201
|
Irshad M, Scheres N, Crielaard W, Loos BG, Wismeijer D, Laine ML. Influence of titanium on in vitro fibroblast-Porphyromonas gingivalis
interaction in peri-implantitis. J Clin Periodontol 2013; 40:841-9. [DOI: 10.1111/jcpe.12136] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Muhammad Irshad
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Nina Scheres
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Bruno G. Loos
- Department of Periodontology; ACTA; University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Daniel Wismeijer
- Department of Oral Function and Restorative Dentistry; Section of Oral Implantology and Prosthodontics; Research Institute MOVE; ACTA; University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Marja L. Laine
- Department of Periodontology; ACTA; University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
202
|
Gadagi JS, Chava VK, Reddy VR. Green tea extract as a local drug therapy on periodontitis patients with diabetes mellitus: A randomized case-control study. J Indian Soc Periodontol 2013; 17:198-203. [PMID: 23869126 PMCID: PMC3713751 DOI: 10.4103/0972-124x.113069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/26/2013] [Indexed: 11/04/2022] Open
Abstract
Background: The green tea extract is a naturally occurring product having beneficial effects that counteract with the pathobiological features of periodontitis and diabetes mellitus. Hence, the present study was aimed at incorporation of green tea extract into hydroxylpropyl methylcellulose and investigates its efficacy in chronic periodontitis patients associated with and without diabetes mellitus. Materials and Methods: For the in vitro study, formulation of green tea strips and placebo strips, and analysis of drug release pattern from the green tea strips at different time intervals were performed. For the in vivo study, 50 patients (20-65 years), including 25 systemically healthy patients with chronic periodontitis (group 1) and 25 diabetic patients with chronic periodontitis (group 2) were enrolled. In each patient, test and control sites were identified for the placement of green tea and placebo strips, respectively. Gingival Index (GI), Probing Pocket Depth (PPD), and Clinical Attachment Level (CAL) were examined at baseline, first, second, third, and fourth weeks. Microbiological analysis for Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans was performed at baseline and fourth week. Results: The in vitro study showed 10.67% green tea release at 30 min; thereafter, a slow release was noted till 120 min. In vivo study: Both groups showed significant reduction in GI scores at the test sites. Group 1 showed significant (P < 0.001) PPD reduction at different time intervals at the test sites. However, group 2 showed significant reduction from baseline (5.30 ± 0.70) to fourth week (3.5 ± 0.97). Statistically significant gain in CAL at the test sites was observed both in group 1 (1.33 mm) and group 2 (1.43 mm). The prevalence of P. gingivalis in group 1 test sites was significantly reduced from baseline (75%) to fourth week (25%). Conclusions: Local drug delivery using green tea extract could be used as an adjunct in the treatment of chronic periodontitis in diabetic and non-diabetic individuals.
Collapse
Affiliation(s)
- Jayaprakash S Gadagi
- Department of Periodontics, Vishnu Dental College, Kovvada, Vishnupuram, Bhimavaram, West Godavari, Andhra Pradesh, India
| | | | | |
Collapse
|
203
|
Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions. Int J Oral Sci 2013; 5:130-40. [PMID: 23867843 PMCID: PMC3967327 DOI: 10.1038/ijos.2013.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/22/2013] [Indexed: 11/15/2022] Open
Abstract
Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.
Collapse
|
204
|
Miles B, Scisci E, Carrion J, Sabino GJ, Genco CA, Cutler CW. Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen. J Leukoc Biol 2013; 94:281-9. [PMID: 23729500 DOI: 10.1189/jlb.0213108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Maintenance of blood DC homeostasis is essential to preventing autoimmunity while controlling chronic infection. However, the ability of bacteremic pathogens to directly regulate blood DC homeostasis has not been defined. One such bacteremic pathogen, Porphyromonas gingivalis, is shown by our group to survive within mDCs under aerobic conditions and therein, metastasize from its oral mucosal niche. This is accompanied by expansion of the blood mDC pool in vivo, independently of canonical DC poietins. We presently know little of how this bacteremic pathogen causes blood DC expansion and the pathophysiological significance. This work shows that optimum differentiation of MoDCs from primary human monocytes, with or without GM-CSF/IL-4, is dependent on infection with P. gingivalis strains expressing the DC-SIGN ligand mfa-1. DC differentiation is lost when DC-SIGN is blocked with its ligand HIV gp120 or knocked out by siRNA gene silencing. Thus, we have identified a novel, noncanonical pathway of DC differentiation. We term these PDDCs and show that PDDCs are bona fide DCs, based on phenotype and phagocytic activity when immature and the ability to up-regulate accessory molecules and stimulate allo-CD4(+) T cell proliferation when matured. The latter is dependent on the P. gingivalis strain used to initially "educate" PDDCs. Moreover, we show that P. gingivalis-infected, conventional MoDCs become resistant to apoptosis and inflammatory pyroptosis, as determined by levels of Annexin V and caspase-8, -3/7, and -1. Taken together, we provide new insights into how a relatively asymptomatic bacteremia may influence immune homeostasis and promote chronic inflammation.
Collapse
Affiliation(s)
- Brodie Miles
- 1.Georgia Regent University Augusta, 1120 15th St., GC-1335, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
205
|
Stafford P, Higham J, Pinnock A, Murdoch C, Douglas CWI, Stafford GP, Lambert DW. Gingipain-dependent degradation of mammalian target of rapamycin pathway proteins by the periodontal pathogen Porphyromonas gingivalis during invasion. Mol Oral Microbiol 2013; 28:366-78. [PMID: 23714361 DOI: 10.1111/omi.12030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2013] [Indexed: 01/09/2023]
Abstract
Porphyromonas gingivalis and Tannerella forsythia are gram-negative pathogens strongly associated with periodontitis. Their abilities to interact, invade and persist within host cells are considered crucial to their pathogenicity, but the mechanisms by which they subvert host defences are not well understood. In this study, we set out to investigate whether P. gingivalis and T. forsythia directly target key signalling molecules that may modulate the host cell phenotype to favour invasion and persistence. Our data identify, for the first time, that P. gingivalis, but not T. forsythia, reduces levels of intracellular mammalian target of rapamycin (mTOR) in oral epithelial cells following invasion over a 4-h time course, via the action of gingipains. The ability of cytochalasin D to abrogate P. gingivalis-mediated mTOR degradation suggests that this effect is dependent upon cellular invasion. We also show that levels of several other proteins in the mTOR signalling pathway are modulated by gingipains, either directly or as a consequence of mTOR degradation including p-4E-BP1. Taken together, our data suggest that P. gingivalis manipulates the mTOR pathway, providing evidence for a potentially novel mechanism by which P. gingivalis mediates its effects on host cell responses to infection.
Collapse
Affiliation(s)
- P Stafford
- Integrated Bioscience, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
206
|
Aruni AW, Roy F, Sandberg L, Fletcher HM. Proteome variation among Filifactor alocis strains. Proteomics 2013; 12:3343-64. [PMID: 23008013 DOI: 10.1002/pmic.201200211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/23/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023]
Abstract
Filifactor alocis, a Gram-positive anaerobic rod, is now considered one of the marker organisms associated with periodontal disease. Although there was heterogeneity in its virulence potential, this bacterium was shown to have virulence properties that may enhance its ability to survive and persist in the periodontal pocket. To gain further insight into a possible mechanism(s) of pathogenesis, the proteome of F. alocis strains was evaluated. Proteins including several proteases, neutrophil-activating protein A and calcium-binding acid repeat protein, were identified in F. alocis. During the invasion of HeLa cells, there was increased expression of several of the genes encoding these proteins in the potentially more virulent F. alocis D-62D compared to F. alocis ATCC 35896, the type strain. A comparative protein in silico analysis of the proteome revealed more cell wall anchoring proteins in the F. alocis D-62D compared to F. alocis ATCC 35896. Their expression was enhanced by coinfection with Porphyromonas gingivalis. Taken together, the variation in the pathogenic potential of the F. alocis strains may be related to the differential expression of several putative virulence factors.
Collapse
Affiliation(s)
- A Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
207
|
Enersen M, Nakano K, Amano A. Porphyromonas gingivalis fimbriae. J Oral Microbiol 2013; 5:20265. [PMID: 23667717 PMCID: PMC3647041 DOI: 10.3402/jom.v5i0.20265] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
Marginal periodontitis is not a homogeneous disease but is rather influenced by an intricate set of host susceptibility differences as well as diversities in virulence among the harbored organisms. It is likely that clonal heterogeneity of subpopulations with both high and low levels of pathogenicity exists among organisms harbored by individuals with negligible, slight, or even severe periodontal destruction. Therefore, specific virulent clones of periodontal pathogens may cause advanced and/or aggressive periodontitis. Porphyromonas gingivalis is a predominant periodontal pathogen that expresses a number of potential virulence factors involved in the pathogenesis of periodontitis, and accumulated evidence shows that its expression of heterogenic virulence properties is dependent on clonal diversity. Fimbriae are considered to be critical factors that mediate bacterial interactions with and invasion of host tissues, with P. gingivalis shown to express two distinct fimbria-molecules, long and short fimbriae, on the cell surface, both of which seem to be involved in development of periodontitis. Long fimbriae are classified into six types (I to V and Ib) based on the diversity of fimA genes encoding FimA (a subunit of long fimbriae). Studies of clones with type II fimA have revealed their significantly greater adhesive and invasive capabilities as compared to other fimA type clones. Long and short fimbriae induce various cytokine expressions such as IL-1α, IL-β, IL-6, and TNF-α, which result in alveolar bone resorption. Although the clonal diversity of short fimbriae is unclear, distinct short fimbria-molecules have been found in different strains. These fimbriae variations likely influence the development of periodontal disease.
Collapse
Affiliation(s)
- Morten Enersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
208
|
Zheng D, Sun Q, Su Z, Kong F, Shi X, Tong J, Shen P, Peng T, Wang S, Xu H. Enhancing specific-antibody production to the ragB vaccine with GITRL that expand Tfh, IFN-γ(+) T cells and attenuates Porphyromonas gingivalis infection in mice. PLoS One 2013; 8:e59604. [PMID: 23560053 PMCID: PMC3613392 DOI: 10.1371/journal.pone.0059604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
The outer membrane protein RagB is one of the major virulence factors of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis). In order to induce protective immune response against P. gingivalis infection, an mGITRL gene-linked ragB DNA vaccine (pIRES-ragB-mGITRL ) was constructed. Six-week-old female BALB/c mice were immunized with pIRES-ragB-mGITRL through intramuscular injection and then challenged by subcutaneous injection in the abdomen with P. gingivalis. RagB-specific antibody-forming cells were evaluated by an Enzyme-linked immunosorbent spot, and specific antibody was determined by enzyme-linked immunosorbent assay. In addition, the frequencies of Tfh and IFN-γ(+) T cells in spleen were measured using flow cytometer, and the levels of IL-21 and IFN-γ mRNA or proteins were detected by real time RT-PCR or ELISA. The data showed that the mGITRL-linked ragB DNA vaccine induced higher levels of RagB-specific IgG in serum and RagB-specific antibody-forming cells in spleen. The frequencies of Tfh and IFN-γ(+) T cells were obviously expanded in mice immunized by pIRES-ragB-mGITRL compared with other groups (pIRES or pIRES-ragB ). The levels of Tfh and IFN-γ(+) T cells associated cytokines were also significantly increased in pIRES-ragB-mGITRL group. Therefore, the mice immunized with ragB plus mGITRL showed the stronger resistant to P. gingivalis infection and a significant reduction of the lesion size caused by P. gingivalis infection comparing with other groups. Taken together, our findings demonstrated that intramuscular injection of DNA vaccine ragB together with mGITRL induced protective immune response dramatically by increasing Tfh and IFN-γ(+) T cells and antibody production to P. gingivalis.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Qiang Sun
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Zhaoliang Su
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Fanzhi Kong
- Affiliated People’s Hospital of Jiangsu University, Zhenjiang, PR China
| | - Xiaoju Shi
- Department of Microbiology, Medway School of Pharmacy, University of Kent, Kent, United Kingdom
| | - Jia Tong
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Pei Shen
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Shengjun Wang
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| | - Huaxi Xu
- Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
209
|
Zhao JJ, Feng XP, Zhang XL, Le KY. Effect of Porphyromonas gingivalis and Lactobacillus acidophilus on secretion of IL1B, IL6, and IL8 by gingival epithelial cells. Inflammation 2013; 35:1330-7. [PMID: 22382516 DOI: 10.1007/s10753-012-9446-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis alters cytokine expression in gingival epithelial cells, stimulating inflammatory responses that may lead to periodontal disease. This study explored the effect of Lactobacillus acidophilus on the specific expressions of the interleukins (ILs) IL1B, IL6, and IL8 induced by the pathogen. Human gingival epithelial cells were co-cultured with P. gingivalis, L. acidophilus, or L. acidophilus + P. gingivalis; the control group consisted of the cells alone. Protein and gene expression levels of the ILs were detected using ELISA and qRT-PCR, respectively. The supernatant from the P. gingivalis group held significantly higher protein and mRNA levels of IL1B, IL6, and IL8, compared to the control group. In the mixed bacterial group (L. acidophilus + P. gingivalis), the levels of all three ILs decreased with increasing concentrations of L. acidophilus and were significantly different from the P. gingivalis group. This suggests that in gingival cells, L. acidophilus offsets the P. gingivalis-induced secretion of these ILs in a dose-dependent manner.
Collapse
Affiliation(s)
- Jun-jun Zhao
- Shanghai Key Laboratory of Stomatology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People's Republic of China
| | | | | | | |
Collapse
|
210
|
Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics 2013; 9:311-23. [PMID: 22809209 DOI: 10.1586/epr.12.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers developments in the study of polymicrobial communities, biofilms and selected areas of host response relevant to dental plaque and related areas of oral biology. The emphasis is on recent studies in which proteomic methods, particularly those using mass spectrometry as a readout, have played a major role in the investigation. The last 5-10 years have seen a transition of such methods from the periphery of oral biology to the mainstream, as in other areas of biomedical science. For reasons of focus and space, the authors do not discuss biomarker studies relevant to improved diagnostics for oral health, as this literature is rather substantial in its own right and deserves a separate treatment. Here, global gene regulation studies of plaque-component organisms, biofilm formation, multispecies interactions and host-microbe interactions are discussed. Several aspects of proteomics methodology that are relevant to the studies of multispecies systems are commented upon.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
211
|
Fabrizi S, León R, Blanc V, Herrera D, Sanz M. Variability of the fimA gene in Porphyromonas gingivalis isolated from periodontitis and non-periodontitis patients. Med Oral Patol Oral Cir Bucal 2013; 18:e100-5. [PMID: 23229246 PMCID: PMC3548627 DOI: 10.4317/medoral.18042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/11/2022] Open
Abstract
Objective: The goal of this study was to determine the genetic variability of the fimA gene in Porphyromonas gingivalis isolates from Spanish patients.
Study Design: Pooled subgingival samples were taken, processed and cultured in non-selective blood agar medium. Pure cultures of one to six isolates per patient were obtained and PCR and PCR-RFLP were used for fimbrillin gene (fimA) type determination of the extracted genomic (DNA).
Results: Two hundred and twenty four Porphyromonas gingivalis isolates from 65 patients were analyzed consisting of 15 non-periodontitis patients (66 isolates) and 50 with periodontitis (158 isolates). Genotype II was the most prevalent (50.9%), while the other types of fimbriae did not exceed fifteen percent of prevalence. Isolates with types II and IV of fimbriae were significantly more prevalent in periodontitis patients than isolates with genotype I. Co-infection was observed in 17.65% of the patients analyzed.
Conclusion: The results suggest that in this population Porphyromonas gingivalis with type II of fimbriae are significantly more predominant in periodontitis patients than genotype I.
Key words:Fimbriae, genotype, porphyromonas gingivalis, periodontitis.
Collapse
Affiliation(s)
- Simone Fabrizi
- ETEP Research Group, Complutense University, Madrid, Spain.
| | | | | | | | | |
Collapse
|
212
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
213
|
Qian H, Yi J, Zhou J, Zhao Y, Li Y, Jin Z, Ding Y. Activation of cannabinoid receptor CB2 regulates LPS-induced pro-inflammatory cytokine production and osteoclastogenic gene expression in human periodontal ligament cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojst.2013.31009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
214
|
Cai Y, Kurita-Ochiai T, Kobayashi R, Hashizume T, Yamamoto M. Nasal immunization with the 40-kDa outer membrane protein of Porphyromonas gingivalis plus cholera toxin induces protective immunity in aged mice. J Oral Sci 2013; 55:107-14. [DOI: 10.2334/josnusd.55.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
215
|
|
216
|
Cai Y, Kurita-Ochiai T, Hashizume T, Yamamoto M. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis. Pathog Dis 2012; 67:76-83. [PMID: 23620122 DOI: 10.1111/2049-632x.12001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Yu Cai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
217
|
Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 2012; 13:578. [PMID: 23114059 PMCID: PMC3547785 DOI: 10.1186/1471-2164-13-578] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with periodontal disease onset and progression. Genetic tools for the manipulation of bacterial genomes allow for in-depth mechanistic studies of metabolism, physiology, interspecies and host-pathogen interactions. Analysis of the essential genes, protein-coding sequences necessary for survival of P. gingivalis by transposon mutagenesis has not previously been attempted due to the limitations of available transposon systems for the organism. We adapted a Mariner transposon system for mutagenesis of P. gingivalis and created an insertion mutant library. By analyzing the location of insertions using massively-parallel sequencing technology we used this mutant library to define genes essential for P. gingivalis survival under in vitro conditions. Results In mutagenesis experiments we identified 463 genes in P. gingivalis strain ATCC 33277 that are putatively essential for viability in vitro. Comparing the 463 P. gingivalis essential genes with previous essential gene studies, 364 of the 463 are homologues to essential genes in other species; 339 are shared with more than one other species. Twenty-five genes are known to be essential in P. gingivalis and B. thetaiotaomicron only. Significant enrichment of essential genes within Cluster of Orthologous Groups ‘D’ (cell division), ‘I’ (lipid transport and metabolism) and ‘J’ (translation/ribosome) were identified. Previously, the P. gingivalis core genome was shown to encode 1,476 proteins out of a possible 1,909; 434 of 463 essential genes are contained within the core genome. Thus, for the species P. gingivalis twenty-two, seventy-seven and twenty-three percent of the genome respectively are devoted to essential, core and accessory functions. Conclusions A Mariner transposon system can be adapted to create mutant libraries in P. gingivalis amenable to analysis by next-generation sequencing technologies. In silico analysis of genes essential for in vitro growth demonstrates that although the majority are homologous across bacterial species as a whole, species and strain-specific subsets are apparent. Understanding the putative essential genes of P. gingivalis will provide insights into metabolic pathways and niche adaptations as well as clinical therapeutic strategies.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
Despite its important role in the control of periodontal disease, mechanical plaque control is not properly practiced by most individuals. Therefore, adjunctive chemical plaque control using chlorhexidine and antibiotics has also been suggested as an additional therapeutic strategy to augment mechanical plaque control. However, the additional effects of adjunctive antibiotic therapy are small, and topical chlorhexidine therapy is not without side effects. Given current limitations, new approaches for the control of biofilm are required. The new therapeutic approaches discussed in this review are divided into two categories: probiotics and vaccines. Probiotics is an interesting new field of periodontology research that aims to achieve biological plaque control by eliminating pathogenic bacteria. In addition, passive immunization using egg yolk antibody raised against periodontal pathogens may be an effective approach for the treatment of periodontitis. Further study to evaluate the possible effects of these biological plaque control methods against periodontal disease is warranted.
Collapse
Affiliation(s)
- Naoyuki Sugano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
219
|
Tang X, Pan Y, Zhao Y. Vitamin D inhibits the expression of interleukin-8 in human periodontal ligament cells stimulated with Porphyromonas gingivalis. Arch Oral Biol 2012; 58:397-407. [PMID: 23083515 DOI: 10.1016/j.archoralbio.2012.09.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Vitamin D has been known to be closely associated with periodontitis while the exact mechanisms remain unclear. The present study aimed to discover the effects of 1a,25-dihydroxyvitamin D3 (1,25D) on the expressions of interleukin (IL)-6 and IL-8 in human periodontal ligament cells (hPDLCs) stimulated with Porphyromonas gingivalis (P. gingivalis) W83. DESIGN Primary cultures of hPDLCs from ten donors were established and the cells of passage four were treated with 1,25D or P. gingivalis individually or 1,25D combined with P. gingivalis. The levels of IL-6 and IL-8 protein in hPDLCs were detected with enzyme-linked immunosorbent assay (ELISA) and the mRNA levels were detected with real-time RT-PCR. RESULTS P. gingivalis significantly promoted the protein expressions of IL-6 and IL-8. P. gingivalis at the multiplicity of infection (MOI) 100 exerted the strongest promotion effect on the IL-6 protein expression by 5.83-fold compared with the controls (2482.88±26.53pg/ml versus 425.80±77.25pg/ml, P<0.0005) and the IL-8 protein expression by 12.39-fold (4965.81±1072.55pg/ml versus 400.75±2.27pg/ml, P=0.005) in hPDLCs at 24h. At 48h, 10(-8)mol/L 1,25D had the best inhibition on the IL-8 protein expression in hPDLCs by 2.00-fold compared with the controls (100.76±21.11pg/ml versus 201.75±18.15pg/ml, P<0.0005) and the IL-8 mRNA expression by 2.13-fold (P<0.0005). 10(-8)mol/L 1,25D combined with P. gingivalis (MOI 100) exerted the strongest inhibition effect on the IL-8 protein expression by 1.54-fold compared with P. gingivalis treatment alone (3077.33±210.04pg/ml versus 4738.24±1386.17pg/ml, P=0.018) and the IL-8 mRNA expression by 1.78-fold (P=0.012) in hPDLCs at 12h. 1,25D did not influence the expression of IL-6 in hPDLCs with or without P. gingivalis treatment. CONCLUSION Vitamin D may potentially inhibit the periodontal inflammation induced by P. gingivalis partly by decreasing the IL-8 expression in hPDLCs.
Collapse
Affiliation(s)
- Xiaolin Tang
- Department of Medical Genetics, China Medical University, 92 North 2nd Road, Heping District, Shenyang, Liaoning Province, China
| | | | | |
Collapse
|
220
|
Takasaki K, Fujise O, Miura M, Hamachi T, Maeda K. Porphyromonas gingivalis displays a competitive advantage over Aggregatibacter actinomycetemcomitans in co-cultured biofilm. J Periodontal Res 2012; 48:286-92. [PMID: 23033940 DOI: 10.1111/jre.12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Biofilm formation occurs through the events of cooperative growth and competitive survival among multiple species. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are important periodontal pathogens. The aim of this study was to demonstrate competitive or cooperative interactions between these two species in co-cultured biofilm. MATERIAL AND METHODS P. gingivalis strains and gingipain mutants were cultured with or without A. actinomycetemcomitans. Biofilms formed on glass surfaces were analyzed by crystal violet staining and colony counting. Preformed A. actinomycetemcomitans biofilms were treated with P. gingivalis culture supernatants. Growth and proteolytic activities of gingipains were also determined. RESULTS Monocultured P. gingivalis strains exhibited a range of biofilm-formation abilities and proteolytic activities. The ATCC33277 strain, noted for its high biofilm-formation ability and proteolytic activity, was found to be dominant in biofilm co-cultured with A. actinomycetemcomitans. In a time-resolved assay, A. actinomycetemcomitans was primarily the dominant colonizer on a glass surface and subsequently detached in the presence of increasing numbers of ATCC33277. Detachment of preformed A. actinomycetemcomitans biofilm was observed by incubation with culture supernatants from highly proteolytic strains. CONCLUSION These results suggest that P. gingivalis possesses a competitive advantage over A. actinomycetemcomitans. As the required biofilm-formation abilities and proteolytic activities vary among P. gingivalis strains, the diversity of the competitive advantage is likely to affect disease recurrence during periodontal maintenance.
Collapse
Affiliation(s)
- K Takasaki
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
221
|
Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells. Cytokine 2012; 60:197-204. [DOI: 10.1016/j.cyto.2012.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/05/2012] [Accepted: 06/02/2012] [Indexed: 11/21/2022]
|
222
|
Yuzawa S, Kurita-Ochiai T, Hashizume T, Kobayashi R, Abiko Y, Yamamoto M. Sublingual vaccination with fusion protein consisting of the functional domain of hemagglutinin A of Porphyromonas gingivalis and Escherichia coli maltose-binding protein elicits protective immunity in the oral cavity. ACTA ACUST UNITED AC 2012; 64:265-72. [PMID: 22066647 DOI: 10.1111/j.1574-695x.2011.00895.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study demonstrated that sublingual immunization with a fusion protein, 25k-hagA-MBP, which consists of a 25-kDa antigenic region of hemagglutinin A purified from Porphyromonas gingivalis fused to maltose-binding protein (MBP) originating from Escherichia coli as an adjuvant, elicited protective immune responses. Immunization with 25k-hagA-MBP induced high levels of antigen-specific serum IgG and IgA, as well as salivary IgA. High level titers of serum IgG and IgA were also induced for almost 1 year. In an IgG subclass analysis, sublingual immunization with 25k-hagA-MBP induced both IgG1 and IgG2b antibody responses. Additionally, numerous antigen-specific IgA antibody-forming cells were detected from the salivary gland 7 days after the final immunization. Mononuclear cells isolated from submandibular lymph nodes (SMLs) showed significant levels of proliferation upon restimulation with 25k-hagA-MBP. An analysis of cytokine responses showed that antigen-specific mononuclear cells isolated from SMLs produced significantly high levels of IL-4, IFN-γ, and TGF-β. These results indicate that sublingual immunization with 25k-hagA-MBP induces efficient protective immunity against P. gingivalis infection in the oral cavity via Th1-type and Th2-type cytokine production.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
223
|
Khalaf H, Bengtsson T. Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One 2012; 7:e45192. [PMID: 22984628 PMCID: PMC3440346 DOI: 10.1371/journal.pone.0045192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca(2+)](i), were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
Collapse
Affiliation(s)
- Hazem Khalaf
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | |
Collapse
|
224
|
Irshad M, van der Reijden WA, Crielaard W, Laine ML. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts; role of the capsule. Arch Immunol Ther Exp (Warsz) 2012; 60:469-76. [PMID: 22949096 DOI: 10.1007/s00005-012-0196-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium involved in periodontitis and peri-implantitis that can invade and survive inside host cells in vitro. P. gingivalis can invade human gingival fibroblasts (GF), but no data are available about the role of P. gingivalis' capsule in GF invasion. In the current study, we aimed to determine the ability of three strains of P. gingivalis (encapsulated wild type W83, non-encapsulated HG91 and the non-encapsulated insertional isogenic knockout mutant of W83, ΔEpsC) to invade GF and the ability of internalized P. gingivalis to survive in vitro antibiotic treatment. The ability of P. gingivalis strains to invade GF was tested using an antibiotic protection assay at multiplicity of infection (MOI) 100 and 1000. The survival of internalized P. gingivalis cells was further analyzed by subsequent in vitro treatment with either metronidazole or amoxicillin alone or a combination of metronidazole and amoxicillin and anaerobic culture viability counts. All strains of P. gingivalis used in this study were able to invade GFs. The non-encapsulated mutant of W83 (ΔEpsC mutant) was significantly more invasive than the wild type W83 at MOI 100 (p value 0.025) and MOI 1000 (p value 0.038). Furthermore, internalized P. gingivalis was able to resist in vitro antibiotic treatment. As demonstrated by the differences in invasion efficiencies of P. gingivalis strain W83 and its isogenic mutant ΔEpsC, the capsule of P. gingivalis makes it less efficient in invading gingival fibroblasts. Moreover, internalized P. gingivalis can survive antibiotic treatment in vitro.
Collapse
Affiliation(s)
- Muhammad Irshad
- Section of Preventive Dentistry, Department of Conservative and Preventive Dentistry, Academic Centre for Dentistry Amsterdam, ACTA, University of Amsterdam and Vrije University Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
225
|
Yanagita M, Mori K, Kobayashi R, Kojima Y, Kubota M, Miki K, Yamada S, Kitamura M, Murakami S. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. Eur J Oral Sci 2012; 120:408-14. [PMID: 22984998 DOI: 10.1111/j.1600-0722.2012.00992.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2012] [Indexed: 12/21/2022]
Abstract
Tobacco smoking is a significant risk factor for periodontal diseases. Nicotine, one of the most studied constituents in cigarette smoke, is thought to modify immune responses. Dendritic cells (DCs), which are key mediators between innate and adaptive immunity, stimulate naive T cells to differentiate to effector T-cell subsets that may be actively involved in the immunopathogenesis of periodontal diseases. In this study, we evaluated the effects of nicotine and lipopolysaccharide (LPS) from Porphyromonas gingivalis, alone and in combination, on the functions of human monocyte-derived DCs to elucidate the mechanism of tissue destruction of smoking-associated periodontal diseases. P. gingivalis LPS-stimulated DCs differentiated with nicotine (NiDCs) induced lower T-cell proliferation and human leukocyte antigen (HLA)-DR expression, but elevated expression of programmed cell death ligand 1. Additionally, NiDCs impaired interferon-γ production but maintained interleukin (IL)-5 and IL-10 production in co-cultured T cells. Furthermore, NiDCs produced lower levels of proinflammatory cytokines compared with DCs differentiated in the absence of nicotine. Interestingly, NiDCs preferentially produced the T helper 2 (Th2)-type chemokines macrophage chemotactic protein-1 and macrophage-derived chemokine. These results suggest that the presence of nicotine during differentiation of DCs modulates the immunoregulatory functions of P. gingivalis LPS-stimulated DCs.
Collapse
Affiliation(s)
- Manabu Yanagita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Kunnen A, Dekker DC, van Pampus MG, Harmsen HJM, Aarnoudse JG, Abbas F, Faas MM. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains. Arch Oral Biol 2012; 57:1558-66. [PMID: 22902095 DOI: 10.1016/j.archoralbio.2012.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their products by the host inflammatory cells, we compared cytokine production following stimulation with bacteria or lipopolysaccharides (LPS) of a non-encapsulated and an encapsulated P. gingivalis strain (K(-) and K1). DESIGN Tumour necrosis factor-alpha (TNF-α) production following stimulation of the cell-line Mono Mac 6 with bacteria or LPS of both P. gingivalis strains was determined using flow cytometry. Furthermore, we investigated the effects of the two P. gingivalis strains or their LPS on TNF-α and Interleukin (IL-1β, IL-6, IL-12 and IL-10) production in whole blood using Luminex. In both experiments, Escherichia coli bacteria and LPS were used as a reference. RESULTS Both P. gingivalis strains induced lower cytokine production than E. coli with the exception of IL-6. P. gingivalis K1 bacteria elicited a higher overall cytokine production than P. gingivalis K(-). In contrast, P. gingivalis K1 LPS stimulation induced a lower cytokine production than P. gingivalis K(-) LPS. CONCLUSIONS Our findings suggest that the encapsulated P. gingivalis K1 bacteria induce higher cytokine production than the non-encapsulated P. gingivalis K(-). This was not due to its LPS. The stronger induction of cytokines may contribute to the higher virulence of P. gingivalis K1.
Collapse
Affiliation(s)
- Alina Kunnen
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen and University of Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
227
|
Kobayashi N, Suzuki JI, Ogawa M, Aoyama N, Hanatani T, Hirata Y, Nagai R, Izumi Y, Isobe M. Porphyromonas gingivalis accelerates neointimal formation after arterial injury. J Vasc Res 2012; 49:417-24. [PMID: 22739347 DOI: 10.1159/000339583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation plays a key role in neointimal hyperplasia after an arterial injury. Chronic infectious disorders, such as periodontitis, are associated with an increased risk of cardiovascular diseases. However, the effects of a periodontal infection on vascular remodeling have not been examined. We assess the hypothesis that periodontal infection could promote neointimal formation after an arterial injury. METHODS Mice were implanted with subcutaneous chambers (n = 41). Two weeks after implantation, the femoral arteries were injured, and Porphyromonas gingivalis (n = 21) or phosphate-buffered saline (n = 20) was injected into the chamber. The murine femoral arteries were obtained for the histopathological analysis. The expression level of mRNA in the femoral arteries was analyzed using quantitative reverse transcriptase polymerase chain reaction (n = 19-20). RESULTS The intima/media thickness ratio in the P. gingivalis infected group was found to be significantly increased in comparison to the non-infected group. The expression of matrix metalloproteinase-2 mRNA was significantly increased in the P. gingivalis infected group compared to the non-infected group. CONCLUSION These findings demonstrate that P. gingivalis injection can promote neointimal formation after an arterial injury. Periodontitis may be a critical factor in the development of restenosis after arterial intervention.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Kukita A, Ichigi Y, Takigawa I, Watanabe T, Kukita T, Miyamoto H. Infection of RANKL-primed RAW-D macrophages with Porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner. PLoS One 2012; 7:e38500. [PMID: 22723864 PMCID: PMC3377672 DOI: 10.1371/journal.pone.0038500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.
Collapse
Affiliation(s)
- Akiko Kukita
- Department of Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | |
Collapse
|
229
|
Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 2012; 333:1-9. [PMID: 22530835 DOI: 10.1111/j.1574-6968.2012.02579.x] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis, an inflammatory disease that destroys the tissues supporting the tooth, eventually leading to tooth loss. Porphyromonas gingivalis has can locally invade periodontal tissues and evade the host defence mechanisms. In doing so, it utilizes a panel of virulence factors that cause deregulation of the innate immune and inflammatory responses. The present review discusses the invasive and evasive strategies of P. gingivalis and the role of its major virulence factors in these, namely lipopolysaccharide, capsule, gingipains and fimbriae. Moreover, the role of P. gingivalis as a 'keystone' biofilm species in orchestrating a host response, is highlighted.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
230
|
Sato T, Kamaguchi A, Nakazawa F. Purification and characterization of hemolysin from Prevotella oris. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
231
|
Suphasiriroj W, Mikami M, Shimomura H, Sato S. Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 2012; 84:256-64. [PMID: 22443521 DOI: 10.1902/jop.2012.110652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The antimicrobial peptide LL-37 is known to have a potent lipopolysaccharide (LPS)-neutralizing activity in various cell types. Because of observed heterogeneity within periodontopathogenic LPS, the authors hypothesized that LL-37 had specificity to neutralize such LPS activity. The present study, therefore, aims to investigate the LPS-neutralizing activity of LL-37 to various periodontopathogenic LPS in interleukin-8 (IL-8) production after challenging them in human oral fibroblasts. METHODS Human periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) were cultured from biopsies of periodontal ligament and gingival tissues. After cell confluence in 24-well plates, LPS (10 μg/mL) from Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans were added with or without LL-37 (10 μg/mL). After 18 hours, the supernatant was collected and analyzed in IL-8 production by enzyme-linked immunosorbent assay. RESULTS All periodontopathogenic LPS statistically significantly induced IL-8 production in both PDLF and GF (P <0.01). After neutralization with LL-37, both PDLF and GF showed a statistically significant reduction in IL-8 production compared with LPS-treated groups without LL-37 (P <0.01), and the percentage of reduction in IL-8 production in PDLF appeared to be higher than in GF. In addition, the percentage of reduction in IL-8 production varied considerably according to each periodontopathogenic LPS. CONCLUSIONS The antimicrobial peptide LL-37 had an ability to suppress periodontopathogenic LPS-induced IL-8 production in both PDLF and GF. Its LPS-neutralizing activity revealed specificity to periodontopathogenic LPS and seemed to be dependent on the heterogeneity within LPS between different genera.
Collapse
Affiliation(s)
- Wiroj Suphasiriroj
- Department of Periodontology, The Nippon Dental University, School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan.
| | | | | | | |
Collapse
|
232
|
Farquharson D, Butcher JP, Culshaw S. Periodontitis, Porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol 2012; 5:112-20. [PMID: 22274780 DOI: 10.1038/mi.2011.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidemiological data indicate a link between rheumatoid arthritis (RA) and periodontal disease (PD). In vitro and in vivo studies have sought to dissect potential mechanisms by which PD may contribute to initiation and progression of RA. However, these are both multifactorial, chronic diseases, and their complex etiologies and pathogenesis themselves remain incompletely understood. Could there really be an etiological link or does this simply represent a statistical coincidence muddied by common risk factors? This review seeks to provide background on these two diseases in the context of recent discoveries suggesting that their pathogenesis may be related. In particular, the process of citrullination, a post-translational protein modification, has been highlighted as a process common to both diseases. The evidence for a relationship between the diseases is explored and its potential mechanisms discussed.
Collapse
Affiliation(s)
- D Farquharson
- Infection and Immunity Research Group, University of Glasgow Dental School, School of Medicine, Glasgow, UK
| | | | | |
Collapse
|
233
|
Röhner E, Hoff P, Matziolis G, Perka C, Riep B, Nichols FC, Kielbassa AM, Detert J, Burmester GR, Buttgereit F, Zahlten J, Pischon N. The impact of Porphyromonas gingivalis lipids on apoptosis of primary human chondrocytes. Connect Tissue Res 2012; 53:327-33. [PMID: 22260531 DOI: 10.3109/03008207.2012.657308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role of oral bacterial infections including periodontal disease in the pathogenesis of rheumatoid arthritis (RA) has gained increasing interest. Among the major periodontal pathogens, Porphyromonas gingivalis has been mostly associated with RA pathogenesis. The aim of this study was to analyze the effect of P. gingivalis total lipid (TL) fraction and dihydroceramides, as potent virulence factors, on human primary chondrocytes. Primary chondrocyte cultures were incubated with P. gingivalis phosphoglycerol dihydroceramide (PG DHC) lipids, the TL fraction or phosphoethanolamine dihydroceramide. Cell morphology changes were determined by phase contrast light microscopy. Early and late apoptosis cell analysis was performed by Annexin-V, active caspases, and 7-Aminoactinomycin D staining, and examined by flow cytometry, and cell necrosis was evaluated by lactate dehydrogenase release. Procaspase-3 activation was determined by Western blot analysis. Microscopic analysis showed altered cell morphology and cell shrinkage following incubation with P. gingivalis TLs and PG DHC lipids. Flow cytometry demonstrated an increase of Annexin-V positive and active caspases positive chondrocytes after incubation with TL and PG DHC fractions but not after phosphoethanolamine dihydroceramide (control lipid) treatment or in untreated control cells. Furthermore, Western blot analysis showed an early cleavage of procaspase-3 after 1 hr. Significant lactate dehydrogenase release following incubation with P. gingivalis lipids was demonstrated. The present data demonstrate that P. gingivalis lipids promote apoptosis in primary human chondrocytes, and thereby may contribute to the joint damage seen in the pathogenesis of RA.
Collapse
Affiliation(s)
- Eric Röhner
- Department of Traumatology and Orthopaedics, Charité-Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity. Antimicrob Agents Chemother 2012; 56:1548-56. [PMID: 22214780 DOI: 10.1128/aac.05100-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a bacterial pathogen associated with chronic periodontitis that results in destruction of the tooth's supporting tissues. The major virulence determinants of P. gingivalis are its cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp. Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in saliva and gingival crevicular fluid, is believed to play an important role in innate immunity. In this study, bovine milk LF displayed proteinase inhibitory activity against P. gingivalis whole cells, significantly inhibiting both Arg- and Lys-specific proteolytic activities. LF inhibited the Arg-specific activity of purified RgpB, which lacks adhesin domains, and also inhibited the same activity of the RgpA/Kgp proteinase-adhesin complexes in a time-dependent manner, with a first-order inactivation rate constant (k(inact)) of 0.023 min(-1) and an inhibitor affinity constant (K(I)) of 5.02 μM. LF inhibited P. gingivalis biofilm formation by >80% at concentrations above 0.625 μM. LF was relatively resistant to hydrolysis by P. gingivalis cells but was cleaved into two major polypeptides (53 and 33 kDa) at R(284) to S(285), as determined by in-source decay mass spectrometry; however, these polypeptides remained associated with each other and retained inhibitory activity. The biofilm inhibitory activity of LF against P. gingivalis was not attributed to direct antibacterial activity, as LF displayed little growth inhibitory activity against planktonic cells. As the known RgpA/B and Kgp inhibitor N-α-p-tosyl-l-lysine chloromethylketone also inhibited P. gingivalis biofilm formation, the antibiofilm effect of LF may at least in part be attributable to its antiproteinase activity.
Collapse
|
235
|
Hayashi F, Okada M, Oda Y, Kojima T, Kozai K. Prevalence of Porphyromonas gingivalis fimA genotypes in Japanese children. J Oral Sci 2012; 54:77-83. [DOI: 10.2334/josnusd.54.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
236
|
Enersen M. Porphyromonas gingivalis: a clonal pathogen?: Diversities in housekeeping genes and the major fimbriae gene. J Oral Microbiol 2011; 3:JOM-3-8487. [PMID: 22125739 PMCID: PMC3223970 DOI: 10.3402/jom.v3i0.8487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 01/31/2023] Open
Abstract
The introduction of multilocus sequence typing (MLST) in infectious disease research has allowed standardized typing of bacterial clones. Through multiple markers around the genome, it is possible to determine the sequence type (ST) of bacterial isolates to establish the population structure of a species. For the periodontal pathogen, Porphyromonas gingivalis, the MLST scheme has been established at www.pubmlst.org/pgingivalis, and data from the database indicate a high degree of genetic diversity and a weakly clonal population structure comparable with Neisseria menigitidis. The major fimbriae (FimA) have been held responsible for the adhesive properties of P. gingivalis and represent an important virulence factor. The fimA genotyping method (PCR based) indicate that fimA genotype II, IV and Ib are associated with diseased sites in periodontitis and tissue specimens from cardiovascular disease. fimA genotyping of the isolates in the MLST database supports the association of genotypes II and IV with periodontitis. As a result of multiple positive PCR reactions in the fimA genotyping, sequencing of the fimA gene revealed only minor nucleotide variation between isolates of the same and different genotypes, suggesting that the method should be redesigned or re-evaluated. Results from several investigations indicate a higher intraindividual heterogeneity of P. gingivalis than found earlier. Detection of multiple STs from one site in several patients with "refractory" periodontitis, showed allelic variation in two housekeeping genes indicating recombination between different clones within the periodontal pocket.
Collapse
Affiliation(s)
- Morten Enersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
237
|
Highly specific protease-based approach for detection of porphyromonas gingivalis in diagnosis of periodontitis. J Clin Microbiol 2011; 50:104-12. [PMID: 22075590 DOI: 10.1128/jcm.05313-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library, including fluorogenic dipeptides that contain d-amino acids, led to the discovery of five P. gingivalis-specific substrates. Due to the presence of lysine and arginine residues in these substrates, it was hypothesized that the cleavage was mediated by the gingipains, a group of P. gingivalis-specific proteases. This hypothesis was confirmed by the observation that P. gingivalis gingipain knockout strains demonstrated clearly impaired substrate cleavage efficacy. Further, proteolytic activity on the substrates was increased by the addition of the gingipain stimulators dithiothreitol and l-cysteine and decreased by the inhibitors leupeptin and N-ethylmaleimide. Screening of saliva and gingival crevicular fluid of periodontitis patients and healthy controls showed the potential of the substrates to diagnose the presence of P. gingivalis proteases. By using paper points, a sensitivity of approximately 10(5) CFU/ml was achieved. P. gingivalis-reactive substrates fully composed of l-amino acids and Bz-l-Arg-NHPhNO(2) showed a relatively low specificity (44 to 85%). However, the five P. gingivalis-specific substrates that each contained a single d-amino acid showed high specificity (96 to 100%). This observation underlines the importance of the presence of d-amino acids in substrates used for the detection of bacterial proteases. We envisage that these substrates may improve the specificity of the current enzyme-based diagnosis of periodontitis associated with P. gingivalis.
Collapse
|
238
|
Tenorio EL, Klein BA, Cheung WS, Hu LT. Identification of interspecies interactions affecting Porphyromonas gingivalis virulence phenotypes. J Oral Microbiol 2011; 3:JOM-3-8396. [PMID: 22022641 PMCID: PMC3198504 DOI: 10.3402/jom.v3i0.8396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/14/2022] Open
Abstract
Background Periodontitis is recognized as a complex polymicrobial disease, however, the impact of the bacterial interactions among the 700–1,000 different species of the oral microbiota remains poorly understood. We conducted an in vitro screen for oral bacteria that mitigate selected virulence phenotypes of the important periodontal pathogen, Porphyromonas gingivalis. Method We isolated and identified oral anaerobic bacteria from subgingival plaque of dental patients. When cocultured with P. gingivalis W83, specific isolates reduced the cytopathogenic effects of P. gingivalis on oral epithelial cells. Result In an initial screen of 103 subgingival isolates, we identified 19 distinct strains from nine species of bacteria (including Actinomyces naeslundii, Streptococcus oralis, Streptococcus mitis, and Veilonella dispar) that protect oral epithelial cells from P. gingivalis-induced cytotoxicity. We found that some of these strains inhibited P. gingivalis growth in plate assays through the production of organic acids, whereas some decreased the gingipain activity of P. gingivalis in coculture or mixing experiments. Conclusion In summary, we identified 19 strains isolated from human subgingival plaque that interacted with P. gingivalis, resulting in mitigation of its cytotoxicity to oral epithelial cells, inhibition of growth, and/or reduction of gingipain activity. Understanding the mechanisms of interaction between bacteria in the oral microbial community may lead to the development of new probiotic agents and new strategies for interrupting the development of periodontal disease.
Collapse
Affiliation(s)
- Elizabeth L Tenorio
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
239
|
Ohara-Nemoto Y, Shimoyama Y, Kimura S, Kon A, Haraga H, Ono T, Nemoto TK. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources. J Biol Chem 2011; 286:38115-38127. [PMID: 21896480 DOI: 10.1074/jbc.m111.278572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588.
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Asako Kon
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Hiroshi Haraga
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| |
Collapse
|
240
|
Choi S, Baik JE, Jeon JH, Cho K, Seo DG, Kum KY, Yun CH, Han SH. Identification of Porphyromonas gingivalis lipopolysaccharide-binding proteins in human saliva. Mol Immunol 2011; 48:2207-13. [DOI: 10.1016/j.molimm.2011.06.434] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 01/22/2023]
|
241
|
Bakthavatchalu V, Meka A, Mans JJ, Sathishkumar S, Lopez MC, Bhattacharyya I, Boyce BF, Baker HV, Lamont RJ, Ebersole JL, Kesavalu L. Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue. Mol Oral Microbiol 2011; 26:303-20. [PMID: 21896157 DOI: 10.1111/j.2041-1014.2011.00619.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T.forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip(®) array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction, and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts were observed in calvarias compared with sham-infected controls. Quantitative real-time RT-PCR analysis confirmed that the mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane pathway genes in a manner distinct from mono-infection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobially induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Yin L, Chung WO. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol 2011; 4:409-19. [PMID: 21248725 PMCID: PMC3118861 DOI: 10.1038/mi.2010.83] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gingival epithelia utilize multiple signaling pathways to regulate innate immune responses to various oral bacteria, but little is understood about how these bacteria alter epithelial epigenetic status. In this study we report that DNA methyltransferase (DNMT1) and histone deacetylase expression were decreased in gingival epithelial cells treated with oral pathogen Porphyromonas gingivalis and nonpathogen Fusobacterium nucleatum. Pretreatment with trichostatin A and sodium butyrate, which increase acetylation of chromatin histones, significantly enhanced the gene expression of antimicrobial proteins human β-defensin 2 (hBD2) and CC chemokine ligand 20 (CCL20) in response to both bacterial challenges. Pretreatment with DNMT inhibitor 5'-azacytidine increased hBD2 and CCL20 expression in response to F. nucleatum, but not to P. gingivalis. Furthermore, we observed a differential pattern of protein levels of H3K4me3, which has been associated with chromatin remodeling and activation of gene transcription, in response to P. gingivalis vs. F. nucleatum. This study provides a new insight into the bacteria-specific innate immune responses via epigenetic regulation.
Collapse
Affiliation(s)
- L Yin
- Department of Oral Biology, University of Washington, Seattle, Washington, USA,()
| | - W O Chung
- Department of Oral Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
243
|
How pathogen-derived cysteine proteases modulate host immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:192-207. [PMID: 21660666 PMCID: PMC7123607 DOI: 10.1007/978-1-4419-8414-2_12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, cysteine proteases are essential for the induction and development of both innate and adaptive immune responses. These proteases play a role in antigen-and pathogen-recognition and elimination, signal processing and cell homeostasis. Many pathogens also secrete cysteine proteases that often act on the same target proteins as the mammalian proteases and thereby can modulate host immunity from initial recognition to effector mechanisms. Pathogen-derived proteases range from nonspecific proteases that degrade multiple proteins involved in the immune response to enzymes that are very specific in their mode of action. Here, we overview current knowledge of pathogen-derived cysteine proteases that modulate immune responses by altering the normal function of key receptors or pathways in the mammalian immune system.
Collapse
|
244
|
Zhang P, Liu J, Xu Q, Harber G, Feng X, Michalek SM, Katz J. TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis through differential induction of NFATc1 and NF-kappaB. J Biol Chem 2011; 286:24159-69. [PMID: 21566133 DOI: 10.1074/jbc.m110.198085] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteolytic diseases, including rheumatoid arthritis, osteomyelitis, and periodontitis, are usually associated with bacterial infections. However, the precise mechanisms by which bacteria induce bone loss still remain unclear. Evidence exists that Toll-like receptor (TLR) signaling regulates both inflammation and bone metabolism and that the receptor activator of NF-κB ligand (RANKL) and its receptor RANK are the key regulators for bone remodeling and for the activation of osteoclasts. Here, we investigate the direct effects of the periodontal pathogen Porphyromonas gingivalis on osteoclast differentiation and show that P. gingivalis differentially modulates RANKL-induced osteoclast formation contingent on the state of differentiation of osteoclast precursors. In addition, although an optimal induction of cytokines by P. gingivalis is dependent on TLR2 and TLR4, as well as myeloid differentiation factor 88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β, P. gingivalis utilizes TLR2/ myeloid differentiation factor 88 in modulating osteoclast differentiation. P. gingivalis modulates RANKL-induced osteoclast formation by differential induction of NFATc1 and c-Fos. More importantly, RANKL-mediated lineage commitment also has an impact on P. gingivalis-induced cytokine production. RANKL inhibits P. gingivalis-induced cytokine production by down-regulation of TLR/NF-κB and up-regulation of NFATc1. Our findings reveal novel aspects of the interactions between TLR and RANK signaling and provide a new model for understanding the mechanism underlying the pathogenesis of bacteria-mediated bone loss.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
245
|
Development of Porphyromonas gingivalis-specific quantitative real-time PCR primers based on the nucleotide sequence of rpoB. J Microbiol 2011; 49:315-9. [PMID: 21538257 DOI: 10.1007/s12275-011-1028-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Species-specific quantitative real-time PCR (qPCR) primers were developed for the detection of Porphyromonas gingivalis. These primers, Pg-F/Pg-R, were designed based on the nucleotide sequences of RNA polymerase β-subunit gene (rpoB). Species-specific amplicons were obtained from the tested P. gingivalis strains but not in any of the other strains (46 strains of 46 species). The qPCR primers could detect as little as 4 fg of P. gingivalis chromosomal DNA. These findings suggest that these qPCR primers are suitable for applications in epidemiological studies.
Collapse
|
246
|
Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 2011; 79:2632-7. [PMID: 21536793 DOI: 10.1128/iai.00082-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a pathogen in severe periodontal disease. Able to exploit an intracellular lifestyle within primary gingival epithelial cells (GECs), a reservoir of P. gingivalis can persist within the gingival epithelia. This process is facilitated by manipulation of the host cell signal transduction cascades which can impact cell cycle, cell death, and cytokine responses. Using microarrays, we investigated the ability of P. gingivalis 33277 to regulate microRNA (miRNA) expression in GECs. One of several miRNAs differentially regulated by GECs in the presence of P. gingivalis was miRNA-203 (miR-203), which was upregulated 4-fold compared to uninfected controls. Differential regulation of miR-203 was confirmed by quantitative reverse transcription-PCR (qRT-PCR). Putative targets of miR-203, suppressor of cytokine signaling 3 (SOCS3) and SOCS6, were evaluated by qRT-PCR. SOCS3 and SOCS6 mRNA levels were reduced >5-fold and >2-fold, respectively, in P. gingivalis-infected GECs compared to controls. Silencing of miR-203 using a small interfering RNA construct reversed the inhibition of SOCS3 expression. A dual luciferase assay confirmed binding of miR-203 to the putative target binding site of the SOCS3 3' untranslated region. Western blot analysis demonstrated that activation of signal transducer and activator of transcription 3 (Stat3), a downstream target of SOCS, was diminished following miR-203 silencing. This study shows that induction of miRNAs by P. gingivalis can modulate important host signaling responses.
Collapse
|
247
|
Kibe T, Kishida M, Kamino M, Iijima M, Chen L, Habu M, Miyawaki A, Hijioka H, Nakamura N, Kiyono T, Kishida S. Immortalization and characterization of normal oral epithelial cells without using HPV and SV40 genes. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1348-8643(11)00009-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
248
|
Maisetta G, Brancatisano FL, Esin S, Campa M, Batoni G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide's antibacterial activity in vitro. Peptides 2011; 32:1073-7. [PMID: 21335044 DOI: 10.1016/j.peptides.2011.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/21/2022]
Abstract
Porphyromonas gingivalis, one of the major pathogen associated with periodontitis, is a highly proteolytic bacterial species. Production of proteases is a common microbial virulence factor that enables the destruction of host tissues and evasion from host defense mechanisms. Antimicrobial peptides are important effector molecules of the innate immune system with a broad range of antimicrobial and immunoregulatory activities. We and others have previously demonstrated that P. gingivalis is relatively resistant to the bactericidal activity of the human β-defensin 3 (hBD3). In this study, ability of proteases released by the pathogenic strain of P. gingivalis ATCC 49417 to degrade hBD3 and to affect the antibacterial properties of the peptide was assessed. P. gingivalis culture supernatants (CS) were found to degrade hBD3 in a concentration- and time-dependent manner. Such degradation was mainly due to the activity of Arg and Lys-gingipains, as pretreatment of CS with inhibitors selective for this class of proteases abolished CS ability to degrade hBD3. Importantly, preincubation of hBD3 with CS reduced peptide's antibacterial activity against a susceptible strain of Staphylococcus aureus, while the presence of gingipain inhibitors in the bactericidal assay increased P. gingivalis susceptibility to hBD3. Altogether these results suggest that gingipains may have a role in the resistance of P. gingivalis ATCC 49417 to hBD3.
Collapse
Affiliation(s)
- Giuseppantonio Maisetta
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
249
|
Antigenicity of Primary Endodontic Infection against Macrophages by the Levels of PGE2 Production. J Endod 2011; 37:602-7. [DOI: 10.1016/j.joen.2010.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 11/17/2022]
|
250
|
Tsuge S, Mizutani Y, Matsuoka K, Sawasaki T, Endo Y, Naruishi K, Maeda H, Takashiba S, Shiogama K, Inada KI, Tsutsumi Y. Specific in situ visualization of plasma cells producing antibodies against Porphyromonas gingivalis in gingival radicular cyst: application of the enzyme-labeled antigen method. J Histochem Cytochem 2011; 59:673-89. [PMID: 21525188 DOI: 10.1369/0022155411408906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The enzyme-labeled antigen method was applied to visualize plasma cells producing antibodies to Porphyromonas gingivalis, flora of the human oral cavity. Antibodies to P. gingivalis have reportedly been detected in sera of patients with periodontitis. Biotinylated bacterial antigens, Ag53, and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro, and Lys-hgp) were prepared by the cell-free protein synthesis system using the wheat germ extract. In paraformaldehyde-fixed frozen sections of rat lymph nodes experimentally immunized with Ag53-positive and Ag53-negative P. gingivalis, plasma cells were labeled with biotinylated Arg-hgp and Lys-hgp. Antibodies to Ag53 were detected only in the nodes immunized with Ag53-positive bacteria. In two of eight lesions of gingival radicular cyst with inflammatory infiltration, CD138-positive plasma cells in frozen sections were signalized for Arg-hgp and Lys-hgp. An absorption study using unlabeled antigens confirmed the specificity of staining. The AlphaScreen method identified the same-type antibodies in tissue extracts but not in sera. Antibodies to Ag53, Arg-pro, and Lys-pro were undetectable. In two cases, serum antibodies to Arg-hgp and Lys-hgp were AlphaScreen positive, whereas plasma cells were scarcely observed within the lesions. These findings indicate the validity of the enzyme-labeled antigen method. This is the very first application of this novel histochemical technique to human clinical samples.
Collapse
Affiliation(s)
- Shinya Tsuge
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|