201
|
Bamford CV, Nobbs AH, Barbour ME, Lamont RJ, Jenkinson HF. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii. MICROBIOLOGY-SGM 2014; 161:18-29. [PMID: 25332379 DOI: 10.1099/mic.0.083378-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The opportunistic pathogen Candida albicans colonizes the oral cavity and gastrointestinal tract. Adherence to host cells, extracellular matrix and salivary glycoproteins that coat oral surfaces, including prostheses, is an important prerequisite for colonization. In addition, interactions of C. albicans with commensal oral streptococci are suggested to promote retention and persistence of fungal cells in mixed-species communities. The hyphal filament specific cell wall protein Als3, a member of the Als protein family, is a major determinant in C. albicans adherence. Here, we utilized site-specific in-frame deletions within Als3 expressed on the surface of heterologous Saccharomyces cerevisiae to determine regions involved in interactions of Als3 with Streptococcus gordonii. N-terminal region amino acid residue deletions Δ166-225, Δ218-285, Δ270-305 and Δ277-286 were each effective in inhibiting binding of Strep. gordonii to Als3. In addition, these deletions differentially affected biofilm formation, hydrophobicity, and adherence to silicone and human tissue proteins. Deletion of the central repeat domain (Δ434-830) did not significantly affect interaction of Als3 with Strep. gordonii SspB protein, but affected other adherence properties and biofilm formation. Deletion of the amyloid-forming region (Δ325-331) did not affect interaction of Als3 with Strep. gordonii SspB adhesin, suggesting this interaction was amyloid-independent. These findings highlighted the essential function of the N-terminal domain of Als3 in mediating the interaction of C. albicans with S. gordonii, and suggested that amyloid formation is not essential for the inter-kingdom interaction.
Collapse
Affiliation(s)
- Caroline V Bamford
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Michele E Barbour
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Richard J Lamont
- School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
202
|
Albert M, Williamson D, Muscedere J, Lauzier F, Rotstein C, Kanji S, Jiang X, Hall M, Heyland D. Candida in the respiratory tract secretions of critically ill patients and the impact of antifungal treatment: a randomized placebo controlled pilot trial (CANTREAT study). Intensive Care Med 2014; 40:1313-22. [PMID: 24981955 DOI: 10.1007/s00134-014-3352-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/22/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Candida spp. are frequently recovered from endotracheal secretions in critically ill patients suspected of having ventilator-associated pneumonia. Observational studies reported an association with worse clinical outcomes but the effect of antifungal therapy in these patients remains unclear. We designed this pilot study to assess the feasibility of a larger trial and to evaluate inflammatory profiles and clinical outcomes in these patients. METHODS We conducted a double-blind, placebo-controlled, multicenter pilot randomized trial of antifungal therapy in critically ill patients with a clinical suspicion of ventilator-associated pneumonia with positive airway secretion specimens for Candida spp. We also included an observational group without Candida spp. in their airway secretions. We measured recruitment rate, inflammatory and innate immune function profiles over time, and clinical outcomes. RESULTS We recruited 60 patients into the randomized trial and 29 patients into the observational study. Markers of inflammation and all clinical outcomes were comparable between placebo and antifungal treatment group at baseline and over time. At baseline, plasma TNF-α levels were higher in patients with VAP and Candida compared to the observational group (mean ± SD) (21.8 ± 23.1 versus 12.4 ± 9.3 pg/ml, p = 0.02) and these patients had lower innate immune function as evidenced by reduced whole blood ex vivo LPS-induced TNF-α production capacity (854.8 ± 855.2 versus 1,559.4 ± 1,290.6 pg/ml, p = 0.01). CONCLUSIONS This study does not provide evidence to support a larger trial examining the efficacy of empiric antifungal treatment in patients with a clinical suspicion of ventilator-associated pneumonia and Candida in the endotracheal secretions. The presence of Candida in the lung may be associated with persistent inflammation and immunosuppression.
Collapse
Affiliation(s)
- Martin Albert
- Département de Médecine, Centre de recherche de l'Hôpital du Sacré-Coeur de Montréal, Université de Montréal, 5400 Gouin Ouest, Montreal, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Jarosz DF, Lancaster AK, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 2014; 158:1072-1082. [PMID: 25171408 PMCID: PMC4424049 DOI: 10.1016/j.cell.2014.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
204
|
McLean RJC. Normal bacterial flora may inhibit Candida albicans biofilm formation by Autoinducer-2. Front Cell Infect Microbiol 2014; 4:117. [PMID: 25221750 PMCID: PMC4147847 DOI: 10.3389/fcimb.2014.00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/11/2014] [Indexed: 01/28/2023] Open
|
205
|
Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, Dijksterhuis J, Brakhage AA, Kuipers OP, de Vries RP, Kovács ÁT. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol 2014; 17:2099-113. [PMID: 25040940 DOI: 10.1111/1462-2920.12564] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.
Collapse
Affiliation(s)
- Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Microbiology, Utrecht University, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Marielle H van den Esker
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Aleksandrina Patyshakuliyeva
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Derek J Mattern
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Felix Blei
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Axel A Brakhage
- Molecular and Applied Microbiology Department, Leibniz Institute for Natural Product Research and Infection Biology - HKI, Jena, Germany.,Department of Microbiology and Molecular Biology, Friedrich Schiller University of Jena, Jena, Germany
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands.,Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentations, Netherlands Genomics Initiative/Netherlands Organization for Scientific Research, Delf, The Netherlands
| | - Ákos T Kovács
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
206
|
Stanley CE, Stöckli M, van Swaay D, Sabotič J, Kallio PT, Künzler M, deMello AJ, Aebi M. Probing bacterial–fungal interactions at the single cell level. Integr Biol (Camb) 2014; 6:935-45. [DOI: 10.1039/c4ib00154k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
207
|
Jackson AA, Daniels EF, Hammond JH, Willger SD, Hogan DA. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting. MICROBIOLOGY-SGM 2014; 160:2215-2225. [PMID: 25073853 DOI: 10.1099/mic.0.081158-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.
Collapse
Affiliation(s)
- Angelyca A Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Emily F Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Sven D Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| |
Collapse
|
208
|
McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol 2014; 17:16-28. [DOI: 10.1111/1462-2920.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Luke McGuigan
- Department of Science; Centre of Microbial Host Interactions (CMHI); ITT-Dublin; Dublin Ireland
| | - Máire Callaghan
- Department of Science; Centre of Microbial Host Interactions (CMHI); ITT-Dublin; Dublin Ireland
| |
Collapse
|
209
|
Siavoshi F, Saniee P. Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori. World J Gastroenterol 2014; 20:5263-5273. [PMID: 24833856 PMCID: PMC4017041 DOI: 10.3748/wjg.v20.i18.5263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/09/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) are resistant to hostile gastric environments and antibiotic therapy, reflecting the possibility that they are protected by an ecological niche, such as inside the vacuoles of human epithelial and immune cells. Candida yeast may also provide such an alternative niche, as fluorescently labeled H. pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric, oral, vaginal and foodborne Candida yeasts. In addition, H. pylori-specific genes and proteins were detected in samples extracted from these yeasts. The H. pylori present within these yeasts produce peroxiredoxin and thiol peroxidase, providing the ability to detoxify oxygen metabolites formed in immune cells. Furthermore, these bacteria produce urease and VacA, two virulence determinants of H. pylori that influence phago-lysosome fusion and bacterial survival in macrophages. Microscopic observations of H. pylori cells in new generations of yeasts along with amplification of H. pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H. pylori as part of their vacuolar content. Accordingly, it is proposed that yeast vacuoles serve as a sophisticated niche that protects H. pylori against the environmental stresses and provides essential nutrients, including ergosterol, for its growth and multiplication. This intracellular establishment inside the yeast vacuole likely occurred long ago, leading to the adaptation of H. pylori to persist in phagocytic cells. The presence of these bacteria within yeasts, including foodborne yeasts, along with the vertical transmission of yeasts from mother to neonate, provide explanations for the persistence and propagation of H. pylori in the human population. This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H. pylori to thrive in host cell vacuoles.
Collapse
|
210
|
Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME JOURNAL 2014; 8:1974-88. [PMID: 24739628 DOI: 10.1038/ismej.2014.53] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 12/15/2022]
Abstract
Inter-kingdom and interspecies interactions are ubiquitous in nature and are important for the survival of species and ecological balance. The investigation of microbe-microbe interactions is essential for understanding the in vivo activities of commensal and pathogenic microorganisms. Candida albicans, a polymorphic fungus, and Pseudomonas aeruginosa, a Gram-negative bacterium, are two opportunistic pathogens that interact in various polymicrobial infections in humans. To determine how P. aeruginosa affects the physiology of C. albicans and vice versa, we compared the proteomes of each species in mixed biofilms versus single-species biofilms. In addition, extracellular proteins were analyzed. We observed that, in mixed biofilms, both species showed differential expression of virulence proteins, multidrug resistance-associated proteins, proteases and cell defense, stress and iron-regulated proteins. Furthermore, in mixed biofilms, both species displayed an increase in mutability compared with monospecific biofilms. This characteristic was correlated with the downregulation of enzymes conferring protection against DNA oxidation. In mixed biofilms, P. aeruginosa regulates its production of various molecules involved in quorum sensing and induces the production of virulence factors (pyoverdine, rhamnolipids and pyocyanin), which are major contributors to the ability of this bacterium to cause disease. Overall, our results indicate that interspecies competition between these opportunistic pathogens enhances the production of virulence factors and increases mutability and thus can alter the course of host-pathogen interactions in polymicrobial infections.
Collapse
Affiliation(s)
| | | | - Magdalena Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
211
|
Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 2014; 39:751-66. [PMID: 24612332 DOI: 10.1111/apt.12665] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of the fungal microbiota in digestive diseases is poorly defined, but is becoming better understood due to advances in metagenomics. AIM To review the gastrointestinal fungal microbiota and its relationship with digestive diseases. METHODS Search of the literature using PubMed and MEDLINE databases. Subject headings including 'fungal-bacterial interactions', 'mycotoxins', 'immunity to fungi', 'fungal infection', 'fungal microbiota', 'mycobiome' and 'digestive diseases' were used. RESULTS The fungal microbiota is an integral part of the gastrointestinal microecosystem with up to 10(6) microorganisms per gram of faeces. Next-generation sequencing of the fungal 18S rRNA gene has allowed better characterisation of the gastrointestinal mycobiome. Numerous interactions between fungi and bacteria and the complex immune response to gastrointestinal commensal or pathogenic fungi all impact on the pathophysiology of inflammatory bowel disease and other gastrointestinal inflammatory entities such as peptic ulcers. Mycotoxins generated as fungal metabolites contribute to disturbances of gastrointestinal barrier and immune functions and are associated with chronic intestinal inflammatory conditions as well as hepatocellular and oesophagogastric cancer. Systemic and gastrointestinal disease can also lead to secondary fungal infections. Fungal genomic databases and methodologies need to be further developed and will allow a much better understanding of the diversity and function of the mycobiome in gastrointestinal inflammation, tumourigenesis, liver cirrhosis and transplantation, and its alteration as a consequence of antibiotic therapy and chemotherapy. CONCLUSIONS The fungal microbiota and its metabolites impact gastrointestinal function and contribute to the pathogenesis of digestive diseases. Further metagenomic analyses of the gastrointestinal mycobiome in health and disease is needed.
Collapse
Affiliation(s)
- Z K Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Chinese PLA Medical Academy, Beijing, China
| | | | | | | | | |
Collapse
|
212
|
Xu L, Wang F, Shen Y, Hou H, Liu W, Liu C, Jian C, Wang Y, Sun M, Sun Z. Pseudomonas aeruginosa inhibits the growth of pathogenic fungi: In vitro and in vivo studies. Exp Ther Med 2014; 7:1516-1520. [PMID: 24926335 PMCID: PMC4043586 DOI: 10.3892/etm.2014.1631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effect of Pseudomonas aeruginosa (PA) on pathogenic fungi, including Candida albicans (CA), Candida tropicalis (CT), Candida glabrata (CG), Candida parapsilosis (CP) and Candida krusei (CK), in vitro and in vivo. In total, 24 PA strains were collected from clinical specimens and identified by Gram staining, oxidase production and the API 20NE system. Cross-streak, disk diffusion and co-culture methods were used to observe the inhibitory effect of PA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze differences in the bacterial proteins of PA. A blood infection model in mice was used to evaluate the effect of PA on fungi in vivo. The in vitro and in vivo results demonstrated that a number of PA isolates exhibited a marked inhibitory effect on pathogenic fungi, including CA, CT, CP, CG and CK, while other PA strains exhibited no effect. Therefore, PA exhibits an inhibitory effect on pathogenic fungi and this activity may be important in the treatment of patients. It was hypothesized that PA secretes various types of proteins to suppress the growth of fungal filaments, which subsequently inhibits pathogenic fungi.
Collapse
Affiliation(s)
- Lingqing Xu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yin Shen
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongyan Hou
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cailin Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cui Jian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mingyue Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
213
|
Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 2014; 10:e1003996. [PMID: 24626467 PMCID: PMC3953492 DOI: 10.1371/journal.ppat.1003996] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Oral microbiota contribute to health and disease, and their disruption may influence the course of oral diseases. Here, we used pyrosequencing to characterize the oral bacteriome and mycobiome of 12 HIV-infected patients and matched 12 uninfected controls. The number of bacterial and fungal genera in individuals ranged between 8-14 and 1-9, among uninfected and HIV-infected participants, respectively. The core oral bacteriome (COB) comprised 14 genera, of which 13 were common between the two groups. In contrast, the core oral mycobiome (COM) differed between HIV-infected and uninfected individuals, with Candida being the predominant fungus in both groups. Among Candida species, C. albicans was the most common (58% in uninfected and 83% in HIV-infected participants). Furthermore, 15 and 12 bacteria-fungi pairs were correlated significantly within uninfected and HIV-infected groups, respectively. Increase in Candida colonization was associated with a concomitant decrease in the abundance of Pichia, suggesting antagonism. We found that Pichia spent medium (PSM) inhibited growth of Candida, Aspergillus and Fusarium. Moreover, Pichia cells and PSM inhibited Candida biofilms (P = .002 and .02, respectively, compared to untreated controls). The mechanism by which Pichia inhibited Candida involved nutrient limitation, and modulation of growth and virulence factors. Finally, in an experimental murine model of oral candidiasis, we demonstrated that mice treated with PSM exhibited significantly lower infection score (P = .011) and fungal burden (P = .04) compared to untreated mice. Moreover, tongues of PSM-treated mice had few hyphae and intact epithelium, while vehicle- and nystatin-treated mice exhibited extensive fungal invasion of tissue with epithelial disruption. These results showed that PSM was efficacious against oral candidiasis in vitro and in vivo. The inhibitory activity of PSM was associated with secretory protein/s. Our findings provide the first evidence of interaction among members of the oral mycobiota, and identifies a potential novel antifungal.
Collapse
Affiliation(s)
- Pranab K. Mukherjee
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
- Center for Medical Microbiology, Department of Dermatology, School of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Jyotsna Chandra
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
| | - Mauricio Retuerto
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Robert E. Brown
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Richard Jurevic
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Robert A. Salata
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Patrick M. Gillevet
- Microbiome Analysis Center, Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| | - Mahmoud A. Ghannoum
- OHARA/ACTG Mycology Unit at Case Western Reserve University, Department of Dermatology, Cleveland, Ohio, United States of America
- Center for Medical Microbiology, Department of Dermatology, School of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
214
|
Wang F, Yao J, Yu C, Chen H, Yi Z. Investigating Pseudomonas putida-Candida humicola interactions as affected by chelate Fe(III) in soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:358-363. [PMID: 24270965 DOI: 10.1007/s00128-013-1163-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/15/2013] [Indexed: 06/02/2023]
Abstract
Microcalorimetric technique was applied to assess the toxic effect of EDTA-chelated trivalent iron on Pseudomonas putida (P. putida) (bacterium), Candida humicola (C. humicola) (fungus) and their mixture in sterilized soil. Microbial growth rate constant k, total heat evolution Q T, metabolic enthalpy ∆H met, mass specific heat rate J Q/S, microbial biomass C and inhibitory ratio I were calculated. Results showed that microcalorimetric indexes decreased with the increasing Fe(III)-EDTA complex concentration. Comparing the single and mixed strains, the effect of Fe(III) on bacterium-fungus interaction was dominant at lower dose, whereas, the metal toxicity at high dose of Fe was the main factor affecting P. putida and C. humicola activity. Thus, the mixture had moderate tolerance to the iron overload, and exhibit synergistic interaction in exponential growth phase (0-0.3 mg g(-1)). The results of glucose degradation showed that glucose was consumed totally at the end of exponential phase of microbial growth.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil and Environmental Engineering, and National International Cooperation Base On Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
215
|
Abstract
PURPOSE Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. MATERIALS AND METHODS The BF of Candida was investigated when it was co-cultured with C. albicans (C. albicans 53, a yeast with a low BF ability, and C. albicans 163, a yeast with high BF ability) and bacteria. BF was assessed with XTT reduction assay. A scanning electron microscope was used to determine the structure of the biofilm, and real-time reverse transcriptase polymerase chain reaction was used to amplify and quantify hyphae-associated genes. RESULTS Co-culturing with two different types of bacteria increased the BF value. Co-culturing with C. albicans 53 and 163 also increased the BF value compared to the value that was obtained when the C. albicans was cultured individually. However, co-culturing with bacteria decreased the BF value of C. albicans, and the BF of C. albicans 163 was markedly inhibited. The expression of adherence and morphology transition related genes were significantly inhibited by co-culturing with live bacteria. CONCLUSION Bacteria have a negative effect on the formation of biofilm by C. albicans. This mechanism is the result of the suppression of genes associated with the hyphae transition of C. albicans, and bacteria particles physically affected the biofilm architecture and biofilm formation.
Collapse
Affiliation(s)
- Su Jung Park
- Department of Microbiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 220-701, Korea.
| | | | | | | | | |
Collapse
|
216
|
The authors reply. Crit Care Med 2014; 42:e257. [DOI: 10.1097/ccm.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
217
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
In the last half-decade or so, interest in the bacterial part of the human microbiome and its role in maintaining health have received considerable attention. Since 2009, over 300 publications have appeared describing the oral bacterial microbiome. Strikingly, fungi in the oral cavity have been studied exclusively in relation to pathologies. However, little to nothing is known about a role of fungi in establishing and maintaining a healthy oral ecology. In a healthy ecology, balance is maintained by the combined positive and negative influences between and among its members. Interactions between fungi and bacteria occur primarily at a physical and chemical level. Physical interactions are represented by (co-)adhesion and repulsion (exclusion), while chemical interactions include metabolic dependencies, quorum-sensing, and the production of antimicrobial agents. Information obtained from oral model systems and also from studies on the role of fungi in gastro-intestinal ecology indicates that fungi influence bacterial behavior through these different interactions. This review describes our current knowledge of the interactions between fungi and bacteria and aims to illustrate that further research is required to establish the role of fungi in maintaining a healthy oral cavity.
Collapse
Affiliation(s)
- B.P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - S. Kidwai
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - J.M. ten Cate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
219
|
Demuyser L, Jabra-Rizk MA, Van Dijck P. Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathog Dis 2014; 70:219-30. [PMID: 24376219 DOI: 10.1111/2049-632x.12123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022] Open
Abstract
A considerable number of infectious diseases involve multiple microbial species coexisting and interacting in a host. Only recently however the impact of these polymicrobial diseases has been appreciated and investigated. Often, the causative microbial species are embedded in an extracellular matrix forming biofilms, a form of existence that offers protection against chemotherapeutic agents and host immune defenses. Therefore, recent efforts have focused on developing novel therapeutic strategies targeting biofilm-associated polymicrobial infections, a task that has proved to be challenging. One promising approach to inhibit the development of such complex infections is to impede the interactions between the microbial species via inhibition of adhesion. To that end, studies have focused on identifying specific cell wall adhesins and receptors involved in the interactions between the various bacterial species and the most pathogenic human fungal species Candida albicans. This review highlights the important findings from these studies and describes the available tools and techniques that have provided insights into the role of secreted molecules orchestrating microbial interactions in biofilms. Specifically, we focus on the interactions that take place in oral biofilms and the implications of these interactions on oral health and therapeutic strategies.
Collapse
Affiliation(s)
- Liesbeth Demuyser
- VIB Department of Molecular Microbiology, KU Leuven, Leuven, Belgium; Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
220
|
Cerqueira GM, Kostoulias X, Khoo C, Aibinu I, Qu Y, Traven A, Peleg AY. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J Infect Dis 2014; 210:46-55. [PMID: 24431277 DOI: 10.1093/infdis/jiu024] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the most notorious hospital-acquired pathogens, and novel treatment strategies are desperately required. Two-component regulatory systems represent potential therapeutic targets as they mediate microorganism adaptation to changing environments, often control virulence, and are specific to bacteria. Here we describe the first global virulence regulator in A. baumannii. METHODS AND RESULTS Using transcriptional profiling and functional assays of a deletion mutant in the A. baumannii sensor kinase gene, A1S_0574 (termed as gacS), we show that this sensor kinase regulates key virulence characteristics, including pili synthesis, biofilms, and motility, resulting in virulence attenuation in a mammalian septicemia model. Notably, we also identified that GacS regulates an operon novel to A. baumannii (paa operon), which is responsible for the metabolism of aromatic compounds. Deletion of paaE (A1S_1340) confirmed the role of this operon in A. baumannii virulence. Finally, we identified the cognate response regulator (A1S_0236) for GacS and confirmed their interaction. A1S_0236 was shown to regulate 75% of the GacS transcriptome and the same virulence phenotypes. Overexpression of A1S_0236 restored virulence in the gacS mutant. CONCLUSIONS Our study characterizes a global virulence regulator, which may provide an alternate therapeutic target, in one of the most troublesome hospital-acquired pathogens.
Collapse
|
221
|
Willger SD, Grim SL, Dolben EL, Shipunova A, Hampton TH, Morrison HG, Filkins LM, O‘Toole GA, Moulton LA, Ashare A, Sogin ML, Hogan DA. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. MICROBIOME 2014; 2:40. [PMID: 25408892 PMCID: PMC4236224 DOI: 10.1186/2049-2618-2-40] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/25/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Human-associated microbial communities include fungi, but we understand little about which fungal species are present, their relative and absolute abundances, and how antimicrobial therapy impacts fungal communities. The disease cystic fibrosis (CF) often involves chronic airway colonization by bacteria and fungi, and these infections cause irreversible lung damage. Fungi are detected more frequently in CF sputum samples upon initiation of antimicrobial therapy, and several studies have implicated the detection of fungi in sputum with worse outcomes. Thus, a more complete understanding of fungi in CF is required. RESULTS We characterized the fungi and bacteria in expectorated sputa from six CF subjects. Samples were collected upon admission for systemic antibacterial therapy and upon the completion of treatment and analyzed using a pyrosequencing-based analysis of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA sequences. A mixture of Candida species and Malassezia dominated the mycobiome in all samples (74%-99% of fungal reads). There was not a striking trend correlating fungal and bacterial richness, and richness showed a decline after antibiotic therapy particularly for the bacteria. The fungal communities within a sputum sample resembled other samples from that subject despite the aggressive antibacterial therapy. Quantitative PCR analysis of fungal 18S rDNA sequences to assess fungal burden showed variation in fungal density in sputum before and after antibacterial therapy but no consistent directional trend. Analysis of Candida ITS1 sequences amplified from sputum or pure culture-derived genomic DNA from individual Candida species found little (<0.5%) or no variation in ITS1 sequences within or between strains, thereby validating this locus for the purpose of Candida species identification. We also report the enhancement of the publically available Visualization and Analysis of Microbial Population Structures (VAMPS) tool for the analysis of fungal communities in clinical samples. CONCLUSIONS Fungi are present in CF respiratory sputum. In CF, the use of intravenous antibiotic therapy often does not profoundly impact bacterial community structure, and we observed a similar stability in fungal species composition. Further studies are required to predict the effects of antibacterials on fungal burden in CF and fungal community stability in non-CF populations.
Collapse
Affiliation(s)
- Sven D Willger
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sharon L Grim
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Emily L Dolben
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Anna Shipunova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Lisa A Moulton
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, NH, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, NH, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | |
Collapse
|
222
|
Beaussart A, Herman P, El-Kirat-Chatel S, Lipke PN, Kucharíková S, Van Dijck P, Dufrêne YF. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction. NANOSCALE 2013; 5:10894-900. [PMID: 24057018 PMCID: PMC3825105 DOI: 10.1039/c3nr03272h] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | |
Collapse
|
223
|
Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol 2013; 13:257. [PMID: 24228850 PMCID: PMC3833181 DOI: 10.1186/1471-2180-13-257] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. RESULTS Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. CONCLUSIONS Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.
Collapse
Affiliation(s)
- Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital & Baylor College of Medicine, 6621, Fannin, MC: WT 6-104, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
224
|
Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 2013; 30:1159-68. [PMID: 24214679 DOI: 10.1007/s11274-013-1552-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium and is one of the most commercially and biotechnologically valuable microorganisms. Strains of P. aeruginosa secrete a variety of redox-active phenazine compounds, the most well studied being pyocyanin. Pyocyanin is responsible for the blue-green colour characteristic of Pseudomonas spp. It is considered both as a virulence factor and a quorum sensing signalling molecule for P. aeruginosa. Pyocyanin is an electrochemically active metabolite, involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognised as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. This review summarises recent advances of pyocyanin production from P. aeruginosa with special attention to antagonistic property and bio-control activity. The review also covers the challenges and new insights into pyocyanin from P. aeruginosa.
Collapse
Affiliation(s)
- Sheeba Jayaseelan
- Dr. Sir A. L. Mudaliar Vocational Arts and Science College, Vengal, 601103, Tamil Nadu, India
| | | | | |
Collapse
|
225
|
Affiliation(s)
- Emily M. Mallick
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
226
|
Pires DP, Silva S, Almeida C, Henriques M, Anderson EM, Lam JS, Sillankorva S, Azeredo J. Evaluation of the ability of C. albicans to form biofilm in the presence of phage-resistant phenotypes of P. aeruginosa. BIOFOULING 2013; 29:1169-1180. [PMID: 24063626 DOI: 10.1080/08927014.2013.831842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phenotypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In conclusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of C. albicans.
Collapse
Affiliation(s)
- Diana P Pires
- a Centre of Biological Engineering, IBB - Institute of Biotechnology and Bioengineering, University of Minho , Braga , Portugal
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Karaman M, Firinci F, Karaman O, Uzuner N, Hakki Bahar I. Long-term oropharyngeal colonization by C. albicans in children with cystic fibrosis. Yeast 2013; 30:429-36. [PMID: 23939579 DOI: 10.1002/yea.2977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/08/2013] [Accepted: 08/07/2013] [Indexed: 11/07/2022] Open
Abstract
This longitudinal prospective study aimed to determine the prevalence of oropharyngeal colonization by C. albicans in children with cystic fibrosis (CF), and observe the continuity of candidal colonization and the changes in production of virulence factors, susceptibility to antifungal agents and RAPD patterns of the isolates. Thirty-seven children with CF were followed-up for oropharyngeal C. albicans colonization for 18 months. The colonization rate was detected in 54%. All isolates were susceptible to amphotericin B, but those isolated from one patient were resistant to fluconazole. Biofilm production, secretory acid proteinase, phospholipase and esterase activity rates were 30%, 60%, 75% and 80%, respectively. RAPD analysis with the primers OPE-03 and OPE-18 was performed for genotyping. RAPD patterns of the strains isolated from the same patient were related to each other, whereas they were not related with other strains isolated from different patients. Two C. albicans strains isolated from the same patient were found to be unrelated to one another. As a result, long-lasting colonization of the oropharyngeal mucosa of children with CF by endogenous C. albicans isolates having the same RAPD pattern was demonstrated. Colonization prevalance and development of resistance to antifungal agents and the increased production of virulence factors were not correlated.
Collapse
Affiliation(s)
- Meral Karaman
- Multidisciplinary Laboratories, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | | | | | | | | |
Collapse
|
228
|
Fox SJ, Shelton BT, Kruppa MD. Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria. PLoS One 2013; 8:e71939. [PMID: 23951271 PMCID: PMC3737206 DOI: 10.1371/journal.pone.0071939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
In the human body, fungi and bacteria share many niches where the close contact of these organisms maintains a balance among the microbial population. However, when this microbial balance is disrupted, as with antibiotic treatment, other bacteria or fungi can grow uninhibited. C. albicans is the most common opportunistic fungal pathogen affecting humans and can uniquely control its morphogenesis between yeast, pseudohyphal, and hyphal forms. Numerous studies have shown that C. albicans interactions with bacteria can impact its ability to undergo morphogenesis; however, the genetics that govern this morphological control via these bacterial interactions are still relatively unknown. To aid in the understanding of the cross-kingdom interactions of C. albicans with bacteria and the impact on morphology we utilized a haploinsufficiency based C. albicans mutant screen to test for the ability of C. albicans to produce hyphae in the presence of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). Of the 18,144 mutant strains tested, 295 mutants produced hyphae in the presence of all three bacterial species. The 295 mutants identified 132 points of insertion, which included identified/predicted genes, major repeat sequences, and a number of non-coding/unannotated transcripts. One gene, CDR4, displayed increased expression when co-cultured with S. aureus, but not E. coli or P. aeruginosa. Our data demonstrates the ability to use a large scale library screen to identify genes involved in Candida-bacterial interactions and provides the foundation for comprehending the genetic pathways relating to bacterial control of C. albicans morphogenesis.
Collapse
Affiliation(s)
- Sean J. Fox
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Bryce T. Shelton
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
229
|
Giraud S, Favennec L, Bougnoux ME, Bouchara JP. Rasamsonia argillacea species complex: taxonomy, pathogenesis and clinical relevance. Future Microbiol 2013; 8:967-78. [DOI: 10.2217/fmb.13.63] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since 2010, colonizations/infections by Rasamsonia argillacea species complex, previously known as Geosmithia argillacea, have been regularly reported in literature. We reviewed all available cases focusing on pathogenesis and clinical relevance. The number of cases may be underestimated, as these fungi are frequently misidentified as Penicillium or Paecilomyces species. Major underlying conditions that predispose for infections by the R. argillacea species complex include cystic fibrosis (CF) and chronic granulomatous disease (CGD). While the pathogenic role of the colonization of CF lungs is still under debate, these molds are the causative agent of pneumonia and/or invasive infections in CGD patients. Given their thermotolerance and their resistance to various antifungals, especially the azole drugs, a special attention should be paid to the chronic colonization of the airways by these fungi in CF and CGD patients.
Collapse
Affiliation(s)
- Sandrine Giraud
- LUNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte–Pathogène, UPRES-EA 3142, 49933 Angers cédex 9, France.
| | - Loïc Favennec
- Université de Rouen, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Rouen, France
| | - Marie-Elisabeth Bougnoux
- Université Paris Descartes, AP-HP, Hôpital Necker-Enfants malades, Service de Microbiologie, Paris, France
| | - Jean-Philippe Bouchara
- LUNAM Université, Université d’Angers, Groupe d’Etude des Interactions Hôte–Pathogène, UPRES-EA 3142, 49933 Angers cédex 9, France
- Laboratoire de Parasitologie–Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
230
|
Microbiological Evaluation of Bacterial and Mycotic Seal in Implant Systems With Different Implant-Abutment Interfaces and Closing Torque Values. IMPLANT DENT 2013; 22:344-50. [DOI: 10.1097/id.0b013e3182943062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
231
|
Bandara HMHN, Cheung BPK, Watt RM, Jin LJ, Samaranayake LP. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. ACTA ACUST UNITED AC 2013; 4:186-99. [PMID: 23766273 DOI: 10.1111/jicd.12048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/23/2013] [Indexed: 12/14/2022]
Abstract
AIM To investigate the time- and concentration-dependent effects of Escherichia coli biofilm supernatant on Candida biofilm development, and to assess the effect of E. coli supernatant on Candida albicans hypha-specific genes (HSGs) expression. METHODS The effect of E. coli biofilm supernatant on six Candida spp. was assessed by tetrazolium salt (XTT) reduction assay, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). The effect of biofilm supernatant on the expression of C. albicans HSGs (ECE1, HWP1, HYR1, RBT1, RBT4, ALS3, and ALS8) and transcription factors (CPH1, CPH2, EFG1, TEC1, RAS1, TUP1, NRG1 and RFG1) was evaluated with real-time polymerase chain reaction (PCR). RESULTS Escherichia coli biofilm secretory products significantly inhibited C. albicans, C. glabrata, C. tropicalis and C. krusei biofilms at 24 h and all Candida spp. at 48 h (P < 0.05), and SEM and CLSM confirmed these data. HSGs RBT1 and RBT4 were mostly up-regulated and ECE1, HWP1 and HYR1 were mostly down-regulated. ALS3 was totally suppressed. All HSGs were down-regulated at 48 h (P < 0.05). NRG1, RFG1 and EFG1, CPH1 and TEC1, and TUP1 and CPH2 showed similar expression trends and all were down-regulated at 48 h (P < 0.05). CONCLUSIONS Escherichia coli secretory elements significantly impair Candida biofilm development possibly by modulating HSGs and its transcriptional regulation.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Bioscience, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong
| | | | | | | | | |
Collapse
|
232
|
Bousbia S, Raoult D, La Scola B. Pneumonia pathogen detection and microbial interactions in polymicrobial episodes. Future Microbiol 2013; 8:633-60. [DOI: 10.2217/fmb.13.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent reports show that microbial communities associated with respiratory infections, such as pneumonia and cystic fibrosis, are more complex than expected. Most of these communities are polymicrobial and might comprise microorganisms originating from several diverse biological and ecological sources. Moreover, unexpected bacteria in the etiology of these respiratory infections have been increasingly identified. These findings were established with the use of efficient microbiological diagnostic tools, particularly molecular tools based on common gene amplification, followed by cloning and sequencing approaches, which facilitated the identification of the polymicrobial flora. Similarly, recent investigations reported that microbial interactions might exist between species in polymicrobial communities, including typical pneumonia pathogens, such as Pseudomonas aeruginosa and Candida albicans. Here, we review recent tools for microbial diagnosis, in particular, of intensive care unit pneumonia and the reported interactions between microbial species that have primarily been identified in the etiology of these infections.
Collapse
Affiliation(s)
- Sabri Bousbia
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique – Hôpitaux de Marseille, Marseille, France
- Aix-Marseille Université, URMITE, UM 63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine, Marseille, France.
| |
Collapse
|
233
|
Ovchinnikova ES, Krom BP, Harapanahalli AK, Busscher HJ, van der Mei HC. Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4823-4829. [PMID: 23509956 DOI: 10.1021/la400554g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Candida albicans and Pseudomonas aeruginosa are able to form pathogenic polymicrobial communities. P. aeruginosa colonizes and kills hyphae but is unable to attach to yeast. It is unknown why the interaction of P. aeruginosa is different with yeast than with hyphae. Here we aim to evaluate the role of P. aeruginosa chitin-binding protein (CbpD) in its physical interaction with C. albicans hyphae or yeast, based on surface thermodynamic and atomic force microscopic analyses. A P. aeruginosa mutant lacking CbpD was unable to express strong adhesion forces with hyphae (-2.9 nN) as compared with the parent strain P. aeruginosa PAO1 (-4.8 nN) and showed less adhesion to hyphae. Also blocking of CbpD using N-acetyl-glucosamine yielded a lower adhesion force (-4.3 nN) with hyphae. Strong adhesion forces were restored after complementing the expression of CbpD in P. aeruginosa PAO1 ΔcbpD yielding an adhesion force of -5.1 nN. These observations were confirmed with microscopic evaluation of adhesion tests. Regardless of the absence or presence of CbpD on the bacterial cell surfaces, or their blocking, P. aeruginosa experienced favorable thermodynamic conditions for adhesion with hyphae, which were absent with yeast. In addition, adhesion forces with yeast were less than 0.5 nN in all cases. Concluding, CbpD in P. aeruginosa is responsible for strong physical interactions with C. albicans hyphae. The development of this interaction requires time due to the fact that CbpDs have to invade the outermost mannoprotein layer on the hyphal cell surfaces. In order to do this, thermodynamic conditions at the outermost cell surfaces have to be favorable.
Collapse
Affiliation(s)
- Ekaterina S Ovchinnikova
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
234
|
Watrous JD, Phelan VV, Hsu CC, Moree WJ, Duggan BM, Alexandrov T, Dorrestein PC. Microbial metabolic exchange in 3D. THE ISME JOURNAL 2013; 7:770-80. [PMID: 23283018 PMCID: PMC3603389 DOI: 10.1038/ismej.2012.155] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/12/2012] [Accepted: 10/26/2012] [Indexed: 01/14/2023]
Abstract
Mono- and multispecies microbial populations alter the chemistry of their surrounding environments during colony development thereby influencing multicellular behavior and interspecies interactions of neighboring microbes. Here we present a methodology that enables the creation of three-dimensional (3D) models of a microbial chemotype that can be correlated to the colony phenotype through multimodal imaging analysis. These models are generated by performing matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) imaging mass spectrometry (IMS) on serial cross-sections of microbial colonies grown on 8 mm deep agar, registering data sets of each serial section in MATLAB to create a model, and then superimposing the model with a photograph of the colonies themselves. As proof-of-principle, 3D models were used to visualize metabolic exchange during microbial interactions between Bacillus subtilis and Streptomyces coelicolor, as well as, Candida albicans and Pseudomonas aeruginosa. The resulting models were able to capture the depth profile of secreted metabolites within the agar medium and revealed properties of certain mass signals that were previously not observable using two-dimensional MALDI-TOF IMS. Most significantly, the 3D models were capable of mapping previously unobserved chemical distributions within the array of sub-surface hyphae of C. albicans and how this chemistry is altered by the presence of P. aeruginosa, an opportunistic pathogen known to alter virulence of C. albicans. It was determined that the presence of C. albicans triggered increased rhamnolipid production by P. aeruginosa, which in turn was capable of inhibiting embedded hyphal growth produced beneath the C. albicans colony at ambient temperature.
Collapse
Affiliation(s)
- Jeramie D Watrous
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Wilna J Moree
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brendan M Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theodore Alexandrov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Industrial Mathematics, University of Bremen, Bremen, Germany
| | - Pieter C Dorrestein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, USA
| |
Collapse
|
235
|
Candida albicans and Pseudomonas aeruginosa interactions: More than an opportunistic criminal association? Med Mal Infect 2013; 43:146-51. [DOI: 10.1016/j.medmal.2013.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 01/21/2013] [Accepted: 02/11/2013] [Indexed: 10/26/2022]
|
236
|
Islam MS, Richards JP, Ojha AK. Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev Anti Infect Ther 2013; 10:1055-66. [PMID: 23106280 DOI: 10.1586/eri.12.88] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multidrug chemotherapy for 6-9-months is one of the primary treatments in effective control of tuberculosis, although the mechanisms underlying the persistence of its etiological agent, Mycobacterium tuberculosis, against antibiotics remain unclear. Ever-mounting evidence indicates that the survival of many environmental and pathogenic microbial species against antibiotics is influenced by their ability to grow as surface-associated multicellular communities called biofilms. In recent years, several mycobacterial species, including M. tuberculosis, have been found to form drug-tolerant biofilms in vitro through genetically controlled mechanisms. In this review, the authors discuss the relevance of the in vitro mycobacterial biofilms in understanding the antibiotic recalcitrance of tuberculosis infections.
Collapse
Affiliation(s)
- Mohammad S Islam
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
237
|
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.
Collapse
|
238
|
Abstract
Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections.
Collapse
|
239
|
The GTPase activity of FlhF is dispensable for flagellar localization, but not motility, in Pseudomonas aeruginosa. J Bacteriol 2012; 195:1051-60. [PMID: 23264582 DOI: 10.1128/jb.02013-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa uses two surface organelles, flagella and pili, for motility and adhesion in biotic and abiotic environments. Polar flagellar placement and number are influenced by FlhF, which is a signal recognition particle (SRP)-type GTPase. The FlhF proteins of Bacillus subtilis and Campylobacter jejuni were recently shown to have GTPase activity. However, the phenotypes associated with flhF deletion and/or mutation differ between these organisms and P. aeruginosa, making it difficult to generalize a role for FlhF in pseudomonads. In this study, we confirmed that FlhF of P. aeruginosa binds and hydrolyzes GTP. We mutated FlhF residues that we predicted would alter nucleotide binding and hydrolysis and determined the effects of these mutations on FlhF enzymatic activity, protein dimerization, and bacterial motility. Both hydrolytically active and inactive FlhF point mutants restored polar flagellar assembly, as seen for wild-type FlhF. However, differential effects on flagellar function were observed in single-cell assays of swimming motility and flagellar rotation. These findings indicate that FlhF function is influenced by its nucleotide binding and hydrolytic activities and demonstrate that FlhF affects P. aeruginosa flagellar function as well as assembly.
Collapse
|
240
|
Johnson DC. Chronic candidal bronchitis: a consecutive series. Open Respir Med J 2012; 6:145-9. [PMID: 23264835 PMCID: PMC3527895 DOI: 10.2174/1874306401206010145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022] Open
Abstract
Background: Persistent Candida from fungal cultures of respiratory secretions are often ignored and not treated due to assumptions concerning benign colonization. Objectives: To determine the clinical course of patients with chronic sputum and fungi on culture, including response to antifungal treatment. Methods: All patients seen at a single long term acute care hospital (LTAC) between May 2009 and September 2010 with at least two months of daily sputum and fungus on more than one sputum culture were identified. LTAC, inpatient, and outpatient records through June 2011 were reviewed to assess clinical features and response to therapy or to cessation of therapy. Results: Eleven patients were identified, having sputum duration of 5 months to 28 years, and respiratory cultures growing Candida species. Fungi included C albicans (8 patients), C glabrata (2), C krusei (2), C tropicalis (1), C parapsilosis (1), Aspergillus fumigatus (1), Aspergillus terreus (1), and Scedosporium (1), the latter 3 in conjunction with Candida species. All had abnormal chest CT scans, often with bronchiectasis and sometimes atelectasis or consolidation, and ten of 11 patients were on chronic steroids (inhaled and/or systemic). Antifungal therapy, mostly oral voriconazole and nebulized amphotericin, led to improved respiratory symptoms and sputum within 3 weeks in 10 of 10 treated patients. Lack of antifungal therapy or early cessation of treatment was associated with progressive or recurrent symptoms and death of one patient. Conclusions: This case series suggests that chronic candidal bronchitis is associated with significant morbidity and responds well to treatment. Such patients may benefit from extended antifungal therapy. Guidelines for the treatment of Candida in pulmonary secretions should be reevaluated.
Collapse
|
241
|
Purschke FG, Hiller E, Trick I, Rupp S. Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans. Mol Cell Proteomics 2012; 11:1652-69. [PMID: 22942357 PMCID: PMC3518115 DOI: 10.1074/mcp.m112.017673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 08/17/2012] [Indexed: 02/04/2023] Open
Abstract
The majority of microorganisms persist in nature as surface-attached communities often surrounded by an extracellular matrix, called biofilms. Most natural biofilms are not formed by a single species but by multiple species. Microorganisms not only cooperate as in some multispecies biofilms but also compete for available nutrients. The Gram-negative bacterium Pseudomonas aeruginosa and the polymorphic fungus Candida albicans are two opportunistic pathogens that are often found coexisting in a human host. Several models of mixed biofilms have been reported for these organisms showing antagonistic behavior. To investigate the interaction of P. aeruginosa and C. albicans in more detail, we analyzed the secretome of single and mixed biofilms of both organisms using MALDI-TOF MS/MS at several time points. Overall 247 individual proteins were identified, 170 originated from P. aeruginosa and 77 from C. albicans. Only 39 of the 131 in mixed biofilms identified proteins were assigned to the fungus whereby the remaining 92 proteins belonged to P. aeruginosa. In single-species biofilms, both organisms showed a higher diversity of proteins with 73 being assigned to C. albicans and 154 to P. aeruginosa. Most interestingly, P. aeruginosa in the presence of C. albicans secreted 16 proteins in significantly higher amounts or exclusively among other virulence factors such as exotoxin A and iron acquisition systems. In addition, the high affinity iron-binding siderophore pyoverdine was identified in mixed biofilms but not in bacterial biofilms, indicating that P. aeruginosa increases its capability to sequester iron in competition with C. albicans. In contrast, C. albicans metabolism was significantly reduced, including a reduction in detectable iron acquisition proteins. The results obtained in this study show that microorganisms not only compete with the host for essential nutrients but also strongly with the present microflora in order to gain a competitive advantage.
Collapse
Affiliation(s)
- Frauke Gina Purschke
- From the ‡Institute for Interfacial Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ekkehard Hiller
- §Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Iris Trick
- §Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Steffen Rupp
- §Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| |
Collapse
|
242
|
Ovchinnikova ES, Krom BP, Busscher HJ, van der Mei HC. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae. BMC Microbiol 2012. [PMID: 23181353 PMCID: PMC3538519 DOI: 10.1186/1471-2180-12-281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing environmental conditions. Both morphological forms of C. albicans are found in infected tissue, often in combination with Staphylococcus aureus. Although bacterial adhesion to the different morphologies of C. albicans has been amply studied, possible differences in staphylococcal adhesion forces along the length of C. albicans hyphae have never been determined. In this study, we aim to verify the hypothesis that the forces mediating S. aureus NCTC8325-4GFP adhesion to hyphae vary along the length of C. albicans SC5314 and MB1 hyphae, as compared with adhesion to yeast cells. Results C. albicans hyphae were virtually divided into a “tip” (the growing and therefore youngest part of the hyphae), a “middle” and a so-called “head” region (the yeast cell from which germination started). Adhesion forces between S. aureus NCTC8325-4GFP and the different regions of C. albicans SC5314 hyphae were measured using atomic force microscopy. Strong adhesion forces were found at the tip and middle regions of C. albicans hyphae (−4.1 nN and −4.0 nN, respectively), while much smaller adhesion forces were measured at the head region (−0.3 nN). Adhesion forces exerted by the head region were comparable with the forces arising from budding yeast cells (−0.5 nN). A similar regional dependence of the staphylococcal adhesion forces was found for the clinical isolate involved in this study, C. albicans MB1. Conclusions This is the first time that differences in adhesion forces between S. aureus and different regions of C. albicans hyphae have been demonstrated on a quantitative basis, supporting the view that the head region is different from the remainder of the hyphae. Notably it can be concluded that the properties of the hyphal head region are similar to those of budding yeast cells. These novel findings provide new insights in the intricate interkingdom interaction between C. albicans and S. aureus.
Collapse
Affiliation(s)
- Ekaterina S Ovchinnikova
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | | | | | | |
Collapse
|
243
|
Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 2012; 81:189-200. [PMID: 23115035 DOI: 10.1128/iai.00914-12] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Gram-positive bacterium Enterococcus faecalis and the fungus Candida albicans are both found as commensals in many of the same niches of the human body, such as the oral cavity and gastrointestinal (GI) tract. However, both are opportunistic pathogens and have frequently been found to be coconstituents of polymicrobial infections. Despite these features in common, there has been little investigation into whether these microbes affect one another in a biologically significant manner. Using a Caenorhabditis elegans model of polymicrobial infection, we discovered that E. faecalis and C. albicans negatively impact each other's virulence. Much of the negative effect of E. faecalis on C. albicans was due to the inhibition of C. albicans hyphal morphogenesis, a developmental program crucial to C. albicans pathogenicity. We discovered that the inhibition was partially dependent on the Fsr quorum-sensing system, a major regulator of virulence in E. faecalis. Specifically, two proteases regulated by Fsr, GelE and SerE, were partially required. Further characterization of the inhibitory signal revealed that it is secreted into the supernatant, is heat resistant, and is between 3 and 10 kDa. The substance was also shown to inhibit C. albicans filamentation in the context of an in vitro biofilm. Finally, a screen of an E. faecalis transposon mutant library identified other genes required for suppression of C. albicans hyphal formation. Overall, we demonstrate a biologically relevant interaction between two clinically important microbes that could affect treatment strategies as well as impact our understanding of interkingdom signaling and sensing in the human-associated microbiome.
Collapse
|
244
|
Risk factors of Candida colonization in the oropharynx of patients admitted to an intensive care unit. J Mycol Med 2012; 22:301-7. [PMID: 23518163 DOI: 10.1016/j.mycmed.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Candida colonization is an important precursor for candidiasis. However, there is little information about its risk factors in critically ill patients. We aimed to identify risk factors for oropharyngeal Candida colonization in critically ill patients. PATIENTS, MATERIALS AND METHODS This is a prospective observational study of 110 patients admitted to a medical intensive care unit (MICU). Oropharyngeal swabs were obtained on day one and day four. Characteristics of patients colonized with Candida species at admission or not colonized were compared. In addition, patients becoming colonized during their ICU stay were compared to patients who did not. RESULTS Independent risk factors for a positive Candida sample at the time of admission were: a history of proton pump inhibitor (PPI) use before admission (OR: 5.24, 95% CI: 1.36-20.19), the presence of diabetes mellitus (OR: 2.84, 95%CI: 1.02-7.92) and a lower BMI (OR: 0.9, 95% CI: 0.84-0.97). Chronic kidney disease was associated with a decreased frequency of Candida colonization (OR: 0.26, 95% CI: 0.01-0.46). No independent risk factors could be identified for patients who gained Candida during their ICU hospitalization. Patients with Candida colonization frequently had abnormal oral bacterial flora. CONCLUSIONS Diabetes mellitus, PPI use and a lower BMI are risk factors for Candida colonization in critically ill patients being admitted to the MICU.
Collapse
|
245
|
Abstract
N-acetylglucosamine (GlcNAc) has long been known to play important roles in cell surface structure. Recent studies are now revealing new functions for GlcNAc in cell signaling. Exposure to GlcNAc regulates virulence functions in the human fungal pathogen Candida albicans and in pathogenic bacteria. These signaling pathways sense exogenous GlcNAc and are distinct from the O-GlcNAc signaling pathways in mammalian cells in which increased levels of intracellular GlcNAc synthesis leads to post-translational modification of proteins by attachment of O-GlcNAc. The novel roles of GlcNAc in cell signaling will be the subject of this mini-review.
Collapse
|
246
|
Ibarra-Trujillo C, Villar-Vidal M, Gaitán-Cepeda LA, Pozos-Guillen A, Mendoza-de Elias R, Sánchez-Vargas LO. [Formation and quantification assay of Candida albicans and Staphylococcus aureus mixed biofilm]. Rev Iberoam Micol 2012; 29:214-222. [PMID: 22391328 DOI: 10.1016/j.riam.2012.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/25/2012] [Accepted: 02/20/2012] [Indexed: 02/08/2023] Open
Abstract
This study quantifies the production of single and mixed biofilms of Candida albicans and Staphylococcus aureus to determine if such mixed biofilms have synergistic effects. Assays were performed using polystyrene microtitre plates of 96 wells, metabolic activity was measured by the enzymatic reduction of a tetrazolium salt (XTT) and colorimetric changes were measured at 490 nm. Confocal scanning laser microscopy was used to visualise the biofilms of each microorganism and its growth kinetics. The highest levels of biofilm formation were observed in mixed biofilms, followed by those of Candida albicans only, with the lowest levels of biofilm formation being detected for Staphylococcus aureus; all together these results suggest a synergistic relationship between the tested microorganisms.
Collapse
Affiliation(s)
- Consuelo Ibarra-Trujillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | | | | | | | | | | |
Collapse
|
247
|
Carter MQ, Xue K, Brandl MT, Liu F, Wu L, Louie JW, Mandrell RE, Zhou J. Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation. PLoS One 2012; 7:e44186. [PMID: 22957052 PMCID: PMC3434221 DOI: 10.1371/journal.pone.0044186] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The increase in foodborne outbreaks worldwide attributed to fresh fruit and vegetables suggests that produce may serve as an ecological niche for enteric pathogens. Here we examined the interaction of E. coli O157:H7 (EcO157) with spinach leaf indigenous microorganisms during co-colonization and establishment of a mixed biofilm on a stainless steel surface. Stainless steel surface was selected to mimic the surface of produce-processing equipment, where retention of foodborne pathogens such as EcO157 could serve as a potential source for transmission. We observed a positive effect of spinach-associated microbes on the initial attachment of EcO157, but an antagonistic effect on the EcO157 population at the later stage of biofilm formation. Metagenomic analyses of the biofilm community with the GeoChip revealed an extremely diverse community (gene richness, 23409; Shannon-Weiner index H, 9.55). Presence of EcO157 in the mixed biofilm resulted in a significant decrease in the community α-diversity (t test, P<0.05), indicating a putative competition between the pathogen and indigenous spinach microbes. The decrease in the β-diversity of the EcO157-inoculated biofilm at 48 h (ANOVA, P<0.05) suggested a convergent shift in functional composition in response to EcO157 invasion. The success of EcO157 in the mixed biofilm is likely associated with its metabolic potential in utilizing spinach nutrients: the generation time of EcO157 in spinach lysates at 28°C is ∼ 38 min, which is comparable to that in rich broth. The significant decrease in the abundance of many genes involved in carbon, nitrogen, and phosphorus cycling in the EcO157-inoculated biofilms (t test, P<0.05) further support our conclusion that competition for essential macronutrients is likely the primary interaction between the EcO157 and indigenous spinach-biofilm species.
Collapse
Affiliation(s)
- Michelle Q Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, Busscher HJ, van der Mei HC, Jabra-Rizk MA, Shirtliff ME. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. MICROBIOLOGY-SGM 2012; 158:2975-2986. [PMID: 22918893 DOI: 10.1099/mic.0.062109-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive hyphae. This differed from tongues infected with St. aureus alone or in conjunction with the als3 mutant strain of C. albicans, where bacterial presence was limited to the outer layers of the oral tissue. Collectively, the findings generated from this study identified a key role for C. albicans Als3p in mediating this clinically relevant fungal-bacterial interaction.
Collapse
Affiliation(s)
- Brian M Peters
- Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA.,Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | - Ekaterina S Ovchinnikova
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.,Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lisa Marie Schlecht
- Department of Restorative Dentistry and Periodontology, Ludwig Maximilian University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Han Zhou
- West China College of Stomatology, Sichuan University, PR China.,Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Lois L Hoyer
- Department of Pathobiology, University of Illinois, 2001 S. Lincoln Ave., Urbana, IL 61802, USA
| | - Henk J Busscher
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mary Ann Jabra-Rizk
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, USA.,Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland - Baltimore, 650 W Baltimore Street, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, School of Medicine, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | - Mark E Shirtliff
- Department of Microbiology and Immunology, School of Medicine, University of Maryland - Baltimore, 660 W. Redwood Street, Baltimore, MD 21201, USA.,Department of Microbial Pathogenesis, University of Maryland - Baltimore, Dental School, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
249
|
A comparison of computational methods for identifying virulence factors. PLoS One 2012; 7:e42517. [PMID: 22880014 PMCID: PMC3411817 DOI: 10.1371/journal.pone.0042517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Bacterial pathogens continue to threaten public health worldwide today. Identification of bacterial virulence factors can help to find novel drug/vaccine targets against pathogenicity. It can also help to reveal the mechanisms of the related diseases at the molecular level. With the explosive growth in protein sequences generated in the postgenomic age, it is highly desired to develop computational methods for rapidly and effectively identifying virulence factors according to their sequence information alone. In this study, based on the protein-protein interaction networks from the STRING database, a novel network-based method was proposed for identifying the virulence factors in the proteomes of UPEC 536, UPEC CFT073, P. aeruginosa PAO1, L. pneumophila Philadelphia 1, C. jejuni NCTC 11168 and M. tuberculosis H37Rv. Evaluated on the same benchmark datasets derived from the aforementioned species, the identification accuracies achieved by the network-based method were around 0.9, significantly higher than those by the sequence-based methods such as BLAST, feature selection and VirulentPred. Further analysis showed that the functional associations such as the gene neighborhood and co-occurrence were the primary associations between these virulence factors in the STRING database. The high success rates indicate that the network-based method is quite promising. The novel approach holds high potential for identifying virulence factors in many other various organisms as well because it can be easily extended to identify the virulence factors in many other bacterial species, as long as the relevant significant statistical data are available for them.
Collapse
|
250
|
Hingston CD, Hingston EJ, Wise MP. Impact of nystatin on Candida and the oral microbiome. Crit Care 2012; 16:440; author reply 440. [PMID: 22827886 PMCID: PMC3580680 DOI: 10.1186/cc11360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|