201
|
C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling. PLoS One 2012; 7:e32183. [PMID: 22359667 PMCID: PMC3281126 DOI: 10.1371/journal.pone.0032183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity (PCP) pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.
Collapse
|
202
|
Ninomiya H, David R, Damm EW, Fagotto F, Niessen CM, Winklbauer R. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci 2012; 125:1877-83. [PMID: 22328523 DOI: 10.1242/jcs.095315] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.
Collapse
Affiliation(s)
- Hiromasa Ninomiya
- University of Toronto, Department of Cell and Systems Biology, Toronto, M5S 3G5 Canada
| | | | | | | | | | | |
Collapse
|
203
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
204
|
Abstract
Tissue and organ architectures are incredibly diverse, yet our knowledge of the morphogenetic behaviors that generate them is relatively limited. Recent studies have revealed unexpected mechanisms that drive axis elongation in the Drosophila egg, including an unconventional planar polarity signaling pathway, a distinctive type of morphogenetic movement termed "global tissue rotation," a molecular corset-like role of extracellular matrix, and oscillating basal cellular contractions. We review here what is known about Drosophila egg elongation, compare it to other instances of morphogenesis, and highlight several issues of general developmental relevance.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
205
|
Weiser DC, Kimelman D. Analysis of cell shape and polarity during zebrafish gastrulation. Methods Mol Biol 2012; 839:53-68. [PMID: 22218892 DOI: 10.1007/978-1-61779-510-7_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Gastrulation is a complex set of cellular rearrangements that establish the overall shape of the body plan during development. In addition to being an essential and fascinating aspect of development, the cells of the gastrulating zebrafish embryo also provide an ideal in vivo system to study the interplay of cell polarity and movement in a native 3D environment. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from initial non-polarized amoeboid cell movements to more mesenchymal and finally highly polarized and intercalative cell behaviors. Many of the cellular behavior changes of these cells are under the control of the RhoA pathway, which in turn is regulated by many signals, including non-canonical Wnts. The goal of this chapter is to provide researchers with the necessary protocols to examine changes in cell polarity and movement in the developing zebrafish embryo.
Collapse
Affiliation(s)
- Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | | |
Collapse
|
206
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
207
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
208
|
Peng Y, Axelrod JD. Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr Top Dev Biol 2012; 101:33-53. [PMID: 23140624 DOI: 10.1016/b978-0-12-394592-1.00002-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polarization of epithelial cells along an axis orthogonal to their apical-basal axis is increasingly recognized for roles in a variety of developmental events and physiological functions. While now studied in many model organisms, mechanistic understanding is rooted in intensive investigations of planar cell polarity (PCP) in Drosophila. Consensus has emerged that two molecular modules, referred to here as the global and core modules, operate upstream of effector proteins to produce morphological PCP. Proteins of the core module develop subcellular asymmetry, accumulating in two groups on opposite sides of cells, consistent with proposed functions in producing cell polarity and in communicating that polarity between neighboring cells. Less clear are the molecular and cell biological mechanisms underlying core module function in the generation and communication of subcellular asymmetry and the relationship between the global and the core modules. In this review, we discuss these two unresolved questions, highlighting important studies and potentially enlightening avenues for further investigation. It is likely that results from Drosophila will continue to inform our views of the growing list of examples of PCP in vertebrate systems.
Collapse
Affiliation(s)
- Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
209
|
Mezzacappa C, Komiya Y, Habas R. Activation and function of small GTPases Rho, Rac, and Cdc42 during gastrulation. Methods Mol Biol 2012; 839:119-31. [PMID: 22218897 DOI: 10.1007/978-1-61779-510-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrulation is comprised of a series of cell polarization and directional cell migration events that establish the physical body plan of the embryo. One of the major ligand-based pathways that has emerged to play crucial roles in the regulation of gastrulation is the non-canonical Wnt signaling pathway. This aspect of Wnt signaling is comprised of a number of signaling branches that are subsequently integrated for the regulation of changes to the actin cytoskeleton during cell polarization and cell migration during vertebrate gastrulation. The Rho family of small GTPases are activated and required for non-canonical Wnt signaling during gastrulation, and in this chapter, we describe biochemical assays for the detection of Wnt-mediated activation of Rho, Rac, and Cdc42 in both mammalian cells and Xenopus embryo explants.
Collapse
Affiliation(s)
- Courtney Mezzacappa
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
210
|
Abstract
Parietal endoderm (PE) migration is the first long-range migratory event in the mammalian embryo contributing to the parietal yolk sac. PE migration can be studied in vitro using the F9 teratocarcinoma stem cell model system. We have found that PE migration is directed and modulated via the Planar Cell Polarity (PCP) pathway through Rho/ROCK signaling. Wnt inhibition using sFRP results in a loss of orientation, visualized by Golgi apparatus localization, along with disorganized microtubules and a lack of robust focal adhesions. Small GTPases are downstream of PCP signaling and Rho/ROCK inhibition results in a loss of orientation, whereas inhibition of Rac does not affect PCP. Activation of canonical Wnt signaling combined with Wnt inhibition does not prevent loss of oriented migration. These data support a role for non-canonical Wnt/PCP signaling directing oriented migration of PE.
Collapse
|
211
|
Bischoff M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev Biol 2011; 363:179-90. [PMID: 22230614 PMCID: PMC3314956 DOI: 10.1016/j.ydbio.2011.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis.
Collapse
Affiliation(s)
- Marcus Bischoff
- University of Cambridge, Department of Zoology, Cambridge, UK.
| |
Collapse
|
212
|
Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene NDE, Copp AJ, Stanier P. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 2011; 33:440-7. [PMID: 22095531 DOI: 10.1002/humu.21662] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/03/2011] [Indexed: 12/18/2022]
Abstract
Craniorachischisis (CRN) is a severe neural tube defect (NTD) resulting from failure to initiate closure, leaving the hindbrain and spinal neural tube entirely open. Clues to the genetic basis of this condition come from several mouse models, which harbor mutations in core members of the planar cell polarity (PCP) signaling pathway. Previous studies of humans with CRN failed to identify mutations in the core PCP genes, VANGL1 and VANGL2. Here, we analyzed other key PCP genes: CELSR1, PRICKLE1, PTK7, and SCRIB, with the finding of eight potentially causative mutations in both CELSR1 and SCRIB. Functional effects of these unique or rare human variants were evaluated using known protein-protein interactions as well as subcellular protein localization. While protein interactions were not affected, variants from five of the 36 patients exhibited a profound alteration in subcellular protein localization, with diminution or abolition of trafficking to the plasma membrane. Comparable effects were seen in the crash and spin cycle mouse Celsr1 mutants, and the line-90 mouse Scrib mutant. We conclude that missense variants in CELSR1 and SCRIB may represent a cause of CRN in humans, as in mice, with defective PCP protein trafficking to the plasma membrane a likely pathogenic mechanism.
Collapse
Affiliation(s)
- Alexis Robinson
- UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Junkin M, Leung SL, Whitman S, Gregorio CC, Wong PK. Cellular self-organization by autocatalytic alignment feedback. J Cell Sci 2011; 124:4213-20. [PMID: 22193956 PMCID: PMC3258106 DOI: 10.1242/jcs.088898] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 01/11/2023] Open
Abstract
Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
| | - Siu Ling Leung
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
| | - Samantha Whitman
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85721USA
| | - Carol C. Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85721USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721USA
- Biomedical Engineering IDP and BIO5 Institute, University of Arizona, Tucson, AZ 85721USA
| |
Collapse
|
214
|
Huang L, Szymanska K, Jensen V, Janecke A, Innes A, Davis E, Frosk P, Li C, Willer J, Chodirker B, Greenberg C, McLeod D, Bernier F, Chudley A, Müller T, Shboul M, Logan C, Loucks C, Beaulieu C, Bowie R, Bell S, Adkins J, Zuniga F, Ross K, Wang J, Ban M, Becker C, Nürnberg P, Douglas S, Craft C, Akimenko MA, Hegele R, Ober C, Utermann G, Bolz H, Bulman D, Katsanis N, Blacque O, Doherty D, Parboosingh J, Leroux M, Johnson C, Boycott K. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 2011; 89:713-30. [PMID: 22152675 PMCID: PMC3234373 DOI: 10.1016/j.ajhg.2011.11.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 12/23/2022] Open
Abstract
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.
Collapse
Affiliation(s)
- Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Katarzyna Szymanska
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Victor L. Jensen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Andreas R. Janecke
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck 6020, Austria
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - A. Micheil Innes
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Erica E. Davis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jason R. Willer
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bernard N. Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Cheryl R. Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - D. Ross McLeod
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Francois P. Bernier
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Albert E. Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Thomas Müller
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Mohammad Shboul
- Institute of Medical Biology: Human Embryology, 8A Biomedical Grove, #05-40 Immunos, Singapore 138648, Singapore
| | - Clare V. Logan
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Catrina M. Loucks
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Chandree L. Beaulieu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rachel V. Bowie
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sandra M. Bell
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Jonathan Adkins
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Freddi I. Zuniga
- Mary D. Allen Laboratory in Vision Research, Doheny Eye Institute, Departments of Ophthalmology and Cell and Neurobiology, Los Angeles, CA 90033-9224, USA
| | - Kevin D. Ross
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jian Wang
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Matthew R. Ban
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stuart Douglas
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Cheryl M. Craft
- Mary D. Allen Laboratory in Vision Research, Doheny Eye Institute, Departments of Ophthalmology and Cell and Neurobiology, Los Angeles, CA 90033-9224, USA
| | | | - Robert A. Hegele
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Gerd Utermann
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Hanno J. Bolz
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Dennis E. Bulman
- Ottawa Hospital Research Institute and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dan Doherty
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Colin A. Johnson
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Kym M. Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
215
|
Goto T, Asashima M. Chemokine ligand Xenopus CXCLC (XCXCLC) regulates cell movements during early morphogenesis. Dev Growth Differ 2011; 53:971-81. [PMID: 22103472 DOI: 10.1111/j.1440-169x.2011.01304.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We cloned the gene for the CXC-type chemokine ligand, Xenopus CXCLC (XCXCLC), the transcripts of which were detected at the dorsal midline during the gastrula and neurula stages. XCXCLC overexpression resulted in the attraction of nearby mesodermal cells, and the excess of chemoattractant interfered with convergent and extension movements. The direction of the deep neural plate cells around the notoplate was also controlled by XCXCLC. Fluorescence signals for XCXCLC + enhanced green fluorescent protein derivatives accumulated around the notochord region. These results indicate that XCXCLC attracts adjacent cells to the midline region, so as to ensure accurate lateral-medial directional tissue convergence during gastrulation and neurulation.
Collapse
Affiliation(s)
- Toshiyasu Goto
- ICORP Organ Regeneration Project, Japan Science and Technology Agency (JST), Tokyo 153-8902, Japan
| | | |
Collapse
|
216
|
Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA. Zebrafish kidney development: basic science to translational research. ACTA ACUST UNITED AC 2011; 93:141-56. [PMID: 21671354 DOI: 10.1002/bdrc.20209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a significant model system for studying renal organogenesis and disease, as well as for the quest for new therapeutics, because of the structural and functional simplicity of the embryonic kidney. Inroads to the nature and disease states of kidney-related ciliopathies and acute kidney injury (AKI) have been advanced by zebrafish studies. This model organism has been instrumental in the analysis of mutant gene function for human disease with respect to ciliopathies. Additionally, in the AKI field, recent work in the zebrafish has identified a bona fide adult zebrafish renal progenitor (stem) cell that is required for neo-nephrogenesis, both during the normal lifespan and in response to renal injury. Taken together, these studies solidify the zebrafish as a successful model system for studying the broad spectrum of ciliopathies and AKI that affect millions of humans worldwide, and point to a very promising future of zebrafish drug discovery. The emphasis of this review will be on the role of the zebrafish as a model for human kidney-related ciliopathies and AKI, and how our understanding of these complex pathologies is being furthered by this tiny teleost.
Collapse
Affiliation(s)
- Lisa M Swanhart
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
217
|
Mii Y, Taira M. Secreted Wnt "inhibitors" are not just inhibitors: regulation of extracellular Wnt by secreted Frizzled-related proteins. Dev Growth Differ 2011; 53:911-23. [PMID: 21995331 DOI: 10.1111/j.1440-169x.2011.01299.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gradient formation and signaling ranges of secreted proteins are crucial problems to understand how morphogens work for positional information and patterning in animal development. Yet, extracellular behaviors of secreted signaling molecules remain unexplored compared to their downstream pathways inside the cell. Recent advances in bioimaging make it possible to directly visualize morphogen molecules, and this simple strategy has, at least partly, succeeded in uncovering molecular behaviors of morphogens, such as Wnt (wingless-type MMTV integration site family member) and BMP (bone morphogenetic protein) as well as secreted Wnt binding proteins, sFRPs (secreted Frizzled-related proteins), in embryonic tissues. Here, we review the regulation of Wnt signaling by sFRPs, focusing on extracellular regulation of Wnt ligands in comparison with other morphogens. We also discuss evolutionary aspects with comprehensive syntenic and phylogenetic information about vertebrate sfrp genes. We newly annotated several sfrp genes including sfrp2-like 1 (sfrp2l1) in frogs and fishes and crescent in mammals.
Collapse
Affiliation(s)
- Yusuke Mii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
218
|
Yamada A, Koyanagi KO, Watanabe H. In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis. Gene 2011; 491:232-6. [PMID: 21963995 DOI: 10.1016/j.gene.2011.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Brachyury, a member of the T-box transcription family, has been suggested to be essential for morphogenetic movements in various processes of animal development. However, little is known about its critical transcriptional targets. In order to identify targets of Brachyury and understand the molecular mechanisms underlying morphogenetic movements, we first searched the genome sequence of Xenopus tropicalis, the only amphibian genomic sequence available, for Brachyury-binding sequences known as T-half sites, and then screened for the ones conserved between vertebrate genomes. We found three genes that have evolutionarily conserved T-half sites in the promoter regions and examined these genes experimentally to determine whether their expressions were regulated by Brachyury, using the animal cap system of Xenopus laevis embryos. Eventually, we obtained evidence that vimentin, encoding an intermediate filament protein, was a potential target of Brachyury. This is the first report to demonstrate that Brachyury might affect the cytoskeletal structure through regulating the expression of an intermediate filament protein, vimentin.
Collapse
Affiliation(s)
- Atsuko Yamada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | | | | |
Collapse
|
219
|
Yanfeng WA, Berhane H, Mola M, Singh J, Jenny A, Mlodzik M. Functional dissection of phosphorylation of Disheveled in Drosophila. Dev Biol 2011; 360:132-42. [PMID: 21963539 DOI: 10.1016/j.ydbio.2011.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Disheveled/Dsh proteins (Dvl in mammals) are core components of both Wnt/Wg-signaling pathways: canonical β-catenin signaling and Frizzled (Fz)-planar cell polarity (PCP) signaling. Although Dsh is a key cytoplasmic component of both Wnt/Fz-pathways, regulation of its signaling specificity is not well understood. Dsh is phosphorylated, but the functional significance of its phosphorylation remains unclear. We have systematically investigated the phosphorylation of Dsh by combining mass-spectrometry analyses, biochemical studies, and in vivo genetic methods in Drosophila. Our approaches identified multiple phospho-residues of Dsh in vivo. Our data define three novel and unexpected conclusions: (1) strikingly and in contrast to common assumptions, all conserved serines/threonines are non-essential for Dsh function in either pathway; (2) phosphorylation of conserved Tyrosine473 in the DEP domain is critical for PCP-signaling - Dsh(Y473F) behaves like a PCP-specific allele; and (3) defects associated with the PCP specific dsh(1) allele, Dsh(K417M), located within a putative Protein Kinase C consensus site, are likely due to a post-translational modification requirement of Lys417, rather than phosphorylation nearby. In summary, our combined data indicate that while many Ser/Thr and Tyr residues are indeed phosphorylated in vivo, strikingly most of these phosphorylation events are not critical for Dsh function with the exception of DshY473.
Collapse
Affiliation(s)
- Wang A Yanfeng
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
220
|
Kharaishvili G, Simkova D, Makharoblidze E, Trtkova K, Kolar Z, Bouchal J. Wnt signaling in prostate development and carcinogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155:11-8. [PMID: 21475372 DOI: 10.5507/bp.2011.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The Wnt signaling pathway is crucial for cell fate decisions, stem cell renewal, regulation of cell proliferation and differentiation. Deregulated Wnt signaling is also implicated in a number of hereditary and degenerative diseases and cancer. METHODS AND RESULTS This review highlights the role of the Wnt pathway in the regulation of stem/progenitor cell renewal and prostate gland development and how this signaling is altered in prostate cancer. Recent evidence suggests that Wnt signaling regulates androgen activity in prostate cancer cells, enhances androgen receptor expression and promotes the growth of prostate cancer even after androgen ablation therapy. There is also strong evidence that Wnt signaling is enhanced in androgen-ablation resistant tumors and bone metastases. CONCLUSIONS Further study of the modulators of this pathway will be of therapeutic relevance as inhibition of Wnt signaling may have the potential to reduce the self-renewal and aggressive behaviour of prostate cancer while Wnt signaling activation might enhance stem cell activity when tissue regeneration is required.
Collapse
Affiliation(s)
- Gvantsa Kharaishvili
- Laboratory of Molecular Pathology of Institute of Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
221
|
Roles of planar cell polarity pathways in the development of neural [correction of neutral] tube defects. J Biomed Sci 2011; 18:66. [PMID: 21864354 PMCID: PMC3175158 DOI: 10.1186/1423-0127-18-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/24/2011] [Indexed: 02/08/2023] Open
Abstract
Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs.
Collapse
|
222
|
Ott LE, McDowell ZT, Turner PM, Law JM, Adler KB, Yoder JA, Jones SL. Two myristoylated alanine-rich C-kinase substrate (MARCKS) paralogs are required for normal development in zebrafish. Anat Rec (Hoboken) 2011; 294:1511-24. [PMID: 21809467 DOI: 10.1002/ar.21453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/15/2011] [Indexed: 12/20/2022]
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin binding protein substrate of protein kinase C (PKC) and critical for mouse and Xenopus development. Herein two MARCKS paralogs, marcksa and marcksb, are identified in zebrafish and the role of these genes in zebrafish development is evaluated. Morpholino-based targeting of either MARCKS protein resulted in increased mortality and a range of gross phenotypic abnormalities. Phenotypic abnormalities were classified as mild, moderate or severe, which is characterized by a slight curve of a full-length tail, a severe curve or twist of a full-length tail and a truncated tail, respectively. All three phenotypes displayed abnormal neural architecture. Histopathology of Marcks targeted embryos revealed abnormalities in retinal layering, gill formation and skeletal muscle morphology. These results demonstrate that Marcksa and Marcksb are required for normal zebrafish development and suggest that zebrafish are a suitable model to further study MARCKS function.
Collapse
Affiliation(s)
- Laura E Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21:120-33. [PMID: 21763613 PMCID: PMC3166557 DOI: 10.1016/j.devcel.2011.06.011] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved planar cell polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle, and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer's vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
224
|
Halacheva V, Fuchs M, Dönitz J, Reupke T, Püschel B, Viebahn C. Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 2011; 240:1905-16. [DOI: 10.1002/dvdy.22687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
225
|
De Marco P, Merello E, Cama A, Kibar Z, Capra V. Human neural tube defects: genetic causes and prevention. Biofactors 2011; 37:261-8. [PMID: 21674647 DOI: 10.1002/biof.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 01/08/2023]
Abstract
Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development.
Collapse
|
226
|
Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 2011; 80:76-82. [PMID: 20738329 PMCID: PMC3000889 DOI: 10.1111/j.1399-0004.2010.01515.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vangl2 was identified as the gene defective in the Looptail (Lp) mouse model for neural tube defects (NTDs). This gene forms part of the planar cell polarity (PCP) pathway, also called the non-canonical Frizzled/Dishevelled pathway, which mediates the morphogenetic process of convergent extension essential for proper gastrulation and neural tube formation in vertebrates. Genetic defects in PCP signaling have strongly been associated with NTDs in mouse models. To assess the role of VANGL2 in the complex etiology of NTDs in humans, we resequenced this gene in a large multi-ethnic cohort of 673 familial and sporadic NTD patients, including 453 open spina bifida and 202 closed spinal NTD cases. Six novel rare missense mutations were identified in seven patients, five of which were affected with closed spinal NTDs. This suggests that VANGL2 mutations may predispose to NTDs in approximately 2.5% of closed spinal NTDs (5 in 202), at a frequency that is significantly different from that of 0.4% (2 in 453) detected in open spina bifida patients (p = 0.027). Our findings strongly implicate VANGL2 in the genetic causation of spinal NTDs in a subset of patients and provide additional evidence for a pathogenic role of PCP signaling in these malformations.
Collapse
Affiliation(s)
- Z Kibar
- Department of Obstetrics and Gynecology, CHU Sainte Justine Research Center and University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
228
|
Miyajima H, Matsumoto T, Sakai T, Yamaguchi S, An SH, Abe M, Wakisaka S, Lee KY, Egusa H, Imazato S. Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis. Biomaterials 2011; 32:6754-63. [PMID: 21683999 DOI: 10.1016/j.biomaterials.2011.05.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/25/2011] [Indexed: 11/15/2022]
Abstract
The mechanical properties of the cellular microenvironment dramatically alter during tissue development and growth. Growing evidence suggests that physical microenvironments and mechanical stresses direct cell fate in developing tissue. However, how these physical cues affect the tissue morphogenesis remains a major unknown. We explain here that the physical properties of the cell and tissue microenvironment, biomimetically reproduced by using hydrogel, guide the tissue morphogenesis in the developmental submandibular gland (SMG). In particular, the softer gel enhances the bud expansion and cleft formation of SMG, whereas the stiffer gel attenuates them. These morphological changes in SMG tissue are led by soluble factors (FGF7/10) induction regulated by cell traction force derived from the tissue deformation. Our findings suggest that cells sense the mechanics of their surrounding environment and alter their properties for self-organization and the following tissue morphogenesis. Also, physically designed hydrogel material is a valuable tool for producing the biomimetic microenvironment to explore how physical cues affect tissue morphogenesis and to modulate tissue morphogenesis for in vitro tissue synthesis.
Collapse
Affiliation(s)
- Hiroyuki Miyajima
- Department of Biomaterials Science, Osaka University, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Row RH, Maître JL, Martin BL, Stockinger P, Heisenberg CP, Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol 2011; 354:102-10. [PMID: 21463614 PMCID: PMC3090540 DOI: 10.1016/j.ydbio.2011.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 12/18/2022]
Abstract
The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell-cell adhesion.
Collapse
Affiliation(s)
- Richard H. Row
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jean-Léon Maître
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | - Petra Stockinger
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | | | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
230
|
Kennaway R, Coen E, Green A, Bangham A. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 2011; 7:e1002071. [PMID: 21698124 PMCID: PMC3116900 DOI: 10.1371/journal.pcbi.1002071] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed biological shapes.
Collapse
Affiliation(s)
- Richard Kennaway
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | - Andrew Bangham
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
231
|
Liu W, Komiya Y, Mezzacappa C, Khadka DK, Runnels L, Habas R. MIM regulates vertebrate neural tube closure. Development 2011; 138:2035-47. [PMID: 21471152 PMCID: PMC3082306 DOI: 10.1242/dev.058800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2011] [Indexed: 01/19/2023]
Abstract
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure. MIM binds to a conserved domain within Daam1, and this interaction is positively regulated by Wnt stimulation. Spatial expression of MIM is enriched in the anterior neural plate and neural folds, and depletion of MIM specifically inhibits anterior neural fold closure without affecting convergent extension movements or mesoderm cell fate specification. Particularly, we find that MIM is required for neural fold elevation and apical constriction along with cell polarization and elongation in both the superficial and deep layers of the anterior neural plate. The function of MIM during neural tube closure requires both its membrane-remodeling domain and its actin-binding domain. Finally, we show that the effect of MIM on neural tube closure is not due to modulation of Hedgehog signaling in the Xenopus embryo. Together, our studies define a morphogenetic pathway involving Daam1 and MIM that transduces non-canonical Wnt signaling for the cytoskeletal changes and membrane dynamics required for vertebrate neural tube closure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Yuko Komiya
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Courtney Mezzacappa
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Deepak K. Khadka
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Loren Runnels
- Department of Pharmacology, UMDNJ-Robert Wood Johnson School of Medicine, Piscataway, NJ 08854, USA
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
232
|
Ptenb mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish. PLoS One 2011; 6:e18702. [PMID: 21494560 PMCID: PMC3073981 DOI: 10.1371/journal.pone.0018702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/15/2011] [Indexed: 01/12/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP2/PIP3 balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish.
Collapse
|
233
|
Savory JGA, Mansfield M, Rijli FM, Lohnes D. Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 2011; 138:1361-70. [DOI: 10.1242/dev.056622] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate Cdx genes (Cdx1, Cdx2 and Cdx4) encode homeodomain transcription factors with well-established roles in anteroposterior patterning. To circumvent the peri-implantation lethality inherent to Cdx2 loss of function, we previously used the Cre-loxP system to ablate Cdx2 at post-implantation stages and confirmed a crucial role for Cdx2 function in events related to axial extension. As considerable data suggest that the Cdx family members functionally overlap, we extended this analysis to assess the consequence of concomitant loss of both Cdx1 and Cdx2. Here, we report that Cdx1-Cdx2 double mutants exhibit a severely truncated anteroposterior axis. In addition, these double mutants exhibit fused somites, a widened mediolateral axis and craniorachischisis, a severe form of neural tube defect in which early neurulation fails and the neural tube remains open. These defects are typically associated with deficits in planar cell polarity (PCP) signaling in vertebrates. Consistent with this, we found that expression of Ptk7, which encodes a gene involved in PCP, is markedly reduced in Cdx1-Cdx2 double mutants, and is a candidate Cdx target. Genetic interaction between Cdx mutants and a mutant allele of Scrib, a gene involved in PCP signaling, is suggestive of a role for Cdx signaling in the PCP pathway. These findings illustrate a novel and pivotal role for Cdx function upstream of Ptk7 and neural tube closure in vertebrates.
Collapse
Affiliation(s)
- Joanne G. A. Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Melissa Mansfield
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
234
|
Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011; 25:201-13. [PMID: 21289065 DOI: 10.1101/gad.2008011] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cilia are important cellular structures that have been implicated in a variety of signaling cascades. In this review, we discuss the current evidence for and against a link between cilia and both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/planar cell polarity (PCP) pathway. Furthermore, we address the evidence implicating a role for PCP components in ciliogenesis. Given the lack of consensus in the field, we use new data on the control of ciliary protein localization as a basis for proposing new models by which cell type-specific regulation of ciliary components via differential transport, regulated entry and exit, or diffusion barriers might generate context-dependent functions for cilia.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
235
|
Ohtsuka H, Oikawa M, Ariake K, Rikiyama T, Motoi F, Katayose Y, Unno M, Johnson AC. GC-binding factor 2 interacts with dishevelled and regulates Wnt signaling pathways in human carcinoma cell lines. Int J Cancer 2011; 129:1599-610. [PMID: 21140450 DOI: 10.1002/ijc.25837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/19/2010] [Indexed: 01/23/2023]
Abstract
GC-binding factor 2 (GCF2), a transcriptional repressor that decreases the activity of several genes is capable of binding directly to the GC-rich sequence of the EGFR promoter and repressing the transcriptional activity of EGFR. In addition to its function as a transcriptional repressor, GCF2 can directly interact with other proteins such as flightless-1 (Fli-1). Many previous findings pertaining to the function of Fli-1 have suggested a role for fli-1 in providing a direct link between molecules involved in signal transduction pathways and the actin cytoskeleton. We hypothesized that GCF2, together with Fli-1, plays a role in regulating cytoskeleton function, cell migration, and/or morphology. In our study, we observed that GCF2 is crucial for the activation of RhoA, a small GTPase that plays a key role in the regulation of the actin cytoskeleton. RhoA was markedly inactivated as a result of the decreased expression of GCF2. Co-immunoprecipitations were subsequently performed to further investigate the mechanism for the repressive function. We identified dishevelled (Dvl), which is the key mediator for the Wnt pathway, as a binding partner with GCF2. These results strongly suggest that GCF2 plays a role in the Wnt-noncanonical planar cell polarity (PCP) signaling pathway. Consequently, GCF2 may regulate the cytoskeleton or migration via Dvls and RhoA.
Collapse
Affiliation(s)
- Hideo Ohtsuka
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Hopyan S, Sharpe J, Yang Y. Budding behaviors: Growth of the limb as a model of morphogenesis. Dev Dyn 2011; 240:1054-62. [PMID: 21384474 DOI: 10.1002/dvdy.22601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2010] [Indexed: 11/11/2022] Open
Abstract
Questions regarding morphogenesis have played second fiddle to those pertaining to pattern formation among the limb development set for some time. A recent series of publications has reinvigorated the search for mechanisms by which the limb bud arises, elongates and acquires its peculiar shape. While there are stage-specific variations, the theme that resonates across these studies is that mesoderm and cartilage cells in the limb bud exhibit polarity that drives directional movement and oriented division. Noncanonical Wnt signalling is important for these cell behaviors at all stages of limb development. While the emerging morphogenetic mechanisms underlying limb bud outgrowth are partly analogous to those of other developing structures, insights from the limb have the potential to reveal intriguing new mechanisms by which three dimensional mesoderm changes shape.
Collapse
Affiliation(s)
- Sevan Hopyan
- Developmental and Stem Cell Biology Program and Division of Orthopaedics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
237
|
Abstract
Polarized cell behaviors drive axis elongation in animal embryos, but the mechanisms underlying elongation of many tissues remain unknown. Eggs of Drosophila undergo elongation from a sphere to an ellipsoid during oogenesis. We used live imaging of follicles (developing eggs) to elucidate the cellular basis of egg elongation. We find that elongating follicles undergo repeated rounds of circumferential rotation around their long axes. Follicle epithelia mutant for integrin or collagen IV fail to rotate and elongate, which results in round eggs. We present evidence that polarized rotation is required to build a polarized, fibrillar extracellular matrix (ECM) that constrains tissue shape. Thus, global tissue rotation is a morphogenetic behavior that uses planar polarity information in the ECM to control tissue elongation.
Collapse
Affiliation(s)
- Saori L. Haigo
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, Phone:(510) 642-8605, Fax: (510) 642-8614
| | - David Bilder
- Department of Molecular & Cell Biology, 379 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, Phone:(510) 642-8605, Fax: (510) 642-8614
| |
Collapse
|
238
|
Wehner P, Shnitsar I, Urlaub H, Borchers A. RACK1 is a novel interaction partner of PTK7 that is required for neural tube closure. Development 2011; 138:1321-7. [PMID: 21350015 DOI: 10.1242/dev.056291] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RACK1 is an evolutionarily conserved intracellular adaptor protein that is involved in a wide range of processes including cell adhesion and migration; however, its role in vertebrate development is largely unknown. Here, we identify RACK1 as a novel interaction partner of PTK7, a regulator of planar cell polarity that is necessary for neural tube closure. RACK1 is likewise required for Xenopus neural tube closure. Further, explant assays suggest that PTK7 and RACK1 are required for neural convergent extension. Mechanistically, RACK1 is necessary for the PTK7-mediated membrane localization of Dishevelled (DSH). RACK1 facilitates the PTK7-DSH interaction by recruiting PKCδ1, a known effector of DSH membrane translocation. These data place RACK1 in a novel signaling cascade that translocates DSH to the plasma membrane and regulates vertebrate neural tube closure.
Collapse
Affiliation(s)
- Peter Wehner
- Department of Developmental Biochemistry, Center of Molecular Physiology of the Brain, GZMB, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|
239
|
Liu W, Su LT, Khadka DK, Mezzacappa C, Komiya Y, Sato A, Habas R, Runnels LW. TRPM7 regulates gastrulation during vertebrate embryogenesis. Dev Biol 2011; 350:348-57. [PMID: 21145885 PMCID: PMC3292586 DOI: 10.1016/j.ydbio.2010.11.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 02/06/2023]
Abstract
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7's ion channel, but not its kinase domain, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca(2+)- and Mg(2+)-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg(2+) supplementation or by expression of the Mg(2+) transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg(2+) in Rac-dependent polarized cell movements during vertebrate gastrulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Grassie ME, Moffat LD, Walsh MP, MacDonald JA. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys 2011; 510:147-59. [PMID: 21291858 DOI: 10.1016/j.abb.2011.01.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 12/23/2022]
Abstract
The mammalian MYPT family consists of the products of five genes, denoted MYPT1, MYPT2, MBS85, MYPT3 and TIMAP, which function as targeting and regulatory subunits to confer substrate specificity and subcellular localization on the catalytic subunit of type 1δ protein serine/threonine phosphatase (PP1cδ). Family members share several conserved domains, including an RVxF motif for PP1c binding and several ankyrin repeats that mediate protein-protein interactions. MYPT1, MYPT2 and MBS85 contain C-terminal leucine zipper domains involved in dimerization and protein-protein interaction, whereas MYPT3 and TIMAP are targeted to membranes via a C-terminal prenylation site. All family members are regulated by phosphorylation at multiple sites by various protein kinases; for example, Rho-associated kinase phosphorylates MYPT1, MYPT2 and MBS85, resulting in inhibition of phosphatase activity and Ca(2+) sensitization of smooth muscle contraction. A great deal is known about MYPT1, the myosin targeting subunit of myosin light chain phosphatase, in terms of its role in the regulation of smooth muscle contraction and, to a lesser extent, non-muscle motile processes. MYPT2 appears to be the key myosin targeting subunit of myosin light chain phosphatase in cardiac and skeletal muscles. MBS85 most closely resembles MYPT2, but little is known about its physiological function. Little is also known about the physiological role of MYPT3, although it is likely to target myosin light chain phosphatase to membranes and thereby achieve specificity for substrates involved in regulation of the actin cytoskeleton. MYPT3 is regulated by phosphorylation by cAMP-dependent protein kinase. TIMAP appears to target PP1cδ to the plasma membrane of endothelial cells where it serves to dephosphorylate proteins involved in regulation of the actin cytoskeleton and thereby control endothelial barrier function. With such a wide range of regulatory targets, MYPT family members have been implicated in diverse pathological events, including hypertension, Parkinson's disease and cancer.
Collapse
Affiliation(s)
- Michael E Grassie
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
241
|
Sepich DS, Usmani M, Pawlicki S, Solnica-Krezel L. Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements. Development 2011; 138:543-52. [PMID: 21205798 DOI: 10.1242/dev.053959] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity. Here, we examine the interactions between the microtubule cytoskeleton and Wnt/PCP signaling during zebrafish gastrulation. First, we assessed the location of the centrosome/microtubule organizing center (MTOC) relative to the cell nucleus and the body axes, as a marker of cell polarity. The intracellular position of MTOCs was polarized, perpendicular to the plane of the germ layers, independently of Wnt/PCP signaling. In addition, this position became biased posteriorly and medially within the plane of the germ layers at the transition from mid- to late gastrulation and from slow to fast C&E movements. This depends on intact Wnt/PCP signaling through Knypek (Glypican4/6) and Dishevelled components. Second, we tested whether microtubules are required for planar cell polarization. Once the planar cell polarity is established, microtubules are not required for accumulation of Prickle at the anterior cell edge. However, microtubules are needed for cell-cell contacts and initiation of its anterior localization. Reciprocal interactions occur between Wnt/PCP signaling and microtubule cytoskeleton during C&E gastrulation movements. Wnt/PCP signaling influences the polarity of the microtubule cytoskeleton and, conversely, microtubules are required for the asymmetric distribution of Wnt/PCP pathway components.
Collapse
Affiliation(s)
- Diane S Sepich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA.
| | | | | | | |
Collapse
|
242
|
Damm EW, Winklbauer R. PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation. Development 2011; 138:565-75. [PMID: 21205800 DOI: 10.1242/dev.056903] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radial intercalation is a common, yet poorly understood, morphogenetic process in the developing embryo. By analyzing cell rearrangement in the prechordal mesoderm during Xenopus gastrulation, we have identified a mechanism for radial intercalation. It involves cell orientation in response to a long-range signal mediated by platelet-derived growth factor (PDGF-A) and directional intercellular migration. When PDGF-A signaling is inhibited, prechordal mesoderm cells fail to orient towards the ectoderm, the endogenous source of PDGF-A, and no longer migrate towards it. Consequently, the prechordal mesoderm fails to spread during gastrulation. Orientation and directional migration can be rescued specifically by the expression of a short splicing isoform of PDGF-A, but not by a long matrix-binding isoform, consistent with a requirement for long-range signaling.
Collapse
Affiliation(s)
- Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada
| | | |
Collapse
|
243
|
Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity. Proc Natl Acad Sci U S A 2011; 108:2264-9. [PMID: 21262816 DOI: 10.1073/pnas.1013170108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The vertebrate planar cell polarity (PCP) pathway shares molecular components with the β-catenin-mediated canonical Wnt pathway but acts through membrane complexes containing Vang or Frizzled to orient neighboring cells coordinately. The molecular interactions underlying the action of Vang in PCP signaling and specification, however, are yet to be delineated. Here, we report the identification of Rack1 as an interacting protein of a vertebrate Vang protein, Vangl2. We demonstrate that Rack1 is required in zebrafish for PCP-regulated processes, including oriented cell division, cellular polarization, and convergent extension during gastrulation. We further show that the knockdown of Rack1 affects membrane localization of Vangl2 and that the Vangl2-interacting domain of Rack1 has a dominant-negative effect on Vangl2 localization and gastrulation. Moreover, Rack1 antagonizes canonical Wnt signaling. Together, our data suggest that Rack1 regulates the localization of an essential PCP protein and acts as a molecular switch to promote PCP signaling.
Collapse
|
244
|
Iliescu A, Gravel M, Horth C, Kibar Z, Gros P. Loss of membrane targeting of Vangl proteins causes neural tube defects. Biochemistry 2011; 50:795-804. [PMID: 21142127 DOI: 10.1021/bi101286d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the mouse, the loop-tail mutation (Lp) causes a very severe neural tube defect, which is caused by mutations in the Vangl2 gene. In mammals, Vangl1 and Vangl2 code for integral membrane proteins that assemble into asymmetrically distributed membrane complexes that establish planar cell polarity in epithelial cells and that regulate convergent extension movements during embryogenesis. To date, VANGL are the only genes in which mutations cause neural tube defects in humans. Three independently arising Lp alleles have been described for Vangl2: D255E, S464N, and R259L. Here we report a common mechanism for both the naturally occurring Lp (S464N) and a novel ENU-induced mutation Lp(m2Jus)(R259L). We show that the S464N and R259L variants stably expressed in polarized MDCK kidney cells fail to reach the plasma membrane, their site for biological function. The mutant variants are retained intracellularly in the endoplasmic reticulum, colocalizing with ER chaperone calreticulin. Furthermore, the mutants also show a dramatically reduced half-life of ∼3 h, compared to ∼22 h for the wild-type protein, and are rapidly degraded in a proteasome-dependent and MG132-sensitive fashion. Coexpressing individually the three known allelic Lp variants with the wild-type protein does not influence the localization of the WT at the plasma membrane, suggesting that the codominant nature of the Lp trait in vivo is due to haploid insufficiency caused by a partial loss of function in a gene dosage-dependent pathway, as opposed to a dominant negative phenotype. Our study provides a biochemical framework for the study of recently identified mutations in hVANGL1 and hVANGL2 in sporadic or familial cases of neural tube defects.
Collapse
Affiliation(s)
- Alexandra Iliescu
- Department of Biochemistry and Complex Traits Program, McGill University, Montreal, Canada H3G 0B1
| | | | | | | | | |
Collapse
|
245
|
Meoli DF, White RJ. Endothelin-1 induces pulmonary but not aortic smooth muscle cell migration by activating ERK1/2 MAP kinase. Can J Physiol Pharmacol 2011; 88:830-9. [PMID: 20725141 DOI: 10.1139/y10-059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin 1 (ET-1) is an endogenous peptide that promotes vasoconstriction, endothelial and smooth muscle cell (SMC) proliferation, and fibrosis. ET-1 receptor antagonists are an important treatment strategy for pulmonary arterial hypertension, but less effective in systemic vascular disease. This observation suggests a special role for ET-1 in the pulmonary circulation. We hypothesized that ET-1 contributes to the pathogenesis of pulmonary arterial hypertension, in part, by promoting pulmonary vascular SMC migration. ET-1 treatment promoted migration in 3 distinct types of cultured pulmonary SMC. Pulmonary SMC migration was blocked by an ETA receptor selective agonist and a combined ETA-ETB antagonist, but not by a selective ETB antagonist. In contrast to the effect on pulmonary SMCs, ET-1 had no effect on migration of aortic SMCs. Flow cytometry showed that the ETA receptor was expressed at comparable levels on pulmonary and aortic SMCs, excluding receptor density as an explanation for the divergent effect. ET-1-induced pulmonary SMC migration was blocked by the structurally distinct MEK inhibitors PD98059 and U0126, consistent with a role for ERK1/2 MAP kinase. By Western blot in cultured cells and immunohistochemistry in ex vivo vessels, ET-1 stimulated phosphorylation of ERK1/2 as efficaciously as platelet-derived growth factor in pulmonary, but not aortic, SMCs. In conclusion, ET-1 induces SMC migration, with the ETA receptor tightly coupled to ERK1/2 phosphorylation only in the pulmonary circulation. This finding may help explain the striking difference in the efficacy of endothelin receptor blockers for pulmonary hypertension as compared to that for systemic cardiovascular disease.
Collapse
Affiliation(s)
- David F Meoli
- Aab Cardiovascular Research Institute and Department of Pulmonary and Critical Care Medicine, University of Rochester, 400 Red Creek Drive, Suite 110, Rochester, NY 14623, USA
| | | |
Collapse
|
246
|
Abstract
During morphogenesis, tissues are shaped by cell behaviors such as apical cell constriction and cell intercalation, which are the result of cell intrinsic forces, but are also shaped passively by forces acting on the cells. The latter extrinsic forces can be produced either within the deforming tissue by the tissue-scale integration of intrinsic forces, or outside the tissue by other tissue movements or by fluid flows. Here we review the intrinsic and extrinsic forces that sculpt the epithelium of early Drosophila embryos, focusing on three conserved morphogenetic processes: tissue internalization, axis extension, and segment boundary formation. Finally, we look at how the actomyosin cytoskeleton forms force-generating structures that power these three morphogenetic events at the cell and the tissue scales.
Collapse
|
247
|
Abstract
Morphogenesis requires the spatial and temporal control of embryo mechanics, including force production and mechanical resistance to those forces, to coordinate tissue deformation and large-scale movements. Thus, biomechanical processes play a key role in directly shaping the embryo. Additional roles for embryo mechanics during development may include the patterning of positional information and to provide feedback to ensure the success of morphogenetic movements in shaping the larval body and organs. To understand the multiple roles of mechanics during development requires familiarity with engineering principles of the mechanics of structures, the viscoelastic properties of biomaterials, and the integration of force and stress within embryonic structures as morphogenesis progresses. In this chapter, we review the basic engineering principles of biomechanics as they relate to morphogenesis, introduce methods for quantifying embryo mechanics and the limitations of these methods, and outline a formalism for investigating the role of embryo mechanics in birth defects. We encourage the nascent field of embryo mechanics to adopt standard engineering terms and test methods so that studies of diverse organisms can be compared and universal biomechanical principles can be revealed.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering and Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
248
|
Yamada M, Udagawa J, Matsumoto A, Hashimoto R, Hatta T, Nishita M, Minami Y, Otani H. Ror2 is required for midgut elongation during mouse development. Dev Dyn 2010; 239:941-53. [PMID: 20063415 DOI: 10.1002/dvdy.22212] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The receptor tyrosine kinase Ror2 acts as a receptor for Wnt5a to mediate noncanonical Wnt signaling, and it plays essential roles in morphogenesis. Ror2-/- embryos exhibit phenotypes similar to, albeit generally milder than, those of Wnt5a-/- embryos. During mouse embryogenesis, Ror2 is expressed in various organs and regions, although little is known about its expression pattern and roles in the developing gut, while Wnt5a is expressed in the developing gut, where its absence causes abnormal phenotypes. Here, we demonstrated that Ror2 was strongly and differentially expressed in the rostral and middle midgut endoderm from embryonic day (E) 10.5 through embryonic day (E) 12.5. At E11.5, Ror2-/- embryos exhibited a shorter middle midgut with a larger diameter and more accumulation of epithelial cells in the middle midgut than control embryos, while the total cell numbers remained unaltered. These findings suggest that Ror2 plays important roles in midgut elongation by means of an epithelial convergent extension mechanism.
Collapse
Affiliation(s)
- Makiko Yamada
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Schneider I, Schneider PN, Derry SW, Lin S, Barton LJ, Westfall T, Slusarski DC. Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev Biol 2010; 348:22-33. [PMID: 20858476 PMCID: PMC2976797 DOI: 10.1016/j.ydbio.2010.08.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/22/2010] [Accepted: 08/27/2010] [Indexed: 12/20/2022]
Abstract
The establishment of the left-right (LR) axis in zebrafish embryos relies on signals from the dorsal forerunner cells (DFC) and the Kupffer's vesicle (KV). While the Wnt signaling network influences many aspects of embryonic development, its precise role in LR patterning is still unclear. One branch of the Wnt network leads to stabilization of β-catenin and activation of downstream target genes. Other Wnt ligands appear to act independently of β-catenin to modulate calcium release and influence cell polarity. Central to regulation of β-catenin and coordination of convergent extension (CE) movements is Dishevelled (Dvl). Naked Cuticle (Nkd) binds Dvl and modulates β-catenin-dependent and independent Wnt signaling. Here, we analyze the expression patterns of three zebrafish Nkd homologs and find enriched expression of nkd1 in DFCs and KV. Dvl is degraded upon Nkd1 overexpression in zebrafish. Knockdown of Nkd1 specifically in the DFC results in β-catenin nuclear localization and transcriptional activation as well as alterations to DFC migration, KV formation, ciliogenesis and LR patterning. Furthermore, we identify asymmetric expression of the Nodal antagonist charon around the KV and show that Nkd1 knockdown impacts asymmetric charon expression. Our findings show that Nkd1 acts as a β-catenin antagonist in the DFCs necessary for LR patterning.
Collapse
Affiliation(s)
- Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Sarah W. Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Shengda Lin
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Trudi Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
250
|
Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137:3707-17. [PMID: 20940229 DOI: 10.1242/dev.052001] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The closure of an open anatomical structure by the directed growth and fusion of two tissue masses is a recurrent theme in mammalian embryology, and this process plays an integral role in the development of the palate, ventricular septum, neural tube, urethra, diaphragm and eye. In mice, targeted mutations of the genes encoding frizzled 1 (Fz1) and frizzled 2 (Fz2) show that these highly homologous integral membrane receptors play an essential and partially redundant role in closure of the palate and ventricular septum, and in the correct positioning of the cardiac outflow tract. When combined with a mutant allele of the planar cell polarity gene Vangl2 (Vangl2(Lp)), Fz1 and/or Fz2 mutations also cause defects in neural tube closure and misorientation of inner ear sensory hair cells. These observations indicate that frizzled signaling is involved in diverse tissue closure processes, defects in which account for some of the most common congenital anomalies in humans.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | | | | | | | | | | |
Collapse
|