201
|
Dennys CN, Armstrong J, Levy M, Byun YJ, Ramdial KR, Bott M, Rossi FH, Fernández-Valle C, Franco MC, Estevez AG. Chronic inhibitory effect of riluzole on trophic factor production. Exp Neurol 2015; 271:301-7. [PMID: 26071088 PMCID: PMC4864959 DOI: 10.1016/j.expneurol.2015.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Riluzole is the only FDA approved drug for the treatment of amyotrophic lateral sclerosis (ALS). However, the drug affords moderate protection to ALS patients, extending life for a few months by a mechanism that remains controversial. In the presence of riluzole, astrocytes increase the production of factors protective to motor neurons. The stimulation of trophic factor production by motor neuron associated cells may contribute to riluzole's protective effect in ALS. Here, we investigated the effects of media conditioned by astrocytes and Schwann cells acutely or chronically incubated with riluzole on trophic factor-deprived motor neuron survival. While acute riluzole incubation induced CT-1 secretion by astrocytes and Schwann cells, chronic treatment stimulated a significant decrease in trophic factor production compared to untreated cultures. Accordingly, conditioned media from astrocytes and Schwann cells acutely treated with riluzole protected motor neurons from trophic factor deprivation-induced cell death. Motor neuron protection was prevented by incubation with CT-1 neutralizing antibodies. In contrast, conditioned media from astrocytes and Schwann cells chronically treated with riluzole was not protective. Acute and chronic treatment of mice with riluzole showed opposite effects on trophic factor production in spinal cord, sciatic nerve and brain. There was an increase in the production of CT-1 and GDNF in the spinal cord and CT-1 in the sciatic nerve during the first days of treatment with riluzole, but the levels dropped significantly after chronic treatment with the drug. Similar results were observed in brain for CT-1 and BDNF while there was no change in GDNF levels after riluzole treatment. Our results reveal that riluzole regulates long-lasting processes involving protein synthesis, which may be relevant for riluzole therapeutic effects. Changing the regimen of riluzole administration to favor the acute effect of the drug on trophic factor production by discontinuous long-term treatment may improve the outcome of ALS patient therapy.
Collapse
Affiliation(s)
- Cassandra N Dennys
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - JeNay Armstrong
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Mark Levy
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Youn Jung Byun
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Kristina R Ramdial
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Marga Bott
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Fabian H Rossi
- Orlando Veteran Administration Healthcare System, Orlando, FL 32803, United States
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Maria Clara Franco
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States
| | - Alvaro G Estevez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, United States.
| |
Collapse
|
202
|
Donnelly CJ, Grima JC, Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener Dis Manag 2015; 4:417-37. [PMID: 25531686 DOI: 10.2217/nmt.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Christopher J Donnelly
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
203
|
Pittenger C, Bloch MH, Wasylink S, Billingslea E, Simpson R, Jakubovski E, Kelmendi B, Sanacora G, Coric V. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial. J Clin Psychiatry 2015; 76. [PMID: 26214725 PMCID: PMC4560666 DOI: 10.4088/jcp.14m09123] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) affects approximately 2.5% of the population and is associated with significant morbidity. Many patients receive little benefit from the best available treatments, and even those who do respond often suffer from significant residual symptoms. Convergent evidence suggests that abnormalities in glutamate homeostasis and neurotransmission may contribute to OCD and that glutamate-modulating medications may be of benefit in patients whose symptoms are refractory to standard interventions. Small open-label trials of augmentation of serotonin reuptake inhibitor (SRI) pharmacotherapy with the glutamate modulator riluzole have suggested benefit in adults with refractory symptoms. We report a pilot randomized placebo-controlled trial of riluzole augmentation of ongoing SRI treatment in SRI-refractory patients. METHOD Outpatients (n = 27) and inpatients (n = 11) with DSM-IV OCD on stable SRI pharmacotherapy were randomized between November 2006 and December 2012 to receive riluzole 50 mg or placebo twice a day and followed for 12 weeks after a 2-week placebo lead-in phase. RESULTS Riluzole was well tolerated; 1 patient experienced moderate nausea, but none discontinued treatment due to side effects. While there was nominally greater Y-BOCS improvement in the riluzole group (our primary outcome) compared to placebo, it did not reach statistical significance. In the outpatient subsample, a trend suggesting benefit from riluzole augmentation for obsessions (P = .056, 2-tailed, uncorrected) was found in a secondary analysis. Among outpatients, more achieved at least a partial response (> 25% improvement) with riluzole than with placebo (P = .02 in a secondary analysis). CONCLUSIONS Riluzole may be of benefit to a subset of patients. Larger samples would be required to detect effects of the order suggested by the nominal improvement in our outpatient subsample. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00523718.
Collapse
Affiliation(s)
| | - Michael H. Bloch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Yale Child Study Center, Yale University School of Medicine, New Haven, CT
| | - Suzanne Wasylink
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Eileen Billingslea
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Ryan Simpson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Ewgeni Jakubovski
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT
| | - Ben Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Vladimir Coric
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
204
|
An Overview of Potential Targets for Treating Amyotrophic Lateral Sclerosis and Huntington's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:198612. [PMID: 26295035 PMCID: PMC4532815 DOI: 10.1155/2015/198612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases affect millions of people worldwide. Progressive damage or loss of neurons, neurodegeneration, has severe consequences on the mental and physical health of a patient. Despite all efforts by scientific community, there is currently no cure or manner to slow degeneration progression. We review some treatments that attempt to prevent the progress of some of major neurodegenerative diseases: Amyotrophic Lateral Sclerosis and Huntington's disease.
Collapse
|
205
|
Enhancing glutamatergic transmission during adolescence reverses early-life stress-induced deficits in the rewarding effects of cocaine in rats. Neuropharmacology 2015; 99:168-76. [PMID: 26187394 DOI: 10.1016/j.neuropharm.2015.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 12/20/2022]
Abstract
Adolescence marks a critical time when the brain is highly susceptible to pathological insult yet also uniquely amenable to therapeutic intervention. It is during adolescence that the onset of the majority of psychiatric disorders, including substance use disorder (SUDs), occurs. It has been well established that stress, particularly during early development, can contribute to the pathological changes which contribute to the development of SUDs. Glutamate as the main excitatory neurotransmitter in the mammalian CNS plays a key role in various physiological processes, including reward function, and in mediating the effects of psychological stress. We hypothesised impairing glutamatergic signalling during the key adolescent period would attenuate early-life stress induced impaired reward function. To test this, we induced early-life stress in male rats using the maternal-separation procedure. During the critical adolescent period (PND25-46) animals were treated with the glutamate transporter activator, riluzole, or the NMDA receptor antagonist, memantine. Adult reward function was assessed using voluntary cocaine intake measured via intravenous self-administration. We found that early-life stress in the form of maternal-separation impaired reward function, reducing the number of successful cocaine-infusions achieved during the intravenous self-administration procedure as well impairing drug-induced reinstatement of cocaine-taking behaviour. Interestingly, riluzole and memantine treatment reversed this stress-induced impairment. These data suggest that reducing glutamatergic signalling may be a viable therapeutic strategy for treating vulnerable individuals at risk of developing SUDs including certain adolescent populations, particularly those which may have experienced trauma during early-life.
Collapse
|
206
|
Yu LJ, Wall BA, Chen S. The current management of brain metastasis in melanoma: a focus on riluzole. Expert Rev Neurother 2015; 15:779-92. [PMID: 26092602 DOI: 10.1586/14737175.2015.1055321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain metastasis is a common endpoint in human malignant melanoma, and the prognosis for patients remains poor despite advancements in therapy. Current treatment for melanoma metastatic to the brain is grouped into those providing symptomatic relief such as corticosteroids and antiepileptic agents, to those that are disease modifying. Related to the latter group, recent studies have demonstrated that aberrant glutamate signaling plays a role in the transformation and maintenance of various cancer types, including melanoma. Glutamate secretion from these and surrounding cells have been found to stimulate regulatory pathways that control tumor growth, proliferation and survival in vitro and in vivo. The antiglutamatergic actions of an inhibitor of glutamate release, riluzole, have been detected by its ability to clear glutamate from the synapse, and it has been shown to inhibit glutamate release rather than directly inhibiting glutamate receptors. Preclinical studies have demonstrated the ability of riluzole to act as a radiosensitizing agent in melanoma. The effect of riluzole on downstream glutamatergic signaling has pointed to cross talk between the metabotropic G-protein-coupled glutamate receptors implicated in a subset of human melanomas with other signaling pathways, including apoptotic, angiogenic, ROS and cell invasion mechanisms, thus establishing its potential to be further explored in combination therapy regimens for both primary human melanoma and melanoma metastatic to the brain.
Collapse
Affiliation(s)
- Lumeng J Yu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University, Piscataway, NJ, 08854, USA
| | | | | |
Collapse
|
207
|
Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández DE, Fritz E, Abarzua S, Martinez A, Elorza AA, Alvarez A, Court F, van Zundert B. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci 2015; 9:203. [PMID: 26106294 PMCID: PMC4460879 DOI: 10.3389/fncel.2015.00203] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which pathogenesis and death of motor neurons are triggered by non-cell-autonomous mechanisms. We showed earlier that exposing primary rat spinal cord cultures to conditioned media derived from primary mouse astrocyte conditioned media (ACM) that express human SOD1G93A (ACM-hSOD1G93A) quickly enhances Nav channel-mediated excitability and calcium influx, generates intracellular reactive oxygen species (ROS), and leads to death of motoneurons within days. Here we examined the role of mitochondrial structure and physiology and of the activation of c-Abl, a tyrosine kinase that induces apoptosis. We show that ACM-hSOD1G93A, but not ACM-hSOD1WT, increases c-Abl activity in motoneurons, interneurons and glial cells, starting at 60 min; the c-Abl inhibitor STI571 (imatinib) prevents this ACM-hSOD1G93A-mediated motoneuron death. Interestingly, similar results were obtained with ACM derived from astrocytes expressing SOD1G86R or TDP43A315T. We further find that co-application of ACM-SOD1G93A with blockers of Nav channels (spermidine, mexiletine, or riluzole) or anti-oxidants (Trolox, esculetin, or tiron) effectively prevent c-Abl activation and motoneuron death. In addition, ACM-SOD1G93A induces alterations in the morphology of neuronal mitochondria that are related with their membrane depolarization. Finally, we find that blocking the opening of the mitochondrial permeability transition pore with cyclosporine A, or inhibiting mitochondrial calcium uptake with Ru360, reduces ROS production and c-Abl activation. Together, our data point to a sequence of events in which a toxic factor(s) released by ALS-expressing astrocytes rapidly induces hyper-excitability, which in turn increases calcium influx and affects mitochondrial structure and physiology. ROS production, mediated at least in part through mitochondrial alterations, trigger c-Abl signaling and lead to motoneuron death.
Collapse
Affiliation(s)
- Fabiola Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - David Gonzalez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Diego E Hernández
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Elsa Fritz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Sebastián Abarzua
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Alexis Martinez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile ; Millennium Institute of Immunology and Immunotherapy Santiago, Chile
| | - Alejandra Alvarez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Felipe Court
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
208
|
Vincent JA, Nardelli P, Gabriel HM, Deardorff AS, Cope TC. Complex impairment of IA muscle proprioceptors following traumatic or neurotoxic injury. J Anat 2015; 227:221-30. [PMID: 26047324 DOI: 10.1111/joa.12312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 01/09/2023] Open
Abstract
The health of primary sensory afferents supplying muscle has to be a first consideration in assessing deficits in proprioception and related motor functions. Here we discuss the role of a particular proprioceptor, the IA muscle spindle proprioceptor in causing movement disorders in response to either regeneration of a sectioned peripheral nerve or damage from neurotoxic chemotherapy. For each condition, there is a single preferred and widely repeated explanation for disability of movements associated with proprioceptive function. We present a mix of published and preliminary findings from our laboratory, largely from in vivo electrophysiological study of treated rats to demonstrate newly discovered IA afferent defects that seem likely to make important contributions to movement disorders. First, we argue that reconnection of regenerated IA afferents with inappropriate targets, although often repeated as the reason for lost stretch-reflex contraction, is not a complete explanation. We present evidence that despite successful recovery of stretch-evoked sensory signaling, peripherally regenerated IA afferents retract synapses made with motoneurons in the spinal cord. Second, we point to evidence that movement disability suffered by human subjects months after discontinuation of oxaliplatin (OX) chemotherapy for some is not accompanied by peripheral neuropathy, which is the acknowledged primary cause of disability. Our studies of OX-treated rats suggest a novel additional explanation in showing the loss of sustained repetitive firing of IA afferents during static muscle stretch. Newly extended investigation reproduces this effect in normal rats with drugs that block Na(+) channels apparently involved in encoding static IA afferent firing. Overall, these findings highlight multiplicity in IA afferent deficits that must be taken into account in understanding proprioceptive disability, and that present new avenues and possible advantages for developing effective treatment. Extending the study of IA afferent deficits yielded the additional benefit of elucidating normal processes in IA afferent mechanosensory function.
Collapse
Affiliation(s)
- Jacob A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Hanna M Gabriel
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Timothy C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| |
Collapse
|
209
|
Ahmed RM, Newcombe REA, Piper AJ, Lewis SJ, Yee BJ, Kiernan MC, Grunstein RR. Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Med Rev 2015; 26:33-42. [PMID: 26166297 DOI: 10.1016/j.smrv.2015.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
Sleep disorders in amyotrophic lateral sclerosis (ALS) present a significant challenge to the management of patients. Issues include the maintenance of adequate ventilatory status through techniques such as non-invasive ventilation, which has the ability to modulate survival and improve patient quality of life. Here, a multidisciplinary approach to the management of these disorders is reviewed, from concepts about the underlying neurobiological basis, through to current management approaches and future directions for research.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Brain and Mind Research Institute and Department of Neurology Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia.
| | - Rowena E A Newcombe
- NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research and NeuroSleep NHMRC Centre for Research Excellence, Australia
| | - Amanda J Piper
- NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research and NeuroSleep NHMRC Centre for Research Excellence, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Australia
| | - Simon J Lewis
- Brain and Mind Research Institute and Department of Neurology Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia; NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research and NeuroSleep NHMRC Centre for Research Excellence, Australia
| | - Brendon J Yee
- NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research and NeuroSleep NHMRC Centre for Research Excellence, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Australia
| | - Matthew C Kiernan
- Brain and Mind Research Institute and Department of Neurology Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Ron R Grunstein
- NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research and NeuroSleep NHMRC Centre for Research Excellence, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Australia
| |
Collapse
|
210
|
de Vrieze E, Zethof J, Schulte-Merker S, Flik G, Metz JR. Identification of novel osteogenic compounds by an ex-vivo sp7:luciferase zebrafish scale assay. Bone 2015; 74:106-13. [PMID: 25600250 DOI: 10.1016/j.bone.2015.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/20/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Tight interactions among different cell types contributing to bone formation are of key importance in the maintenance of bone homeostasis. Based on the high similarity in responses to (anti)osteogenic signals between zebrafish scales and mammalian bone, we developed and validated a model to screen large numbers of compounds using ex-vivo cultured scales of a sp7:luciferase transgenic zebrafish. This model combines the high predictive value of explant cultures with quick, sensitive, and quantifiable readout converging the effects via various pathways including WNT-signaling, to SP7/osterix promoter activity. Sp7 is pivotal in osteoblast differentiation and activity and its promoter activity provides an excellent surrogate for sp7 expression. Bmp-2a was shown to dose-dependently increase sp7-driven luciferase activity ex vivo. Next, we identified novel effects on bone for 51.7% of the compounds from a small library of WNT-signaling modulators, including a strong osteogenic effect for niclosamide. From all previously characterized compounds, the effect on bone was correctly predicted for 70% of compounds, resulting in a 7% false positive- and 21% false negative rate. The proposed sp7:luciferase zebrafish scale model is unique, powerful and efficient new tool to assess compounds with osteogenic effects, prior to further testing in rodents.
Collapse
Affiliation(s)
- Erik de Vrieze
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jan Zethof
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands; Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany
| | - Gert Flik
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Juriaan R Metz
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
211
|
Effects of riluzole on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat. Neurosci Res 2015; 94:28-36. [DOI: 10.1016/j.neures.2014.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
|
212
|
Mazibuko Z, Choonara YE, Kumar P, Du Toit LC, Modi G, Naidoo D, Pillay V. A Review of the Potential Role of Nano-Enabled Drug Delivery Technologies in Amyotrophic Lateral Sclerosis: Lessons Learned from Other Neurodegenerative Disorders. J Pharm Sci 2015; 104:1213-29. [DOI: 10.1002/jps.24322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/11/2022]
|
213
|
Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:15-54. [PMID: 25890131 DOI: 10.1016/bs.pbr.2014.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the big challenges in neuroscience that remains to be understood is why the central nervous system is not able to regenerate to the extent that the peripheral nervous system does. This is especially problematic after traumatic injuries, like spinal cord injury (SCI), since the lack of regeneration leads to lifelong deficits and paralysis. Treatment of SCI has improved during the last several decades due to standardized protocols for emergency medical response teams and improved medical, surgical, and rehabilitative treatments. However, SCI continues to result in profound impairments for the individual. There are many processes that lead to the pathophysiology of SCI, such as ischemia, vascular disruption, neuroinflammation, oxidative stress, excitotoxicity, demyelination, and cell death. Current treatments include surgical decompression, hemodynamic control, and methylprednisolone. However, these early treatments are associated with modest functional recovery. Some treatments currently being investigated for use in SCI target neuroprotective (riluzole, minocycline, G-CSF, FGF-2, and polyethylene glycol) or neuroregenerative (chondroitinase ABC, self-assembling peptides, and rho inhibition) strategies, while many cell therapies (embryonic stem cells, neural stem cells, induced pluripotent stem cells, mesenchymal stromal cells, Schwann cells, olfactory ensheathing cells, and macrophages) have also shown promise. However, since SCI has multiple factors that determine the progress of the injury, a combinatorial therapeutic approach will most likely be required for the most effective treatment of SCI.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
214
|
Rosenberg SA, Niglio SA, Salehomoum N, Chan JLK, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS, Goydos JS. Targeting Glutamatergic Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression. Transl Oncol 2015; 8:1-9. [PMID: 25749171 PMCID: PMC4350641 DOI: 10.1016/j.tranon.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022] Open
Abstract
Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.
Collapse
Affiliation(s)
- Stephen A Rosenberg
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, WI, USA; Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Scot A Niglio
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Salehomoum
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Joseph L-K Chan
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Byeong-Seon Jeong
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yu Wen
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jiadong Li
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jami Fukui
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Seung-Shick Shin
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - James S Goydos
- Department of Surgery, Division of Surgical Oncology, Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
215
|
Contribution of persistent sodium currents to the excitability of tonic firing substantia gelatinosa neurons of the rat. Neurosci Lett 2015; 591:192-196. [PMID: 25703221 DOI: 10.1016/j.neulet.2015.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
Abstract
The roles of persistent Na(+) currents (INaP) in intrinsic membrane properties were examined in rat substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis using a conventional whole-cell patch clamp technique. In a voltage-clamp mode, riluzole inhibited the slow voltage ramp-induced INaP but had little effect on the peak amplitude of transient Na(+) currents in SG neurons. In a current-clamp mode, most SG neurons exhibited spontaneous action potentials and tonic firing pattern. Riluzole reduced both spontaneous and elicited action potentials in a concentration-dependent manner. The present results suggest that the riluzole-sensitive INaP plays an important role in the excitability of SG neurons and are thus, likely to contribute to the modulation of nociceptive transmission from the orofacial tissues.
Collapse
|
216
|
Mantovani S, Gordon R, Macmaw JK, Pfluger CMM, Henderson RD, Noakes PG, McCombe PA, Woodruff TM. Elevation of the terminal complement activation products C5a and C5b-9 in ALS patient blood. J Neuroimmunol 2015; 276:213-8. [PMID: 25262158 DOI: 10.1016/j.jneuroim.2014.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons within the central nervous system. Neural degeneration and inflammatory processes, including activation of the complement system are hallmarks of this pathology. Our past work in ALS animal models (hSOD1 G93A rodents) has revealed that blockade of the receptor for complement activation fragment C5a (C5aR), improves ALS-like symptoms and extends survival. We now show that the levels of C5a and C5b-9, but not C3a nor C4a, are significantly elevated in plasma from ALS patients compared to healthy controls. C5a was also elevated within leukocytes from ALS patients suggesting heightened C5a receptor interaction. Overall, these findings indicate that there is enhanced peripheral immune complement terminal pathway activation in ALS, which may have relevance in the disease process.
Collapse
Affiliation(s)
- S Mantovani
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C. Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Cereb Cortex 2015; 26:1512-28. [DOI: 10.1093/cercor/bhu317] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
218
|
Fukunaga K, Shinoda Y, Tagashira H. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci 2015; 127:36-41. [PMID: 25704016 DOI: 10.1016/j.jphs.2014.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients exhibit diverse pathologies such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction in motor neurons. Five to ten percent of patients have familial ALS, a form of the disease caused by mutations in ALS-related genes, while sporadic forms of the disease occur in 90-95% of patients. Recently, it was reported that familial ALS patients exhibit a missense mutation in SIGMAR1 (c.304G > C), which encodes sigma-1 receptor (Sig-1R), substituting glutamine for glutamic acid at amino acid residue 102 (p.E102Q). Expression of that mutant Sig-1R(E102Q) protein reduces mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial injury, aggravating ER stress-induced neuronal death in neuro2A cells. In this issue, we discuss mechanisms underlying mitochondrial impairment seen in ALS motor neurons and propose that therapies that protect mitochondria might improve the quality of life (QOL) of ALS patients and should be considered for clinical trials.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
219
|
Gopalaiah K, Chandrudu SN. Iron(ii) bromide-catalyzed oxidative coupling of benzylamines with ortho-substituted anilines: synthesis of 1,3-benzazoles. RSC Adv 2015. [DOI: 10.1039/c4ra12490a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An iron(ii) bromide-catalyzed oxidative coupling of benzylamines with 2-amino/hydroxy/mercapto-anilines has been developed, allowing the synthesis of a diversity of substituted 1,3-benzazoles in good to excellent yields.
Collapse
|
220
|
Partial block by riluzole of muscle sodium channels in myotubes from amyotrophic lateral sclerosis patients. Neurol Res Int 2014; 2014:946073. [PMID: 25548669 PMCID: PMC4273590 DOI: 10.1155/2014/946073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Denervated muscles undergo fibrillations due to spontaneous activation of voltage-gated sodium (Na(+)) channels generating action potentials. Fibrillations also occur in patients with amyotrophic lateral sclerosis (ALS). Riluzole, the only approved drug for ALS treatment, blocks voltage-gated Na(+) channels, but its effects on muscle Na(+) channels and fibrillations are yet poorly characterized. Using patch-clamp technique, we studied riluzole effect on Na(+) channels in cultured myotubes from ALS patients. Needle electromyography was used to study fibrillation potentials (Fibs) in ALS patients during riluzole treatment and after one week of suspension. Patients were clinically characterized in all recording sessions. In myotubes, riluzole (1 μM, a therapeutic concentration) reduced Na(+) current by 20%. The rate of rise and amplitude of spikes evoked by depolarizing stimuli were also reduced. Fibs were detected in all patients tested during riluzole treatment and riluzole washout had no univocal effect. Our study indicates that, in human myotubes, riluzole partially blocks Na(+) currents and affects action potentials but does not prevent firing. In line with this in vitro finding, muscle Fibs in ALS patients appear to be largely unaffected by riluzole.
Collapse
|
221
|
Richter JM, Schaefer M, Hill K. Riluzole activates TRPC5 channels independently of PLC activity. Br J Pharmacol 2014; 171:158-70. [PMID: 24117252 DOI: 10.1111/bph.12436] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca(2+)-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca(2+), pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC₅₀ 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La(3+) and, utilizing TRPC5 mutants that lack La(3+) binding sites, it was confirmed that riluzole and La(3+) activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells.
Collapse
Affiliation(s)
- Julia M Richter
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
222
|
Ferreira R, Lively S, Schlichter LC. IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia. Front Cell Neurosci 2014; 8:183. [PMID: 25071444 PMCID: PMC4077126 DOI: 10.3389/fncel.2014.00183] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/14/2014] [Indexed: 01/05/2023] Open
Abstract
The Ca2+-activated K+ channel, KCa3.1 (KCNN4/IK1/SK4), contributes to “classical,” pro-inflammatory activation of microglia, and KCa3.1 blockers have improved the outcome in several rodent models of CNS damage. For instance, blocking KCa3.1 with TRAM-34 rescued retinal ganglion neurons after optic nerve damage in vivo and, reduced p38 MAP kinase activation, production of reactive oxygen and nitrogen species, and neurotoxicity by microglia in vitro. In pursuing the therapeutic potential of KCa3.1 blockers, it is crucial to assess KCa3.1 contributions to other microglial functions and activation states, especially the IL-4-induced “alternative” activation state that can counteract pro-inflammatory states. We recently found that IL-4 increases microglia migration – a crucial function in the healthy and damaged CNS – and that KCa3.1 contributes to P2Y2 receptor-stimulated migration. Here, we discovered that KCa3.1 is greatly increased in alternative-activated rat microglia and then contributes to an enhanced migratory capacity. IL-4 up-regulated KCNN4 mRNA (by 6 h) and greatly increased the KCa3.1 current by 1 day, and this required de novo protein synthesis. The increase in current was sustained for at least 6 days. IL-4 increased microglial migration and this was reversed by blocking KCa3.1 with TRAM-34. A panel of inhibitors of signal-transduction mediators was used to analyze contributions of IL-4-related signaling pathways. Induction of KCNN4 mRNA and KCa3.1 current was mediated specifically through IL-4 binding to the type I receptor and, surprisingly, it required JAK3, Ras/MEK/ERK signaling and the transcription factor, activator protein-1, rather than JAK2, STAT6, or phosphatidylinositol 3-kinase.The same receptor subtype and pathway were required for the enhanced KCa3.1-dependent migration. In providing the first direct signaling link between an IL-4 receptor, expression and roles of an ion channel, this study also highlights the potential importance of KCa3.1 in alternative-activated microglia.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
223
|
Riluzole suppresses postinhibitory rebound in an excitatory motor neuron of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:759-75. [PMID: 24890185 DOI: 10.1007/s00359-014-0919-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/06/2014] [Accepted: 05/17/2014] [Indexed: 12/12/2022]
Abstract
Postinhibitory rebound (PIR) is an intrinsic property often exhibited by neurons involved in generating rhythmic motor behaviors. Cell DE-3, a dorsal excitatory motor neuron in the medicinal leech exhibits PIR responses that persist for several seconds following the offset of hyperpolarizing stimuli and are suppressed in reduced Na(+) solutions or by Ca(2+) channel blockers. The long duration and Na(+) dependence of PIR suggest a possible role for persistent Na(+) current (I NaP). In vertebrate neurons, the neuroprotective agent riluzole can produce a selective block of I NaP. This study demonstrates that riluzole inhibits cell DE-3 PIR in a concentration- and Ca(2+)-dependent manner. In 1.8 mM Ca(2+) solution, 50-100 µM riluzole selectively blocked the late phase of PIR, an effect similar to that of the neuromodulator serotonin. However, 200 µM riluzole blocked both the early and late phases of PIR. Increasing extracellular Ca(2+) to 10 mM strengthened PIR, but high riluzole concentrations continued to suppress both phases of PIR. These results indicate that riluzole may suppress PIR via a nonspecific inhibition of Ca(2+) conductances and suggest that a Ca(2+)-activated nonspecific current (I(CAN)), rather than I NaP, may underlie the Na(+)-dependent component of PIR.
Collapse
|
224
|
Nicholson KJ, Zhang S, Gilliland TM, Winkelstein BA. Riluzole effects on behavioral sensitivity and the development of axonal damage and spinal modifications that occur after painful nerve root compression. J Neurosurg Spine 2014; 20:751-62. [DOI: 10.3171/2014.2.spine13672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Cervical radiculopathy is often attributed to cervical nerve root injury, which induces extensive degeneration and reduced axonal flow in primary afferents. Riluzole inhibits neuro-excitotoxicity in animal models of neural injury. The authors undertook this study to evaluate the antinociceptive and neuroprotective properties of riluzole in a rat model of painful nerve root compression.
Methods
A single dose of riluzole (3 mg/kg) was administered intraperitoneally at Day 1 after a painful nerve root injury. Mechanical allodynia and thermal hyperalgesia were evaluated for 7 days after injury. At Day 7, the spinal cord at the C-7 level and the adjacent nerve roots were harvested from a subgroup of rats for immunohistochemical evaluation. Nerve roots were labeled for NF200, CGRP, and IB4 to assess the morphology of myelinated, peptidergic, and nonpeptidergic axons, respectively. Spinal cord sections were labeled for the neuropeptide CGRP and the glutamate transporter GLT-1 to evaluate their expression in the dorsal horn. In a separate group of rats, electrophysiological recordings were made in the dorsal horn. Evoked action potentials were identified by recording extracellular potentials while applying mechanical stimuli to the forepaw.
Results
Even though riluzole was administered after the onset of behavioral sensitivity at Day 1, its administration resulted in immediate resolution of mechanical allodynia and thermal hyperalgesia (p < 0.045), and these effects were maintained for the study duration. At Day 7, axons labeled for NF200, CGRP, and IB4 in the compressed roots of animals that received riluzole treatment exhibited fewer axonal swellings than those from untreated animals. Riluzole also mitigated changes in the spinal distribution of CGRP and GLT-1 expression that is induced by a painful root compression, returning the spinal expression of both to sham levels. Riluzole also reduced neuronal excitability in the dorsal horn that normally develops by Day 7. The frequency of neuronal firing significantly increased (p < 0.045) after painful root compression, but riluzole treatment maintained neuronal firing at sham levels.
Conclusions
These findings suggest that early administration of riluzole is sufficient to mitigate nerve root–mediated pain by preventing development of neuronal dysfunction in the nerve root and the spinal cord.
Collapse
Affiliation(s)
| | | | | | - Beth A. Winkelstein
- 1Departments of Bioengineering and
- 2Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
225
|
Meininger V, Pradat PF, Corse A, Al-Sarraj S, Rix Brooks B, Caress JB, Cudkowicz M, Kolb SJ, Lange D, Leigh PN, Meyer T, Milleri S, Morrison KE, Orrell RW, Peters G, Rothstein JD, Shefner J, Lavrov A, Williams N, Overend P, Price J, Bates S, Bullman J, Krull D, Berges A, Abila B, Meno-Tetang G, Wurthner J. Safety, pharmacokinetic, and functional effects of the nogo-a monoclonal antibody in amyotrophic lateral sclerosis: a randomized, first-in-human clinical trial. PLoS One 2014; 9:e97803. [PMID: 24841795 PMCID: PMC4026380 DOI: 10.1371/journal.pone.0097803] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/22/2014] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The neurite outgrowth inhibitor, Nogo-A, has been shown to be overexpressed in skeletal muscle in amyotrophic lateral sclerosis (ALS); it is both a potential biomarker and therapeutic target. We performed a double-blind, two-part, dose-escalation study, in subjects with ALS, assessing safety, pharmacokinetics (PK) and functional effects of ozanezumab, a humanized monoclonal antibody against Nogo-A. In Part 1, 40 subjects were randomized (3∶1) to receive single dose intravenous ozanezumab (0.01, 0.1, 1, 5, or 15 mg/kg) or placebo. In Part 2, 36 subjects were randomized (3∶1) to receive two repeat doses of intravenous ozanezumab (0.5, 2.5, or 15 mg/kg) or placebo, approximately 4 weeks apart. The primary endpoints were safety and tolerability (adverse events [AEs], vital signs, electrocardiogram (ECG), and clinical laboratory tests). Secondary endpoints included PK, immunogenicity, functional endpoints (clinical and electrophysiological), and biomarker parameters. Overall, ozanezumab treatment (0.01-15 mg/kg) was well tolerated. The overall incidence of AEs in the repeat dose 2.5 mg/kg and 15 mg/kg ozanezumab groups was higher than in the repeat dose placebo group and repeat dose 0.5 mg/kg ozanezumab group. The majority were considered not related to study drug by the investigators. Six serious AEs were reported in three subjects receiving ozanezumab; none were considered related to study drug. No study drug-related patterns were identified for ECG, laboratory, or vital signs parameters. One subject (repeat dose 15 mg/kg ozanezumab) showed a weak, positive anti-ozanezumab-antibody result. PK results were generally consistent with monoclonal antibody treatments. No apparent treatment effects were observed for functional endpoints or muscle biomarkers. Immunohistochemical staining showed dose-dependent co-localization of ozanezumab with Nogo-A in skeletal muscle. In conclusion, single and repeat dose ozanezumab treatment was well tolerated and demonstrated co-localization at the site of action. These findings support future studies with ozanezumab in ALS. TRIAL REGISTRATION ClinicalTrials.gov NCT00875446 GSK-ClinicalStudyRegister.com GSK ID 111330.
Collapse
MESH Headings
- Administration, Intravenous
- Amyotrophic Lateral Sclerosis/drug therapy
- Amyotrophic Lateral Sclerosis/metabolism
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Biomarkers/metabolism
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Myelin Proteins/metabolism
- Nogo Proteins
Collapse
Affiliation(s)
- Vincent Meininger
- Département des Maladies du Système Nerveux, Assistance Publique – Hôpitaux de Paris, Centre de Référence Maladies Rares SLA, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre-et-Marie-Curie, Paris, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Assistance Publique – Hôpitaux de Paris, Centre de Référence Maladies Rares SLA, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre-et-Marie-Curie, Paris, France
- Unité Mixte de Recherche-678, Institut National de la Santé et de la Recherche Médicale - Université Pierre-et-Marie-Curie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Andrea Corse
- Neuromuscular Pathology Lab, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, Kings College Hospital/Kings College London, London, United Kingdom
| | - Benjamin Rix Brooks
- Carolinas Neuromuscular/Amyotrophic Lateral Sclerosis-Muscular Dystrophy Association Center, Department of Neurology, Carolinas Medical Center and University of North Carolina School of Medicine-Charlotte Campus, Charlotte, North Carolina, United States of America
| | - James B. Caress
- Wake Forest School of Medicine, M Reynolds Tower, Medical Center Boulevard, Winston-Salem, North Carolina, United States of America
| | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Dale Lange
- Department of Neurology, Weill Cornell School of Medicine, New York, New York, United States of America
| | - P. Nigel Leigh
- Trafford Centre for Biomedical Research, Brighton and Sussex Medical School, Falmer, Sussex, United Kingdom
| | - Thomas Meyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefano Milleri
- Centro Ricerche Cliniche, University Hospital G.B. Rossi, Verona, Italy
| | - Karen E. Morrison
- School of Clinical and Experimental Medicine, University of Birmingham and Neurosciences Department, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Richard W. Orrell
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Neurology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Gary Peters
- GlaxoSmithKline Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University, Department of Neurology, Baltimore, Maryland, United States of America
| | - Jeremy Shefner
- Department of Neurology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Arseniy Lavrov
- Neurosciences Therapy Area Unit, Medicines Discovery and Development, GlaxoSmithKline, Stockley Park, Uxbridge, Middlesex, United Kingdom
| | - Nicola Williams
- Clinical Statistics, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Phil Overend
- Clinical Statistics, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Jeffrey Price
- Clinical Pharmacology, Science and Study Operations, BioPharm and Infectious Diseases, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Stewart Bates
- BioPharm Translational Medicine, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Jonathan Bullman
- Clinical Pharmacology Modelling & Simulation (Neurosciences), GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - David Krull
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Alienor Berges
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge, Middlesex, United Kingdom
| | - Bams Abila
- BioPharm Translational Medicine, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Guy Meno-Tetang
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Uxbridge, Middlesex, United Kingdom
| | - Jens Wurthner
- Oncology Translational Medicine, Novartis Basel, Switzerland
| |
Collapse
|
226
|
12-week, placebo-controlled trial of add-on riluzole in the treatment of childhood-onset obsessive-compulsive disorder. Neuropsychopharmacology 2014; 39:1453-9. [PMID: 24356715 PMCID: PMC3988548 DOI: 10.1038/npp.2013.343] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/15/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022]
Abstract
Many children with childhood-onset obsessive-compulsive disorder (OCD) fail to respond adequately to standard therapies. Evidence from preclinical and clinical studies suggests that the glutamatergic neurotransmitter system might be an alternative treatment target. This study examined the efficacy of riluzole, a glutamatergic modulator, as an adjunctive therapy for children with treatment-resistant OCD. In a 12-week, double-blind, placebo-controlled study, 60 treatment-resistant children and adolescents (mean age=14.5 ± 2.4 years), with moderate to severe OCD (mean Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS)=28.2 ± 3.7), 17 of whom also had concomitant autism spectrum disorder, were randomized to receive riluzole (final dose of 100 mg/day) or placebo in addition to the existing treatment regimen. Fifty-nine subjects completed the randomized trial. Primary outcome measures were changes on the CY-BOCS, the Clinical Global Impressions Scale, and the Children's Global Assessment Scale. Riluzole was fairly well tolerated, although it was associated with one case of pancreatitis and five instances of slight increases in transaminases. All subjects showed significant reductions in CY-BOCS scores during treatment; however, there was no significant difference between placebo and riluzole on any of the primary or secondary outcome measures. The study failed to demonstrate superiority of riluzole over placebo as an adjunctive treatment for children with childhood-onset OCD. However, future studies may show benefits for less treatment-refractory children with fewer concomitant medications.
Collapse
|
227
|
Affiliation(s)
- Laura K. Wood
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
228
|
Rojas F, Cortes N, Abarzua S, Dyrda A, van Zundert B. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress. Front Cell Neurosci 2014; 8:24. [PMID: 24570655 PMCID: PMC3916762 DOI: 10.3389/fncel.2014.00024] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity.
Collapse
Affiliation(s)
- Fabiola Rojas
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Sebastian Abarzua
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Agnieszka Dyrda
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
229
|
Moon ES, Karadimas SK, Yu WR, Austin JW, Fehlings MG. Riluzole attenuates neuropathic pain and enhances functional recovery in a rodent model of cervical spondylotic myelopathy. Neurobiol Dis 2014; 62:394-406. [DOI: 10.1016/j.nbd.2013.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022] Open
|
230
|
Krüger T, Lautenschläger J, Grosskreutz J, Rhode H. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics Clin Appl 2014; 7:123-35. [PMID: 23129563 DOI: 10.1002/prca.201200067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons leading to death of the patients, mostly within 2-5 years after disease onset. The pathomechanism of motor neuron degeneration is only partially understood and therapeutic strategies based on mechanistic insights are largely ineffective. The discovery of reliable biomarkers of disease diagnosis and progression is the sine qua non of both the revelation of insights into the ALS pathomechanism and the assessment of treatment efficacies. Proteomic approaches are an important pillar in ALS biomarker discovery. Cerebrospinal fluid is the most promising body fluid for differential proteome analyses, followed by blood (serum, plasma), and even urine and saliva. The present study provides an overview about reported peptide/protein biomarker candidates that showed significantly altered levels in certain body fluids of ALS patients. These findings have to be discussed according to proposed pathomechanisms to identify modifiers of disease progression and to pave the way for the development of potential therapeutic strategies. Furthermore, limitations and advantages of proteomic approaches for ALS biomarker discovery in different body fluids and reliable validation of biomarker candidates have been addressed.
Collapse
Affiliation(s)
- Thomas Krüger
- Institute of Biochemistry 1, University Hospital, Jena, Germany.
| | | | | | | |
Collapse
|
231
|
Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 2014; 592:1687-703. [PMID: 24445319 DOI: 10.1113/jphysiol.2013.265843] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitability in spinal motoneurones. Our studies were carried out in an adult mouse model of ALS with a mutated form of superoxide dismutase 1 around the time of the first muscle fibre denervations. We showed that the recruitment current, the voltage threshold for spiking and the frequency-intensity gain in the primary range are all unchanged in most spinal motoneurones, despite an increased input conductance. On its own, increased input conductance would decrease excitability, but the homeostasis for excitability is maintained due to an upregulation of a depolarizing current that is activated just below the spiking threshold. However, this homeostasis failed in a substantial fraction of motoneurones, which became hypoexcitable and unable to produce sustained firing in response to ramps of current. We found similar results both in lumbar motoneurones recorded in anaesthetized mice, and in sacrocaudal motoneurones recorded in vitro, indicating that the lack of hyperexcitability is not caused by anaesthetics. Our results suggest that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by the intrinsic electrical properties of motoneurones but by extrinsic factors such as excessive synaptic excitation.
Collapse
Affiliation(s)
- Nicolas Delestrée
- Laboratoire de Neurophysique et Physiologie, UMR CNRS 8119, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
232
|
Yáñez M, Matías-Guiu J, Arranz-Tagarro JA, Galán L, Viña D, Gómez-Pinedo U, Vela A, Guerrero A, Martínez-Vila E, García AG. The neuroprotection exerted by memantine, minocycline and lithium, against neurotoxicity of CSF from patients with amyotrophic lateral sclerosis, is antagonized by riluzole. NEURODEGENER DIS 2013; 13:171-9. [PMID: 24356417 DOI: 10.1159/000357281] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
In a recent study we found that cerebrospinal fluids (CSFs) from amyotrophic lateral sclerosis (ALS) patients caused 20-30% loss of cell viability in primary cultures of rat embryo motor cortex neurons. We also found that the antioxidant resveratrol protected against such damaging effects and that, surprisingly, riluzole antagonized its protecting effects. Here we have extended this study to the interactions of riluzole with 3 other recognized neuroprotective agents, namely memantine, minocycline and lithium. We found: (1) by itself riluzole exerted neurotoxic effects at concentrations of 3-30 µM; this cell damage was similar to that elicited by 30 µM glutamate and a 10% dilution of ALS/CSF; (2) memantine (0.1-30 µM), minocycline (0.03-1 µM) and lithium (1-80 µg/ml) afforded 10-30% protection against ALS/CSF-elicited neurotoxicity, and (3) at 1-10 µM, riluzole antagonized the protection afforded by the 3 agents. These results strongly support the view that at the riluzole concentrations reached in the brain of patients, the neurotoxic effects of this drug could be masking the potential neuroprotective actions of new compounds being tested in clinical trials. Therefore, in the light of the present results, the inclusion of a group of patients free of riluzole treatment may be mandatory in future clinical trials performed in ALS patients with novel neuroprotective compounds.
Collapse
Affiliation(s)
- Matilde Yáñez
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
234
|
Genç B, Özdinler PH. Moving forward in clinical trials for ALS: motor neurons lead the way please. Drug Discov Today 2013; 19:441-9. [PMID: 24171950 DOI: 10.1016/j.drudis.2013.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/07/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most complex motor neuron diseases. Even though scientific discoveries are accelerating with an unprecedented pace, to date more than 30 clinical trials have ended with failure and staggering frustration. There are too many compounds that increase life span in mice, but too little evidence that they will improve human condition. Increasing the chances of success for future clinical trials requires advancement of preclinical tests. Recent developments, which enable the visualization of diseased motor neurons, have the potential to bring novel insight. As we change our focus from mice to motor neurons, it is possible to foster a new vision that translates into effective and long-term treatment strategies in ALS and related motor neuron disorders (MND).
Collapse
Affiliation(s)
- Bariş Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
235
|
Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov 2013; 8:1515-27. [PMID: 24147578 DOI: 10.1517/17460441.2013.845553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuropharmacology research in glutamate-modulating drugs supports their development and use in the management of neuropsychiatric disorders, including major depression, Alzheimer's disorder and schizophrenia. Concomitantly, there is a growing use of these agents used in the treatment of obsessive-compulsive disorder (OCD). AREAS COVERED This article provides a review of glutamate-modulating drugs used in the treatment of OCD. Specifically, the authors examine riluzole, N-acetylcysteine, d-cycloserine, glycine, ketamine, memantine and acamprosate as treatments. Furthermore, recent genetic epidemiology research findings are presented with a focus on the positional candidate genes SLC1A1 (a glutamate transporter), ADAR3 (an RNA-editing enzyme), RYR3 (a Ca(2+) channel), PBX1 (a homeobox transcription factor) and a GWAS candidate gene, DLGAP1 (a protein interacting with post-synaptic density). These genetic findings are submitted to a curated bioinformatics database to conform a biological network for discerning potential pharmacological targets. EXPERT OPINION In the genetically informed network, known genes and identified key connecting components, including DLG4 (a developmental gene), PSD-95 (a synaptic scaffolding protein) and PSEN1 (presenilin, a regulator of secretase), conform a group of potential pharmacological targets. These potential targets can be explored, in the future, to deliver new therapeutic approaches to OCD. There is also the need to develop a better understanding of neuroprotective mechanisms as a foundation for future OCD drug discovery.
Collapse
Affiliation(s)
- Marco A Grados
- Johns Hopkins University School of Medicine , 1800 Orleans St. - 12th floor, Baltimore, MD 21287 , USA +1 443 287 2291 ; +1 410 955 8691 ;
| | | | | | | |
Collapse
|
236
|
Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 71:999-1015. [PMID: 24100629 PMCID: PMC3928509 DOI: 10.1007/s00018-013-1480-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/27/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are characterized by the selective vulnerability and progressive loss of discrete neuronal populations. Non-neuronal cells appear to significantly contribute to neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS), Parkinson, and Alzheimer’s disease. In ALS, there is deterioration of motor neurons in the cortex, brainstem, and spinal cord, which control voluntary muscle groups. This results in muscle wasting, paralysis, and death. Neuroinflammation, characterized by the appearance of reactive astrocytes and microglia as well as macrophage and T-lymphocyte infiltration, appears to be highly involved in the disease pathogenesis, highlighting the involvement of non-neuronal cells in neurodegeneration. There appears to be cross-talk between motor neurons, astrocytes, and immune cells, including microglia and T-lymphocytes, which are subsequently activated. Currently, effective therapies for ALS are lacking; however, the non-cell autonomous nature of ALS may indicate potential therapeutic targets. Here, we review the mechanisms of action of astrocytes, microglia, and T-lymphocytes in the nervous system in health and during the pathogenesis of ALS. We also evaluate the therapeutic potential of these cellular populations, after transplantation into ALS patients and animal models of the disease, in modulating the environment surrounding motor neurons from pro-inflammatory to neuroprotective. We also thoroughly discuss the recent advances made in the field and caveats that need to be overcome for clinical translation of cell therapies aimed at modulating non-cell autonomous events to preserve remaining motor neurons in patients.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Retzius v. 8, 17177 Stockholm, Sweden
| |
Collapse
|
237
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
238
|
ALSUntangled No. 22: Propofol. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:640-2. [DOI: 10.3109/21678421.2013.826469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
239
|
Choi JS, Ryu JH, Zuo Z, Yang SM, Chang HW, Do SH. Riluzole attenuates excitatory amino acid transporter type 3 activity in Xenopus oocytes via protein kinase C inhibition. Eur J Pharmacol 2013; 713:39-43. [DOI: 10.1016/j.ejphar.2013.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/27/2022]
|
240
|
Ramakrishnan L, Dalhoff Z, Fettig SL, Eggerichs MR, Nelson BE, Shrestha B, Elshikh AH, Karki P. Riluzole attenuates the effects of chemoconvulsants acting on glutamatergic and GABAergic neurotransmission in the planarian Dugesia tigrina. Eur J Pharmacol 2013; 718:493-501. [PMID: 23872399 DOI: 10.1016/j.ejphar.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Planarians, the non-parasitic flatworms, display dose-dependent, distinct (C-like and corkscrew-like) hyperkinesias upon exposure to 0.001-10 mM aqueous solutions of glutamatergic agonists (L-glutamate and N-methyl-D-aspartate (NMDA)) and 0.001-5 mM concentrations of the glutamate decarboxylase (GAD) inhibitor (semicarbazide). In the planarian seizure-like activity (PSLA) experiments the three chemoconvulsants displayed the following order of potency (EC50): L-glutamate (0.6mM)>NMDA (1.4 mM)>semicarbazide (4.5mM). Planarian hyperkinesias behavior counting experiments also revealed that riluzole (0.001 to 1mM), an anti-convulsive agent, displayed no significant behavioral activity by itself, but attenuated hyperkinesias elicited by the three chemoconvulsants targeting either glutamatergic or GABAergic neurotransmission with the following order of potency (IC50): NMDA (44.7 µM)>semicarbazide (88.3 µM)>L-glutamate (160 µM). Further, (+)-MK-801, a specific NMDA antagonist, alleviated 3mM NMDA (47%) or 3mM L-glutamate (27%) induced planarian hyperkinesias. The results provide pharmacological evidence for the presence of glutamatergic receptor-like and semicarbazide sensitive functional GAD enzyme-like proteins in planaria in addition to demonstrating, for the first time, the anti-convulsive effects of riluzole in an invertebrate model. High performance liquid chromatography coupled with fluorescence detection (HPLC-F) analysis performed on planarian extracts post no drug treatment (control) or treatment with 3mM semicarbazide, combination of 3mM semicarbazide and 0.1 mM riluzole, or 0.1 mM riluzole revealed that 3 mM semicarbazide induced 35% decrease in the GABA levels and a combination of 3mM semicarbazide and 0.1 mM riluzole induced 42% decrease in glutamate levels with respect to the control group.
Collapse
Affiliation(s)
- Latha Ramakrishnan
- Department of Chemistry and Physics, Saint Cloud State University, Saint Cloud, MN 56301-4498, United States.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
242
|
Dall'Igna OP, Bobermin LD, Souza DO, Quincozes-Santos A. Riluzole increases glutamate uptake by cultured C6 astroglial cells. Int J Dev Neurosci 2013; 31:482-6. [PMID: 23777615 DOI: 10.1016/j.ijdevneu.2013.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/26/2022] Open
Abstract
Riluzole is a drug approved for the treatment of amyotrophic lateral sclerosis (ALS) and may be effective for the treatment of other neurodegenerative and neuropsychiatric disorders. Riluzole exerts diverse actions on the central nervous system, including altering glutamate release and uptake, and therefore act diminishing glutamate extracellular levels, but the underlying mechanism of these actions is still unknown. Here, we demonstrate that riluzole stimulated glutamate uptake and augmented the expression of the glutamate EAAC1 transporter in C6 astroglial cell cultures. The effect of riluzole on glutamate uptake was reduced to below controls when it was co-administered with inhibitors of protein kinase C (PKC; bisindolylmaleimide II), phosphatidylinositol 3-kinase (PI3K; wortmannin) and fibroblast growth factor receptor 1 (FGFR1; PD173074). Riluzole also decreased reactive oxygen species load with no effect on glutathione levels. This study investigates three independent intracellular pathways and the mechanism of action of riluzole on glutamate metabolism.
Collapse
Affiliation(s)
- Oscar P Dall'Igna
- Rua Ramiro Barcelos 2600-Anexo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-000, Brazil.
| | | | | | | |
Collapse
|
243
|
Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9:1308-20. [PMID: 23851366 DOI: 10.4161/auto.25188] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with no current effective treatment. Accumulation of abnormal protein inclusions containing SOD1, TARDBP, FUS, among other proteins, is a pathological hallmark of ALS. Autophagy is the major degradation pathway involved in the clearance of damaged organelles and protein aggregates. Although autophagy has been shown to efficiently degrade ALS-linked mutant protein in cell culture models, several studies suggest that autophagy impairment may also contribute to disease pathogenesis. In this report, we tested the potential use of trehalose, a disaccharide that induces MTOR-independent autophagy, in the development of experimental ALS. Administration of trehalose to mutant SOD1 transgenic mice significantly prolonged life span and attenuated the progression of disease signs. These effects were associated with decreased accumulation of SOD1 aggregates and enhanced motoneuron survival. The protective effects of trehalose were associated with increased autophagy levels in motoneurons. Cell culture experiments demonstrated that trehalose led to mutant SOD1 degradation by autophagy in NSC34 motoneuron cells and also protected primary motoneurons against the toxicity of conditioned media from mutant SOD1 transgenic astrocytes. At the mechanistic level, trehalose treatment led to a significant upregulation in the expression of key autophagy-related genes at the mRNA level including Lc3, Becn1, Sqstm1 and Atg5. Consistent with these changes, trehalose administration enhanced the nuclear translocation of FOXO1, an important transcription factor involved in the activation of autophagy in neurons. This study suggests a potential use of trehalose and enhancers of MTOR-independent autophagy for the treatment of ALS.
Collapse
Affiliation(s)
- Karen Castillo
- Biomedical Neuroscience Institute; Faculty of Medicine; University of Chile; Santiago, Chile; Center for Molecular Studies of the Cell; Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile; Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Bellingham MC. Pre- and postsynaptic mechanisms underlying inhibition of hypoglossal motor neuron excitability by riluzole. J Neurophysiol 2013; 110:1047-61. [PMID: 23741042 DOI: 10.1152/jn.00587.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Riluzole is the sole treatment for amyotrophic lateral sclerosis (ALS), but its therapeutically relevant actions on motor neurons are not well defined. Whole cell patch-clamp recordings were made from hypoglossal motor neurons (HMs, n = 25) in brain stem slices from 10- to 23-day-old rats anesthetized with pentobarbital sodium to investigate the hypothesis that riluzole inhibits HMs by multiple mechanisms. Riluzole (20 μM) hyperpolarized HMs by decreasing an inward current, inhibited voltage-gated persistent Na(+) and Ca(2+) currents activated by slow voltage ramps, and negatively shifted activation of the hyperpolarization-activated cationic current (IH). Repetitive firing of HMs was strongly inhibited by riluzole, which also increased action potential threshold voltage and rheobase and decreased amplitude and maximum rise slope but did not alter the maximal afterhyperpolarization amplitude or decay time constant. HM rheobase was inversely correlated with persistent Na(+) current density. Glutamatergic synaptic transmission was inhibited by riluzole by both pre- and postsynaptic effects. Riluzole decreased activity-dependent glutamate release, as shown by decreased amplitude of evoked and spontaneous excitatory postsynaptic currents (EPSCs), decreased paired-pulse ratio, and decreased spontaneous, but not miniature, EPSC frequency. However, riluzole also decreased miniature EPSC amplitude and the inward current evoked by local application of glutamate onto HMs, suggesting a reduction of postsynaptic glutamate receptor sensitivity. Riluzole thus has a marked inhibitory effect on HM activity by membrane hyperpolarization, decreasing firing and inhibiting glutamatergic excitation by both pre- and postsynaptic mechanisms. These results broaden the range of mechanisms controlling motor neuron inhibition by riluzole and are relevant to researchers and clinicians interested in understanding ALS pathogenesis and treatment.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
245
|
The neuroprotective drug riluzole acts via small conductance Ca2+-activated K+ channels to ameliorate defects in spinal muscular atrophy models. J Neurosci 2013; 33:6557-62. [PMID: 23575853 DOI: 10.1523/jneurosci.1536-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal muscular atrophy (SMA), a recessive neuromuscular disorder, is caused by diminished function of the Survival Motor Neuron (SMN) protein. To define the cellular processes pertinent to SMA, parallel genetic screens were undertaken in Drosophila and Caenorhabditis elegans SMA models to identify modifiers of the SMN loss of function phenotypes. One class of such genetic modifiers was the small conductance, Ca(2+)-activated K(+) (SK) channels. SK channels allow efflux of potassium ions when intracellular calcium increases and can be activated by the neuroprotective drug riluzole. The latter is the only drug with proven, albeit modest, efficacy in the treatment of amyotrophic lateral sclerosis. It is unclear if riluzole can extend life span or ameliorate symptoms in SMA patients as previous studies were limited and of insufficient power to draw any conclusions. The critical biochemical target of riluzole in motor neuron disease is not known, but the pharmacological targets of riluzole include SK channels. We examine here the impact of riluzole in two different SMA models. In vertebrate neurons, riluzole treatment restored axon outgrowth caused by diminished SMN. Additionally, riluzole ameliorated the neuromuscular defects in a C. elegans SMA model and SK channel function was required for this beneficial effect. We propose that riluzole improves motor neuron function by acting on SK channels and suggest that SK channels may be important therapeutic targets for SMA patients.
Collapse
|
246
|
|
247
|
Ciesler J, Sari Y. Neurotrophic Peptides: Potential Drugs for Treatment of Amyotrophic Lateral Sclerosis and Alzheimer's disease. ACTA ACUST UNITED AC 2013; 3. [PMID: 23795307 DOI: 10.13055/ojns_3_1_2.130408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and glial cells in the central nervous system correlated to their symptoms. Among these neurodegenerative diseases are Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Neurodegeneration is mostly restricted to specific neuronal populations: cholinergic neurons in AD and motoneurons in ALS. The demonstration that the onset and progression of neurodegenerative diseases in models of transgenic mice, in particular, is delayed or improved by the application of neurotrophic factors and derived peptides from neurotrophic factors has emphasized their importance in neurorestoration. A range of neurotrophic factors and growth peptide factors derived from activity-dependent neurotrophic factor/activity-dependent neuroprotective protein has been suggested to restore neuronal function, improve behavioral deficits and prolong the survival in animal models. In this review article, we focus on the role of trophic peptides in the improvement of AD and ALS. An understanding of the molecular pathways involved with trophic peptides in these neurodegenerative diseases may shed light on potential therapies.
Collapse
Affiliation(s)
- Jessica Ciesler
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA
| | | |
Collapse
|
248
|
Fritz E, Izaurieta P, Weiss A, Mir FR, Rojas P, Gonzalez D, Rojas F, Brown RH, Madrid R, van Zundert B. Mutant SOD1-expressing astrocytes release toxic factors that trigger motoneuron death by inducing hyperexcitability. J Neurophysiol 2013; 109:2803-14. [PMID: 23486205 DOI: 10.1152/jn.00500.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS.
Collapse
Affiliation(s)
- Elsa Fritz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Ave Republica 217, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Beghi E, Pupillo E, Bonito V, Buzzi P, Caponnetto C, Chiò A, Corbo M, Giannini F, Inghilleri M, Bella VL, Logroscino G, Lorusso L, Lunetta C, Mazzini L, Messina P, Mora G, Perini M, Quadrelli ML, Silani V, Simone IL, Tremolizzo L. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:397-405. [DOI: 10.3109/21678421.2013.764568] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
250
|
van Zundert B, Izaurieta P, Fritz E, Alvarez FJ. Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem 2013; 113:3301-12. [PMID: 22740507 DOI: 10.1002/jcb.24234] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motor neurons starting in adulthood. Most of our knowledge about the pathophysiological mechanisms of ALS comes from transgenic mice models that emulate a subgroup of familial ALS cases (FALS), with mutations in the gene encoding superoxide dismutase (SOD1). In the more than 15 years since these mice were generated, a large number of abnormal cellular mechanisms underlying motor neuron degeneration have been identified, but to date this effort has led to few improvements in therapy, and no cure. Here, we consider that this surfeit of mechanisms is best interpreted by current insights that suggest a very early initiation of pathology in motor neurons, followed by a diversity of secondary cascades and compensatory mechanisms that mask symptoms for decades, until trauma and/or aging overloads their protective function. This view thus posits that adult-onset ALS is the consequence of processes initiated during early development. In fact, motor neurons in neonatal mutant SOD mice display important alterations in their intrinsic electrical properties, synaptic inputs and morphology that are accompanied by subtle behavioral abnormalities. We consider evidence that human mutant SOD1 protein in neonatal hSOD1(G93A) mice instigates motor neuron degeneration by increasing persistent sodium currents and excitability, in turn altering synaptic circuits that control excessive motor neuron firing and leads to excitotoxicity. We also discuss how therapies that are aimed at suppressing abnormal neuronal activity might effectively mitigate or prevent the onset of irreversible neuronal damage in adulthood. J. Cell. Biochem. 113: 3301-3312, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile.
| | | | | | | |
Collapse
|