201
|
Kikuchi K, Kidana K, Tatebe T, Tomita T. Dysregulated Metabolism of the Amyloid‐β Protein and Therapeutic Approaches in Alzheimer Disease. J Cell Biochem 2017; 118:4183-4190. [DOI: 10.1002/jcb.26129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Kiwami Kidana
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takuya Tatebe
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
202
|
Zheng X, Zhang C, Guo Q, Wan X, Shao X, Liu Q, Zhang Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int J Pharm 2017; 525:237-248. [DOI: 10.1016/j.ijpharm.2017.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
203
|
HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3160360. [PMID: 28553432 PMCID: PMC5434241 DOI: 10.1155/2017/3160360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ) deposition is increased in human immunodeficiency virus-1- (HIV-1-) infected brain, but the mechanisms are not fully understood. The aim of the present study was to evaluate the role of Ras signaling in HIV-1 transactivator protein- (Tat-) induced Aβ accumulation in human cerebral microvascular endothelial cells (HBEC-5i). Cell viability assay showed that 1 μg/mL Tat and 20 μmol/L of the Ras inhibitor farnesylthiosalicylic acid (FTS) had no significant effect on HBEC-5i cell viability after 24 h exposure. Exposure to Tat decreased protein and mRNA levels of zonula occludens- (ZO-) 1 and Aβ-degrading enzyme neprilysin (NEP) in HBEC-5i cells as determined by western blotting and quantitative real-time polymerase chain reaction. Exposure to Tat also increased transendothelial transfer of Aβ and intracellular reactive oxygen species (ROS) levels; however, these effects were attenuated by FTS. Collectively, these results suggest that the Ras signaling pathway is involved in HIV-1 Tat-induced changes in ZO-1 and NEP, as well as Aβ deposition in HBEC-5i cells. FTS partially protects blood-brain barrier (BBB) integrity and inhibits Aβ accumulation.
Collapse
|
204
|
Zhao LX, Wang Y, Liu T, Wang YX, Chen HZ, Xu JR, Qiu Y. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther 2017; 23:526-534. [PMID: 28429536 DOI: 10.1111/cns.12699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS β-amyloid (Aβ) aggregation and deposition play a central role in the pathogenic process of Alzheimer's disease (AD). α-Mangostin (α-M), a polyphenolic xanthone, have been shown to dissociate Aβ oligomers. In this study, we further investigated the effect of α-M on Aβ production and its molecular mechanism. METHODS The Aβ and soluble amyloid precursor protein α (sAPPα) in culture medium of cortical neurons were measured by ELISA. The activities of α-, β-, and γ-secretases were assayed, and the interaction between α-M and β- or γ-secretases was simulated by molecular docking. RESULTS α-M significantly decreased Aβ40 and Aβ42 production. α-M did not affect the expression of enzymes involved in nonamyloidogenic and amyloidogenic pathways, but significantly decreased the activities of β-secretase and likely γ-secretase with IC50 13.22 nmol·L-1 and 16.98 nmol·L-1 , respectively. Molecular docking demonstrated that α-M interacted with β-site amyloid precursor protein cleaving enzyme 1 and presenilin 1 to interfere with their active sites. CONCLUSIONS Our data demonstrate that α-M decreases Aβ production through inhibiting activities of β-secretase and likely γ-secretase in the amyloidogenic pathway. The current data together with previous study indicated that α-M could be a novel neuroprotective agent through intervention of multiple pathological processes of AD.
Collapse
Affiliation(s)
- Lan-Xue Zhao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Cellular Immunotherapy, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ting Liu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Xia Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Rong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
205
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
206
|
Czirr E, Castello NA, Mosher KI, Castellano JM, Hinkson IV, Lucin KM, Baeza-Raja B, Ryu JK, Li L, Farina SN, Belichenko NP, Longo FM, Akassoglou K, Britschgi M, Cirrito JR, Wyss-Coray T. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med 2017; 214:1081-1092. [PMID: 28298456 PMCID: PMC5379986 DOI: 10.1084/jem.20162011] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Czirr et al. report that microglia lacking complement receptor 3 display increased extracellular Aβ degrading activity and that targeting the receptor with a small molecule increases Aβ clearance in vivo, thus identifying a microglial receptor as a novel therapeutic target. Recent genetic evidence supports a link between microglia and the complement system in Alzheimer’s disease (AD). In this study, we uncovered a novel role for the microglial complement receptor 3 (CR3) in the regulation of soluble β-amyloid (Aβ) clearance independent of phagocytosis. Unexpectedly, ablation of CR3 in human amyloid precursor protein–transgenic mice results in decreased, rather than increased, Aβ accumulation. In line with these findings, cultured microglia lacking CR3 are more efficient than wild-type cells at degrading extracellular Aβ by secreting enzymatic factors, including tissue plasminogen activator. Furthermore, a small molecule modulator of CR3 reduces soluble Aβ levels and Aβ half-life in brain interstitial fluid (ISF), as measured by in vivo microdialysis. These results suggest that CR3 limits Aβ clearance from the ISF, illustrating a novel role for CR3 and microglia in brain Aβ metabolism and defining a potential new therapeutic target in AD.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas A Castello
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Kira I Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph M Castellano
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
| | - Izumi V Hinkson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Kurt M Lucin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Lulin Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Sasha N Farina
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO 63110.,Knight Alzheimer's Disease Research Center, Washington University Medical Center, St. Louis, MO 63110.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
207
|
Neprilysin facilitates adipogenesis through potentiation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Mol Cell Biochem 2017; 430:1-9. [DOI: 10.1007/s11010-017-2948-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022]
|
208
|
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74:2167-2201. [PMID: 28197669 PMCID: PMC5425508 DOI: 10.1007/s00018-017-2463-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.
Collapse
Affiliation(s)
- Leah Zuroff
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
209
|
Asai M, Kinjo A, Kimura S, Mori R, Kawakubo T, Shirotani K, Yagishita S, Maruyama K, Iwata N. Perturbed Calcineurin-NFAT Signaling Is Associated with the Development of Alzheimer's Disease. Biol Pharm Bull 2017; 39:1646-1652. [PMID: 27725441 DOI: 10.1248/bpb.b16-00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Collapse
Affiliation(s)
- Masashi Asai
- School of Pharmaceutical Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Mizuta N, Yanagida K, Kodama T, Tomonaga T, Takami M, Oyama H, Kudo T, Ikeda M, Takeda M, Tagami S, Okochi M. Identification of Small Peptides in Human Cerebrospinal Fluid upon Amyloid-β Degradation. NEURODEGENER DIS 2017; 17:103-109. [PMID: 28103595 DOI: 10.1159/000453358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) degradation in brains of Alzheimer disease patients is a crucial focus for the clarification of disease pathogenesis. Nevertheless, the mechanisms underlying Aβ degradation in the human brain remain unclear. OBJECTIVE This study aimed to quantify the levels of small C-terminal Aβ fragments generated upon Aβ degradation in human cerebrospinal fluid (CSF). METHODS A fraction containing small peptides was isolated and purified from human CSF by high-pressure liquid chromatography. Degradation products of Aβ C termini were identified and measured by liquid chromatography-tandem mass spectrometry. The C-terminal fragments of Aβ in the conditioned medium of cultured cells transfected with the Swedish variant of βAPP (sw βAPP) were analyzed. These fragments in brains of PS1 I213T knock-in transgenic mice, overexpressing sw βAPP, were also analyzed. RESULTS The peptide fragments GGVV and GVV, produced by the cleavage of Aβ40, were identified in human CSF as well as in the brains of the transgenic mice and in the conditioned medium of the cultured cells. Relative to Aβ40 levels, GGVV and GVV levels were 7.6 ± 0.81 and 1.5 ± 0.18%, respectively, in human CSF. Levels of the GGVV fragment did not increase by the introduction of genes encoding neprilysin and insulin-degrading enzyme to the cultured cells. CONCLUSION Our results indicate that a substantial amount of Aβ40 in human brains is degraded via a neprilysin- or insulin-degrading enzyme-independent pathway.
Collapse
Affiliation(s)
- Naoki Mizuta
- Psychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Thorne MAS, Seybold A, Marshall C, Wharton D. Molecular snapshot of an intracellular freezing event in an Antarctic nematode. Cryobiology 2017; 75:117-124. [PMID: 28082102 DOI: 10.1016/j.cryobiol.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
The Antarctic nematode, Panagrolaimus sp. DAW1 (formerly called Panagrolaimus davidi), is the best documented example of an organism able to survive intracellular ice formation in all of its compartments. Not only is it able to survive such extreme physiological disruption, but it is able to produce progeny once thawed from such a state. In addition, under slower rates, or less extreme degrees, of cooling, its body remains unfrozen and the vapour pressure difference between the supercooled body fluids and the surrounding ice leads to a process termed cryoprotective dehydration. In contrast to a fairly large body of work in building up our molecular understanding of cryoprotective dehydration, no comparable work has been undertaken on intracellular freezing. This paper describes an experiment subjecting cultures of Panagrolaimus sp. DAW1 to a range of temperatures including a rapid descent to -10 °C, in a medium just prior to, and after, freezing. Through deep sequencing of RNA libraries we have gained a snapshot of which genes are highly abundant when P. sp. DAW1 is undergoing an intracellular freezing event. The onset of freezing correlated with a high production of genes involved in cuticle formation and subsequently, after 24 h in a frozen state, protease production. In addition to the mapping of RNA sequencing, we have focused on a select set of genes arising both from the expression profiles, as well as implicated from other cold tolerance studies, to undertake qPCR. Among the most abundantly represented transcripts in the RNA mapping is the zinc-metalloenzyme, neprilysin, which also shows a particularly strong upregulated signal through qPCR once the nematodes have frozen.
Collapse
Affiliation(s)
| | - Anna Seybold
- Department of Biochemistry, and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Craig Marshall
- Department of Biochemistry, and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - David Wharton
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
212
|
Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease. Adv Biol Regul 2017; 64:33-38. [PMID: 28082052 DOI: 10.1016/j.jbior.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 01/18/2023]
Abstract
Amyloid-β peptide (Aβ) and tau are major components of senile plaques and neurofibrillary tangles, respectively, deposited in the brains of Alzheimer disease (AD) patients. Aβ is derived from amyloid-β precursor protein that is sequentially cleaved by two aspartate proteases, β- and γ-secretases. Secreted Aβ is then catabolized by several proteases. Several lines of evidence suggest that accumulation of Aβ by increased production or decreased degradation induces the tau-mediated neuronal toxicity and symptomatic manifestations of AD. Thus, the dynamics of cerebral Aβ, called as "Aβ economy", would be the mechanistic basis of AD pathogenesis. Partial loss of γ-secretase activity leads to the increased generation of toxic Aβ isoforms, indicating that activation of γ-secretase would provide a beneficial effect for AD. After extensive discovery and development efforts, BACE1, which is a β-secretase enzyme, has emerged as a prime drug target for lowering brain Aβ levels. Recent studies revealed the decreased clearance of Aβ in sporadic AD patients, suggesting the importance of the catabolic mechanism in the pathogenesis of AD. I will discuss with these proteolytic mechanisms involved in the regulation of Aβ economy, and development of effective treatment and diagnostics for AD.
Collapse
|
213
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
214
|
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge? J Alzheimers Dis 2017; 60:S169-S193. [PMID: 28800335 PMCID: PMC6152920 DOI: 10.3233/jad-170473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College of Cornell University, NY, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
215
|
Sonawane KD, Dhanavade MJ. Molecular Docking Technique to Understand Enzyme-Ligand Interactions. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular docking has advanced to such an extent that one can rapidly and accurately identify pharmaceutically useful lead compounds. It is being used routinely to understand molecular interactions between enzyme and ligand molecules. Several computational approaches are combined with experimental work to investigate molecular mechanisms in detail at the atomic level. Molecular docking method is also useful to investigate proper orientation and interactions between receptor and ligand. In this chapter we have discussed protein-protein approach to understand interactions between enzyme and amyloid beta (Aß) peptide. The Aß peptide is a causative agent of Alzheimer's disease. The Aß peptides can be cleaved specifically by several enzymes. Their interactions with Aß peptide and specific enzyme can be investigated using molecular docking. Thus, the molecular information obtained from docking studies might be useful to design new therapeutic approaches in treatment of Alzheimer's as well as several other diseases.
Collapse
|
216
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
217
|
Preat T, Goguel V. Role of Drosophila Amyloid Precursor Protein in Memory Formation. Front Mol Neurosci 2016; 9:142. [PMID: 28008309 PMCID: PMC5143682 DOI: 10.3389/fnmol.2016.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
The amyloid precursor protein (APP) is a membrane protein engaged in complex proteolytic pathways. APP and its derivatives have been shown to play a central role in Alzheimer’s disease (AD), a progressive neurodegenerative disease characterized by memory decline. Despite a huge effort from the research community, the primary cause of AD remains unclear, making it crucial to better understand the physiological role of the APP pathway in brain plasticity and memory. Drosophila melanogaster is a model system well-suited to address this issue. Although relatively simple, the fly brain is highly organized, sustains several forms of learning and memory, and drives numerous complex behaviors. Importantly, molecules and mechanisms underlying memory processes are conserved from flies to mammals. The fly encodes a single non-essential APP homolog named APP-Like (APPL). Using in vivo inducible RNA interference strategies, it was shown that APPL knockdown in the mushroom bodies (MB)—the central integrative brain structure for olfactory memory—results in loss of memory. Several APPL derivatives, such as secreted and full-length membrane APPL, may play different roles in distinct types of memory phases. Furthermore, overexpression of Drosophila amyloid peptide exacerbates the memory deficit caused by APPL knockdown, thus potentiating memory decline. Data obtained in the fly support the hypothesis that APP acts as a transmembrane receptor, and that disruption of its normal function may contribute to cognitive impairment during early AD.
Collapse
Affiliation(s)
- Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| | - Valérie Goguel
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| |
Collapse
|
218
|
Singh S, Srivastava A, Srivastava P, Dhuriya YK, Pandey A, Kumar D, Rajpurohit CS. Advances in Stem Cell Research- A Ray of Hope in Better Diagnosis and Prognosis in Neurodegenerative Diseases. Front Mol Biosci 2016; 3:72. [PMID: 27878120 PMCID: PMC5099954 DOI: 10.3389/fmolb.2016.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration and neurodegenerative disorders have been a global health issue affecting the aging population worldwide. Recent advances in stem cell biology have changed the current face of neurodegenerative disease modeling, diagnosis, and transplantation therapeutics. Stem cells also serve the purpose of a simple in-vitro tool for screening therapeutic drugs and chemicals. We present the application of stem cells and induced pluripotent stem cells (iPSCs) in the field of neurodegeneration and address the issues of diagnosis, modeling, and therapeutic transplantation strategies for the most prevalent neurodegenerative disorders. We have discussed the progress made in the last decade and have largely focused on the various applications of stem cells in the neurodegenerative research arena.
Collapse
Affiliation(s)
- Shripriya Singh
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Akriti Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Pranay Srivastava
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Yogesh K. Dhuriya
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Ankita Pandey
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
| | - Dipak Kumar
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| | - Chetan S. Rajpurohit
- System Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology ResearchLucknow, India
- Academy of Scientific and Innovative ResearchLucknow, India
| |
Collapse
|
219
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
220
|
Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S. Cognitive deficits in single App knock-in mouse models. Neurobiol Learn Mem 2016; 135:73-82. [DOI: 10.1016/j.nlm.2016.07.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022]
|
221
|
Veenstra TD. Neuroproteomic tools for battling Alzheimer's disease. Proteomics 2016; 16:2847-2853. [DOI: 10.1002/pmic.201600211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
|
222
|
Kimura A, Hata S, Suzuki T. Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence. J Biol Chem 2016; 291:24041-24053. [PMID: 27687728 DOI: 10.1074/jbc.m116.744722] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
β-Site APP-cleaving enzyme 1 (BACE1) cleaves amyloid β-protein precursor (APP) at the bond between Met671 and Asp672 (β-site) to generate the carboxyl-terminal fragment (CTFβ/C99). BACE1 also cleaves APP at another bond between Thr681 and Gln682 (β'-site), yielding CTFβ'/C89. Cleavage of CTFβ/C99 by γ-secretase generates Aβ(1-XX), whereas cleavage of CTFβ'/C89 generates Aβ(11-XX). Thus, β'-site cleavage by BACE1 is amyloidolytic rather than amyloidogenic. β' cleavage of mouse APP is more common than the corresponding cleavage of human APP. We found that the H684R substitution within human Aβ, which replaces the histidine in the human protein with the arginine found at the corresponding position in mouse, facilitated β' cleavage irrespective of the species origin of BACE1, thereby significantly increasing the level of Aβ(11-XX) and decreasing the level of Aβ(1-XX). Thus, amino acid substitutions within the Aβ sequence influenced the selectivity of alternative β- or β'-site cleavage of APP by BACE1. In familial Alzheimer's disease (FAD), the APP gene harbors pathogenic variations such as the Swedish (K670N/M671L), Leuven (E682K), and A673V mutations, all of which decrease Aβ(11-40) generation, whereas the protective Icelandic mutation (A673T) increases generation of Aβ(11-40). Thus, A673T promotes β' cleavage of APP and protects subjects against AD. In addition, CTFβ/C99 was cleaved by excess BACE1 activity to generate CTFβ'/C89, followed by Aβ(11-40), even if APP harbored pathogenic mutations. The resultant Aβ(11-40) was more metabolically labile in vivo than Aβ(1-40). Our analysis suggests that some FAD mutations in APP are amyloidogenic and/or amyloidolytic via selection of alternative BACE1 cleavage sites.
Collapse
Affiliation(s)
- Ayano Kimura
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Saori Hata
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiharu Suzuki
- From the Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
223
|
Dhanavade MJ, Parulekar RS, Kamble SA, Sonawane KD. Molecular modeling approach to explore the role of cathepsin B from Hordeum vulgare in the degradation of Aβ peptides. MOLECULAR BIOSYSTEMS 2016; 12:162-8. [PMID: 26568474 DOI: 10.1039/c5mb00718f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathological hallmark of Alzheimer's disease is the accumulation of Aβ peptides in human brains. These Aβ peptides can be degraded by several enzymes such as hACE, hECE, hIDE and cathepsin B. Out of which cathepsin B also belongs to the papain super family and has been found in human brains, it has a role in Aβ peptide degradation through limited proteolysis. The Aβ concentrations are maintained properly by its production and clearance via receptor-mediated cellular uptake and direct enzymatic degradation. However, the reduced production of Aβ degrading enzymes as well as their Aβ degrading activity in human brains initiate the process of accumulation of Aβ peptides. So it becomes essential to investigate the molecular interactions involved in the process of Aβ degradation in detail at the atomic level. Hence, homology modeling, molecular docking and molecular dynamics simulation techniques have been used to explore the possible role of cathepsin B from Hordeum vulgare in the degradation of amyloid beta (Aβ) peptides. The homology model of cathepsin B from Hordeum vulgare shows good similarity with human cathepsin B. Molecular docking and MD simulation results revealed that the active site residues Cys32, HIS112, HIS113 are involved in the catalytic activity of cathepsin B. The sulfhydryl group of the Cys32 residue of cathepsin B from Hordeum vulgare cleaves the Aβ peptide from the carboxylic end of Glu11. Hence, this structural study might be helpful in designing alternative strategies for the treatment of AD.
Collapse
Affiliation(s)
- Maruti J Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Rishikesh S Parulekar
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Subodh A Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India and Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
224
|
Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 2016; 36:4248-58. [PMID: 27076423 DOI: 10.1523/jneurosci.4640-14.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-β (Aβ) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aβ increase, a hippocampus-restricted decrease in the protein and mRNA for the Aβ-degrading enzyme neprilysin (NEP) was found, whereas various Aβ-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aβ. SIGNIFICANCE STATEMENT Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-β (Aβ), and the Aβ-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
Collapse
|
225
|
Ries M, Loiola R, Shah UN, Gentleman SM, Solito E, Sastre M. The anti-inflammatory Annexin A1 induces the clearance and degradation of the amyloid-β peptide. J Neuroinflammation 2016; 13:234. [PMID: 27590054 PMCID: PMC5010757 DOI: 10.1186/s12974-016-0692-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background The toxicity of amyloid-β (Aβ) peptide present in the brain of Alzheimer’s disease (AD) patients is thought to be mediated via the increased secretion of pro-inflammatory mediators, which can lead to neuronal dysfunction and cell death. In addition, we have previously shown that inflammation can affect Aβ generation. More recently, we have reported that in vitro administration of the anti-inflammatory mediator Annexin A1 (ANXA1) following an inflammatory challenge suppressed microglial activation and this effect was mediated through formyl peptide receptor-like 1 (FPRL1/FPR2) signalling. The aim of this study was to determine the potential role of ANXA1 in the generation and clearance of Aβ. Methods We first compared ANXA1 protein expression in the brains of AD patients and healthy controls as well as in the 5XFAD model of AD. To determine the role of ANXA1 in the processing of amyloid precursor protein (APP) and the degradation of Aβ, N2a neuroblastoma cells were treated with human recombinant ANXA1 or transfected with ANXA1 siRNA. We also investigated the effect of ANXA1 on Aβ phagocytosis and microglial activation in BV2 cells treated with synthetic Aβ. Results Our data show that ANXA1 is increased in the brains of AD patients and animal models of AD at early stages. ANXA1 was able to reduce the levels of Aβ by increasing its enzymatic degradation by neprilysin in N2a cells and to stimulate Aβ phagocytosis by microglia. These effects were mediated through FPRL1 receptors. In addition, ANXA1 inhibited the Aβ-stimulated secretion of inflammatory mediators by microglia. Conclusions These data suggest that ANXA1 plays a pivotal role in Aβ clearance and supports the use of ANXA1 as potential pharmacological tool for AD therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0692-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Ries
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Rodrigo Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Urvi N Shah
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Steve M Gentleman
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Magdalena Sastre
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
226
|
Qin X, Wang Y, Paudel HK. Early Growth Response 1 (Egr-1) Is a Transcriptional Activator of β-Secretase 1 (BACE-1) in the Brain. J Biol Chem 2016; 291:22276-22287. [PMID: 27576688 DOI: 10.1074/jbc.m116.738849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) in the brain is regarded as central to Alzheimer's disease (AD) pathogenesis. Aβ is generated by a sequential cleavage of amyloid precursor protein (APP) by β-secretase 1 (BACE-1) followed by γ-secretase. BACE-1 cleavage of APP is the committed step in Aβ synthesis. Understanding the mechanism by which BACE-1 is activated leading to Aβ synthesis in the brain can provide better understanding of AD pathology and help to develop novel therapies. In this study, we found that the levels of Aβ and BACE-1 are significantly reduced in the brains of mice lacking transcription factor early growth response 1 (Egr-1) when compared with the WT. We demonstrate that in COS-7 cells, Egr-1 binds to the BACE-1 promoter and activates BACE-1 transcription. In rat hippocampal primary neurons, overexpression of Egr-1 induces BACE-1 expression, activates BACE-1, promotes amyloidogenic APP processing, and enhances Aβ synthesis. In mouse hippocampal primary neurons, knockdown of BACE-1 almost completely blocks Egr-1-induced amyloidogenic APP processing and Aβ synthesis. Our data indicate that Egr-1 promotes Aβ synthesis via transcriptional activation of BACE-1 and suggest that Egr-1 plays role in activation of BACE-1 and acceleration of Aβ synthesis in AD brain. Egr-1 is a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Xike Qin
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and
| | - Yunling Wang
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and
| | - Hemant K Paudel
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H4H 1R3, Canada
| |
Collapse
|
227
|
Xu J, de Winter F, Farrokhi C, Rockenstein E, Mante M, Adame A, Cook J, Jin X, Masliah E, Lee KF. Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer's disease model. Sci Rep 2016; 6:31692. [PMID: 27558862 PMCID: PMC4997345 DOI: 10.1038/srep31692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Several lines of evidence suggest that neuregulin 1 (NRG1) signaling may influence cognitive function and neuropathology in Alzheimer's disease (AD). To test this possibility, full-length type I or type III NRG1 was overexpressed via lentiviral vectors in the hippocampus of line 41 AD mouse. Both type I and type III NRG1 improves deficits in the Morris water-maze behavioral task. Neuropathology was also significantly ameliorated. Decreased expression of the neuronal marker MAP2 and synaptic markers PSD95 and synaptophysin in AD mice was significantly reversed. Levels of Aβ peptides and plaques were markedly reduced. Furthermore, we showed that soluble ectodomains of both type I and type III NRG1 significantly increased expression of Aβ-degrading enzyme neprilysin (NEP) in primary neuronal cultures. Consistent with this finding, immunoreactivity of NEP was increased in the hippocampus of AD mice. These results suggest that NRG1 provides beneficial effects in candidate neuropathologic substrates of AD and, therefore, is a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Jiqing Xu
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Fred de Winter
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Catherine Farrokhi
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael Mante
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anthony Adame
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan Cook
- Molecular Neurobiology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kuo-Fen Lee
- Clayton Foundation for Peptide Biology Laboratories, The Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
228
|
Pacheco-Quinto J, Eckman CB, Eckman EA. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex. Neurobiol Aging 2016; 48:83-92. [PMID: 27644077 DOI: 10.1016/j.neurobiolaging.2016.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/17/2023]
Abstract
Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling.
Collapse
Affiliation(s)
- Javier Pacheco-Quinto
- Atlantic Health System, Morristown, NJ, USA; Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, USA
| | - Christopher B Eckman
- Atlantic Health System, Morristown, NJ, USA; Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, USA
| | - Elizabeth A Eckman
- Atlantic Health System, Morristown, NJ, USA; Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, USA.
| |
Collapse
|
229
|
Alzheimer Disease and Its Growing Epidemic: Risk Factors, Biomarkers, and the Urgent Need for Therapeutics. Neurol Clin 2016; 34:941-953. [PMID: 27720002 DOI: 10.1016/j.ncl.2016.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer disease (AD) represents one of the greatest medical challenges of this century; the condition is becoming increasingly prevalent worldwide and no effective treatments have been developed for this terminal disease. Because the disease manifests at a late stage after a long period of clinically silent neurodegeneration, knowledge of the modifiable risk factors and the implementation of biomarkers is crucial in the primary prevention of the disease and presymptomatic detection of AD, respectively. This article discusses the growing epidemic of AD and antecedent risk factors in the disease process. Disease biomarkers are discussed, and the implications that this may have for the treatment of this currently incurable disease.
Collapse
|
230
|
Bayes-Genis A, Barallat J, Richards AM. A Test in Context: Neprilysin. J Am Coll Cardiol 2016; 68:639-653. [DOI: 10.1016/j.jacc.2016.04.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022]
|
231
|
Lin CY, Perche F, Ikegami M, Uchida S, Kataoka K, Itaka K. Messenger RNA-based therapeutics for brain diseases: An animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles. J Control Release 2016; 235:268-275. [DOI: 10.1016/j.jconrel.2016.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/15/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
232
|
Lother A, Hein L. Pharmacology of heart failure: From basic science to novel therapies. Pharmacol Ther 2016; 166:136-49. [PMID: 27456554 DOI: 10.1016/j.pharmthera.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Chronic heart failure is one of the leading causes for hospitalization in the United States and Europe, and is accompanied by high mortality. Current pharmacological therapy of chronic heart failure with reduced ejection fraction is largely based on compounds that inhibit the detrimental action of the adrenergic and the renin-angiotensin-aldosterone systems on the heart. More than one decade after spironolactone, two novel therapeutic principles have been added to the very recently released guidelines on heart failure therapy: the HCN-channel inhibitor ivabradine and the combined angiotensin and neprilysin inhibitor valsartan/sacubitril. New compounds that are in phase II or III clinical evaluation include novel non-steroidal mineralocorticoid receptor antagonists, guanylate cyclase activators or myosine activators. A variety of novel candidate targets have been identified and the availability of gene transfer has just begun to accelerate translation from basic science to clinical application. This review provides an overview of current pharmacology and pharmacotherapy in chronic heart failure at three stages: the updated clinical guidelines of the American Heart Association and the European Society of Cardiology, new drugs which are in clinical development, and finally innovative drug targets and their mechanisms in heart failure which are emerging from preclinical studies will be discussed.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
233
|
Chen PT, Chen ZT, Hou WC, Yu LC, Chen RPY. Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease. Sci Rep 2016; 6:29760. [PMID: 27407064 PMCID: PMC4942833 DOI: 10.1038/srep29760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 06/20/2016] [Indexed: 12/26/2022] Open
Abstract
Neprilysin (NEP) is the most important Aβ-degrading enzyme. Its expression level decreases with age and inversely correlated with amyloid accumulation, suggesting its correlation with the late-onset of Alzheimer's disease. Recently, many reports showed that upregulating NEP level is a promising strategy in the prevention and therapy of Alzheimer's disease. Here, we used a sensitive fluorescence-based Aβ digestion assay to screen 25 curcumin analogs for their ability to upregulate NEP activity. To our surprise, four compounds, dihydroxylated curcumin, monohydroxylated demethoxycurcumin, and mono- and di-hydroxylated bisdemethoxycurcumin, increased NEP activity, while curcumin did not. The ability of these polyhydroxycurcuminoids to upregulate NEP was further confirmed by mRNA and protein expression levels in the cell and mouse models. Finally, feeding monohydroxylated demethoxycurcumin (also named demethylcurcumin) or dihydroxylated bisdemethoxycurcumin (also named bisdemethylcurcumin) to APPswe/PS1dE9 double transgenic mice upregulated NEP levels in the brain and reduced Aβ accumulation in the hippocampus and cortex. These polyhydroxycurcuminoids offer hope in the prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Po-Ting Chen
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| | - Zih-ten Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, No. 250, Wuxing St., Taipei 110, Taiwan
| | - Lung-Chih Yu
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Rita P.-Y. Chen
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| |
Collapse
|
234
|
Oh JH, Choi S, Shin J, Park JS. Protective effect of recombinant soluble neprilysin against β-amyloid induced neurotoxicity. Biochem Biophys Res Commun 2016; 477:614-619. [PMID: 27395340 DOI: 10.1016/j.bbrc.2016.06.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
A few decades ago, researchers found emerging evidence showing that a number of sequential events lead to the pathological cascade of Alzheimer's disease (AD) which is caused by the accumulation of amyloid beta (Aβ), a physiological peptide, in the brain. Therefore, regulation of Aβ represents a crucial treatment approach for AD. Neprilysin (NEP), a membrane metallo-endopeptidase, is a rate-limiting peptidase which is known to degrade the amyloid beta peptide. This study investigated soluble NEP (sNEP) produced by recombinant mammalian cells stably transfected with a non-viral NEP expression vector to demonstrate its protective effect against Aβ peptides in neuronal cells in vitro. Stably transfected HEK 293 cells were used to purify the soluble protein. sNEP and Aβ peptide co-treated hippocampal cells had a decreased level of Aβ peptides shown by an increase in cell viability and decrease in apoptosis measured by the CCK-8 and relative caspase-3 activity ratio assays, respectively. This study shows that stably transfected mammalian cells can produce soluble NEP proteins which could be used to protect against Aβ accumulation in AD and subsequently neuronal toxicity. Additionally, approaches using protein therapy for potential targets could change the pathological cascade of Alzheimer's disease.
Collapse
Affiliation(s)
- Jae Hoon Oh
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Sunghyun Choi
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Jeehae Shin
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Jong-Sang Park
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea.
| |
Collapse
|
235
|
Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 2016; 21:861-71. [PMID: 27021818 DOI: 10.1038/mp.2016.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/15/2023]
Abstract
In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies.
Collapse
|
236
|
Sansevero G, Begenisic T, Mainardi M, Sale A. Experience-dependent reduction of soluble β-amyloid oligomers and rescue of cognitive abilities in middle-age Ts65Dn mice, a model of Down syndrome. Exp Neurol 2016; 283:49-56. [PMID: 27288239 DOI: 10.1016/j.expneurol.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022]
Abstract
Down syndrome (DS) is the most diffused genetic cause of intellectual disability and, after the age of forty, is invariantly associated with Alzheimer's disease (AD). In the last years, the prolongation of life expectancy in people with DS renders the need for intervention paradigms aimed at improving mental disability and counteracting AD pathology particularly urgent. At present, however, there are no effective therapeutic strategies for DS and concomitant AD in mid-life people. The most intensively studied mouse model of DS is the Ts65Dn line, which summarizes the main hallmarks of the DS phenotype, included severe learning and memory deficits and age-dependent AD-like pathology. Here we report for the first time that middle-age Ts65Dn mice display a marked increase in soluble Aβ oligomer levels in their hippocampus. Moreover, we found that long-term exposure to environmental enrichment (EE), a widely used paradigm that increases sensory-motor stimulation, reduces Aβ oligomers and rescues spatial memory abilities in trisomic mice. Our findings underscore the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes in DS subjects.
Collapse
Affiliation(s)
- Gabriele Sansevero
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy; NEUROFARBA, University of Florence, Florence, Italy
| | - Tatjana Begenisic
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Marco Mainardi
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alessandro Sale
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
237
|
Duzzi B, Cajado-Carvalho D, Kuniyoshi AK, Kodama RT, Gozzo FC, Fioramonte M, Tambourgi DV, Portaro FV, Rioli V. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom. Peptides 2016; 80:18-24. [PMID: 26056922 DOI: 10.1016/j.peptides.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.
Collapse
Affiliation(s)
- Bruno Duzzi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Daniela Cajado-Carvalho
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Alexandre Kazuo Kuniyoshi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Roberto Tadashi Kodama
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | - Denise Vilarinho Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Fernanda Vieira Portaro
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil.
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology/Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
238
|
Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 2016; 114:41-58. [DOI: 10.1016/j.ejmech.2016.02.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/22/2023]
|
239
|
Zhuravin IА, Nalivaeva NN, Kozlova DI, Kochkina EG, Fedorova YB, Gavrilova SI. [The activity of blood serum cholinesterases and neprilysin as potential biomarkers of mild-cognitive impairment and Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 115:110-117. [PMID: 26978503 DOI: 10.17116/jnevro2015115112110-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To analyze the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and neprilysin (NEP) in the blood serum in elderly people with different types of cognitive impairment and evaluate the effect of ceraxon on the biochemical parameters. MATERIAL AND METHODS Three groups of patients: without cognitive disorders (controls--CG), with amnestic mild cognitive impairment (а-MCI) and with Alzheimer's disease (AD were studied). RESULTS AND CONCLUSION The activity of AChE, BChE and NEP was reduced in the blood serum of patients with a-MCI and, to the greater extent, in patients with AD compared to CG and correlated with the level of cognitive dysfunction evaluated by MMSE, ADAS-cog, and other tests. For the first time, it has been shown that treatment of a-MCI patients with ceraxon (citicolin) results in an increase of the activity of blood serum AChE, BChE and NEP to the values observed in the CG. Thus, the activities of blood serum AChE, BChE and NEP reflect the level of cognitive dysfunction and can be used as prognostic biomarkers of the level of dementia progression in patients with impaired memory.
Collapse
Affiliation(s)
- I А Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg; St. Petersburg State Pediatric Medical University, St. Petersburg
| | - N N Nalivaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | - D I Kozlova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | - E G Kochkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
240
|
Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme. PLoS One 2016; 11:e0153360. [PMID: 27096746 PMCID: PMC4838334 DOI: 10.1371/journal.pone.0153360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/29/2016] [Indexed: 12/28/2022] Open
Abstract
Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7)C and qf-Aβ(12-16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.
Collapse
|
241
|
The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 2016; 130:57-77. [PMID: 26637405 PMCID: PMC5233571 DOI: 10.1042/cs20150469] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
After its discovery in the early 1980s, the natriuretic peptide (NP) system has been extensively characterized and its potential influence in the development and progression of heart failure (HF) has been investigated. HF is a syndrome characterized by the activation of different neurohormonal systems, predominantly the renin-angiotensin (Ang)-aldosterone system (RAAS) and the sympathetic nervous system (SNS), but also the NP system. Pharmacological interventions have been developed to counteract the neuroendocrine dysregulation, through the down modulation of RAAS with ACE (Ang-converting enzyme) inhibitors, ARBs (Ang receptor blockers) and mineralcorticoid antagonists and of SNS with β-blockers. In the last years, growing attention has been paid to the NP system. In the present review, we have summarized the current knowledge on the NP system, focusing on its role in HF and we provide an overview of the pharmacological attempts to modulate NP in HF: from the negative results of the study with neprilysin (NEP) inhibitors, alone or associated with an ACE inhibitor and vasopeptidase inhibitors, to the most recently and extremely encouraging results obtained with the new pharmacological class of Ang receptor and NEP inhibitor, currently defined ARNI (Ang receptor NEP inhibitor). Indeed, this new class of drugs to manage HF, supported by the recent results and a vast clinical development programme, may prompt a conceptual shift in the treatment of HF, moving from the inhibition of RAAS and SNS to a more integrated target to rebalance neurohormonal dysregulation in HF.
Collapse
|
242
|
Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, Tanaka M, Ishihara S, Tanabe H, Nozuma S, Okamoto Y, Matsuura E, Ohkubo R, Inamizu S, Shiraishi W, Yamasaki R, Ohyagi Y, Kira JI, Oya Y, Yabe H, Nishikawa N, Tobisawa S, Matsuda N, Masuda M, Kugimoto C, Fukushima K, Yano S, Yoshimura J, Doi K, Nakagawa M, Morishita S, Tsuji S, Takashima H. Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol 2016; 79:659-72. [PMID: 26991897 PMCID: PMC5069600 DOI: 10.1002/ana.24612] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/16/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
Objective The objective of this study was to identify new causes of Charcot–Marie–Tooth (CMT) disease in patients with autosomal‐recessive (AR) CMT. Methods To efficiently identify novel causative genes for AR‐CMT, we analyzed 303 unrelated Japanese patients with CMT using whole‐exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. Results We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta‐amyloid (Aβ)‐degrading enzymes. All patients had a similar phenotype consistent with late‐onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss‐of‐function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aβ in Pittsburgh compound‐B positron emission tomography imaging. Interpretation Our results indicate that loss‐of‐function MME mutations are the most frequent cause of adult‐onset AR‐CMT2 in Japan, and we propose that this new disease should be termed AR‐CMT2T. A loss‐of‐function MME mutation did not cause early‐onset Alzheimer's disease. Identifying the MME mutation responsible for AR‐CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT. Ann Neurol 2016;79:659–672
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuichi Ohkubo
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Saeko Inamizu
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasumasa Ohyagi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hayato Yabe
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Noriko Nishikawa
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Masuda
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Chiharu Kugimoto
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Fukushima
- Department of Home-Care Promotion, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Yano
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
243
|
Hubin E, Cioffi F, Rozenski J, van Nuland NAJ, Broersen K. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states. Biochim Biophys Acta Gen Subj 2016; 1860:1281-90. [PMID: 26968463 DOI: 10.1016/j.bbagen.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Federica Cioffi
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Nico A J van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Kerensa Broersen
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands.
| |
Collapse
|
244
|
Lyons B, Friedrich M, Raftery M, Truscott R. Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes. Anal Chem 2016; 88:2675-84. [DOI: 10.1021/acs.analchem.5b03891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Brian Lyons
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
- Save
Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie
Street, Sydney, New South
Wales 2001, Australia
| | - Michael Friedrich
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
| | - Mark Raftery
- Biological
Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Roger Truscott
- Illawarra
Health and Medical Research Institute, University of Wollongong, Northfields
Avenue, Wollongong, New South
Wales 2522, Australia
| |
Collapse
|
245
|
Yamamoto N, Fujii Y, Kasahara R, Tanida M, Ohora K, Ono Y, Suzuki K, Sobue K. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia 2016; 64:952-62. [PMID: 26875818 DOI: 10.1002/glia.22974] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
One of the major neuropathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ) in the brain. Aβ accumulation seems to arise from an imbalance between Aβ production and clearance. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the important Aβ-degrading enzymes in the brain, and deficits in their expression may promote Aβ deposition in patients with sporadic late-onset AD. Statins, which are used clinically for reducing cholesterol levels, can exert beneficial effects on AD. Therefore, we examined whether various statins are associated with Aβ degradation by inducing NEP and IDE expression, and then evaluating the relation between activation of intracellular signaling transduction, inhibition of cholesterol production, and morphological changes to astrocytes. Treating cultured rat astrocytes with simvastatin and atorvastatin significantly decreased the expression of NEP but not IDE in a concentration- and time-dependent manner. The decrease in NEP expression was a result of activation of extracellular signal-regulated kinase (ERK) but not the reduction of cholesterol synthesis pathway. This NEP reduction was achieved by the release to the extracellular space of cultured astrocytes. Furthermore, the cultured medium prepared from simvastatin- and atorvastatin-treated astrocytes significantly induced the degradation of exogenous Aβ. These results suggest that simvastatin and atorvastatin induce the increase of Aβ degradation of NEP on the extracellular of astrocytes by inducing ERK-mediated pathway activity and that these reagents regulate the differential mechanisms between the secretion of NEP, the induction of cholesterol reduction, and the morphological changes in the cultured astrocytes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, 920-1181, Japan.,Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoko Fujii
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Rika Kasahara
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Kentaro Ohora
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoko Ono
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, 467-8622, Japan
| |
Collapse
|
246
|
Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer's Disease-Related Genes in Differentiated Human SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:153684. [PMID: 26858770 PMCID: PMC4700861 DOI: 10.1155/2015/153684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
Collapse
|
247
|
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 2015; 14:759-80. [PMID: 26338154 PMCID: PMC4628595 DOI: 10.1038/nrd4593] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure-activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra E. Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
248
|
Son SM, Kang S, Choi H, Mook-Jung I. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener 2015; 10:56. [PMID: 26520569 PMCID: PMC4628355 DOI: 10.1186/s13024-015-0054-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022] Open
Abstract
Background Insulin degrading enzyme (IDE) is a major protease of amyloid beta peptide (Aβ), a prominent toxic protein in Alzheimer’s disease (AD) pathogenesis. Previous studies suggested that statins promote IDE secretion; however, the underlying mechanism is unknown, as IDE has no signal sequence. Results In this study, we found that simvastatin (0.2 μM for 12 h) induced the degradation of extracellular Aβ40, which depended on IDE secretion from primary astrocytes. In addition, simvastatin increased IDE secretion from astrocytes in a time- and dose-dependent manner. Moreover, simvastatin-mediated IDE secretion was mediated by an autophagy-based unconventional secretory pathway, and autophagic flux regulated simvastatin-mediated IDE secretion. Finally, simvastatin activated autophagy via the LKB1-AMPK-mTOR signaling pathway in astrocytes. Conclusions These results demonstrate a novel pathway for statin-mediated IDE secretion from astrocytes. Modulation of this pathway could provide a potential therapeutic target for treatment of Aβ pathology by enhancing extracellular clearance of Aβ. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0054-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Min Son
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | - Seokjo Kang
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Heesun Choi
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry & Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
249
|
Kerkelä R, Ulvila J, Magga J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J Am Heart Assoc 2015; 4:e002423. [PMID: 26508744 PMCID: PMC4845118 DOI: 10.1161/jaha.115.002423] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Risto Kerkelä
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.) Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland (R.K.)
| | - Johanna Ulvila
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| | - Johanna Magga
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Finland (R.K., J.U., J.M.)
| |
Collapse
|
250
|
Liu M, Guo H, Li C, Wang D, Wu J, Wang C, Xu J, Qin RA. Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer's disease. Altern Ther Health Med 2015; 15:382. [PMID: 26497584 PMCID: PMC4619010 DOI: 10.1186/s12906-015-0906-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Senile dementia mainly includes Alzheimer' s disease (AD) and vascular dementia (VD). AD is a progressive and irreversible neurodegenerative disorder that is accompanied with a great deal of social burden. The aim of this study was to investigate the effect of Compound Danshen (CDS) on learning and memory of alzheimer's disease (AD) rat model, as well as to explore the possible connection between CDS and the associated molecules of amyloid beta (Aβ). METHODS Rats were injected with Aβ25-35 peptide intracerebroventricularly and CDS were subsequently administered once daily for 23 days. Rats' behavior was monitored using Morris water maze and passive avoidance. Real time PCR and Western blotting were used in determining amyloid precursor protein (APP), β-site APP cleaved enzyme-1(BACE1), Presenilin-1 (PS1), Insulin-degrading enzyme (IDE) and neprilysin (NEP) in hippocampus. RESULTS The AD model group presented with spatial learning and memory impairments. CDS and donepezil administration significantly ameliorated the Aβ25-35 peptide-induced memory impairment in both Morris water maze (P < 0.05) and passive avoidance task (P < 0.01) compared to the AD model group. Real time PCR results suggested that CDS significantly decreased APP mRNA, PS1 mRNA and increased IDE and NEP mRNA levels. Western blotting analyses showed that CDS decreased the protein expression of APP and PS1 and increased IDE expression. CONCLUSION CDS improved spatial learning and memory by down-regulating APP, PS1 levels and up-regulating IDE. In future, CDS may have significant therapeutic potential in the treatment of AD patients.
Collapse
|