201
|
Heitz-Mayfield LJA, Lang NP. Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts. Periodontol 2000 2014; 62:218-31. [PMID: 23574468 DOI: 10.1111/prd.12008] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review aims to highlight concepts relating to nonsurgical and surgical periodontal therapy, which have been learned and unlearned over the past few decades. A number of treatment procedures, such as gingival curettage and aggressive removal of contaminated root cementum, have been unlearned. Advances in technology have resulted in the introduction of a range of new methods for use in nonsurgical periodontal therapy, including machine-driven instruments, lasers, antimicrobial photodynamic therapy and local antimicrobial-delivery devices. However, these methods have not been shown to offer significant benefits over and above nonsurgical debridement using hand instruments. The method of debridement is therefore largely dependent on the preferences of the operator and the patient. Recent evidence indicates that specific systemic antimicrobials may be indicated for use as adjuncts to nonsurgical debridement in patients with advanced disease. Full-mouth disinfection protocols have been proven to be a relevant treatment option. We have learned that while nonsurgical and surgical methods result in similar long-term treatment outcomes, surgical therapy results in greater probing-depth reduction and clinical attachment gain in initially deep pockets. The surgical technique chosen seems to have limited influence upon changes in clinical attachment gain. What has not changed is the importance of thorough mechanical debridement and optimal plaque control for successful nonsurgical and surgical periodontal therapy.
Collapse
|
202
|
Preus HR, Scheie AA, Baelum V. Letter to the Editor: Re: The Clinical Effect of Scaling and Root Planing and the Concomitant Administration of Systemic Amoxicillin and Metronidazole: A Systematic Review; Re: Effectiveness of Systemic Amoxicillin/Metronidazole as Adjunctive Therapy to Scaling and Root Planing in the Treatment of Chronic Periodontitis: A Systematic Review and Meta-Analysis; Re: Effectiveness of Systemic Amoxicillin/Metronidazole as an Adjunctive Therapy to Full-Mouth Scaling and Root Planing in the Treatment of Aggressive Periodontitis: A Systematic Review and Meta-Analysis. J Periodontol 2014; 85:374-84. [DOI: 10.1902/jop.2014.130379] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
203
|
Griffin MC. Biocultural implications of oral pathology in an ancient Central California population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 154:171-88. [DOI: 10.1002/ajpa.22491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mark C. Griffin
- Department of Anthropology; San Francisco State University; 1600 Holloway Avenue San Francisco CA 94132
| |
Collapse
|
204
|
Clinical efficacy analysis of the mouth rinsing with pomegranate and chamomile plant extracts in the gingival bleeding reduction. Complement Ther Clin Pract 2014; 20:93-8. [DOI: 10.1016/j.ctcp.2013.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 11/20/2022]
|
205
|
Abstract
Recent progress in molecular biology and genetics opens up the possibility of engineering a variety of biological systems, from single-cellular to multicellular organisms. The consortia of microbes that reside on the human body, the human-associated microbiota, are particularly interesting as targets for forward engineering and manipulation due to their relevance in health and disease. New technologies in analysis and perturbation of the human microbiota will lead to better diagnostic and therapeutic strategies against diseases of microbial origin or pathogenesis. Here, we discuss recent advances that are bringing us closer to realizing the true potential of an engineered human-associated microbial community.
Collapse
Affiliation(s)
- Stephanie J Yaung
- Program in Medical Engineering Medical Physics, Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
206
|
Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:778-86. [PMID: 24249286 DOI: 10.1111/1758-2229.12085] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/25/2013] [Accepted: 05/04/2013] [Indexed: 05/22/2023]
Abstract
Bacteria adhere to natural and engineered surfaces and develop into mature biofilms encased in self-produced extracellular polymeric substances (EPSs). EPS consists of polysaccharides, proteins, metabolites and extracellular DNA (eDNA). Extracellular DNA release by bacteria is mediated by both quorum-sensing (QS)-dependent and -independent mechanisms. Quorum-sensing-independent mechanisms are responsible for basal levels of eDNA release, whereas QS-dependent mechanisms control the production of prophages, phenazines and proteins involved in cell lysis and subsequent release of elevated amounts of eDNA. Extracellular DNA binds with other biopolymers such as polysaccharides, proteins or metabolites like phenazines, thereby providing structural integrity to EPS. Extracellular DNA promotes attractive acid-base interactions between bacterial cells and between bacteria and surfaces. It therefore plays an essential structural role in stabilising biofilms and protecting bacterial cells from physical and chemical challenges. Accordingly, with current knowledge, it becomes clear that targeting and destroying eDNA in bacterial EPS is a promising strategy for treatment of bacterial-associated infections in a medical context and biofilm control on surfaces to prevent biocorrison in an engineering context. In contrast, the addition of DNA can be applied to engineering of biofilms for beneficial purposes such as remediation of environmental pollutants and electricity or fuel production in bioelectrochemical systems or bioreactors.
Collapse
Affiliation(s)
- Theerthankar Das
- Centre for Marine BioInnovation (CMB), School of Biotechnology and Biomolecular Sciences (BABS), University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
207
|
Cieplik F, Späth A, Regensburger J, Gollmer A, Tabenski L, Hiller KA, Bäumler W, Maisch T, Schmalz G. Photodynamic biofilm inactivation by SAPYR--an exclusive singlet oxygen photosensitizer. Free Radic Biol Med 2013; 65:477-487. [PMID: 23891675 DOI: 10.1016/j.freeradbiomed.2013.07.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/28/2013] [Accepted: 07/18/2013] [Indexed: 01/08/2023]
Abstract
Prevention and control of biofilm-growing microorganisms are serious problems in public health due to increasing resistances of some pathogens against antimicrobial drugs and the potential of these microorganisms to cause severe infections in patients. Therefore, alternative approaches that are capable of killing pathogens are needed to supplement standard treatment modalities. One alternative is the photodynamic inactivation of bacteria (PIB). The lethal effect of PIB is based on the principle that visible light activates a photosensitizer, leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induces phototoxicity immediately during illumination. SAPYR is a new generation of photosensitizers. Based on a 7-perinaphthenone structure, it shows a singlet oxygen quantum yield ΦΔ of 99% and is water soluble and photostable. Moreover, it contains a positive charge for good adherence to cell walls of pathogens. In this study, the PIB properties of SAPYR were investigated against monospecies and polyspecies biofilms formed in vitro by oral key pathogens. SAPYR showed a dual mechanism of action against biofilms: (I) it disrupts the structure of the biofilm even without illumination; (II) when irradiated, it inactivates bacteria in a polymicrobial biofilm after one single treatment with an efficacy of ≥ 99.99%. These results encourage further investigation on the potential of PIB using SAPYR for the treatment of localized infectious diseases.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Andreas Späth
- Department of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Johannes Regensburger
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Anita Gollmer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Laura Tabenski
- Department of Operative Dentistry and Periodontology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Karl-Anton Hiller
- Department of Operative Dentistry and Periodontology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Wolfgang Bäumler
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
208
|
Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability. Appl Environ Microbiol 2013; 80:972-85. [PMID: 24271168 DOI: 10.1128/aem.03579-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic and phenotypic responses of Streptococcus mutans, an organism that is strongly associated with the development of dental caries, to changes in carbohydrate availability were investigated. S. mutans UA159 or a derivative of UA159 lacking ManL, which is the EIIAB component (EIIAB(Man)) of a glucose/mannose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and a dominant effector of catabolite repression, was grown in continuous culture to steady state under conditions of excess (100 mM) or limiting (10 mM) glucose. Microarrays using RNA from S. mutans UA159 revealed that 174 genes were differentially expressed in response to changes in carbohydrate availability (P < 0.001). Glucose-limited cells possessed higher PTS activity, could acidify the environment more rapidly and to a greater extent, and produced more ManL protein than cultures grown with excess glucose. Loss of ManL adversely affected carbohydrate transport and acid tolerance. Comparison of the histidine protein (HPr) in S. mutans UA159 and the manL deletion strain indicated that the differences in the behaviors of the strains were not due to major differences in HPr pools or HPr phosphorylation status. Therefore, carbohydrate availability alone can dramatically influence the expression of physiologic and biochemical pathways that contribute directly to the virulence of S. mutans, and ManL has a profound influence on this behavior.
Collapse
|
209
|
Rmaile A, Carugo D, Capretto L, Aspiras M, De Jager M, Ward M, Stoodley P. Removal of interproximal dental biofilms by high-velocity water microdrops. J Dent Res 2013; 93:68-73. [PMID: 24170371 DOI: 10.1177/0022034513510945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The influence of the impact of a high-velocity water microdrop on the detachment of Streptococcus mutans UA159 biofilms from the interproximal (IP) space of teeth in a training typodont was studied experimentally and computationally. Twelve-day-old S. mutans biofilms in the IP space were exposed to a prototype AirFloss delivering 115 µL water at a maximum exit velocity of 60 m/sec in a 30-msec burst. Using confocal microscopy and image analysis, we obtained quantitative measurements of the percentage removal of biofilms from different locations in the IP space. The 3D geometry of the typodont and the IP spaces was obtained by micro-computed tomography (µ-CT) imaging. We performed computational fluid dynamics (CFD) simulations to calculate the wall shear stress (τw ) distribution caused by the drops on the tooth surface. A qualitative agreement and a quantitative relationship between experiments and simulations were achieved. The wall shear stress (τw ) generated by the prototype AirFloss and its spatial distribution on the teeth surface played a key role in dictating the efficacy of biofilm removal in the IP space.
Collapse
Affiliation(s)
- A Rmaile
- nCATS, Faculty of Engineering and the Environment (FEE), University of Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
210
|
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. MICROBIOME 2013; 1:25. [PMID: 24451062 PMCID: PMC3971625 DOI: 10.1186/2049-2618-1-25] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/17/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. RESULTS Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. CONCLUSIONS Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Lihong Guo
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Karen E Nelson
- Department of Human Genomic Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kenneth H Nealson
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- Department of Earth Sciences, USC, ZHS 117, Los Angeles, CA 90089, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| |
Collapse
|
211
|
Abstract
OBJECTIVE Nitric Oxide (NO) is one of the most powerful antibacterial compounds. The aim of this study was to determine the association between salivary NO, dental caries and cariogenic bacteria. MATERIALS AND METHODS The salivary NO concentration of 257 Korean children was analyzed by the Griess colorimetric reaction method. Salivary mutans streptococci (MS) and Lactobacilli (LB) were counted using the Dentocult MS and Dentocult LB kit, respectively. Dental caries status was examined using the WHO criteria. Confounders were age, gender, salivary flow rate and salivary buffer capacity. Analysis of covariance (ANCOVA) was used to evaluate the association among NO, salivary MS level, salivary LB level and dental caries status after adjusting for the effects of confounders. RESULTS A significant decrease was found in salivary NO levels as the salivary LB count increased after controlling for confounders (p = 0.049). However, the MS level, caries experience and active caries status showed no significant association. CONCLUSION This result indicates that NO production might be a host defense mechanism against the growth of cariogenic bacteria.
Collapse
Affiliation(s)
- Dong-Hun Han
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
212
|
Shet UK, Oh HK, Kim HJ, Chung HJ, Kim YJ, Kim OS, Choi HR, Kim OJ, Lim HJ, Lee SW. Quantitative analysis of periodontal pathogens present in the saliva of geriatric subjects. J Periodontal Implant Sci 2013; 43:183-90. [PMID: 24040571 PMCID: PMC3769597 DOI: 10.5051/jpis.2013.43.4.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE At present, information regarding periodontal disease in geriatric patients is scarce. The purpose of this study was to quantify the periodontal pathogens present in the saliva of Korean geriatric patients and assess the relationship between the bacterial levels and the periodontal condition. METHODS Six putative periodontal pathogens were quantified by using a real-time polymerase chain reaction assay in geriatric patient groups (>60 years) with mild chronic periodontitis (MCP), moderate chronic periodontitis (MoCP), and severe chronic periodontitis (SCP). The copy numbers of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Prevotella intermedia were measured. RESULTS It was found that the bacterial copy numbers increased as the severity of the disease increased from MCP to SCP, except for P. intermedia. For P. intermedia, it was found that samples in the MCP group yielded the largest amount. It was also found that the quantities of P. gingivalis, T. forsythia, and T. denticola, the so-called "red complex" bacteria, were lower than those of F. nucleatum, A. actinomycetemcomitans, and P. intermedia in all of the samples. CONCLUSIONS Collectively, the results of this study suggest that the levels of P. gingivalis, T. forsythia, F. nucleatum, and T. denticola present in saliva are associated with the severity of periodontal disease in geriatric patients.
Collapse
Affiliation(s)
- Uttom K Shet
- Department of Oral & Maxillofacial Surgery, Dental Science Research Institute, Chonnam National University School of Dentistry, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Preus HR, Gunleiksrud TM, Sandvik L, Gjermo P, Baelum V. A Randomized, Double-Masked Clinical Trial Comparing Four Periodontitis Treatment Strategies: 1-Year Clinical Results. J Periodontol 2013; 84:1075-86. [DOI: 10.1902/jop.2012.120400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
214
|
Antibiofilm activity of zinc-carbonate hydroxyapatite nanocrystals against Streptococcus mutans and mitis group streptococci. Curr Microbiol 2013; 67:679-81. [PMID: 23852075 DOI: 10.1007/s00284-013-0419-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
215
|
Ohshima M, Yamaguchi Y. [Paradigm shift in pharmacological treatment of periodontitis]. Nihon Yakurigaku Zasshi 2013; 141:314-20. [PMID: 23749071 DOI: 10.1254/fpj.141.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
216
|
Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. THE ISME JOURNAL 2013; 7:1016-25. [PMID: 23303375 PMCID: PMC3635234 DOI: 10.1038/ismej.2012.174] [Citation(s) in RCA: 743] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 01/22/2023]
Abstract
The goals of this study were to better understand the ecology of oral subgingival communities in health and periodontitis and elucidate the relationship between inflammation and the subgingival microbiome. Accordingly, we used 454-pyrosequencing of 16S rRNA gene libraries and quantitative PCR to characterize the subgingival microbiome of 22 subjects with chronic periodontitis. Each subject was sampled at two sites with similar periodontal destruction but differing in the presence of bleeding, a clinical indicator of increased inflammation. Communities in periodontitis were also compared with those from 10 healthy individuals. In periodontitis, presence of bleeding was not associated with different α-diversity or with a distinct microbiome, however, bleeding sites showed higher total bacterial load. In contrast, communities in health and periodontitis largely differed, with higher diversity and biomass in periodontitis. Shifts in community structure from health to periodontitis resembled ecological succession, with emergence of newly dominant taxa in periodontitis without replacement of primary health-associated species. That is, periodontitis communities had higher proportions of Spirochetes, Synergistetes, Firmicutes and Chloroflexi, among other taxa, while the proportions of Actinobacteria, particularly Actinomyces, were higher in health. Total Actinomyces load, however, remained constant from health to periodontitis. Moreover, an association existed between biomass and community structure in periodontitis, with the proportion of specific taxa correlating with bacterial load. Our study provides a global-scale framework for the ecological events in subgingival communities that underline the development of periodontitis. The association, in periodontitis, between inflammation, community biomass and community structure and their role in disease progression warrant further investigation.
Collapse
Affiliation(s)
- Loreto Abusleme
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, CT, USA
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Amanda K Dupuy
- Center for Applied Genetics and Technologies, The University of Connecticut, Storrs, CT, USA
| | - Nicolás Dutzan
- Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nora Silva
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Joseph A Burleson
- Division of Epidemiology and Biostatistics, Department of Community Medicine and Health Care, The University of Connecticut Health Center, Farmington, CT, USA
| | - Linda D Strausbaugh
- Center for Applied Genetics and Technologies, The University of Connecticut, Storrs, CT, USA
| | - Jorge Gamonal
- Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
217
|
Abstract
The ASM 6th Conference on Biofilms was held in Miami, Florida, 29 September to 4 October, 2012. The conference provided an opportunity for the exchange of new findings and ideas with regard to biofilm research. A wide range of findings, spanning applied biology, evolution, ecology, physiology, and molecular biology, were presented at the conference. This review summarizes the presentations with regard to emerging biofilm-related themes.
Collapse
|
218
|
Abstract
Periodontitis is a complex infectious disease that affects low-income individuals disproportionately. Periodontitis is associated with specific bacterial species and herpesviruses, and successful prevention and treatment of the disease is contingent upon effective control of these pathogens. This article presents an efficacious, highly safe, minimally invasive, practical and low-cost periodontal therapy that involves professional and patient-administered mechanical therapy and antimicrobial agents. The major components are scaling for calculus removal, periodontal pocket irrigation with potent antiseptics, and treatment with systemic antibiotics for advanced disease. Povidone-iodine and sodium hypochlorite have all the characteristics for becoming the first-choice antiseptics in the management of periodontal diseases. Both agents show excellent antibacterial and antiviral properties, are readily available throughout the world, have been safely used in periodontal therapy for decades, offer significant benefits for individuals with very limited financial resources, and are well accepted by most dental professionals and patients. Four per cent chlorhexidine applied with a toothbrush to the most posterior part to the tongue dorsum can markedly reduce or eliminate halitosis in most individuals. Systemic antibiotics are used to treat periodontopathic bacteria that are not readily reached by topical therapy, such as pathogens within gingival tissue, within furcation defects, at the base of periodontal pockets, and on the tongue, tonsils and buccal mucosae. Valuable antibiotic therapies are amoxicillin-metronidazole (250 mg of amoxicillin and 250 mg of metronidazole, three times daily for 8 days) for young and middle-aged patients, and ciprofloxacin-metronidazole (500 mg of each, twice daily for 8 days) for elderly patients and for patients in developing countries who frequently harbor enteric rods subgingivally. Scaling to remove dental calculus and the prudent use of inexpensive antimicrobial agents can significantly retard or arrest progressive periodontitis in the great majority of patients.
Collapse
|
219
|
Al-Ahmad A, Tennert C, Karygianni L, Wrbas KT, Hellwig E, Altenburger MJ. Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-A (wIRA). J Med Microbiol 2013. [DOI: 10.1099/jmm.0.048843-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- A. Al-Ahmad
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - C. Tennert
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - L. Karygianni
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - K. T. Wrbas
- Department of Endodontics, Centre for Operative Dentistry and Periodontology, University of Dental Medicine and Oral Health, Danube Private University (DPU), Krems, Austria
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| | - M. J. Altenburger
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
220
|
Corraini P, Baelum V, Pannuti CM, Romito GA, Aquino DR, Cortelli SC, Cortelli JR, Pustiglioni FE. Subgingival microbial profiles as diagnostic markers of destructive periodontal diseases: a clinical epidemiology study. Acta Odontol Scand 2013; 71:289-99. [PMID: 22564019 DOI: 10.3109/00016357.2012.680901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To describe the subgingival microbial profiles of the major putative periodontal pathogens and investigate their role as diagnostic markers for destructive periodontal diseases in an untreated and isolated population. MATERIALS AND METHODS The source population consisted of all subjects aged ≥ 12 years in an isolated Brazilian population. An interview and a full-mouth clinical examination were conducted and subgingival plaque samples were obtained from four sites per subject. PCR analyses were used to identify the following micro-organisms: Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia and Campylobacter rectus. RESULTS Among the 214 clinically examined subjects (81% response), 170 of the 195 dentate subjects provided plaque samples. Two subgingival microbial profiles were identified: absence of all micro-organisms but Campylobacter rectus or co-occurrence of Tannerella forsythia and Porphyromonas gingivalis. Using a combination of microbiological and interview information, the smallest overall misclassification in the diagnosis of extensive clinical attachment loss ≥ 5 mm was 8.8% (4.7% of non-cases and 22% of cases), but this was not different from the 7.6% (2.3% non-cases and 24.4% cases) obtained using clinical and interview information (p = 0.292). CONCLUSION Specific microbial profiles could be identified in this isolated population. They did not result in significant superior diagnostic accuracy when compared to traditional clinical markers.
Collapse
Affiliation(s)
- Priscila Corraini
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent 2013; 5:11-9. [PMID: 23674928 PMCID: PMC3652372 DOI: 10.2147/ccide.s31005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. Simple diagnostic tests have been developed that involve the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment of risk of further disease in individual patients. However, oral diseases have a complex etiology, and because only around 50% of oral biofilm can be grown at present, culture-independent molecular-based approaches are being developed that give a more comprehensive assessment of the presence of a range of putative pathogens in samples. The diversity of these biofilms creates challenges in the interpretation of findings, and future work is investigating the ability of novel techniques to detect biological activity and function in oral biofilms, rather than simply providing a catalogue of microbial names.
Collapse
Affiliation(s)
- Thuy Do
- Department of Oral Biology, Leeds Dental Institute, Leeds
| | | | | |
Collapse
|
222
|
Mannaa A, Carlén A, Campus G, Lingström P. Supragingival plaque microbial analysis in reflection to caries experience. BMC Oral Health 2013; 13:5. [PMID: 23298235 PMCID: PMC3545727 DOI: 10.1186/1472-6831-13-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022] Open
Abstract
Background Dental caries develops as a result of the metabolism of carbohydrates by cariogenic bacteria present in a complex biofilm. The present study aimed to examine if bacteria in pooled supragingival plaque samples quantified using a “checkerboard DNA-DNA hybridization” based panel of caries-related bacteria, could reflect the caries experience in a manner similar to saliva samples analysed using a chair-side method in a previous investigation. Methods A total of 86 mothers and their children aged 4–6 years and 12–16 years old participated. Caries experience (DMFT/dmft; Decayed, Missing and Filled Teeth for permanent and primary teeth) was registered clinically and radiographically. Caries was recorded at the D3 level (caries into dentine). The D/d component was divided into three categories. A pooled supragingival plaque sample per participant was obtained from posterior approximal sites. Analyses of 15 bacterial species were performed using the checkerboard DNA-DNA hybridisation technique. Results No significant relationships were found between the bacterial scores and DMFT/dmft nor D/d groups. Conclusions Unlike the saliva samples and the chair-side method, interproximal pooled plaque samples analysed using the “checkerboard DNA-DNA hybridization technique” did not reveal any significant relations between the bacterial counts and the caries experience.
Collapse
Affiliation(s)
- Alaa Mannaa
- Department of Cariology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, Gothenburg, SE-405 30, Sweden.
| | | | | | | |
Collapse
|
223
|
Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental Caries from a Molecular Microbiological Perspective. Caries Res 2013. [DOI: 10.1159/000345367] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
224
|
Contact-Killing of Adhering Streptococci by a Quaternary Ammonium Compound Incorporated in an Acrylic Resin. Int J Artif Organs 2012; 35:854-63. [DOI: 10.5301/ijao.5000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 11/20/2022]
Abstract
Purpose Acrylates for bonding of joint prostheses and stainless-steel brackets in orthopedics and orthodontics are prone to bacterial adhesion and biofilm formation, respectively, leading to serious infectious complications. Here we describe the preparation of a contact-killing acrylic resin by incorporation of [3-(methacryloylamino)propyl] trimethylammonium chloride (MAPTAC). Methods Physicochemical properties of the acrylates with and without MAPTAC incorporated were determined with X-ray photoelectron spectroscopy and water contact angles. The bond-strength of the acrylate with different percentages of MAPTAC was determined in a shear mode. The efficacy in contact-killing of the acrylate with MAPTAC incorporated with and without an adsorbed salivary coating was evaluated for various oral streptococcal strains. Cytotoxicity was tested against human skin fibroblasts. Results Acrylates with 16 wt% and 20 wt% incorporated MAPTAC showed strong contact-killing of various oral streptococcal strains up to challenge concentrations of 109 mL–1 within 15 min, with no elution of antimicrobial polymers. Contact-killing reduced after coating with a salivary conditioning film, but still remained significant up to a challenge concentration of 105 mL–1. No cytotoxicity of acrylate with incorporated MAPTAC was observed toward human skin fibroblasts. The bond strengths of stainless-steel brackets fixed to etched enamel through the resin (12 ± 3 MPa) decreased with increasing amounts MAPTAC to half of the original value when 20 wt% of MAPTAC was incorporated, which remained within a clinically acceptable range. Conclusions These results suggest that MAPTAC can be effectively incorporated in orthodontic resin to provide long-term bactericidal activity against oral bacteria, with potential application in orthopedics.
Collapse
|
225
|
Mannaa A, Carlén A, Dahlén G, Lingström P. Intra-familial comparison of supragingival dental plaque microflora using the checkerboard DNA–DNA hybridisation technique. Arch Oral Biol 2012; 57:1644-50. [DOI: 10.1016/j.archoralbio.2012.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
226
|
Takenaka S, Ohshima H, Ohsumi T, Okiji T. Current and future strategies for the control of mature oral biofilms—Shift from a bacteria-targeting to a matrix-targeting approach. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
227
|
Posch G, Sekot G, Friedrich V, Megson ZA, Koerdt A, Messner P, Schäffer C. Glycobiology Aspects of the Periodontal Pathogen Tannerella forsythia. Biomolecules 2012; 2:467-82. [PMID: 24970146 PMCID: PMC4030854 DOI: 10.3390/biom2040467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/22/2022] Open
Abstract
Glycobiology is important for the periodontal pathogen Tannerella forsythia, affecting the bacterium's cellular integrity, its life-style, and virulence potential. The bacterium possesses a unique Gram-negative cell envelope with a glycosylated surface (S-) layer as outermost decoration that is proposed to be anchored via a rough lipopolysaccharide. The S-layer glycan has the structure 4‑MeO-b-ManpNAcCONH2-(1→3)-[Pse5Am7Gc-(2→4)-]-b-ManpNAcA-(1→4)-[4-MeO-a-Galp-(1→2)-]-a-Fucp-(1→4)-[-a-Xylp-(1→3)-]-b-GlcpA-(1→3)-[-b-Digp-(1→2)-]-a-Galp and is linked to distinct serine and threonine residues within the D(S/T)(A/I/L/M/T/V) amino acid motif. Also several other Tannerella proteins are modified with the S‑layer oligosaccharide, indicating the presence of a general O‑glycosylation system. Protein O‑glycosylation impacts the life-style of T. forsythia since truncated S-layer glycans present in a defined mutant favor biofilm formation. While the S‑layer has also been shown to be a virulence factor and to delay the bacterium's recognition by the innate immune system of the host, the contribution of glycosylation to modulating host immunity is currently unraveling. Recently, it was shown that Tannerella surface glycosylation has a role in restraining the Th17-mediated neutrophil infiltration in the gingival tissues. Related to its asaccharolytic physiology, T. forsythia expresses a robust enzymatic repertoire, including several glycosidases, such as sialidases, which are linked to specific growth requirements and are involved in triggering host tissue destruction. This review compiles the current knowledge on the glycobiology of T. forsythia.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Gerhard Sekot
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Valentin Friedrich
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Zoë A Megson
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Andrea Koerdt
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
228
|
Jagtap P, McGowan T, Bandhakavi S, Tu ZJ, Seymour S, Griffin TJ, Rudney JD. Deep metaproteomic analysis of human salivary supernatant. Proteomics 2012; 12:992-1001. [PMID: 22522805 DOI: 10.1002/pmic.201100503] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human salivary proteome is extremely complex, including proteins from salivary glands, serum, and oral microbes. Much has been learned about the host component, but little is known about the microbial component. Here we report a metaproteomic analysis of salivary supernatant pooled from six healthy subjects. For deep interrogation of the salivary proteome, we combined protein dynamic range compression (DRC), multidimensional peptide fractionation, and high-mass accuracy MS/MS with a novel two-step peptide identification method using a database of human proteins plus those translated from oral microbe genomes. Peptides were identified from 124 microbial species as well as uncultured phylotypes such as TM7. Streptococcus, Rothia, Actinomyces, Prevotella, Neisseria, Veilonella, Lactobacillus, Selenomonas, Pseudomonas, Staphylococcus, and Campylobacter were abundant among the 65 genera from 12 phyla represented. Taxonomic diversity in our study was broadly consistent with metagenomic studies of saliva. Proteins mapped to 20 KEGG pathways, with carbohydrate metabolism, amino acid metabolism, energy metabolism, translation, membrane transport, and signal transduction most represented. The communities sampled appear to be actively engaged in glycolysis and protein synthesis. This first deep metaproteomic catalog from human salivary supernatant provides a baseline for future studies of shifts in microbial diversity and protein activities potentially associated with oral disease.
Collapse
Affiliation(s)
- Pratik Jagtap
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Klepac-Ceraj V, Patel N, Song X, Holewa C, Patel C, Kent R, Amiji MM, Soukos NS. Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria. Lasers Surg Med 2012; 43:600-6. [PMID: 22057487 DOI: 10.1002/lsm.21069] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) is increasingly being explored for treatment of oral infections. Here, we investigate the effect of PDT on human dental plaque bacteria in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles with a positive or negative charge and red light at 665 nm. STUDY DESIGN/MATERIALS AND METHODS Dental plaque samples were obtained from 14 patients with chronic periodontitis. Suspensions of plaque microorganisms from seven patients were sensitized with anionic, cationic PLGA nanoparticles (50 µg/ml equivalent to MB) or free MB (50 µg/ml) for 20 min followed by exposure to red light for 5 min with a power density of 100 mW/cm2 . Polymicrobial oral biofilms, which were developed on blood agar in 96-well plates from dental plaque inocula obtained from seven patients, were also exposed to PDT as above. Following the treatment, survival fractions were calculated by counting the number of colony-forming units. RESULTS The cationic MB-loaded nanoparticles exhibited greater bacterial phototoxicity in both planktonic and biofilm phase compared to anionic MB-loaded nanoparticles and free MB, but results were not significantly different (P > 0.05). CONCLUSION Cationic MB-loaded PLGA nanoparticles have the potential to be used as carriers of MB for PDT systems.
Collapse
Affiliation(s)
- Vanja Klepac-Ceraj
- Applied Molecular Photomedicine Laboratory, The Forsyth Institute, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Biyikoğlu B, Ricker A, Diaz PI. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development. Anaerobe 2012; 18:459-70. [PMID: 22771792 DOI: 10.1016/j.anaerobe.2012.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/23/2012] [Accepted: 06/27/2012] [Indexed: 11/28/2022]
Abstract
Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.
Collapse
Affiliation(s)
- Basak Biyikoğlu
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, 06030-1710, USA
| | | | | |
Collapse
|
231
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
232
|
Kindblom C, Davies J, Herzberg M, Svensäter G, Wickström C. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. Mol Oral Microbiol 2012; 27:362-72. [DOI: 10.1111/j.2041-1014.2012.00650.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
233
|
Schillinger C, Petrich A, Lux R, Riep B, Kikhney J, Friedmann A, Wolinsky LE, Göbel UB, Daims H, Moter A. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS One 2012; 7:e37583. [PMID: 22655057 PMCID: PMC3360060 DOI: 10.1371/journal.pone.0037583] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 04/22/2012] [Indexed: 11/18/2022] Open
Abstract
The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology). This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia) were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm) with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for “as-yet-uncultured” phylotypes which cannot be characterized in vitro.
Collapse
Affiliation(s)
- Claudia Schillinger
- Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Petrich
- Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Lux
- UCLA School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Birgit Riep
- Abteilung für Parodontologie und Synoptische Zahnmedizin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Kikhney
- Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anton Friedmann
- School of Dentistry, Faculty of Health, University of Witten, Witten, Germany
| | - Lawrence E. Wolinsky
- Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas, United States of America
| | - Ulf B. Göbel
- Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Daims
- Department of Microbial Ecology, Ecology Center, University of Vienna, Vienna, Austria
- * E-mail: (AM); (HD)
| | - Annette Moter
- Institut für Mikrobiologie und Hygiene, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (AM); (HD)
| |
Collapse
|
234
|
Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents. PLoS One 2012; 7:e37871. [PMID: 22629466 PMCID: PMC3358276 DOI: 10.1371/journal.pone.0037871] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/25/2012] [Indexed: 11/24/2022] Open
Abstract
Background Photodynamic therapy (PDT) has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. Methodology/Principal Findings Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. Conclusions It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.
Collapse
|
235
|
Nongonierma AB, Fitzgerald RJ. Biofunctional properties of caseinophosphopeptides in the oral cavity. Caries Res 2012; 46:234-67. [PMID: 22572605 DOI: 10.1159/000338381] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
Caseinophosphopeptides (CPPs), bioactive peptides released from caseins, have the ability to enhance bivalent mineral solubility. This is relevant to numerous biological functions in the oral cavity (promotion of tooth enamel remineralisation, prevention of demineralisation and buffering of plaque pH). Therefore, CPPs may play a positive role as prophylactic agents for caries, enamel erosion and regression of white spot lesions. Most in vitro and in situ studies demonstrate strong evidence for the bioactivity of CPPs in the oral cavity. Nevertheless, relatively little is known concerning their use as adjuvants for oral health and more particularly regarding their long-term effects on oral health.
Collapse
Affiliation(s)
- A B Nongonierma
- Department of Life Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | | |
Collapse
|
236
|
Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T. Towards diagnostic guidelines for biofilm-associated infections. ACTA ACUST UNITED AC 2012; 65:127-45. [PMID: 22469292 DOI: 10.1111/j.1574-695x.2012.00968.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 12/17/2022]
Abstract
Biofilms associated with the human body, particularly in typically sterile locations, are difficult to diagnose and treat effectively because of their recalcitrance to conventional antibiotic therapy and host immune responses. The study of biofilms in medicine today requires a translational approach, with examination of clinically relevant biofilms in the context of specific anatomic sites, host tissues, and diseases, focusing on what can be done to mitigate their pathologic consequences. This review, which grew out of a discussion session on clinical biofilms at the 5th ASM Biofilm Conference in Cancun, Mexico, is designed to give an overview of biofilm-associated infections (BAI) and to propose a platform for further discussion that includes clinicians, medical microbiologists, and biofilm researchers who are stakeholders in advancing the scientific pursuit of better diagnosis and treatment of BAI to mitigate their human and healthcare costs. It also highlights the need for better diagnostic markers, which exploit the difference between planktonic and biofilm cells.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation Trust, Southampton, UK.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Donelli G, Vuotto C, Cardines R, Mastrantonio P. Biofilm-growing intestinal anaerobic bacteria. ACTA ACUST UNITED AC 2012; 65:318-25. [PMID: 22444687 DOI: 10.1111/j.1574-695x.2012.00962.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023]
Abstract
Sessile growth of anaerobic bacteria from the human intestinal tract has been poorly investigated, so far. We recently reported data on the close association existing between biliary stent clogging and polymicrobial biofilm development in its lumen. By exploiting the explanted stents as a rich source of anaerobic bacterial strains belonging to the genera Bacteroides, Clostridium, Fusobacterium, Finegoldia, Prevotella, and Veillonella, the present study focused on their ability to adhere, to grow in sessile mode and to form in vitro mono- or dual-species biofilms. Experiments on dual-species biofilm formation were planned on the basis of the anaerobic strains isolated from each clogged biliary stent, by selecting those in which a couple of anaerobic strains belonging to different species contributed to the polymicrobial biofilm development. Then, strains were investigated by field emission scanning electron microscopy and confocal laser scanning microscopy to reveal if they are able to grow as mono- and/or dual-species biofilms. As far as we know, this is the first report on the ability to adhere and form mono/dual-species biofilms exhibited by strains belonging to the species Bacteroides oralis, Clostridium difficile, Clostridium baratii, Clostridium fallax, Clostridium bifermentans, Finegoldia magna, and Fusobacterium necrophorum.
Collapse
Affiliation(s)
- Gianfranco Donelli
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | | | | |
Collapse
|
238
|
Redanz S, Standar K, Podbielski A, Kreikemeyer B. A five-species transcriptome array for oral mixed-biofilm studies. PLoS One 2011; 6:e27827. [PMID: 22194794 PMCID: PMC3237422 DOI: 10.1371/journal.pone.0027827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/26/2011] [Indexed: 12/03/2022] Open
Abstract
Background Oral polymicrobial interactions and biofilm formation are associated with initiation and progression of caries, gingivitis, and periodontitis. Transcriptome studies of such interactions, allowing a first mechanistic insight, are hampered by current single-species array designs. Methodology/Principal Findings In this study we used 385 K NimbleGene™ technology for design and evaluation of an array covering the full genomes of 5 important physiological-, cariogenic-, and periodontitis-associated microorganisms (Streptococcus sanguinis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis). Array hybridization was done with cDNA from cultures grown for 24 h anaerobically. Single species experiments identified cross-species hybridizing array probes. These probes could be neglected in a mixed-species experimental setting without the need to exclude the whole genes from the analysis. Between 69% and almost 99% of the genomes were actively transcribed under the mono-species planktonic, monolayer, and biofilm conditions. The influence of Streptococcus mitis (not represented on the array) on S. mutans gene transcription was determined as a test for a dual-species mixed biofilm setup. Phenotypically, under the influence of S. mitis an increase in S. mutans biofilm mass and a decrease in media pH-value were noticed, thereby confirming previously published data. Employing a stringent cut-off (2-fold, p<0.05), 19 S. mutans transcripts were identified with increased abundance, and 11 with decreased abundance compared to a S. mutans mono-species biofilm. Several of these genes have previously been found differentially regulated under general and acid stress, thereby confirming the value of this array. Conclusions/Significance This new array allows transcriptome studies on multi-species oral biofilm interactions. It may become an important asset in future oral biofilm and inhibitor/therapy studies.
Collapse
Affiliation(s)
- Sylvio Redanz
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Kerstin Standar
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
239
|
Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 2011; 80:620-32. [PMID: 22104105 DOI: 10.1128/iai.05896-11] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is a commensal colonizer of the gastrointestinal tract of humans, where it coexists with highly diverse bacterial communities. It is not clear whether this interaction limits or promotes the potential of C. albicans to become an opportunistic pathogen. Here we investigate the interaction between C. albicans and three species of streptococci from the viridans group, which are ubiquitous and abundant oral commensal bacteria. The ability of C. albicans to form biofilms with Streptococcus oralis, Streptococcus sanguinis, or Streptococcus gordonii was investigated using flow cell devices that allow abiotic biofilm formation under salivary flow. In addition, we designed a novel flow cell system that allows mucosal biofilm formation under conditions that mimic the environment in the oral and esophageal mucosae. It was observed that C. albicans and streptococci formed a synergistic partnership where C. albicans promoted the ability of streptococci to form biofilms on abiotic surfaces or on the surface of an oral mucosa analogue. The increased ability of streptococci to form biofilms in the presence of C. albicans could not be explained by a growth-stimulatory effect since the streptococci were unaffected in their growth in planktonic coculture with C. albicans. Conversely, the presence of streptococci increased the ability of C. albicans to invade organotypic models of the oral and esophageal mucosae under conditions of salivary flow. Moreover, characterization of mucosal invasion by the biofilm microorganisms suggested that the esophageal mucosa is more permissive to invasion than the oral mucosa. In summary, C. albicans and commensal oral streptococci display a synergistic interaction with implications for the pathogenic potential of C. albicans in the upper gastrointestinal tract.
Collapse
|
240
|
Hasturk H, Kantarci A, Van Dyke TE. Paradigm shift in the pharmacological management of periodontal diseases. FRONTIERS OF ORAL BIOLOGY 2011; 15:160-76. [PMID: 22142963 PMCID: PMC4522924 DOI: 10.1159/000329678] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is becoming clear that variations in inflammatory response are a major determinant in susceptibility to periodontitis. However, our understanding of the relationship of the causal agents in periodontitis to the pathogenesis is not as clear as we once thought, and thus therapies based on etiopathogenesis are similarly in question. We are entering a new era of therapeutic discovery that may have a major impact on our management of the periodontal diseases. Fundamentally, periodontitis is an irreversible condition and once both soft and hard tissues are lost, the healthy periodontal architecture cannot be completely or predictably rebuilt. The discovery of new families of lipid mediators of resolution of inflammation (the lipoxins) and eicosapentaenoic-acid- and docosahexaenoic-acid-derived chemical mediators (the resolvins and protectins) opens new avenues to designing resolution-targeted therapies to control the unwanted side effects of excessive inflammation. The novel protective and therapeutic actions of pro-resolution lipid mediators following microbial challenge are mediated by regulation of the local and systemic inflammatory response that has a direct impact on the organization of the biofilm (plaque) and suggests a new paradigm in clinical periodontal therapeutics.
Collapse
Affiliation(s)
- Hatice Hasturk
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA.
| | | | | |
Collapse
|
241
|
New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 2011; 78:194-203. [PMID: 22057871 DOI: 10.1128/aem.06813-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A significant number of microorganisms from the human oral cavity remain uncultivated. This is a major impediment to the study of human health since some of the uncultivated species may be involved in a variety of systemic diseases. We used a range of innovations previously developed to cultivate microorganisms from the human oral cavity, focusing on anaerobic species. These innovations include (i) in vivo cultivation to specifically enrich for species actively growing in the oral cavity (the "minitrap" method), (ii) single-cell long-term cultivation to minimize the effect of fast-growing microorganisms, and (iii) modifications of conventional enrichment techniques, using media that did not contain sugar, including glucose. To enable cultivation of obligate anaerobes, we maintained strict anaerobic conditions in most of our cultivation experiments. We report that, on a per cell basis, the most successful recovery was achieved using minitrap enrichment (11%), followed by single-cell cultivation (3%) and conventional plating (1%). Taxonomically, the richest collection was obtained using the single-cell cultivation method, followed by minitrap and conventional enrichment, comprising representatives of 13, 9, and 4 genera, respectively. Interestingly, no single species was isolated by all three methods, indicating method complementarity. An important result is the isolation and maintenance in pure culture of 10 strains previously only known by their molecular signatures, as well as representatives of what are likely to be three new microbial genera. We conclude that the ensemble of new methods we introduced will likely help close the gap between cultivated and uncultivated species from the human oral cavity.
Collapse
|
242
|
López R, Dahlén G, Baelum V. Subgingival microbial consortia and the clinical features of periodontitis in adolescents. Eur J Oral Sci 2011; 119:455-62. [PMID: 22112031 DOI: 10.1111/j.1600-0722.2011.00875.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aimed to investigate the association between microbial consortia and the clinical features of periodontitis using a multilevel modeling approach. A total of 958 sites in 87 adolescents with periodontitis (cases) and 73 controls were microbiologically sampled and clinically examined. Associations between each of the clinical parameters clinical attachment, probing depth, supragingival plaque, calculus, bleeding on probing, and each of 18 bacterial species; and between the same clinical parameters and each of two microbial consortia identified, were investigated using mixed-effects regression modeling. Higher counts of Tannerella forsythia, Campylobacter rectus, and Porphyromonas gingivalis were all statistically significantly associated with higher values of clinical attachment level, probing depth, and bleeding on probing in the sampled site, when both case status and between-subject variance were accounted for. Higher counts for the consortium comprising the putative periodontopathogens were statistically significantly associated in a dose-response manner with both higher clinical attachment levels and with increased pocket depth. The counts for the consortium predominantly comprising the early-colonizer species were statistically significantly negatively associated with the presence of supragingival calculus, but positively associated with the presence of supragingival plaque. The study demonstrates a relationship between the counts of putative periodontopathogens and clinical attachment levels and probing pocket depths, even for low levels of these clinical parameters.
Collapse
Affiliation(s)
- Rodrigo López
- Department of Periodontology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
243
|
Posch G, Pabst M, Brecker L, Altmann F, Messner P, Schäffer C. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem 2011; 286:38714-38724. [PMID: 21911490 DOI: 10.1074/jbc.m111.284893] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface glycosylation is an important element in defining the life of pathogenic bacteria. Tannerella forsythia is a Gram-negative, anaerobic periodontal pathogen inhabiting the subgingival plaque biofilms. It is completely covered by a two-dimensional crystalline surface layer (S-layer) composed of two glycoproteins. Although the S-layer has previously been shown to delay the bacterium's recognition by the innate immune system, we characterize here the S-layer protein O-glycosylation as a potential virulence factor. The T. forsythia S-layer glycan was elucidated by a combination of electrospray ionization-tandem mass spectrometry and nuclear magnetic resonance spectroscopy as an oligosaccharide with the structure 4-Me-β-ManpNAcCONH(2)-(1→3)-[Pse5Am7Gc-(2→4)-]-β-ManpNAcA-(1→4)-[4-Me-α-Galp-(1→2)-]-α-Fucp-(1→4)-[-α-Xylp-(1→3)-]-β-GlcpA-(1→3)-[-β-Digp-(1→2)-]-α-Galp, which is O-glycosidically linked to distinct serine and threonine residues within the three-amino acid motif (D)(S/T)(A/I/L/M/T/V) on either S-layer protein. This S-layer glycan obviously impacts the life style of T. forsythia because increased biofilm formation of an UDP-N-acetylmannosaminuronic acid dehydrogenase mutant can be correlated with the presence of truncated S-layer glycans. We found that several other proteins of T. forsythia are modified with that specific oligosaccharide. Proteomics identified two of them as being among previously classified antigenic outer membrane proteins that are up-regulated under biofilm conditions, in addition to two predicted antigenic lipoproteins. Theoretical analysis of the S-layer O-glycosylation of T. forsythia indicates the involvement of a 6.8-kb gene locus that is conserved among different bacteria from the Bacteroidetes phylum. Together, these findings reveal the presence of a protein O-glycosylation system in T. forsythia that is essential for creating a rich glycoproteome pinpointing a possible relevance for the virulence of this bacterium.
Collapse
Affiliation(s)
- Gerald Posch
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Lothar Brecker
- Institute for Organic Chemistry, Universität Wien, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
244
|
Fernandez y Mostajo M, Zaura E, Crielaard W, Beertsen W. Does routine analysis of subgingival microbiota in periodontitis contribute to patient benefit? Eur J Oral Sci 2011; 119:259-64. [PMID: 21726285 DOI: 10.1111/j.1600-0722.2011.00828.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In clinical periodontology it is common practice to sample subgingival plaque from periodontitis patients and to search for the presence of alleged periodontal pathogens using routine laboratory techniques such as culture, DNA-DNA hybridization or real-time PCR. Usually, special attention is given to the recognition of 'red complex' microorganisms and to Aggregatibacter actinomycetemcomitans. Recently, molecular open-ended techniques have been introduced which are distinct from the more 'classical' approaches in that they do not preselect for certain species. In this study, we investigated to what extent the outcome of these techniques has changed our insight into the composition of the subgingival microbiota and whether this has consequences on clinical decision making. The open-ended approaches showed that the composition of subgingival plaque is much more complex than previously thought. Next to the 'classical' putative periodontal pathogens, several non-culturable and fastidious species are now recognized as being associated with periodontitis, thus enlarging the group of suspected periodontal pathogens. We conclude that routine analyses of subgingival plaque in the clinic are not necessarily of benefit to the patient.
Collapse
|
245
|
|
246
|
Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am 2010; 54:441-54. [PMID: 20630188 DOI: 10.1016/j.cden.2010.03.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dental plaque is the biofilm found naturally on teeth. Dental plaque is also implicated in dental caries, which is associated with shifts in the microbial balance of the biofilm resulting in increased proportions of acid producing and acid tolerating bacteria, especially (but not exclusively) mutans streptococci and lactobacilli. The regular intake of fermentable dietary sugars, or impaired saliva flow, produces persistent conditions of low pH within the biofilm, which selects for these cariogenic bacteria. Clinicians should prevent this disruption to the natural microbial balance of the biofilm (relevant approaches are described) rather than merely treating its consequences by restoring cavities.
Collapse
Affiliation(s)
- Philip D Marsh
- Health Protection Agency, Centre for Emergency Preparedness & Response, Salisbury SP4 0JG, UK.
| |
Collapse
|