Gulf (36% and 49%), respectively. This study reports the first case of antimicrobial resistant E. coli in free-ranging Australian sea lions through the identification of class 1 integrons from an individual pup at Seal Bay. A significant relationship between phylotype and total white cell count (WCC) was identified, with significantly higher WCC seen in pups with human-associated phylotypes at Dangerous Reef. The difference in phylotype distribution and presence of human-associated E. coli suggests that proximity to human populations can influence sea lion gut microbiota. The identification of antimicrobial resistance in a free-ranging pinniped population provides crucial information concerning anthropogenic influences in the marine environment.
Collapse
|
227
|
Uyaguari-Díaz MI, Croxen MA, Luo Z, Cronin KI, Chan M, Baticados WN, Nesbitt MJ, Li S, Miller KM, Dooley D, Hsiao W, Isaac-Renton JL, Tang P, Prystajecky N. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. Front Microbiol 2018; 9:852. [PMID: 29765365 PMCID: PMC5938356 DOI: 10.3389/fmicb.2018.00852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/13/2018] [Indexed: 01/08/2023] Open
Abstract
The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations.
Collapse
Affiliation(s)
- Miguel I Uyaguari-Díaz
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Matthew A Croxen
- Provincial Laboratory for Public Health, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiyao Luo
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Kirby I Cronin
- Laboratory Services, Public Health Ontario, Toronto, ON, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael Chan
- BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Waren N Baticados
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Shaorong Li
- Pacific Biological Station, Nanaimo, BC, Canada
| | | | - Damion Dooley
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - William Hsiao
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Judith L Isaac-Renton
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - Natalie Prystajecky
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| |
Collapse
|
228
|
Integrase-Mediated Recombination of the bel-1 Gene Cassette Encoding the Extended-Spectrum β-Lactamase BEL-1. Antimicrob Agents Chemother 2018; 62:AAC.00030-18. [PMID: 29483118 DOI: 10.1128/aac.00030-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic elements that can acquire and rearrange gene cassettes. The blaBEL-1 gene encodes an extended-spectrum β-lactamase, BEL-1, that is present at the second position of the variable region of class 1 integrons identified in Pseudomonas aeruginosa The mobility of the bel-1 gene cassette was analyzed under physiological conditions and with the integrase gene being overexpressed. Cassette mobility in Escherichia coli was detected by excision/integration into the recipient integron In3 on the conjugative plasmid R388 with the overproduced integrase. Despite several antibiotic pressures, the bel-1 cassette remained at the second position in the integron, highlighting its stability in P. aeruginosa Overexpression of the integrase gene in E. coli induced bel-1 cassette recombination. However, cassettes containing two genes (blaBEL-1 and smr2 or blaBEL-1 and aacA4) were excised, suggesting that the bel-1 cassette attC site was defective. We show that bel-1 is a stable gene cassette under physiological growth conditions, irrespective of the selective antibiotic pressure, that may be mobilized upon overexpression of the integrase gene.
Collapse
|
229
|
Wu J, Huang Y, Rao D, Zhang Y, Yang K. Evidence for Environmental Dissemination of Antibiotic Resistance Mediated by Wild Birds. Front Microbiol 2018; 9:745. [PMID: 29731740 PMCID: PMC5921526 DOI: 10.3389/fmicb.2018.00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
The aquatic bird, egret, could carry antibiotic resistance (AR) from a contaminated waterway (Jin River, Chengdu, China) into the surrounding environment (Wangjianglou Park). A systematic study was carried out on the unique environmental dissemination mode of AR mediated by birds. The minimum inhibitory concentrations of various antibiotics against the environmental Escherichia coli isolates were used to evaluate the bacterial AR at the environmental locations where these isolates were recovered, i.e., the Jin River water, the egret feces, the park soil, and the campus soil. The level of AR in the park soil was significantly higher than that in the campus soil that was seldom affected by the egrets, which suggested that the egrets mediated the transportation of AR from the polluted waterway to the park. Genotyping of the resistant E. coli isolates via repetitive-element PCR gave no strong correlation between the genotypes and the AR patterns of the bacteria. So, the transfer of resistant strains should not be the main mode of AR transportation in this process. The results of real-time PCR revealed that the abundance of antibiotic resistance genes (ARGs) and mobile genetic element (MGE) sequences (transposase and integrase genes) declined along the putative transportation route. The transportation of ARGs could be due to their linkage with MGE sequences, and horizontal gene transfer should have contributed to the process. The movable colistin-resistance gene mcr-1 was detected among the colistin-resistant E. coli strains isolated from the river water and the egret feces, which indicated the possibility of the environmental dissemination of this gene. Birds, especially the migratory birds, for the role they played on the dissemination of environmental AR, should be considered when studying the ecology of AR.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ye Huang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dawei Rao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
230
|
Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Appl Environ Microbiol 2018; 84:AEM.02766-17. [PMID: 29475864 DOI: 10.1128/aem.02766-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.
Collapse
|
231
|
Laquaz M, Dagot C, Bazin C, Bastide T, Gaschet M, Ploy MC, Perrodin Y. Ecotoxicity and antibiotic resistance of a mixture of hospital and urban sewage in a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9243-9253. [PMID: 28875281 DOI: 10.1007/s11356-017-9957-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/11/2017] [Indexed: 05/07/2023]
Abstract
Hospital and urban effluents are a source of diverse pollutants such as organic compounds, heavy metals, detergents, disinfectants, pharmaceuticals, and microorganisms resistant to antibiotics. Usually, these two types of effluent are mixed in the sewage network, but a pilot site in France now allows studying them separately or mixed to understand more about their characteristics and the phenomena that occur following their mixing. In this study, their ecotoxicity (Daphnia magna mobility, Pseudokirchneriella subcapitata growth, Brachionus calyciflorus reproduction, and SOS Chromotest) and antibiotic resistance (integron quantification) were assessed during mixing and treatment steps. The main results of this study are (i) the ecotoxicity and antibiotic resistance potentials of hospital wastewater are higher than in urban wastewater and (ii) mixing two different effluents does not lead to global synergistic or antagonistic effects on ecotoxicity and antibiotic resistance potential. The global additivity effect observed in this case must be confirmed by other studies on hospital and urban effluents on other sites to improve knowledge relating to this source of pollution and its management.
Collapse
Affiliation(s)
- Marine Laquaz
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518, Vaulx-en-Velin, France.
| | - Christophe Dagot
- Université of Limoges, UMR INSERM 1092, 2 rue du Dr Marcland, 87025, Limoges Cedex, France
| | - Christine Bazin
- INSAVALOR-PROVADEMS, 20 Avenue Albert Einstein, 69621, Villeurbanne, France
| | - Thérèse Bastide
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518, Vaulx-en-Velin, France
| | - Margaux Gaschet
- Université of Limoges, UMR INSERM 1092, 2 rue du Dr Marcland, 87025, Limoges Cedex, France
| | - Marie-Cécile Ploy
- Université of Limoges, UMR INSERM 1092, 2 rue du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Perrodin
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 Rue Maurice Audin, 69518, Vaulx-en-Velin, France
| |
Collapse
|
232
|
Xiang Q, Chen QL, Zhu D, An XL, Yang XR, Su JQ, Qiao M, Zhu YG. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:525-533. [PMID: 29324382 DOI: 10.1016/j.envpol.2017.12.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 05/11/2023]
Abstract
With the rapid development of urbanization and industrialization, the peri-urban areas are often the sites for waste dumps, which may exacerbate the occurrence and spread of antibiotic resistance from waste to soil bacteria. However, the profiles of antibiotic resistomes and the associated factors influencing their dissemination in peri-urban areas have not been fully explored. Here, we characterized the antibiotic resistance genes (ARGs) in peri-urban arable and pristine soils in four seasons at the watershed scale, by using high-throughput qPCR. ARGs in peri-urban soils were diverse and abundant, with a total of 222 genes were detected in the peri-urban soil samples. The arable soil harbored more diverse ARGs compared to the pristine soils, and nearly all the ARGs detected in the pristine soils were also detected in the farmlands. A random forest prediction showed that the overall patterns of ARGs clustered closely with the landuse type. Mantel test and partial redundancy analysis indicated that bacterial community variation is a major contributor to antibiotic resistome alteration. Significant positive correlation was found between the abundance of ARGs and mobile genetic elements (MGEs), suggesting potential mobility of ARGs in peri-urban areas. Our results extend knowledge of the resistomes compositions in peri-urban areas, and suggest that anthropogenic activities driving its spatial and temporal distribution.
Collapse
Affiliation(s)
- Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing-Lin Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xin-Li An
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
233
|
Singh NS, Singhal N, Virdi JS. Genetic Environment of blaTEM-1, blaCTX-M-15, blaCMY-42 and Characterization of Integrons of Escherichia coli Isolated From an Indian Urban Aquatic Environment. Front Microbiol 2018; 9:382. [PMID: 29563901 PMCID: PMC5845874 DOI: 10.3389/fmicb.2018.00382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
The presence of antibiotic resistance genes (ARGs) including those expressing ESBLs and AmpC-β-lactamases in Escherichia coli inhabiting the aquatic environments is a serious health problem. The situation is further complicated by the fact that ARGs can be easily transferred among bacterial species with the help of mobile genetic elements – plasmids, integrons, insertion sequences (IS), and transposons. Therefore, the analysis of genetic environment and mobile genetic elements associated with ARGs is important as these provide useful information about the epidemiology of these genes. In our previous study, we had reported presence of various β-lactam resistance genes present in E. coli strains inhabiting the river Yamuna traversing the National Capital Territory of Delhi (India). In the present study, we have analyzed the genetic environment of three ARGs blaTEM-1, blaCTX-M-15, and blaCMY -42 of those E. coli strains. The structure of class 1 integrons and their gene cassettes was also analyzed. Insertion sequence IS26 was present upstream of blaTEM-1, ISEcp1 was present upstream of blaCTXM-15 gene and orf477 was present downstream of blaCTXM-15. ISEcp1 was also present upstream of blaCMY -42 and, blc and sugE genes were present in the downstream region of this gene. Thus, the overall genetic environment surrounding these genes was similar to that reported from E. coli strains isolated globally. Conjugation assays, isolation and analysis of plasmid DNA of the transconjugants indicated that blaTEM-1, blaCTX-M-15, blaCMY -42 and class 1 integron were plasmid-mediated and possibly transmit between genera through horizontal gene transfer (HGT). This might lead to dissemination of antimicrobial resistance genes in aquatic environment. The work embodied in this paper is the first describing the genetic environment of bla and integrons in aquatic E. coli isolated from India.
Collapse
Affiliation(s)
- Nambram S Singh
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| | - Neelja Singhal
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| | - Jugsharan S Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi, New Delhi, India
| |
Collapse
|
234
|
Moser KA, Zhang L, Spicknall I, Braykov NP, Levy K, Marrs CF, Foxman B, Trueba G, Cevallos W, Goldstick J, Trostle J, Eisenberg JNS. The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am J Epidemiol 2018; 187:558-567. [PMID: 29506196 DOI: 10.1093/aje/kwx286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/25/2017] [Indexed: 11/15/2022] Open
Abstract
Small-scale production poultry operations are increasingly common worldwide. To investigate how these operations influence antimicrobial resistance and mobile genetic elements (MGEs), Escherichia coli isolates were sampled from small-scale production birds (raised in confined spaces with antibiotics in feed), household birds (no movement constraints; fed on scraps), and humans associated with these birds in rural Ecuador (2010-2012). Isolates were screened for genes associated with MGEs as well as phenotypic resistance to 12 antibiotics. Isolates from small-scale production birds had significantly elevated odds of resistance to 7 antibiotics and presence of MGE genes compared with household birds (adjusted odds ratio (OR) range = 2.2-87.9). Isolates from humans associated with small-scale production birds had elevated odds of carrying an integron (adjusted OR = 2.0; 95% confidence interval (CI): 1.06, 3.83) compared with humans associated with household birds, as well as resistance to sulfisoxazole (adjusted OR = 1.9; 95% CI: 1.01, 3.60) and trimethoprim/sulfamethoxazole (adjusted OR = 2.1; 95% CI: 1.13, 3.95). Stratifying by the presence of MGEs revealed antibiotic groups that are explained by biological links to MGEs; in particular, resistance to sulfisoxazole, trimethoprim/sulfamethoxazole, or tetracycline was highest among birds and humans when MGE exposures were present. Small-scale production poultry operations might select for isolates carrying MGEs, contributing to elevated levels of resistance in this setting.
Collapse
Affiliation(s)
- Kara A Moser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Ian Spicknall
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Nikolay P Braykov
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Carl F Marrs
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - William Cevallos
- Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| | - Jason Goldstick
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan
- Injury Research Center, University of Michigan, Ann Arbor, Michigan
| | - James Trostle
- Department of Anthropology, Trinity College, Hartford, Connecticut
| | - Joseph N S Eisenberg
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
235
|
Li L, Zhao X. Characterization of the resistance class 1 integrons in Staphylococcus aureus isolates from milk of lactating dairy cattle in Northwestern China. BMC Vet Res 2018; 14:59. [PMID: 29482565 PMCID: PMC5827992 DOI: 10.1186/s12917-018-1376-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Background Integrons are mobile DNA elements and they have an important role in acquisition and dissemination of antimicrobial resistance genes. However, there are limited data available on integrons of Staphylococcus aureus (S. aureus) from bovine mastitis, especially from Chinese dairy cows. To address this knowledge gap, bovine mastitis-inducing S. aureus isolates were investigated for the presence of integrons as well as characterization of gene cassettes. Integrons were detected using PCR reactions and then further characterized by a restriction fragment-length polymorphism analysis and amplicon sequencing. Results All 121 S. aureus isolates carried the class 1 integrase gene intI1, with no intI2 and intI3 genes detected. One hundred and three isolates were positive for the presence of 12 resistance genes, either alone or in combination with other gene cassettes. These resistance genes encoded resistance to trimethoprim (dhfrV, dfrA1, dfrA12), aminoglycosides (aadA1, aadA5, aadA4, aadA24, aacA4, aadA2, aadB), chloramphenicol (cmlA6) and quaternary ammonium compound (qacH) and were organized into 11 different gene cassettes arrangements (A-K). The gene cassette arrays dfrA1-aadA1 (D, 44.6%), aadA2 (K, 31.4%), dfrA12-orfX2-aadA2 (G, 27.3%) and aadA1 (A, 25.6%) were most prevalent. Furthermore, 74 isolates contained combinations of 2 to 4 gene cassette arrays. Finally, all of the integron/cassettes-positive isolates were resistant to aminoglycoside antibiotics. Conclusions This is the first study on the integrons and gene cassette arrays in S. aureus isolates from milk of mastitic cows from Northwestern China and provide the evidence for class 1 integron as possible antibiotic resistance determinants on dairy farms.
Collapse
Affiliation(s)
- Longping Li
- College of Animal Science and Technology, Northwest A&F University, YangLing, Shaanxi, People's Republic of China.,Life Science Research Center, Yulin University, Yulin, 719000, People's Republic of China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goat, Yulin University, Yulin, 719000, People's Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, YangLing, Shaanxi, People's Republic of China. .,Department of Animal Science, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
236
|
Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer. Genes (Basel) 2018; 9:genes9020106. [PMID: 29463055 PMCID: PMC5852602 DOI: 10.3390/genes9020106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)-a typical Brazilian white soft cheese-and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.
Collapse
|
237
|
Pollini S, Mugnaioli C, Dolce D, Campana S, Neri AS, Taccetti G, Rossolini GM. Chronic infection sustained by a Pseudomonas aeruginosa High-Risk clone producing the VIM-1 metallo-β-lactamase in a cystic fibrosis patient after lung transplantation. J Cyst Fibros 2018; 17:470-474. [PMID: 29444761 DOI: 10.1016/j.jcf.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The significance of chronic lung infection by multidrug-resistant (MDR) pathogens in Cystic Fibrosis (CF) transplanted patients remains controversial, and the available information is overall limited. Here we describe the case of a chronic infection, sustained by a metallo-β-lactamase (MBL)-producing P. aeruginosa strain, in a CF patient following lung transplantation. METHODS Twelve P. aeruginosa isolates collected from a CF patient over a 15-years follow-up period after lung transplantation were analysed for their antibiotic susceptibility profile, MBL production and clonal relatedness. Available clinical and microbiological records were reviewed. RESULTS The transplanted CF patient was chronically infected by an MBL-producing P. aeruginosa strain which harboured a blaVIM-1 determinant inserted into a novel class 1 integron. The strain exhibited an MDR phenotype and belonged to the globally widespread ST235 epidemic clonal lineage, which however is not a typical CF-associated epidemic clone. Despite the chronic infection, the long-term outcome of this patient during the post-transplant period was characterized by the absence of acute exacerbations and by a mostly stable pulmonary function. CONCLUSIONS This report provides one of the few descriptions of MBL-producing P. aeruginosa infections in CF patients, and the first description of such an infection after lung transplantation in these patients. Infection with the MBL-producing strain apparently did not significantly affect the patient pulmonary function.
Collapse
Affiliation(s)
- Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Daniela Dolce
- Cystic Fibrosis Centre, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Centre, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Anna Silvia Neri
- Cystic Fibrosis Centre, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Centre, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.
| |
Collapse
|
238
|
Matsumura Y, Peirano G, Devinney R, Bradford PA, Motyl MR, Adams MD, Chen L, Kreiswirth B, Pitout JDD. Genomic epidemiology of global VIM-producing Enterobacteriaceae. J Antimicrob Chemother 2018; 72:2249-2258. [PMID: 28520983 DOI: 10.1093/jac/dkx148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Background International data on the molecular epidemiology of Enterobacteriaceae with VIM carbapenemases are limited. Methods We performed short read (Illumina) WGS on a global collection of 89 VIM-producing clinical Enterobacteriaceae (2008-14). Results VIM-producing (11 varieties within 21 different integrons) isolates were mostly obtained from Europe. Certain integrons with bla VIM were specific to a country in different species and clonal complexes (CCs) (In 87 , In 624 , In 916 and In 1323 ), while others had spread globally among various Enterobacteriaceae species (In 110 and In 1209 ). Klebsiella pneumoniae was the most common species ( n = 45); CC147 from Greece was the most prevalent clone and contained In 590 -like integrons with four different bla VIM s. Enterobacter cloacae complex was the second most common species and mainly consisted of Enterobacter hormaechei ( Enterobacter xiangfangensis , subsp. steigerwaltii and Hoffmann cluster III). CC200 (from Croatia and Turkey), CC114 (Croatia, Greece, Italy and the USA) and CC78 (from Greece, Italy and Spain) containing bla VIM-1 were the most common clones among the E. cloacae complex. Conclusions This study highlights the importance of surveillance programmes using the latest molecular techniques in providing insight into the characteristics and global distribution of Enterobacteriaceae with bla VIM s.
Collapse
Affiliation(s)
- Yasufumi Matsumura
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gisele Peirano
- Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Rebekah Devinney
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Mark D Adams
- Department of Medical Microbiology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Liang Chen
- Public Research Institute TB Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Barry Kreiswirth
- Public Research Institute TB Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Johann D D Pitout
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
239
|
Amos GCA, Ploumakis S, Zhang L, Hawkey PM, Gaze WH, Wellington EMH. The widespread dissemination of integrons throughout bacterial communities in a riverine system. ISME JOURNAL 2018; 12:681-691. [PMID: 29374269 PMCID: PMC5864220 DOI: 10.1038/s41396-017-0030-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/01/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Anthropogenic inputs increase levels of antimicrobial resistance (AMR) in the environment, however, it is unknown how these inputs create this observed increase, and if anthropogenic sources impact AMR in environmental bacteria. The aim of this study was to characterise the role of waste water treatment plants (WWTPs) in the dissemination of class 1 integrons (CL1s) in the riverine environment. Using sample sites from upstream and downstream of a WWTP, we demonstrate through isolation and culture-independent analysis that WWTP effluent significantly increases both CL1 abundance and antibiotic resistance in the riverine environment. Characterisation of CL1-bearing isolates revealed that CL1s were distributed across a diverse range of bacteria, with identical complex genetic resistance determinants isolated from both human-associated and common environmental bacteria across connected sites. Over half of sequenced CL1s lacked the 3′-conserved sequence ('atypical’ CL1s); surprisingly, bacteria carrying atypical CL1s were on average resistant to more antibiotics than bacteria carrying 3′-CS CL1s. Quaternary ammonium compound (QAC) resistance genes were observed across 75% of sequenced CL1 gene cassette arrays. Chemical data analysis indicated high levels of boron (a detergent marker) downstream of the WWTP. Subsequent phenotypic screening of CL1-bearing isolates demonstrated that ~90% were resistant to QAC detergents, with in vitro experiments demonstrating that QACs could solely select for the transfer of clinical antibiotic resistance genes to a naive Escherichia coli recipient. In conclusion, this study highlights the significant impact of WWTPs on environmental AMR, and demonstrates the widespread carriage of clinically important resistance determinants by environmentally associated bacteria.
Collapse
Affiliation(s)
| | | | - Lihong Zhang
- School of Life Sciences, University of Warwick, Coventry, UK.,European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, UK
| | | | - William H Gaze
- School of Life Sciences, University of Warwick, Coventry, UK.,European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, UK
| | | |
Collapse
|
240
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
241
|
Chen QL, Li H, Zhou XY, Zhao Y, Su JQ, Zhang X, Huang FY. An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:966-973. [PMID: 28783909 DOI: 10.1016/j.scitotenv.2017.07.164] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance. Antibiotic resistance genes (ARGs) in landfill can flow to the environment through leakage of landfill leachate and pose a risk to public health. Using high throughput quantitative Polymerase Chain Reaction (HT-qPCR), we investigated the prevalence, diversity of ARGs and its association with various mobile genetic elements (MGEs) in MSW landfill groundwater. Totally 171 unique ARGs (belonging to 9 ARG types, encompassing 3 major resistance mechanisms) and 8 MGEs (6 transposase genes, and 2 integron-integrase genes) were identified. The normalized abundance of ARG was ranging from 0.24 to 5.66 copies/cell with multidrug, beta-lactams and tetracycline resistance genes being the most abundant ARG types. The co-occurrence pattern and significant correlation between MGEs and ARGs, indicated that MGEs may play an important role in the persistence and proliferation of ARGs. A Mantel test and Procrustes analysis suggested that ARG profiles were significantly correlated with bacterial community. Variation partitioning analysis (VPA) further demonstrated that bacterial community shifts contribute 65.8% of the total ARG variations. Additionally network analysis revealed that 15 bacterial taxa at family level might be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
242
|
Martini MC, Quiroga MP, Pistorio M, Lagares A, Centrón D, Del Papa MF. Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant. FEMS Microbiol Ecol 2017; 94:4781311. [DOI: 10.1093/femsec/fix190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/27/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| |
Collapse
|
243
|
Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Joakim Larsson DG. Discovery of the fourth mobile sulfonamide resistance gene. MICROBIOME 2017; 5:160. [PMID: 29246178 PMCID: PMC5732528 DOI: 10.1186/s40168-017-0379-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.
Collapse
Affiliation(s)
- Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael R. Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales Australia
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
244
|
Peng S, Feng Y, Wang Y, Guo X, Chu H, Lin X. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:16-25. [PMID: 28711829 DOI: 10.1016/j.jhazmat.2017.06.059] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 05/08/2023]
Abstract
A 30year field experiment with a wheat-soybean cropping system were performed to compare the long-term anthropogenic influence on soil ARGs. Compared with chemical fertilization, the occurrence of 38 ARGs and the abundance of seven ARGs (tetL, tetB(P), tetO, tetW, sul1, ermB, and ermF) were significantly increased by long term exposure of pig manure. However, application of wheat straw and cow manure not substantially affected the abundance of ARGs except cow manure increased the abundance of tetM and tetW to a detectable level. Relative abundance of Firmicutes, Gammaproteobacteria and Bacteroidetes and ARGs observed in the soil were significantly correlated. Integrase gene I1 (intI1) is commonly linked to genes conferring resistance to antibiotics, it was significantly increased in pig manure treated soils and showed a high positive correlation with the abundance of ARGs which were significantly affected by pig manure. Concentrations of Cu, Zn and Pb were also increased in manure treated soil and positive correlated with the relative abundance of intI1 and most of the ARGs. These results indicated that long-term animal manure application to soils has polluted the soil, especially for pig manure, and it should be scrutinized as part of future stewardship programs.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 Beijing East Road, Nanjing, 210008 Jiangsu Province, China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 Beijing East Road, Nanjing, 210008 Jiangsu Province, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 Beijing East Road, Nanjing, 210008 Jiangsu Province, China
| | - Xisheng Guo
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, South Nongke Road 40, Hefei 230031, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 Beijing East Road, Nanjing, 210008 Jiangsu Province, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 Beijing East Road, Nanjing, 210008 Jiangsu Province, China.
| |
Collapse
|
245
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
246
|
Yang Q, Tian T, Niu T, Wang P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:188-198. [PMID: 28599203 DOI: 10.1016/j.envpol.2017.05.073] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Diverse antibiotic-resistance genes (ARGs) are frequently reported to have high prevalence in veterinary manure samples due to extensive use of antibiotics in farm animals. However, the characteristics of the distribution and transmission of ARGs among bacteria, especially among different species of multiple antibiotic-resistant bacteria (MARB), have not been well explored. By applying high-throughput sequencing methods, our study uncovered a vast MARB reservoir in livestock manure. The genera Escherichia, Myroides, Acinetobacter, Proteus, Ignatzschineria, Alcaligenes, Providencia and Enterococcus were the predominant cultivable MARB, with compositions of 40.6%-85.7%. From chicken manure isolates, 33 MARB were selected for investigation of the molecular characteristics of antibiotic resistance. A total of 61 ARGs and 18 mobile genetic elements (MGEs) were investigated. We found that 47 ARGs were widely distributed among the 33 MARB isolates. Each isolate carried 27-36 genes responsible for resistance to eight classes of antibiotics frequently used in clinic or veterinary settings. ARGs to the six classes of antibiotics other than streptogramins and vancomycin were present in all 33 MARB isolates with a prevalence of 80%-100%. A total of 12 MGEs were widely distributed among the 33 MARB, with intI1, IS26, ISaba1, and ISEcp1 simultaneously present in 100% of isolates. In addition, 9 gene cassettes within integrons and ISCR1 were detected among MARB isolates encoding resistance to different antibiotic classes. This is the first report revealing the general co-presence of multiple ARGs, various MGEs and ARG cassettes in different species of individual MARB isolates in chicken manure. The results highlight a much higher risk of ARGs spreading through livestock manure to humans than we expected.
Collapse
Affiliation(s)
- Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Tiantian Tian
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianqi Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Panliang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
247
|
Odetoyin BW, Labar AS, Lamikanra A, Aboderin AO, Okeke IN. Classes 1 and 2 integrons in faecal Escherichia coli strains isolated from mother-child pairs in Nigeria. PLoS One 2017; 12:e0183383. [PMID: 28829804 PMCID: PMC5568733 DOI: 10.1371/journal.pone.0183383] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/03/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antimicrobial resistance among enteric bacteria in Africa is increasingly mediated by integrons on horizontally acquired genetic elements. There have been recent reports of such elements in invasive pathogens across Africa, but very little is known about the faecal reservoir of integron-borne genes. METHODS AND FINDINGS We screened 1098 faecal Escherichia coli isolates from 134 mother-child pairs for integron cassettes by PCR using primers that anneal to the 5' and 3' conserved ends of the cassette regions and for plasmid replicons. Genetic relatedness of isolates was determined by flagellin and multi-locus sequence typing. Integron cassettes were amplified in 410 (37.5%) isolates and were significantly associated with resistance to trimethoprim and multiple resistance. Ten cassette combinations were found in class 1 and two in class 2 integrons. The most common class 1 cassette configurations were single aadA1 (23.4%), dfrA7 (18.3%) and dfrA5 (14.4%). Class 2 cassette configurations were all either dfrA1-satI-aadA1 (n = 31, 7.6%) or dfrA1-satI (n = 13, 3.2%). A dfr cassette was detected in 294 (31.1%) of trimethoprim resistant strains and an aadA cassette in 242 (23%) of streptomycin resistant strains. Strains bearing integrons carried a wide range of plasmid replicons of which FIB/Y (n = 169; 41.2%) was the most frequently detected. Nine isolates from five different individuals carried the dfrA17-aadA5-bearing ST69 clonal group A (CGA). The same integron cassette combination was identified from multiple distinct isolates within the same host and between four mother-child pairs. CONCLUSIONS Integrons are important determinants of resistance in faecal E. coli. Plasmids in integron-containing strains may contribute to dispersing resistance genes. There is a need for improved surveillance for resistance and its mechanisms of dissemination and persistence and mobility of resistance genes in the community and clinical settings.
Collapse
Affiliation(s)
- Babatunde W. Odetoyin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- * E-mail:
| | - Amy S. Labar
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Adebayo Lamikanra
- Department of Pharmaceutics, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Aaron O. Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Iruka N. Okeke
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
- Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
248
|
Wang D, Zhu J, Zhou K, Chen J, Yin Z, Feng J, Ma L, Zhou D. Genetic characterization of novel class 1 Integrons In0, In1069 and In1287 to In1290, and the inference of In1069-associated integron evolution in Enterobacteriaceae. Antimicrob Resist Infect Control 2017; 6:84. [PMID: 28852475 PMCID: PMC5567636 DOI: 10.1186/s13756-017-0241-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to characterize genetically related class 1 integrons In1069, In893 and In1287 to In1290, and to further propose a scheme of stepwise integration or excision of individual gene cassettes (GCs) to generation of these integron variations. Methods Six of 139 non-redundant Enterobacteriaceae strains were studied by bacterial antimicrobial susceptibility testing, detection of carbapenemase activity, and integron sequencing and sequence comparison. Results Six novel class 1 integrons, In0, In1069, and In1287 to In1290, together with the previously characterized In893, were determined from the above strains. An unusual blaKPC-2-carrying In0 and the blaIMP-30-carrying In1069 coexists in a single isolate of Escherichia coli. In0 contains a PcH1 promoter and a truncated aacA4’-3 gene cassette (GCaacA4’-3), as well as a blaKPC-2-containing region of Tn6296 integrated between PcH1 and GCaacA4’-3. In1069 carries GCblaIMP-30 and GCaacA4’-3 in this order. The other five integrons, In893 and In1287 to In1290, are genetically related to In1069, and all possess a core GCaacA4’-3. The integration or excision of one or more individual gene cassettes, such as GCblaIMP-30, GCaadA16, GCcatB3, GCarr3 and GCdfrA27, upstream or downstream of GCaacA4’-3 generates various gene cassettes arrays among these five integrons. Conclusions These findings provide the insight into stepwise and parallel evolution of In1069-associated integron variations likely under antibiotic selection pressure in clinical settings. Electronic supplementary material The online version of this article (doi:10.1186/s13756-017-0241-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital affiliated with Taizhou University and the Institute of Molecular Diagnostics of Taizhou University, 381 Zhongshan Eastern Road, Taizhou, Zhejiang, 318000 China
| | - Jianfeng Zhu
- Department of Clinical Laboratory Medicine, Yinzhou No. 2 Hospital of Ningbo, 1 Qianhe Road, Ningbo, Zhejiang, 315100 China
| | - Kaiyu Zhou
- Department of the Neurosurgery, Taizhou Municipal Hospital affiliated to Medical College of Taizhou University, 381 Zhongshan Eastern Road, Taizhou, Zhejiang, 318000 China
| | - Jiayu Chen
- Basic Department, Medical College of Shaoxing University, 508 Huancheng western Road, Shaoxing, Zhejiang, 312099 China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| | - Liman Ma
- Department of Laboratory medicine, Medical College of Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071 China
| |
Collapse
|
249
|
Rehman MU, Zhang H, Huang S, Iqbal MK, Mehmood K, Luo H, Li J. Characteristics of Integrons and Associated Gene Cassettes in Antibiotic-Resistant Escherichia coli
Isolated from Free-Ranging Food Animals in China. J Food Sci 2017. [DOI: 10.1111/1750-3841.13795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mujeeb Ur Rehman
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Hui Zhang
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Shucheng Huang
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Khalid Mehmood
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
- Univ. College of Veterinary & Animal Sciences; Islamia Univ. of Bahawalpur; 63100 Punjab Pakistan
| | - Houqiang Luo
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
| | - Jiakui Li
- College of Veterinary Medicine; Huazhong Agricultural Univ.; Wuhan 430070 P.R. China
- Laboratory of Detection and Monitoring of Highland Animal Diseases; Tibet Agricultural and Animal Husbandry College; Linzhi 860000 Tibet P.R. China
| |
Collapse
|
250
|
Wang D, Hou W, Chen J, Yang L, Liu Z, Yin Z, Feng J, Zhou D. Characterization of Novel Integrons, In 1085 and In 1086, and the Surrounding Genes in Plasmids from Enterobacteriaceae, and the Role for attCaadA16 Structural Features during attI1 × attC Integration. Front Microbiol 2017. [PMID: 28626457 PMCID: PMC5454043 DOI: 10.3389/fmicb.2017.01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Novel class 1 integrons In1085 and In1086, containing the class D β-lactamase -encoding gene blaOXA, were identified in clinical enterobacterial strains. In this study, we aimed to characterize the genetic contexts of In1085 and In1086, with the goal of identifying putative mechanisms of integron mobilization. Four plasmids, approximately 5.3, 5.3, 5.7, and 6.6 kb, from 71 clinical Enterobacteriaceae strains were found to contain class 1 integrons (In37, In62, In1085, and In1086, respectively). Two of these plasmids, pEco336 and pNsa292, containing In1085 and In1086, respectively, were further characterized by antibiotic susceptibility testing, conjugation experiments, PCR, sequencing, and gene mapping. The OXA-type carbapenemase activities of the parental strains were also assessed. The results revealed that the novel integrons had different genetic environments, and therefore demonstrated diverse biochemical characteristics. Using evolutionary inferences based on the recombination of gene cassettes, we also identified a role for attCaadA16 structural features during attI1 × attC insertion reactions. Our analysis showed that gene cassette insertions in the bottom strand of attCaadA16 in the correct orientation lead to the expression the encoded genes from the Pc promoter. Our study suggests that the genetic features harbored within the integrons are inserted in a discernable pattern, involving the stepwise and parallel evolution of class 1 integron variations under antibiotic selection pressures in a clinical setting.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University and the Institute of Molecular Diagnostics of Taizhou UniversityTaizhou, China
| | - Wei Hou
- Department of Infection, Taizhou Municipal Hospital Affiliated with Taizhou UniversityTaizhou, China
| | - Jiayu Chen
- Basic Department, Shaoxing UniversityTaizhou, China
| | - Linjun Yang
- Department of the Thyroid Gland and Breast Surgery, Taizhou Municipal Hospital Affiliated with Taizhou UniversityTaizhou, China
| | - Zhihui Liu
- Department of Stomatology, Taizhou Municipal Hospital Affiliated with the Medical College of Taizhou UniversityTaizhou, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| |
Collapse
|