201
|
Strock CF, Burridge JD, Niemiec MD, Brown KM, Lynch JP. Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress. PLANT, CELL & ENVIRONMENT 2021; 44:49-67. [PMID: 32839986 DOI: 10.1111/pce.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 05/06/2023]
Abstract
At the genus and species level, variation in root anatomy and architecture may interact to affect strategies of drought avoidance. To investigate this idea, root anatomy and architecture of the drought-sensitive common bean (Phaseolus vulgaris) and drought-adapted tepary bean (Phaseolus acutifolius) were analyzed in relation to water use under terminal drought. Intraspecific variation for metaxylem anatomy and axial conductance was found in the roots of both species. Genotypes with high-conductance root metaxylem phenotypes acquired and transpired more water per unit leaf area, shoot mass, and root mass than genotypes with low-conductance metaxylem phenotypes. Interspecific variation in root architecture and root depth was observed where P. acutifolius has a deeper distribution of root length than P. vulgaris. In the deeper-rooted P. acutifolius, genotypes with high root conductance were better able to exploit deep soil water than genotypes with low root axial conductance. Contrastingly, in the shallower-rooted P. vulgaris, genotypes with low root axial conductance had improved water status through conservation of soil moisture for sustained water capture later in the season. These results indicate that metaxylem morphology interacts with root system depth to determine a strategy of drought avoidance and illustrate synergism among architectural and anatomical phenotypes for root function.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James D Burridge
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Miranda D Niemiec
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
202
|
Rongsawat T, Peltier JB, Boyer JC, Véry AA, Sentenac H. Looking for Root Hairs to Overcome Poor Soils. TRENDS IN PLANT SCIENCE 2021; 26:83-94. [PMID: 32980260 DOI: 10.1016/j.tplants.2020.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Breeding new cultivars allowing reduced fertilization and irrigation is a major challenge. International efforts towards this goal focus on noninvasive methodologies, platforms for high-throughput phenotyping of large plant populations, and quantitative description of root traits as predictors of crop performance in environments with limited water and nutrient availability. However, these high-throughput analyses ignore one crucial component of the root system: root hairs (RHs). Here, we review current knowledge on RH functions, mainly in the context of plant hydromineral nutrition, and take stock of quantitative genetics data pointing at correlations between RH traits and plant biomass production and yield components.
Collapse
Affiliation(s)
- Thanyakorn Rongsawat
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France.
| |
Collapse
|
203
|
Kong D, Wang J, Valverde-Barrantes OJ, Kardol P. A framework to assess the carbon supply-consumption balance in plant roots. THE NEW PHYTOLOGIST 2021; 229:659-664. [PMID: 32654148 DOI: 10.1111/nph.16807] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Liaoning Key Laboratory for Biological Invasions and Global Change, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | | | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
204
|
Wang X, Shen J, Hedden P, Phillips AL, Thomas SG, Ge Y, Ashton RW, Whalley WR. Wheat growth responses to soil mechanical impedance are dependent on phosphorus supply. SOIL & TILLAGE RESEARCH 2021; 205:104754. [PMID: 33390631 PMCID: PMC7729824 DOI: 10.1016/j.still.2020.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, MoE, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, PR China
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, MoE, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, PR China
| | - Peter Hedden
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | | | | | - Yaoxiang Ge
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, PR China
| | - Rhys W. Ashton
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | |
Collapse
|
205
|
Wang Y, Chai C, Khatabi B, Scheible WR, Udvardi MK, Saha MC, Kang Y, Nelson RS. An Efficient Brome mosaic virus-Based Gene Silencing Protocol for Hexaploid Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:685187. [PMID: 34220905 PMCID: PMC8253535 DOI: 10.3389/fpls.2021.685187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/07/2021] [Indexed: 05/09/2023]
Abstract
Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars.
Collapse
|
206
|
Kuerban M, Jiao W, Pang J, Jing J, Qiu LJ, Ding W, Cong WF, Zhang F, Lambers H. Targeting Low-Phytate Soybean Genotypes Without Compromising Desirable Phosphorus-Acquisition Traits. Front Genet 2021; 11:574547. [PMID: 33381147 PMCID: PMC7767974 DOI: 10.3389/fgene.2020.574547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Phytate-phosphorus (P) in food and feed is not efficiently utilized by humans and non-ruminant livestock, potentially contributing to high losses of P to the environment. Crops with high P-acquisition efficiency can access soil P effectively. It remains elusive whether crop genotypes with high P-acquisition efficiency can also have low seed phytate concentrations. A core collection of 256 soybean [Glycine max (L.) Merr.] genotypes from China with diverse genetic background were grown in the same environment and seeds were sampled to screen for seed phytate-P concentration. Some of these genotypes were also grown in a low-P soil in the glasshouse to measure root morphological and physiological traits related to P acquisition. Large genotypic variation was found in seed phytate-P concentration (0.69–5.49 mg P g–1 dry weight), total root length, root surface area, rhizosheath carboxylates, and acid phosphatase activity in rhizosheath soil. Geographically, seed phytate-P concentration was the highest for the genotypes from Hainan Province, whereas it was the lowest for the genotypes from Inner Mongolia. Seed phytate-P concentration showed no correlation with any desirable root traits associated with enhanced P acquisition. Two genotypes (Siliyuan and Diliuhuangdou-2) with both low phytate concentrations and highly desirable P-acquisition traits were identified. This is the first study to show that some soybean genotypes have extremely low seed phytate concentrations, combined with important root traits for efficient P acquisition, offering material for breeding genotypes with low seed phytate-P concentrations.
Collapse
Affiliation(s)
- Mireadili Kuerban
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Wenfeng Jiao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.,School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jingying Jing
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Li-Juan Qiu
- National Key Facility for Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenli Ding
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Wen-Feng Cong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Hans Lambers
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.,School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
207
|
Nakhforoosh A, Nagel KA, Fiorani F, Bodner G. Deep soil exploration vs. topsoil exploitation: distinctive rooting strategies between wheat landraces and wild relatives. PLANT AND SOIL 2020; 459:397-421. [PMID: 33603255 PMCID: PMC7870630 DOI: 10.1007/s11104-020-04794-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/03/2020] [Indexed: 05/27/2023]
Abstract
AIMS Diversity of root systems among genetic resources can contribute to optimize water and nutrient uptake. Topsoil exploitation vs. deep soil exploration represent two contrasting ideotypes in relation to resource use. Our study reveals how rooting patterns changed between wheat wild progenitors and landraces in regard to these ideotypes. METHODS Root (partitioning, morphology, distribution, elongation, anatomy) and shoot traits (dry-matter, leaf area, assimilation) of durum landraces, wild emmer and wild einkorn from Iran, Syria, Turkey and Lebanon were phenotyped using the GrowScreen-Rhizo platform. Distinctive rooting patterns were identified via principal component analysis and relations with collection site characteristics analyzed. RESULTS Shoot trait differentiation was strongly driven by seed weight, leading to superior early vigor of landraces. Wild progenitors formed superficial root systems with a higher contribution of lateral and early-emerging nodal axes to total root length. Durum landraces had a root system dominated by seminal axes allocated evenly over depth. Xylem anatomy was the trait most affected by the environmental influence of the collection site. CONCLUSIONS The durum landrace root system approximated a deep soil exploration ideotype which would optimize subsoil water uptake, while monococcum-type wild einkorn was most similar to a topsoil exploiting strategy with potential competitive advantages for subsistence in natural vegetation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-020-04794-9.
Collapse
Affiliation(s)
- Alireza Nakhforoosh
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
- Global Institute of Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9 Canada
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
| |
Collapse
|
208
|
Wang X, Whalley WR, Miller AJ, White PJ, Zhang F, Shen J. Sustainable Cropping Requires Adaptation to a Heterogeneous Rhizosphere. TRENDS IN PLANT SCIENCE 2020; 25:1194-1202. [PMID: 32830043 DOI: 10.1016/j.tplants.2020.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 05/19/2023]
Abstract
Root-soil interactions in the rhizosphere are central to resource acquisition and crop production in agricultural systems. However, apart from studies in idealized experimental systems, rhizosphere processes in real agricultural soils in situ are largely uncharacterized. This limits the contribution of rhizosphere science to agriculture and the ongoing Green Revolution. Here, we argue that understanding plant responses to soil heterogeneity is key to understanding rhizosphere processes. We highlight rhizosphere sensing and root-induced soil modification in the context of heterogeneous soil structure, resource distribution, and root-soil interactions. A deeper understanding of the integrated and dynamic root-soil interactions in the heterogeneously structured rhizosphere could increase crop production and resource use efficiency towards sustainable agriculture.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China
| | | | | | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fusuo Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, PR China.
| |
Collapse
|
209
|
Ramírez-Flores MR, Perez-Limon S, Li M, Barrales-Gamez B, Albinsky D, Paszkowski U, Olalde-Portugal V, Sawers RJH. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. eLife 2020; 9:e61701. [PMID: 33211006 PMCID: PMC7676867 DOI: 10.7554/elife.61701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in cultivated soils, forming symbiotic relationships with the roots of major crop species. Studies in controlled conditions have demonstrated the potential of AMF to enhance the growth of host plants. However, it is difficult to estimate the actual benefit in the field, not least because of the lack of suitable AMF-free controls. Here we implement a novel strategy using the selective incorporation of AMF-resistance into a genetic mapping population to evaluate maize response to AMF. We found AMF to account for about one-third of the grain production in a medium input field, as well as to affect the relative performance of different plant genotypes. Characterization of the genetic architecture of the host response indicated a trade-off between mycorrhizal dependence and benefit. We identified several QTL linked to host benefit, supporting the feasibility of breeding crops to maximize profit from symbiosis with AMF.
Collapse
Affiliation(s)
- M Rosario Ramírez-Flores
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Sergio Perez-Limon
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Meng Li
- Department of Plant Science, The Pennsylvania State UniversityState CollegeUnited States
| | - Benjamín Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Doris Albinsky
- Crop Science Centre and Department of Plant Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Uta Paszkowski
- Crop Science Centre and Department of Plant Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Ruairidh JH Sawers
- Department of Plant Science, The Pennsylvania State UniversityState CollegeUnited States
| |
Collapse
|
210
|
Burridge JD, Black CK, Nord EA, Postma JA, Sidhu JS, York LM, Lynch JP. An Analysis of Soil Coring Strategies to Estimate Root Depth in Maize ( Zea mays) and Common Bean ( Phaseolus vulgaris). PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:3252703. [PMID: 33313549 PMCID: PMC7706327 DOI: 10.34133/2020/3252703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
Collapse
Affiliation(s)
- James D. Burridge
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Christopher K. Black
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Eric A. Nord
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Department of Biology, Greenville University, 315 E. College Ave, Greenville, IL 62246, USA
| | - Johannes A. Postma
- Forschungszentrum Jülich GmbH, Institute of Bio-and Geosciences-Plant Sciences (IBG-2), 52425 Jülich, Germany
| | - Jagdeep S. Sidhu
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| | - Larry M. York
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jonathan P. Lynch
- The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
| |
Collapse
|
211
|
Sun X, Chen H, Wang P, Chen F, Yuan L, Mi G. Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153281. [PMID: 32971423 DOI: 10.1016/j.jplph.2020.153281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 05/23/2023]
Abstract
Under low nitrogen (N) supply, an important adaption of the maize root system is to promote the root elongation so as to increase N uptake from a larger soil space. The underlying physiological mechanism is largely unknown. In the present study, two maize inbred lines (Ye478 and Wu312) were used to study the possible involvement of the auxin and target of rapamycin (TOR) pathway in low-N-induced root elongation. Compared to Wu312, primary root elongation of Ye478 was more sensitive to low nitrate supply. Correspondingly, more auxin was accumulated in the root tip, and more protons were secreted, increasing the acidity of the apoplast space. On the other hand, low-N-induced root elongation was greatly reduced when shoot-to-root auxin transport was inhibited by applying N-1-naphthylphthalamic acid (NPA) at the plant base or by pruning the top leaf where auxin is mostly synthesized. Furthermore, exogenous application of TOR inhibitor also eliminated the response of root elongation under low N. The content of TOR kinase and the expression of TOR pathway-related genes were significantly changed when shoot-to-root auxin transport was reduced by NPA treatment. Taken together, it is concluded that low-N stress increases shoot-to-root auxin transport which enhances root elongation via auxin-dependent acid growth and the auxin-regulated TOR pathway in maize.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Huan Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
212
|
Wade RN, Seed P, McLaren E, Wood E, Christin PA, Thompson K, Rees M, Osborne CP. The morphogenesis of fast growth in plants. THE NEW PHYTOLOGIST 2020; 228:1306-1315. [PMID: 32841398 DOI: 10.1111/nph.16892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Growth rate represents a fundamental axis of life history variation. Faster growth associated with C4 photosynthesis and annual life history has evolved multiple times, and the resulting diversity in growth is typically explained via resource acquisition and allocation. However, the underlying changes in morphogenesis remain unknown. We conducted a phylogenetic comparative experiment with 74 grass species, conceptualising morphogenesis as the branching and growth of repeating modules. We aimed to establish whether faster growth in C4 and annual grasses, compared with C3 and perennial grasses, came from the faster growth of individual modules or higher rates of module initiation. Morphogenesis produces fast growth in different ways in grasses using C4 and C3 photosynthesis, and in annual compared with perennial species. C4 grasses grow faster than C3 species through a greater enlargement of shoot modules and quicker secondary branching of roots. However, leaf initiation is slower and there is no change in shoot branching. Conversely, faster growth in annuals than perennials is achieved through greater branching and enlargement of shoots, and possibly faster root branching. The morphogenesis of fast growth depends on ecological context, with C4 grasses tending to promote resource capture under competition, and annuals enhancing branching to increase reproductive potential.
Collapse
Affiliation(s)
- Ruth N Wade
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Patrick Seed
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleanor McLaren
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Wood
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ken Thompson
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark Rees
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
213
|
van der Bom FJT, Williams A, Bell MJ. Root architecture for improved resource capture: trade-offs in complex environments. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5752-5763. [PMID: 32667996 DOI: 10.1093/jxb/eraa324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Root architecture is a promising breeding target for developing resource-efficient crops. Breeders and plant physiologists have called for root ideotypes that have narrow, deep root systems for improved water and nitrate capture, or wide, shallower root systems for better uptake of less mobile topsoil nutrients such as phosphorus. Yet evidence of relationships between root architecture and crop yield is limited. Many studies focus on the response to a single constraint, despite the fact that crops are frequently exposed to multiple soil constraints. For example, in dryland soils under no-till management, topsoil nutrient stratification is an emergent profile characteristic, leading to spatial separation of water and nutrients as the soil profile dries. This results in spatio-temporal trade-offs between efficient resource capture and pre-defined root ideotypes developed to counter a single constraint. We believe there is need to identify and better understand trade-offs involved in the efficient capture of multiple, spatially disjunct soil resources. Additionally, how these trade-offs interact with genotype (root architecture), environment (soil constraints), and management (agronomy) are critical unknowns. We argue that identifying root traits that enable efficient capture of multiple soil resources under fluctuating environmental constraints is a key step towards meeting the challenges of global food security.
Collapse
Affiliation(s)
- Frederik J T van der Bom
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Alwyn Williams
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| | - Michael J Bell
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
214
|
Variable Light Condition Improves Root Distribution Shallowness and P Uptake of Soybean in Maize/Soybean Relay Strip Intercropping System. PLANTS 2020; 9:plants9091204. [PMID: 32942525 PMCID: PMC7570427 DOI: 10.3390/plants9091204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P (phosphorus) treatments of 0 and 20 kg P ha yr−1 (P0 and P20, respectively) in field experiment over 4 years. In 2019, a pot experiment was conducted as the supplement to the field experiment. Shade from sowing to V5 (Five trifoliolates unroll) and light (SL) was used to imitate the light condition of soybeans in a relay trip inter-cropping system, while light then shade from V5 to maturity (LS) was used to imitate the light condition of soybeans when monocropped. Compared to monocropping, P uptake and root distribution in the upper 0–15 cm soil layer increased when inter-cropped. Inter-cropped soybeans suffered serious shade by maize during a common-growth period, which resulted in the inhibition of primary root growth and a modified auxin synthesis center and response. During the solo-existing period, plant photosynthetic capacity and sucrose accumulation increased under ameliorated light in SL (shade-light). Increased light during the reproductive stage significantly decreased leaf P concentration in SL under both P-sufficient and P-deficient conditions. Transcripts of a P starvation response gene (GmPHR25) in leaves and genes (GmEXPB2) involved in root growth were upregulated by ameliorated light during the reproductive stage. Furthermore, during the reproductive stage, more light interception increased the auxin concentration and expression of GmYUCCA14 (encoding the auxin synthesis) and GmTIR1C (auxin receptor) in roots. Across the field and pot experiments, increased lateral root growth and shallower root distribution were associated with inhibited primary root growth during the seedling stage and ameliorated light conditions in the reproductive stage. Consequently, this improved topsoil foraging and P uptake of inter-cropped soybeans. It is suggested that the various light conditions (shade-light) mediating leaf P status and sucrose transport can regulate auxin synthesis and respond to root formation and distribution.
Collapse
|
215
|
De Bauw P, Mai TH, Schnepf A, Merckx R, Smolders E, Vanderborght J. A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. ANNALS OF BOTANY 2020; 126:789-806. [PMID: 32597468 PMCID: PMC7489101 DOI: 10.1093/aob/mcaa120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Upland rice is often grown where water and phosphorus (P) are limited. To better understand the interaction between water and P availability, functional-structural models that mechanistically represent small-scale nutrient gradients and water dynamics in the rhizosphere are needed. METHODS Rice was grown in large columns using a P-deficient soil at three P supplies in the topsoil (deficient, sub-optimal and non-limiting) in combination with two water regimes (field capacity vs. drying periods). Root system characteristics, such as nodal root number, lateral types, interbranch distance, root diameters and the distribution of biomass with depth, as well as water and P uptake, were measured. Based on the observed root data, 3-D root systems were reconstructed by calibrating the structural architecure model CRootBox for each scenario. Water flow and P transport in the soil to each of the individual root segments of the generated 3-D root architectures were simulated using a multiscale flow and transport model. Total water and P uptake were then computed by adding up the uptake by all the root segments. KEY RESULTS Measurements showed that root architecture was significantly affected by the treatments. The moist, high P scenario had 2.8 times the root mass, double the number of nodal roots and more S-type laterals than the dry, low P scenario. Likewise, measured plant P uptake increased >3-fold by increasing P and water supply. However, drying periods reduced P uptake at high but not at low P supply. Simulation results adequately predicted P uptake in all scenarios when the Michaelis-Menten constant (Km) was corrected for diffusion limitation. They showed that the key drivers for P uptake are the different types of laterals (i.e. S- and L-type) and growing root tips. The L-type laterals become more important for overall water and P uptake than the S-type laterals in the dry scenarios. This is true across all the P treatments, but the effect is more pronounced as the P availability decreases. CONCLUSIONS This functional-structural model can predict the function of specific rice roots in terms of P and water uptake under different P and water supplies, when the structure of the root system is known. A future challenge is to predict how the structure root systems responds to nutrient and water availability.
Collapse
Affiliation(s)
- Pieterjan De Bauw
- Katholieke Universiteit Leuven, Department of of Earth and Environmental Sciences, Leuven, Belgium
| | - Trung Hieu Mai
- Institute of Bio- and Geosciences: Agrosphere (IBG 3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andrea Schnepf
- Institute of Bio- and Geosciences: Agrosphere (IBG 3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roel Merckx
- Katholieke Universiteit Leuven, Department of of Earth and Environmental Sciences, Leuven, Belgium
| | - Erik Smolders
- Katholieke Universiteit Leuven, Department of of Earth and Environmental Sciences, Leuven, Belgium
| | - Jan Vanderborght
- Institute of Bio- and Geosciences: Agrosphere (IBG 3), Forschungszentrum Jülich GmbH, Jülich, Germany
- Katholieke Universiteit Leuven, Department of of Earth and Environmental Sciences, Leuven, Belgium
| |
Collapse
|
216
|
Pongrac P, Castillo-Michel H, Reyes-Herrera J, Hancock RD, Fischer S, Kelemen M, Thompson JA, Wright G, Likar M, Broadley MR, Vavpetič P, Pelicon P, White PJ. Effect of phosphorus supply on root traits of two Brassica oleracea L. genotypes. BMC PLANT BIOLOGY 2020; 20:368. [PMID: 32758143 PMCID: PMC7404929 DOI: 10.1186/s12870-020-02558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.
Collapse
Affiliation(s)
- Paula Pongrac
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | | | | | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sina Fischer
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Jacqueline A Thompson
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Gladys Wright
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Martin R Broadley
- Plant and Crop Sciences Division, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451, Saudi Arabia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
217
|
de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:951-964. [PMID: 32324287 DOI: 10.1111/tpj.14781] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 05/13/2023]
Abstract
Plants forage soil for water and nutrients, whose distribution is patchy and often dynamic. To improve their foraging activities, plants have evolved mechanisms to modify the physicochemical properties and microbial communities of the rhizosphere, i.e. the soil compartment under the influence of the roots. This dynamic interplay in root-soil-microbiome interactions creates emerging properties that impact plant nutrition and health. As a consequence, the rhizosphere can be considered an extended root phenotype, a manifestation of the effects of plant genes on their environment inside and/or outside of the organism. Here, we review current understanding of how plants shape the rhizosphere and the benefits it confers to plant fitness. We discuss future research challenges and how applying their solutions in crops will enable us to harvest the benefits of the extended root phenotype.
Collapse
Affiliation(s)
- Carla de la Fuente Cantó
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Marie Simonin
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Eoghan King
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Lionel Moulin
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Malcolm J Bennett
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Gabriel Castrillo
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| |
Collapse
|
218
|
Strock CF, Lynch JP. Root secondary growth: an unexplored component of soil resource acquisition. ANNALS OF BOTANY 2020; 126:205-218. [PMID: 32588876 PMCID: PMC7523590 DOI: 10.1093/aob/mcaa068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Despite recent progress in elucidating the molecular basis of secondary growth (cambial growth), the functional implications of this developmental process remain poorly understood. Targeted studies exploring how abiotic and biotic factors affect this process, as well as the relevance of secondary growth to fitness of annual dicotyledonous crop species under stress, are almost entirely absent from the literature. Specifically, the physiological role of secondary growth in roots has been completely neglected yet entails a unique array of implications for plant performance that are distinct from secondary growth in shoot tissue. SCOPE Since roots are directly responsible for soil resource capture, understanding of the fitness landscape of root phenotypes is important in both basic and applied plant biology. Interactions between root secondary growth, edaphic conditions and soil resource acquisition may have significant effects on plant fitness. Our intention here is not to provide a comprehensive review of a sparse and disparate literature, but rather to highlight knowledge gaps, propose hypotheses and identify opportunities for novel and agriculturally relevant research pertaining to secondary growth of roots. This viewpoint: (1) summarizes evidence from our own studies and other published work; (2) proposes hypotheses regarding the fitness landscape of secondary growth of roots in annual dicotyledonous species for abiotic and biotic stress; and (3) highlights the importance of directing research efforts to this topic within an agricultural context. CONCLUSIONS Secondary growth of the roots of annual dicots has functional significance with regards to soil resource acquisition and transport, interactions with soil organisms and carbon sequestration. Research on these topics would contribute significantly toward understanding the agronomic value of secondary growth of roots for crop improvement.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
219
|
Shameer S, Vallarino JG, Fernie AR, Ratcliffe RG, Sweetlove LJ. Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:68-82. [PMID: 31985867 DOI: 10.1111/tpj.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 05/27/2023]
Abstract
Cell expansion is a significant contributor to organ growth and is driven by the accumulation of osmolytes to increase cell turgor pressure. Metabolic modelling has the potential to provide insights into the processes that underpin osmolyte synthesis and transport, but the main computational approach for predicting metabolic network fluxes, flux balance analysis, often uses biomass composition as the main output constraint and ignores potential changes in cell volume. Here we present growth-by-osmotic-expansion flux balance analysis (GrOE-FBA), a framework that accounts for both the metabolic and ionic contributions to the osmotica that drive cell expansion, as well as the synthesis of protein, cell wall and cell membrane components required for cell enlargement. Using GrOE-FBA, the metabolic fluxes in dividing and expanding cells were analysed, and the energetic costs for metabolite biosynthesis and accumulation in the two scenarios were found to be surprisingly similar. The expansion phase of tomato fruit growth was also modelled using a multiphase single-optimization GrOE-FBA model and this approach gave accurate predictions of the major metabolite levels throughout fruit development, as well as revealing a role for transitory starch accumulation in ensuring optimal fruit development.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - José G Vallarino
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
220
|
Schneider HM, Klein SP, Hanlon MT, Nord EA, Kaeppler S, Brown KM, Warry A, Bhosale R, Lynch JP. Genetic control of root architectural plasticity in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3185-3197. [PMID: 32080722 PMCID: PMC7260711 DOI: 10.1093/jxb/eraa084] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 05/05/2023]
Abstract
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Stephanie P Klein
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Eric A Nord
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
221
|
Schneider HM, Lynch JP. Should Root Plasticity Be a Crop Breeding Target? FRONTIERS IN PLANT SCIENCE 2020; 11:546. [PMID: 32499798 PMCID: PMC7243933 DOI: 10.3389/fpls.2020.00546] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 05/18/2023]
Abstract
Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research.
Collapse
Affiliation(s)
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
222
|
Chen Y, Palta J, Prasad PVV, Siddique KHM. Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC PLANT BIOLOGY 2020; 20:185. [PMID: 32345227 PMCID: PMC7189723 DOI: 10.1186/s12870-020-02390-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Understanding root system morphology in bread wheat is critical for identifying root traits to breed cultivars with improved resource uptake and better adaptation to adverse environments. Variability in root morphological traits at early vegetative stages was examined among 184 bread wheat genotypes originating from 37 countries grown in a semi-hydroponic phenotyping system. RESULTS At the onset of tillering (Z2.1, 35 days after transplanting), plants had up to 42 cm in shoot height and 158 cm long in root depth. Phenotypic variation existed for both shoot and root traits, with a maximal 4.3-fold difference in total root length and 5-fold difference in root dry mass among the 184 genotypes. Of the 41 measured traits, 24 root traits and four shoot traits had larger coefficients of variation (CV ≥ 0.25). Strong positive correlations were identified for some key root traits (i.e., root mass, root length, and these parameters at different depths) and shoot traits (i.e., shoot mass and tiller number) (P ≤ 0.05). The selected 25 global traits (at whole-plant level) contributed to one of the five principal components (eigenvalues> 1) capturing 83.0% of the total variability across genotypes. Agglomerative hierarchical clustering analysis separated the 184 genotypes into four (at a rescaled distance of 15) or seven (at a rescaled distance of 10) major groups based on the same set of root traits. Strong relationships between performance traits (dry mass) with several functional traits such as specific root length, root length intensity and root tissue density suggest their linkage to plant growth and fitness strategies. CONCLUSIONS Large phenotypic variability in root system morphology in wheat genotypes was observed at the tillering stage using established semi-hydroponic phenotyping techniques. Phenotypic differences in and trait correlations among some interesting root traits may be considered for breeding wheat cultivars with efficient water acquisition and better adaptation to abiotic stress.
Collapse
Affiliation(s)
- Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia.
| | - Jairo Palta
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
- CSIRO Agriculture & Food, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
223
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
224
|
Schneider HM, Klein SP, Hanlon MT, Kaeppler S, Brown KM, Lynch JP. Genetic control of root anatomical plasticity in maize. THE PLANT GENOME 2020; 13:e20003. [PMID: 33016634 DOI: 10.1002/tpg2.20003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.
Collapse
Affiliation(s)
- Hannah M Schneider
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Stephanie P Klein
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Meredith T Hanlon
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Shawn Kaeppler
- Dep. of Agronomy, Univ. of Wisconsin, Madison, WI, 53706, USA
| | - Kathleen M Brown
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Jonathan P Lynch
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
225
|
González-Hernández AI, Scalschi L, García-Agustín P, Camañes G. Tomato root development and N assimilation depend on C and ABA content under different N sources. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:368-378. [PMID: 32028134 DOI: 10.1016/j.plaphy.2020.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Root plasticity is controlled by hormonal homeostasis and nutrient availability. In this work, we have determined the influence of different N regimens on growth parameters and on the expression of genes involved in auxin transport and N-assimilation in tomato seedlings. NH4+ nutrition led to an inhibitory effect on root fresh weight (FW), lateral root (LR) number and root density, while an increase in the primary root (PR) length was observed. The expression of N assimilation genes GS2 and ASN1, is affected by NH4+ nutrition. Moreover, in order to relieve the toxic effect of NH4+ on root development, glucose or 2-oxoglutarate was supplied as a C source during NH4+ treatment. The addition of 2-oxoglutarate improved root parameters compared to the NH4+ regimen. N-assimilation gene analysis showed that NH4+-fed tomato plants try to alleviate the toxic effect by concurrently upregulating ASN1 and anaplerotic PEPC2 expression, whereas when 2-oxoglutarate is supplied, ASN1 induction was not observed. The addition of both C skeletons induced the expression of the ROS-scavenging genes GSH and SOD. In addition, since ABA plays a role in root development, the ABA-synthesis-defective mutant flacca was studied under NO3- and NH4+ regimens. It displayed a decrease in LR number under NO3- conditions, whereas, the NH4+-fed seedlings showed a decrease solely in PR length that was reverted when ABA was exogenously supplied. Moreover, flacca seedlings displayed a reprogramming of the N/C assimilation genes. Altogether, these results reflect the importance of N and C sources and ABA homeostasis in root development of tomato seedlings.
Collapse
Affiliation(s)
- Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y Del Medio Natural, ESTCE, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
226
|
Luo J, Liu Y, Zhang H, Wang J, Chen Z, Luo L, Liu G, Liu P. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC PLANT BIOLOGY 2020; 20:85. [PMID: 32087672 PMCID: PMC7036231 DOI: 10.1186/s12870-020-2283-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. RESULTS In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. CONCLUSIONS These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.
Collapse
Affiliation(s)
- Jiajia Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Yunxi Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Huikai Zhang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Jinpeng Wang
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Zhijian Chen
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China
| | - Lijuan Luo
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Guodao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| | - Pandao Liu
- College of Tropical Crops, Hainan University, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou, 570228, China.
| |
Collapse
|
227
|
Jia Q, Qu J, Mu H, Sun H, Wu C. Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 2020. [DOI: 10.1007/s13199-019-00663-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
228
|
Schneider HM, Postma JA, Kochs J, Pflugfelder D, Lynch JP, van Dusschoten D. Spatio-Temporal Variation in Water Uptake in Seminal and Nodal Root Systems of Barley Plants Grown in Soil. FRONTIERS IN PLANT SCIENCE 2020; 11:1247. [PMID: 32903494 PMCID: PMC7438553 DOI: 10.3389/fpls.2020.01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
The spatial and temporal dynamics of root water uptake in nodal and seminal roots are poorly understood, especially in relation to root system development and aging. Here we non-destructively quantify 1) root water uptake and 2) root length of nodal and seminal roots of barley in three dimensions during 43 days of growth. We developed a concentric split root system to hydraulically and physically isolate the seminal and nodal root systems. Using magnetic resonance imaging (MRI), roots were visualized, root length was determined, and soil water depletion in both compartments was measured. From 19 days after germination and onwards, the nodal root system had greater water uptake compared to the seminal root system due to both greater root length and greater root conductivity. At 29 days after germination onwards, the average age of the seminal and nodal root systems was similar and no differences were observed in water uptake per root length between seminal and nodal root systems, indicating the importance of embryonic root systems for seedling establishment and nodal root systems in more mature plants. Since nodal roots perform the majority of water uptake at 29 days after germination and onwards, nodal root phenes merit consideration as a selection target to improve water capture in barley and possibly other crops.
Collapse
Affiliation(s)
- Hannah M. Schneider
- Forschungszentrum Jülich, IBG-2, Jülich, Germany
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | | | | | | | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Dagmar van Dusschoten
- Forschungszentrum Jülich, IBG-2, Jülich, Germany
- *Correspondence: Dagmar van Dusschoten,
| |
Collapse
|
229
|
Ramírez‐Flores MR, Bello‐Bello E, Rellán‐Álvarez R, Sawers RJH, Olalde‐Portugal V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize ( Zea mays ssp. mays L.). PLANT DIRECT 2019; 3:e00192. [PMID: 31867562 PMCID: PMC6908788 DOI: 10.1002/pld3.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 05/05/2023]
Abstract
Plant root systems play a fundamental role in nutrient and water acquisition. In resource-limited soils, modification of root system architecture is an important strategy to optimize plant performance. Most terrestrial plants also form symbiotic associations with arbuscular mycorrhizal fungi to maximize nutrient uptake. In addition to direct delivery of nutrients, arbuscular mycorrhizal fungi benefit the plant host by promoting root growth. Here, we aimed to quantify the impact of arbuscular mycorrhizal symbiosis on root growth and nutrient uptake in maize. Inoculated plants showed an increase in both biomass and the total content of twenty quantified elements. In addition, image analysis showed mycorrhizal plants to have denser, more branched root systems. For most of the quantified elements, the increase in content in mycorrhizal plants was proportional to root and overall plant growth. However, the increase in boron, calcium, magnesium, phosphorus, sulfur, and strontium was greater than predicted by root system size alone, indicating fungal delivery to be supplementing root uptake.
Collapse
Affiliation(s)
- M. Rosario Ramírez‐Flores
- Departamento de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| | - Elohim Bello‐Bello
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| | - Rubén Rellán‐Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Ruairidh J. H. Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
- Department of Plant ScienceThe Pennsylvania State UniversityState CollegePAUSA
| | - Víctor Olalde‐Portugal
- Departamento de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| |
Collapse
|
230
|
Paez-Garcia A, Liao F, Blancaflor EB. Two Wheat Cultivars with Contrasting Post-Embryonic Root Biomass Differ in Shoot Re-Growth after Defoliation: Implications for Breeding Grazing Resilient Forages. PLANTS (BASEL, SWITZERLAND) 2019; 8:E470. [PMID: 31684089 PMCID: PMC6918441 DOI: 10.3390/plants8110470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022]
Abstract
The ability of forages to quickly resume aboveground growth after grazing is a trait that enables farmers to better manage their livestock for maximum profitability. Leaf removal impairs root growth. As a consequence of a deficient root system, shoot re-growth is inhibited leading to poor pasture performance. Despite the importance of roots for forage productivity, they have not been considered as breeding targets for improving grazing resilience due in large part to the lack of knowledge on the relationship between roots and aboveground biomass re-growth. Winter wheat (Triticum aestivum) is extensively used as forage source in temperate climates worldwide. Here, we investigated the impact of leaf clipping on specific root traits, and how these influence shoot re-growth in two winter wheat cultivars (i.e., Duster and Cheyenne) with contrasting root and shoot biomass. We found that root growth angle and post-embryonic root growth in both cultivars are strongly influenced by defoliation. We discovered that Duster, which had less post-embryonic roots before defoliation, reestablished its root system faster after leaf cutting compared with Cheyenne, which had a more extensive pre-defoliation post-embryonic root system. Rapid resumption of root growth in Duster after leaf clipping was associated with faster aboveground biomass re-growth even after shoot overcutting. Taken together, our results suggest that lower investments in the production of post-embryonic roots presents an important ideotype to consider when breeding for shoot re-growth vigor in dual purpose wheat.
Collapse
Affiliation(s)
| | - Fuqi Liao
- Enterprise System and Informatics Department. Noble Research Institute LLC, Ardmore, OK 73401, USA.
| | | |
Collapse
|
231
|
Galindo-Castañeda T, Brown KM, Kuldau GA, Roth GW, Wenner NG, Ray S, Schneider H, Lynch JP. Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize. PLANT, CELL & ENVIRONMENT 2019; 42:2999-3014. [PMID: 31314912 DOI: 10.1111/pce.13615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 05/06/2023]
Abstract
Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade-offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm-grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field-grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field-grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.
Collapse
Affiliation(s)
- Tania Galindo-Castañeda
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gretchen A Kuldau
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gregory W Roth
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nancy G Wenner
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Swayamjit Ray
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hannah Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
232
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
233
|
White PJ. Root traits benefitting crop production in environments with limited water and nutrient availability. ANNALS OF BOTANY 2019; 124:mcz162. [PMID: 31599920 PMCID: PMC6881216 DOI: 10.1093/aob/mcz162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Breeding for advantageous root traits will play a fundamental role in improving the efficiency of water and nutrient acquisition, closing yield gaps, and underpinning the "Evergreen Revolution" that must match crop production with human demand. SCOPE This preface provides an overview of a Special Issue of Annals of Botany on "Root traits benefitting crop production in environments with limited water and nutrient availability". The first papers in the Special Issue examine how breeding for reduced shoot stature and greater harvest index during the Green Revolution affected root system architecture. It is observed that reduced plant height and root architecture are inherited independently and can be improved simultaneously to increase the acquisition and utilisation of carbon, water and mineral nutrients. These insights are followed by papers examining beneficial root traits for resource acquisition in environments with limited water or nutrient availability, such as deep rooting, control of hydraulic conductivity, formation of aerenchyma, proliferation of lateral roots and root hairs, foraging of nutrient-rich patches, manipulation of rhizosphere pH and the exudation of low molecular weight organic solutes. The Special Issue concludes with papers exploring the interactions of plant roots and microorganisms, highlighting the need for plants to control the symbiotic relationships between mycorrhizal fungi and rhizobia to achieve maximal growth, and the roles of plants and microbes in the modification and development of soils.
Collapse
Affiliation(s)
- Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, UK
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
234
|
Sadhukhan A, Enomoto T, Kobayashi Y, Watanabe T, Iuchi S, Kobayashi M, Sahoo L, Yamamoto YY, Koyama H. Sensitive to Proton Rhizotoxicity1 Regulates Salt and Drought Tolerance of Arabidopsis thaliana through Transcriptional Regulation of CIPK23. PLANT & CELL PHYSIOLOGY 2019; 60:2113-2126. [PMID: 31241160 DOI: 10.1093/pcp/pcz120] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/10/2023]
Abstract
The transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates multiple stress tolerances. In this study, we confirmed its involvement in NaCl and drought tolerance. The root growth of the T-DNA insertion mutant of STOP1 (stop1) was sensitive to NaCl-containing solidified MS media. Transcriptome analysis of stop1 under NaCl stress revealed that STOP1 regulates several genes related to salt tolerance, including CIPK23. Among all available homozygous T-DNA insertion mutants of the genes suppressed in stop1, only cipk23 showed a NaCl-sensitive root growth phenotype comparable to stop1. The CIPK23 promoter had a functional STOP1-binding site, suggesting a strong CIPK23 suppression led to NaCl sensitivity of stop1. This possibility was supported by in planta complementation of CIPK23 in the stop1 background, which rescued the short root phenotype under NaCl. Both stop1 and cipk23 exhibited a drought tolerant phenotype and increased abscisic acid-regulated stomatal closure, while the complementation of CIPK23 in stop1 reversed these traits. Our findings uncover additional pleiotropic roles of STOP1 mediated by CIPK23, which regulates various ion transporters including those regulating K+-homeostasis, which may induce a trade-off between drought tolerance and other traits.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, Sapporo, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| |
Collapse
|
235
|
Fromm H. Root Plasticity in the Pursuit of Water. PLANTS (BASEL, SWITZERLAND) 2019; 8:E236. [PMID: 31336579 PMCID: PMC6681320 DOI: 10.3390/plants8070236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
One of the greatest challenges of terrestrial vegetation is to acquire water through soil-grown roots. Owing to the scarcity of high-quality water in the soil and the environment's spatial heterogeneity and temporal variability, ranging from extreme flooding to drought, roots have evolutionarily acquired tremendous plasticity regarding their geometric arrangement of individual roots and their three-dimensional organization within the soil. Water deficiency has also become an increasing threat to agriculture and dryland ecosystems due to climate change. As a result, roots have become important targets for genetic selection and modification in an effort to improve crop resilience under water-limiting conditions. This review addresses root plasticity from different angles: Their structures and geometry in response to the environment, potential genetic control of root traits suitable for water-limiting conditions, and contemporary and future studies of the principles underlying root plasticity post-Darwin's 'root-brain' hypothesis. Our increasing knowledge of different disciplines of plant sciences and agriculture should contribute to a sustainable management of natural and agricultural ecosystems for the future of mankind.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|