201
|
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 2016; 7:11067. [PMID: 27063795 PMCID: PMC4831019 DOI: 10.1038/ncomms11067] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy. Patients with myotonic dystrophy (MD) suffer from severe cardiac issues of unknown aetiology. Freyermuth et al. show that fatal changes in cardiac electrophysiological properties in humans and mice with MD may arise from misregulation of the alternative splicing of the cardiac Na+ channel SCN5A transcript, resulting in expression of its fetal form.
Collapse
|
202
|
González ÀL, Teixidó J, Borrell JI, Estrada-Tejedor R. On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion. PLoS One 2016; 11:e0152049. [PMID: 27010216 PMCID: PMC4806922 DOI: 10.1371/journal.pone.0152049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/08/2016] [Indexed: 11/18/2022] Open
Abstract
Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL), which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT) and insulin receptor’s, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM). In this paper, we assess the application of ENM (traditionally applied on proteins) for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.
Collapse
Affiliation(s)
- Àlex L. González
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - Jordi Teixidó
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - José I. Borrell
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
| | - Roger Estrada-Tejedor
- Grup d’Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS) – Universitat Ramon Llull (URL), Barcelona, Catalonia, 08017, Spain
- * E-mail:
| |
Collapse
|
203
|
Roles for RNA-binding proteins in development and disease. Brain Res 2016; 1647:1-8. [PMID: 26972534 DOI: 10.1016/j.brainres.2016.02.050] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
|
204
|
Blech-Hermoni Y, Dasgupta T, Coram RJ, Ladd AN. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. PLoS One 2016; 11:e0149061. [PMID: 26866591 PMCID: PMC4750973 DOI: 10.1371/journal.pone.0149061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
CUG-BP, Elav-like family member 1 (CELF1) is a highly conserved RNA binding protein that regulates pre-mRNA alternative splicing, polyadenylation, mRNA stability, and translation. In the heart, CELF1 is expressed in the myocardium, where its levels are tightly regulated during development. CELF1 levels peak in the heart during embryogenesis, and aberrant up-regulation of CELF1 in the adult heart has been implicated in cardiac pathogenesis in myotonic dystrophy type 1, as well as in diabetic cardiomyopathy. Either inhibition of CELF activity or over-expression of CELF1 in heart muscle causes cardiomyopathy in transgenic mice. Nonetheless, many of the cardiac targets of CELF1 regulation remain unknown. In this study, to identify cardiac targets of CELF1 we performed cross-linking immunoprecipitation (CLIP) for CELF1 from embryonic day 8 chicken hearts. We identified a previously unannotated exon in MYH7B as a novel target of CELF1-mediated regulation. We demonstrated that knockdown of CELF1 in primary chicken embryonic cardiomyocytes leads to increased inclusion of this exon and decreased MYH7B levels. We also investigated global changes in the transcriptome of primary embryonic cardiomyocytes following CELF1 knockdown in a published RNA-seq dataset. Pathway and network analyses identified strong associations between CELF1 and regulation of cell cycle and translation. Important regulatory proteins, including both RNA binding proteins and a cardiac transcription factor, were affected by loss of CELF1. Together, these data suggest that CELF1 is a key regulator of cardiomyocyte gene expression.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ryan J. Coram
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
205
|
Abstract
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther E. Creemers
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
206
|
Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Klinck R, Rocheleau L, Pelchat M, Chabot B, Jasmin BJ, Côté J. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier. PLoS Genet 2016; 12:e1005827. [PMID: 26824521 PMCID: PMC4733145 DOI: 10.1371/journal.pgen.1005827] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Tara E. Crawford Parks
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Roscoe Klinck
- Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Benoit Chabot
- Département de microbiologie et d'infectiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa; Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
207
|
Ladd AN. New Insights Into the Role of RNA-Binding Proteins in the Regulation of Heart Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:125-85. [PMID: 27017008 DOI: 10.1016/bs.ircmb.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of gene expression during development takes place both at the transcriptional and posttranscriptional levels. RNA-binding proteins (RBPs) regulate pre-mRNA processing, mRNA localization, stability, and translation. Many RBPs are expressed in the heart and have been implicated in heart development, function, or disease. This chapter will review the current knowledge about RBPs in the developing heart, focusing on those that regulate posttranscriptional gene expression. The involvement of RBPs at each stage of heart development will be considered in turn, including the establishment of specific cardiac cell types and formation of the primitive heart tube, cardiac morphogenesis, and postnatal maturation and aging. The contributions of RBPs to cardiac birth defects and heart disease will also be considered in these contexts. Finally, the interplay between RBPs and other regulatory factors in the developing heart, such as transcription factors and miRNAs, will be discussed.
Collapse
Affiliation(s)
- A N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
208
|
Abstract
Neuromuscular diseases can affect the survival of peripheral neurons, their axons extending to peripheral targets, their synaptic connections onto those targets, or the targets themselves. Examples include motor neuron diseases such as Amyotrophic Lateral Sclerosis, peripheral neuropathies such as Charcot-Marie-Tooth diseases, myasthenias, and muscular dystrophies. Characterizing these phenotypes in mouse models requires an integrated approach, examining both the nerve and muscle histologically, anatomically, and functionally by electrophysiology. Defects observed at these levels can be related back to onset, severity, and progression, as assessed by "Quality of life measures" including tests of gross motor performance such as gait or grip strength. This chapter describes methods for assessing neuromuscular disease models in mice, and how interpretation of these tests can be complicated by the inter-relatedness of the phenotypes.
Collapse
Affiliation(s)
- Robert W Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
209
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
210
|
MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat Commun 2015; 6:10084. [PMID: 26670661 PMCID: PMC4703843 DOI: 10.1038/ncomms10084] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The differentiation of fibroblasts into myofibroblasts mediates tissue wound healing and fibrotic remodelling, although the molecular programme underlying this process remains poorly understood. Here we perform a genome-wide screen for genes that control myofibroblast transformation, and identify the RNA-binding protein muscleblind-like1 (MBNL1). MBNL1 overexpression promotes transformation of fibroblasts into myofibroblasts, whereas loss of Mbnl1 abrogates transformation and impairs the fibrotic phase of wound healing in mouse models of myocardial infarction and dermal injury. Mechanistically, MBNL1 directly binds to and regulates a network of differentiation-specific and cytoskeletal/matrix-assembly transcripts to promote myofibroblast differentiation. One of these transcripts is the nodal transcriptional regulator serum response factor (SRF), whereas another is calcineurin Aβ. CRISPR-Cas9-mediated gene-editing of the MBNL1-binding site within the Srf 3′UTR impairs myofibroblast differentiation, whereas in vivo deletion of Srf in fibroblasts impairs wound healing and fibrosis. These data establish a new RNA-dependent paradigm for myofibroblast formation through MBNL1. Fibroblast-to-myofibroblast differentiation is crucial for wound healing and regeneration. Davis et al. describe a new regulatory mechanism underlying myofibroblast differentiation via the RNA-binding protein MBNL1, which promotes the maturation of certain mRNA transcripts that are integral nodes in fibroblast differentiation.
Collapse
|
211
|
Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 2015; 3:42-54. [PMID: 26783549 PMCID: PMC4704483 DOI: 10.1002/acn3.271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Myotonic dystrophy type 1 (DM1) is caused by the expansion of a CTG repeat in the 3' untranslated region of DMPK. The transcripts containing an expanded CUG repeat (CUG (exp)) result in a toxic gain-of-function by forming ribonuclear foci that sequester the alternative splicing factor muscleblind-like 1 (MBNL1). Although several small molecules reportedly ameliorate RNA toxicity, none are ready for clinical use because of the lack of safety data. Here, we undertook a drug-repositioning screen to identify a safe and effective small molecule for upcoming clinical trials of DM1. METHODS We examined the potency of small molecules in inhibiting the interaction between CUG (exp) and MBNL1 by in vitro sequestration and fluorescent titration assays. We studied the effect of lead compounds in DM1 model cells by evaluating foci reduction and splicing rescue. We also tested their effects on missplicing and myotonia in DM1 model mice. RESULTS Of the 20 FDA-approved small molecules tested, erythromycin showed the highest affinity to CUG (exp) and a capacity to inhibit its binding to MBNL1. Erythromycin decreased foci formation and rescued missplicing in DM1 cell models. Both systemic and oral administration of erythromycin in the DM1 model mice showed splicing reversal and improvement of myotonia with no toxicity. Long-term oral administration of erythromycin at the dose used in humans also improved the splicing abnormality in the DM1 model mice. INTERPRETATION Oral erythromycin treatment, which has been widely used in humans with excellent tolerability, may be a promising therapy for DM1.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Katarzyna Taylor
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology Adam Mickiewicz University Posnan Poland
| | - Masanori P Takahashi
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
212
|
Recognition of distinct RNA motifs by the clustered CCCH zinc fingers of neuronal protein Unkempt. Nat Struct Mol Biol 2015; 23:16-23. [PMID: 26641712 DOI: 10.1038/nsmb.3140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
Unkempt is an evolutionarily conserved RNA-binding protein that regulates translation of its target genes and is required for the establishment of the early bipolar neuronal morphology. Here we determined the X-ray crystal structure of mouse Unkempt and show that its six CCCH zinc fingers (ZnFs) form two compact clusters, ZnF1-3 and ZnF4-6, that recognize distinct trinucleotide RNA substrates. Both ZnF clusters adopt a similar overall topology and use distinct recognition principles to target specific RNA sequences. Structure-guided point mutations reduce the RNA binding affinity of Unkempt both in vitro and in vivo, ablate Unkempt's translational control and impair the ability of Unkempt to induce a bipolar cellular morphology. Our study unravels a new mode of RNA sequence recognition by clusters of CCCH ZnFs that is critical for post-transcriptional control of neuronal morphology.
Collapse
|
213
|
Laustriat D, Gide J, Barrault L, Chautard E, Benoit C, Auboeuf D, Boland A, Battail C, Artiguenave F, Deleuze JF, Bénit P, Rustin P, Franc S, Charpentier G, Furling D, Bassez G, Nissan X, Martinat C, Peschanski M, Baghdoyan S. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e262. [PMID: 26528939 PMCID: PMC4877444 DOI: 10.1038/mtna.2015.35] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/22/2015] [Indexed: 01/02/2023]
Abstract
Major physiological changes are governed by alternative splicing of RNA, and its misregulation may lead to specific diseases. With the use of a genome-wide approach, we show here that this splicing step can be modified by medication and demonstrate the effects of the biguanide metformin, on alternative splicing. The mechanism of action involves AMPK activation and downregulation of the RBM3 RNA-binding protein. The effects of metformin treatment were tested on myotonic dystrophy type I (DM1), a multisystemic disease considered to be a spliceopathy. We show that this drug promotes a corrective effect on several splicing defects associated with DM1 in derivatives of human embryonic stem cells carrying the causal mutation of DM1 as well as in primary myoblasts derived from patients. The biological effects of metformin were shown to be compatible with typical therapeutic dosages in a clinical investigation involving diabetic patients. The drug appears to act as a modifier of alternative splicing of a subset of genes and may therefore have novel therapeutic potential for many more diseases besides those directly linked to defective alternative splicing.
Collapse
Affiliation(s)
| | | | | | - Emilie Chautard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France.,Université Lyon 1, CNRS, UMR 5558, INRIA Bamboo, Villeurbanne, France
| | - Clara Benoit
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France
| | - Didier Auboeuf
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, Centre Léon Bérard, Lyon, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | | | | | | | - Paule Bénit
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France.,Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM UMR 1141, Hôpital Robert Debré, Paris, France.,Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Sylvia Franc
- Centre Hospitalier Sud Francilien and CERITD, Evry Cedex, France
| | | | - Denis Furling
- Sorbonne Universités, UPMC Université Paris 06, Centre de Recherche en Myologie, INSERM UMRS974, CNRS FRE3617, Institut de Myologie, Paris 75013, France
| | - Guillaume Bassez
- GH Henri Mondor, Inserm U955, Université Paris Est, Créteil, France
| | | | | | | | | |
Collapse
|
214
|
Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC DEVELOPMENTAL BIOLOGY 2015; 15:36. [PMID: 26472242 PMCID: PMC4608261 DOI: 10.1186/s12861-015-0087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Background Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3 mice, which are null for MBNL1 protein. Methods Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. Results As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. Conclusions Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0087-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Coram
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
| | - Samantha J Stillwagon
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Anuradha Guggilam
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Andrea N Ladd
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
215
|
Siboni RB, Bodner MJ, Khalifa MM, Docter AG, Choi JY, Nakamori M, Haley MM, Berglund JA. Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models. J Med Chem 2015; 58:5770-80. [PMID: 26103061 PMCID: PMC4972181 DOI: 10.1021/acs.jmedchem.5b00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a disease characterized by errors in alternative splicing, or "mis-splicing". The causative agent of mis-splicing in DM1 is an inherited CTG repeat expansion located in the 3' untranslated region of the DM protein kinase gene. When transcribed, CUG repeat expansion RNA sequesters muscleblind-like (MBNL) proteins, which constitute an important family of alternative splicing regulators. Sequestration of MBNL proteins results in the mis-splicing of its regulated transcripts. Previous work has demonstrated that pentamidine, a diamidine which is currently FDA-approved as an antiparasitic agent, was able to partially reverse mis-splicing in multiple DM1 models, albeit at toxic concentrations. In this study, we characterized a series of pentamidine analogues to determine their ability to reverse mis-splicing and their toxicity in vivo. Experiments in cell and mouse models demonstrated that compound 13, also known as furamidine, effectively reversed mis-splicing with equal efficacy and reduced toxicity compared to pentamidine.
Collapse
Affiliation(s)
| | | | | | | | | | - Masayuki Nakamori
- §Department of Neurology, University of Osaka Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | |
Collapse
|
216
|
Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Fernández Gómez FJ, Eddarkaoui S, Sergeant N, Buée L, Kimura T, Clark HB, Dalton J, Takamura K, Weyn-Vanhentenryck SM, Zhang C, Reid T, Ranum LPW, Day JW, Swanson MS. MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain. Cell Rep 2015; 12:1159-68. [PMID: 26257173 DOI: 10.1016/j.celrep.2015.07.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 07/14/2015] [Indexed: 11/19/2022] Open
Abstract
For some neurological disorders, disease is primarily RNA mediated due to expression of non-coding microsatellite expansion RNAs (RNA(exp)). Toxicity is thought to result from enhanced binding of proteins to these expansions and depletion from their normal cellular targets. However, experimental evidence for this sequestration model is lacking. Here, we use HITS-CLIP and pre-mRNA processing analysis of human control versus myotonic dystrophy (DM) brains to provide compelling evidence for this RNA toxicity model. MBNL2 binds directly to DM repeat expansions in the brain, resulting in depletion from its normal RNA targets with downstream effects on alternative splicing and polyadenylation. Similar RNA processing defects were detected in Mbnl compound-knockout mice, highlighted by dysregulation of Mapt splicing and fetal tau isoform expression in adults. These results demonstrate that MBNL proteins are directly sequestered by RNA(exp) in the DM brain and introduce a powerful experimental tool to evaluate RNA-mediated toxicity in other expansion diseases.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ranjan Batra
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Kuang-Yung Lee
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Department of Neurology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Konstantinos Charizanis
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA; InSiliGen LLC, Gainesville, FL 32606, USA
| | - Francisco José Fernández Gómez
- Inserm UMR S1172, Alzheimer and Tauopathies, Université Lille Nord de France, Centre Jean-Pierre Aubert, 1 Place Verdun, 59045 Lille, France
| | - Sabiha Eddarkaoui
- Inserm UMR S1172, Alzheimer and Tauopathies, Université Lille Nord de France, Centre Jean-Pierre Aubert, 1 Place Verdun, 59045 Lille, France
| | - Nicolas Sergeant
- Inserm UMR S1172, Alzheimer and Tauopathies, Université Lille Nord de France, Centre Jean-Pierre Aubert, 1 Place Verdun, 59045 Lille, France
| | - Luc Buée
- Inserm UMR S1172, Alzheimer and Tauopathies, Université Lille Nord de France, Centre Jean-Pierre Aubert, 1 Place Verdun, 59045 Lille, France
| | - Takashi Kimura
- Division of Neurology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - H Brent Clark
- Departments of Laboratory Medicine and Pathology, Neurology, Neurosurgery, and Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joline Dalton
- Departments of Laboratory Medicine and Pathology, Neurology, Neurosurgery, and Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kenji Takamura
- Departments of Laboratory Medicine and Pathology, Neurology, Neurosurgery, and Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Tammy Reid
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
217
|
Muscleblind-Like 1 and Muscleblind-Like 3 Depletion Synergistically Enhances Myotonia by Altering Clc-1 RNA Translation. EBioMedicine 2015; 2:1034-47. [PMID: 26501102 PMCID: PMC4588380 DOI: 10.1016/j.ebiom.2015.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 01/16/2023] Open
Abstract
Loss of Muscleblind-like 1 (Mbnl1) is known to alter Clc-1 splicing to result in myotonia. Mbnl1ΔE3/ΔE3/Mbnl3ΔE2 mice, depleted of Mbnl1 and Mbnl3, demonstrate a profound enhancement of myotonia and an increase in the number of muscle fibers with very low Clc-1 currents, where gClmax values approach ~ 1 mS/cm2, with the absence of a further enhancement in Clc-1 splice errors, alterations in polyA site selection or Clc-1 localization. Significantly, Mbnl1ΔE3/ΔE3/Mbnl3ΔE2 muscles demonstrate an aberrant accumulation of Clc-1 RNA on monosomes and on the first polysomes. Mbnl1 and Mbnl3 bind Clc-1 RNA and both proteins bind Hsp70 and eEF1A, with these associations being reduced in the presence of RNA. Thus binding of Mbnl1 and Mbnl3 to Clc-1 mRNA engaged with ribosomes can facilitate an increase in the local concentration of Hsp70 and eEF1A to assist Clc-1 translation. Dual depletion of Mbnl1 and Mbnl3 therefore initiates both Clc-1 splice errors and translation defects to synergistically enhance myotonia. As the HSALR model for myotonic dystrophy (DM1) shows similar Clc-1 defects, this study demonstrates that both splice errors and translation defects are required for DM1 pathology to manifest. Research in context Research in context: Myotonic Dystrophy type 1 (DM1) is a dominant disorder resulting from the expression of expanded CUG repeat RNA, which aberrantly sequesters and inactivates the muscleblind-like (MBNL) family of proteins. In mice, inactivation of Mbnl1 is known to alter Clc-1 splicing to result in myotonia. We demonstrate that concurrent depletion of Mbnl1 and Mbnl3 results in a synergistic enhancement of myotonia, with an increase in muscle fibers showing low chloride currents. The observed synergism results from the aberrant accumulation of Clc-1 mRNA on monosomes and the first polysomes. This translation error reflects the ability of Mbnl1 and Mbnl3 to act as adaptors that recruit Hsp70 and eEF1A to the Clc-1 mRNA engaged with ribosomes, to facilitate translation. Thus our study demonstrates that Clc-1 RNA translation defects work coordinately with Clc-1 splice errors to synergistically enhance myotonia in mice lacking Mbnl1 and Mbnl3. Mbnl 1 & 3 loss enhances myotonia and increases fibers with low chloride currents. Clc-1 RNA increase in lighter polysome fractions results in low chloride currents. Mbnl 1 & 3 interact with Hsp70 and eEF1A in an RNA moderated manner. Mbnl 1 & 3 recruitment of Hsp70 and eEF1A to Clc-1 RNA facilitates translation. The HSALR DM1 mouse model shows similar Clc-1 RNA translation defects.
Collapse
|
218
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
219
|
Yanovsky-Dagan S, Mor-Shaked H, Eiges R. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World J Stem Cells 2015; 7:823-838. [PMID: 26131313 PMCID: PMC4478629 DOI: 10.4252/wjsc.v7.i5.823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.
Collapse
|
220
|
Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, Wei J, Carter GT, Weiss MD, Chamberlain JR. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 2015; 24:4971-83. [PMID: 26082468 DOI: 10.1093/hmg/ddv219] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023] Open
Abstract
RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG(exp)) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG(exp) mRNA in the human α-skeletal muscle actin long-repeat (HSA(LR)) mouse model of DM1. RNAi expression cassettes were delivered to HSA(LR) mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA(LR) mice, including a reduction in the CUG(exp) mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG(exp) mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA(LR) mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Jessica Wei
- Division of Medical Genetics, Department of Medicine
| | | | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
221
|
Rau F, Lainé J, Ramanoudjame L, Ferry A, Arandel L, Delalande O, Jollet A, Dingli F, Lee KY, Peccate C, Lorain S, Kabashi E, Athanasopoulos T, Koo T, Loew D, Swanson MS, Le Rumeur E, Dickson G, Allamand V, Marie J, Furling D. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat Commun 2015; 6:7205. [PMID: 26018658 PMCID: PMC4458869 DOI: 10.1038/ncomms8205] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.
Collapse
Affiliation(s)
- Frédérique Rau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Jeanne Lainé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France.,Sorbonne Universités, UPMC Paris 06, Département de Physiologie, Site Pitié-Salpêtrière, F-75013 Paris, France
| | - Laetitita Ramanoudjame
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Ludovic Arandel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Olivier Delalande
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | - Arnaud Jollet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, F-75005 Paris, France
| | - Kuang-Yung Lee
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610, USA.,Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Cécile Peccate
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Stéphanie Lorain
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Edor Kabashi
- Sorbonne Université, UPMC Univ Paris 06, UM 75, INSERM U1127, CNRS UMR7225, ICM, Paris, F-75013 Paris, France
| | - Takis Athanasopoulos
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Taeyoung Koo
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, F-75005 Paris, France
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Elisabeth Le Rumeur
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Valérie Allamand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Joëlle Marie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
222
|
Padeken J, Zeller P, Gasser SM. Repeat DNA in genome organization and stability. Curr Opin Genet Dev 2015; 31:12-9. [PMID: 25917896 DOI: 10.1016/j.gde.2015.03.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/03/2023]
Abstract
Eukaryotic genomes contain millions of copies of repetitive elements (RE). Although the euchromatic parts of most genomes are clearly annotated, the repetitive/heterochromatic parts are poorly defined. It is estimated that between 50 and 70% of the human genome is composed of REs. Despite this, we know surprisingly little about the physiological relevance, molecular regulation and the composition of these regions. This primarily reflects the difficulty that REs pose for PCR-based assays, and their poor map-ability in next generation sequencing experiments. Here we first summarize the nature and classification of REs and then examine how this has been used in the recent years to broaden our understanding of mechanisms that keep the repetitive regions of our genomes silent and stable.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
223
|
Peng X, Shen X, Chen X, Liang R, Azares AR, Liu Y. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1490-7. [PMID: 25887157 DOI: 10.1016/j.bbadis.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/14/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy is a neuromuscular disease of RNA toxicity. The disease gene DMPK harbors expanded CTG trinucleotide repeats on its 3'-UTR. The transcripts of this mutant DMPK led to misregulation of RNA-binding proteins including MBNL1 and Celf1. In myoblasts, CUG-expansion impaired terminal differentiation. In this study, we formally tested how the abundance of Celf1 regulates normal myocyte differentiation, and how Celf1 expression level mediates CUG-expansion RNA toxicity-triggered impairment of myocyte differentiation. As the results, overexpression of Celf1 largely recapitulated the defects of myocytes with CUG-expansion, by increasing myocyte cycling. Knockdown of endogenous Celf1 level led to precocious myotube formation, supporting a negative connection between Celf1 abundance and myocyte terminal differentiation. Finally, knockdown of Celf1 in myocyte with CUG-expansion led to partial rescue, by promoting cell cycle exit. Our results suggest that Celf1 plays a distinctive and negative role in terminal myocyte differentiation, which partially contribute to DM1 RNA toxicity. Targeting Celf1 may be a valid strategy in correcting DM1 muscle phenotypes, especially for congenital cases.
Collapse
Affiliation(s)
- Xiaoping Peng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Xiaopeng Shen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Xuanying Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rui Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alon R Azares
- Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
224
|
Dixon DM, Choi J, El-Ghazali A, Park SY, Roos KP, Jordan MC, Fishbein MC, Comai L, Reddy S. Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep 2015; 5:9042. [PMID: 25761764 PMCID: PMC4356957 DOI: 10.1038/srep09042] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1ΔE2/ΔE2) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2–4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1ΔE2/ΔE2 mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease.
Collapse
Affiliation(s)
- Donald M Dixon
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ayea El-Ghazali
- 1] Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA [2] Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Park
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lucio Comai
- Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
225
|
Pettersson OJ, Aagaard L, Jensen TG, Damgaard CK. Molecular mechanisms in DM1 - a focus on foci. Nucleic Acids Res 2015; 43:2433-41. [PMID: 25605794 PMCID: PMC4344492 DOI: 10.1093/nar/gkv029] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/05/2015] [Accepted: 01/11/2015] [Indexed: 01/15/2023] Open
Abstract
Myotonic dystrophy type 1 is caused by abnormal expansion of a CTG-trinucleotide repeat in the gene encoding Dystrophia Myotonica Protein Kinase (DMPK), which in turn leads to global deregulation of gene expression in affected individuals. The transcribed mRNA contains a massive CUG-expansion in the 3' untranslated region (3'UTR) facilitating nucleation of several regulatory RNA-binding proteins, which are thus unable to perform their normal cellular function. These CUG-expanded mRNA-protein aggregates form distinct, primarily nuclear foci. In differentiated muscle cells, most of the CUG-expanded RNA remains in the nuclear compartment, while in dividing cells such as fibroblasts a considerable fraction of the mutant RNA reaches the cytoplasm, consistent with findings that both nuclear and cytoplasmic events are mis-regulated in DM1. Recent evidence suggests that the nuclear aggregates, or ribonuclear foci, are more dynamic than previously anticipated and regulated by several proteins, including RNA helicases. In this review, we focus on the homeostasis of DMPK mRNA foci and discuss how their dynamic regulation may affect disease-causing mechanisms in DM1.
Collapse
Affiliation(s)
- Olof Joakim Pettersson
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1240, DK-8000 Aarhus C, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1240, DK-8000 Aarhus C, Denmark
| | - Thomas Gryesten Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, Building 1240, DK-8000 Aarhus C, Denmark
| | - Christian Kroun Damgaard
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| |
Collapse
|
226
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
227
|
Cieply B, Carstens RP. Functional roles of alternative splicing factors in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:311-26. [PMID: 25630614 PMCID: PMC4671264 DOI: 10.1002/wrna.1276] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. WIREs RNA 2015, 6:311–326. doi: 10.1002/wrna.1276 For further resources related to this article, please visit the http://wires.wiley.com/remdoi.cgi?doi=10.1002/wrna.1276WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Benjamin Cieply
- Departments of Medicine (Renal) and Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
228
|
Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, Davila J, Kocher JP, Patel SV, Gottesfeld JM, Baratz KH, Wieben ED. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J Biol Chem 2015; 290:5979-90. [PMID: 25593321 PMCID: PMC4358235 DOI: 10.1074/jbc.m114.621607] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Ross A Aleff
- the Departments of Biochemistry and Molecular Biology
| | - Elisabetta Soragni
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | | | | | | | | - Joel M Gottesfeld
- From the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | - Eric D Wieben
- the Departments of Biochemistry and Molecular Biology,
| |
Collapse
|
229
|
Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn 2015; 244:377-90. [PMID: 25504326 DOI: 10.1002/dvdy.24240] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | | |
Collapse
|
230
|
Ohsawa N, Koebis M, Mitsuhashi H, Nishino I, Ishiura S. ABLIM1 splicing is abnormal in skeletal muscle of patients with DM1 and regulated by MBNL, CELF and PTBP1. Genes Cells 2014; 20:121-34. [PMID: 25403273 DOI: 10.1111/gtc.12201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-mediated disorder characterized by muscle weakness, cardiac defects and multiple symptoms and is caused by expanded CTG repeats within the 3' untranslated region of the DMPK gene. In this study, we found abnormal splicing of actin-binding LIM protein 1 (ABLIM1) in skeletal muscles of patients with DM1 and a DM1 mouse model (HSA(LR) ). An exon 11 inclusion isoform is expressed in skeletal muscle and heart of non-DM1 individuals, but not in skeletal muscle of patients with DM1 or other adult human tissues. Moreover, we determined that ABLIM1 splicing is regulated by several splice factors, including MBNL family proteins, CELF1, 2 and 6, and PTBP1, using a cellular splicing assay. MBNL proteins promoted the inclusion of ABLIM1 exon 11, but other proteins and expanded CUG repeats repressed exon 11 of ABLIM1. This result is consistent with the hypothesis that MBNL proteins are trapped by expanded CUG repeats and inactivated in DM1 and that CELF1 is activated in DM1. However, activation of PTBP1 has not been reported in DM1. Our results suggest that the exon 11 inclusion isoform of ABLIM1 may have a muscle-specific function, and its abnormal splicing could be related to muscle symptoms of DM1.
Collapse
Affiliation(s)
- Natsumi Ohsawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | | | | | |
Collapse
|
231
|
Neueder A, Bates GP. A common gene expression signature in Huntington's disease patient brain regions. BMC Med Genomics 2014; 7:60. [PMID: 25358814 PMCID: PMC4219025 DOI: 10.1186/s12920-014-0060-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background Gene expression data provide invaluable insights into disease mechanisms. In Huntington’s disease (HD), a neurodegenerative disease caused by a tri-nucleotide repeat expansion in the huntingtin gene, extensive transcriptional dysregulation has been reported. Conventional dysregulation analysis has shown that e.g. in the caudate nucleus of the post mortem HD brain the gene expression level of about a third of all genes was altered. Owing to this large number of dysregulated genes, the underlying relevance of expression changes is often lost in huge gene lists that are difficult to comprehend. Methods To alleviate this problem, we employed weighted correlation network analysis to archival gene expression datasets of HD post mortem brain regions. Results We were able to uncover previously unidentified transcription dysregulation in the HD cerebellum that contained a gene expression signature in common with the caudate nucleus and the BA4 region of the frontal cortex. Furthermore, we found that yet unassociated pathways, e.g. global mRNA processing, were dysregulated in HD. We provide evidence to show that, contrary to previous findings, mutant huntingtin is sufficient to induce a subset of stress response genes in the cerebellum and frontal cortex BA4 region. The comparison of HD with other neurodegenerative disorders showed that the immune system, in particular the complement system, is generally activated. We also demonstrate that HD mouse models mimic some aspects of the disease very well, while others, e.g. the activation of the immune system are inadequately reflected. Conclusion Our analysis provides novel insights into the molecular pathogenesis in HD and identifies genes and pathways as potential therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0060-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Neueder
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| | - Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
232
|
Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ, Goodwin M, Zhang C, Sobczak K, Thornton CA, Swanson MS. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell 2014; 56:311-322. [PMID: 25263597 PMCID: PMC4224598 DOI: 10.1016/j.molcel.2014.08.027] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/28/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Inhibition of muscleblind-like (MBNL) activity due to sequestration by microsatellite expansion RNAs is a major pathogenic event in the RNA-mediated disease myotonic dystrophy (DM). Although MBNL1 and MBNL2 bind to nascent transcripts to regulate alternative splicing during muscle and brain development, another major binding site for the MBNL protein family is the 3' untranslated region of target RNAs. Here, we report that depletion of Mbnl proteins in mouse embryo fibroblasts leads to misregulation of thousands of alternative polyadenylation events. HITS-CLIP and minigene reporter analyses indicate that these polyadenylation switches are a direct consequence of MBNL binding to target RNAs. Misregulated alternative polyadenylation also occurs in skeletal muscle in a mouse polyCUG model and human DM, resulting in the persistence of neonatal polyadenylation patterns. These findings reveal an additional developmental function for MBNL proteins and demonstrate that DM is characterized by misregulation of pre-mRNA processing at multiple levels.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Konstantinos Charizanis
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Mini Manchanda
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Moyi Li
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Dustin J Finn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Krzysztof Sobczak
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
233
|
Yu Z, Goodman LD, Shieh SY, Min M, Teng X, Zhu Y, Bonini NM. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum Mol Genet 2014; 24:954-62. [PMID: 25305073 DOI: 10.1093/hmg/ddu507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expanded non-coding RNA repeats of CUG and CCUG are the underlying genetic causes for myotonic dystrophy type 1 (DM1) and type 2 (DM2), respectively. A gain-of-function of these pathogenic repeat expansions is mediated at least in part by their abnormal interactions with RNA-binding proteins such as MBNL1 and resultant loss of activity of these proteins. To study pathogenic mechanisms of CCUG-repeat expansions in an animal model, we created a fly model of DM2 that expresses pure, uninterrupted CCUG-repeat expansions ranging from 16 to 720 repeats in length. We show that this fly model for DM2 recapitulates key features of human DM2 including RNA repeat-induced toxicity, ribonuclear foci formation and changes in alternative splicing. Interestingly, expression of two isoforms of MBNL1, MBNL135 and MBNL140, leads to cleavage and concurrent upregulation of the levels of the RNA-repeat transcripts, with MBNL140 having more significant effects than MBNL135. This property is shared with a fly CUG-repeat expansion model. Our results suggest a novel mechanism for interaction between the pathogenic RNA repeat expansions of myotonic dystrophy and MBNL1.
Collapse
Affiliation(s)
| | - Lindsey D Goodman
- Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Nancy M Bonini
- Department of Biology and Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
234
|
Kearse MG, Todd PK. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics 2014; 11:721-31. [PMID: 25005000 PMCID: PMC4391382 DOI: 10.1007/s13311-014-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide repeat expansions underlie numerous human neurological disorders. Repeats can trigger toxicity through multiple pathogenic mechanisms, including RNA gain-of-function, protein gain-of-function, and protein loss-of-function pathways. Traditionally, inference of the underlying pathogenic mechanism derives from the repeat location, with dominantly inherited repeats within transcribed noncoding sequences eliciting toxicity predominantly as RNA via sequestration of specific RNA binding proteins. However, recent findings question this assumption and suggest that repeats outside of annotated open reading frames may also trigger toxicity through a novel form of protein translational initiation known as repeat-associated non-AUG (RAN) translation. To date, RAN translation has been implicated in 4 nucleotide repeat expansion disorders: spinocerebellar ataxia type 8; myotonic dystrophy type 1 with CTG•CAG repeats; C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia with GGGGCC•GGCCCC repeats; and fragile X-associated tremor/ataxia syndrome with CGG repeats. RAN translation contributes to hallmark pathological characteristics in these disorders by producing homopolymeric or dipeptide repeat proteins. Here, we review what is known about RAN translation, with an emphasis on how differences in both repeat sequence and context may confer different requirements for unconventional initiation. We then discuss how this new mechanism of translational initiation might function in normal physiology and lay out a roadmap for addressing the numerous questions that remain.
Collapse
Affiliation(s)
- Michael G. Kearse
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter K. Todd
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
- />Veterans Affairs Medical Center, Ann Arbor, MI 48105 USA
| |
Collapse
|
235
|
Kino Y, Washizu C, Kurosawa M, Oma Y, Hattori N, Ishiura S, Nukina N. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Hum Mol Genet 2014; 24:740-56. [PMID: 25274774 DOI: 10.1093/hmg/ddu492] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization. We found that MBNL1 contains two classes of nuclear localization signal (NLS), a classical bipartite NLS and a novel conformational NLS. Alternative splicing of exon 7 acts as a switch between these NLS types and couples MBNL1 activity and intracellular localization. Depending on its nuclear localization, MBNL1 promoted nuclear accumulation of mutant RNA containing a CUG or CAG repeat, some of which produced proteins containing homopolymeric tracts such as polyglutamine. Furthermore, MBNL1 repressed the expression of these homopolymeric proteins including those presumably produced through repeat-associated non-ATG (RAN) translation. These results suggest that nuclear retention of expanded RNA reflects a novel role of MBNL proteins in repressing aberrant protein expression and may provide pathological and therapeutic implications for a wide range of repeat expansion diseases associated with nuclear RNA retention and/or RAN translation.
Collapse
Affiliation(s)
- Yoshihiro Kino
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan and
| | - Chika Washizu
- Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Yoko Oma
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 153-8902, Japan
| | - Nobutaka Hattori
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 153-8902, Japan
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
236
|
RBFOX1 cooperates with MBNL1 to control splicing in muscle, including events altered in myotonic dystrophy type 1. PLoS One 2014; 9:e107324. [PMID: 25211016 PMCID: PMC4161394 DOI: 10.1371/journal.pone.0107324] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022] Open
Abstract
With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4) genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1 tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1.
Collapse
|
237
|
Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res 2014; 42:10873-87. [PMID: 25183524 PMCID: PMC4176163 DOI: 10.1093/nar/gku767] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Muscleblind-like (MBNL) proteins are key regulators of precursor and mature mRNA metabolism in mammals. Based on published and novel data, we explore models of tissue-specific MBNL interaction with RNA. We portray MBNL domains critical for RNA binding and splicing regulation, and the structure of MBNL's normal and pathogenic RNA targets, particularly in the context of myotonic dystrophy (DM), in which expanded CUG or CCUG repeat transcripts sequester several nuclear proteins including MBNLs. We also review the properties of MBNL/RNA complex, including recent data obtained from UV cross-linking and immunoprecipitation (CLIP-Seq), and discuss how this interaction shapes normal MBNL-dependent alternative splicing regulation. Finally, we review how this acquired knowledge about the pathogenic RNA structure and nature of MBNL sequestration can be translated into the design of therapeutic strategies against DM.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Ewa Stepniak-Konieczna
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
238
|
Duan R, Sharma S, Xia Q, Garber K, Jin P. Towards Understanding RNA-Mediated Neurological Disorders. J Genet Genomics 2014; 41:473-84. [DOI: 10.1016/j.jgg.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
239
|
Sellier C, Usdin K, Pastori C, Peschansky VJ, Tassone F, Charlet-Berguerand N. The multiple molecular facets of fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2014; 6:23. [PMID: 25161746 PMCID: PMC4144988 DOI: 10.1186/1866-1955-6-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset inherited neurodegenerative disorder characterized by intentional tremor, gait ataxia, autonomic dysfunction, and cognitive decline. FXTAS is caused by the presence of a long CGG repeat tract in the 5′ UTR of the FMR1 gene. In contrast to Fragile X syndrome, in which the FMR1 gene harbors over 200 CGG repeats but is transcriptionally silent, the clinical features of FXTAS arise from a toxic gain of function of the elevated levels of FMR1 transcript containing the long CGG tract. However, how this RNA leads to neuronal cell dysfunction is unknown. Here, we discuss the latest advances in the current understanding of the possible molecular basis of FXTAS.
Collapse
Affiliation(s)
- Chantal Sellier
- Department of Translational Medicine, IGBMC, INSERM U964 Illkirch, France
| | - Karen Usdin
- Section on Gene Structure and Disease, NIDDK, National Institutes of Health, Bethesda MD 20892, USA
| | - Chiara Pastori
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami FL 33136, USA
| | - Veronica J Peschansky
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami FL 33136, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento CA 95817, USA ; MIND Institute, University of California Davis Medical Center, Sacramento CA 95817, USA
| | - Nicolas Charlet-Berguerand
- Department of Translational Medicine, IGBMC, INSERM U964 Illkirch, France ; Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, University of Strasbourg, 1 rue Laurent Fries, Illkirch F-67404, France
| |
Collapse
|
240
|
Malatesta M, Cardani R, Pellicciari C, Meola G. RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Front Aging Neurosci 2014; 6:196. [PMID: 25126079 PMCID: PMC4115624 DOI: 10.3389/fnagi.2014.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy
| | - Carlo Pellicciari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy ; Department of Neurology, University of Milan , Milan , Italy
| |
Collapse
|
241
|
Cheng AW, Shi J, Wong P, Luo KL, Trepman P, Wang ET, Choi H, Burge CB, Lodish HF. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood 2014; 124:598-610. [PMID: 24869935 PMCID: PMC4110662 DOI: 10.1182/blood-2013-12-542209] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/16/2014] [Indexed: 12/18/2022] Open
Abstract
The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA; Computational and Systems Biology Program, and
| | - Jiahai Shi
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Piu Wong
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | - Katherine L Luo
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Paula Trepman
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Eric T Wang
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Heejo Choi
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| | - Harvey F Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA; Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA; and
| |
Collapse
|
242
|
Pambrun T, Bortone A, Bois P, Degand B, Patri S, Mercier A, Chahine M, Chatelier A, Coisne D, Amiel A. Unmasked Brugada pattern by ajmaline challenge in patients with myotonic dystrophy type 1. Ann Noninvasive Electrocardiol 2014; 20:28-36. [PMID: 24943134 DOI: 10.1111/anec.12168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) generates missplicing of the SCN5A gene, encoding the cardiac sodium channel (Nav 1.5). Brugada syndrome, which partly results from Nav 1.5 dysfunction and causes increased VF occurrence, can be unmasked by ajmaline. We aimed to investigate the response to ajmaline challenge in DM1 patients and its potential impact on their sudden cardiac death risk stratification. METHODS Among 36 adult DM1 patients referred to our institution, electrophysiological study and ajmaline challenge were performed in 12 patients fulfilling the following criteria: (1) PR interval >200 ms or QRS duration >100 ms; (2) absence of complete left bundle branch block; (3) absence of permanent ventricular pacing; (4) absence of implantable cardioverter-defibrillator (ICD); (5) preserved left-ventricular ejection fraction >50%; and (6) absence of severe muscular impairment. Of note, DM1 patients with ajmaline-induced Brugada pattern (BrP) were screened for SCN5A. RESULTS In all the 12 patients studied, the HV interval was <70 ms. A BrP was unmasked in three patients but none carried an SCN5A mutation. Ajmaline-induced sustained ventricular tachycardia occurred in one patient with BrP, who finally received an ICD. The other patients did not present any cardiac event during the entire follow-up (15 ± 4 months). CONCLUSION Our study is the first to describe a high prevalence of ajmaline-induced BrP in DM1 patients. The indications, the safety, and the implications of ajmaline challenge in this particular setting need to be determined by larger prospective studies.
Collapse
Affiliation(s)
- Thomas Pambrun
- Cardiology Department, University Hospital of Poitiers, Poitiers, France; Cardiology Department, Les Franciscaines Private Hospital, Nîmes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
244
|
Cleary JD, Ranum LPW. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr Opin Genet Dev 2014; 26:6-15. [PMID: 24852074 DOI: 10.1016/j.gde.2014.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022]
Abstract
Microsatellite-expansion diseases are a class of neurological and neuromuscular disorders caused by the expansion of short stretches of repetitive DNA (e.g. GGGGCC, CAG, CTG …) within the human genome. Since their discovery 20 years ago, research into how microsatellites expansions cause disease has been examined using the model that these genes are expressed in one direction and that expansion mutations only encode proteins when located in an ATG-initiated open reading frame. The fact that these mutations are often bidirectionally transcribed combined with the recent discovery of repeat associated non-ATG (RAN) translation provides new perspectives on how these expansion mutations are expressed and impact disease. Two expansion transcripts and a set of unexpected RAN proteins must now be considered for both coding and 'non-coding' expansion disorders. RAN proteins have been reported in a growing number of diseases, including spinocerebellar ataxia type 8 (SCA8), myotonic dystrophy type 1 (DM1), Fragile-X tremor ataxia syndrome (FXTAS), and C9ORF72 amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD).
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
245
|
He F, Krans A, Freibaum BD, Taylor JP, Todd PK. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 2014; 23:5036-51. [PMID: 24920338 DOI: 10.1093/hmg/ddu216] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide repeat expansions can elicit neurodegeneration as RNA by sequestering specific RNA-binding proteins, preventing them from performing their normal functions. Conversely, mutations in RNA-binding proteins can trigger neurodegeneration at least partly by altering RNA metabolism. In Fragile X-associated tremor/ataxia syndrome (FXTAS), a CGG repeat expansion in the 5'UTR of the fragile X gene (FMR1) leads to progressive neurodegeneration in patients and CGG repeats in isolation elicit toxicity in Drosophila and other animal models. Here, we identify the amyotrophic lateral sclerosis (ALS)-associated RNA-binding protein TAR DNA-binding protein (TDP-43) as a suppressor of CGG repeat-induced toxicity in a Drosophila model of FXTAS. The rescue appears specific to TDP-43, as co-expression of another ALS-associated RNA-binding protein, FUS, exacerbates the toxic effects of CGG repeats. Suppression of CGG RNA toxicity was abrogated by disease-associated mutations in TDP-43. TDP-43 does not co-localize with CGG RNA foci and its ability to bind RNA is not required for rescue. TDP-43-dependent rescue does, however, require fly hnRNP A2/B1 homologues Hrb87F and Hrb98DE. Deletions in the C-terminal domain of TDP-43 that preclude interactions with hnRNP A2/B1 abolish TDP-43-dependent rescue of CGG repeat toxicity. In contrast, suppression of CGG repeat toxicity by hnRNP A2/B1 is not affected by RNAi-mediated knockdown of the fly TDP-43 orthologue, TBPH. Lastly, TDP-43 suppresses CGG repeat-triggered mis-splicing of an hnRNP A2/B1-targeted transcript. These data support a model in which TDP-43 suppresses CGG-mediated toxicity through interactions with hnRNP A2/B1 and suggest a convergence of pathogenic cascades between repeat expansion disorders and RNA-binding proteins implicated in neurodegenerative disease.
Collapse
Affiliation(s)
- Fang He
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA
| | - Brian D Freibaum
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA and
| | - J Paul Taylor
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA and
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA, VA Medical Center, Ann Arbor, MI 48105, USA
| |
Collapse
|
246
|
Wong CH, Nguyen L, Peh J, Luu LM, Sanchez J, Richardson SL, Tuccinardi T, Tsoi H, Chan WY, Chan HY, Baranger AM, Hergenrother PJ, Zimmerman SC. Targeting toxic RNAs that cause myotonic dystrophy type 1 (DM1) with a bisamidinium inhibitor. J Am Chem Soc 2014; 136:6355-61. [PMID: 24702247 PMCID: PMC4015652 DOI: 10.1021/ja5012146] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 01/28/2023]
Abstract
A working hypothesis for the pathogenesis of myotonic dystrophy type 1 (DM1) involves the aberrant sequestration of an alternative splicing regulator, MBNL1, by expanded CUG repeats, r(CUG)(exp). It has been suggested that a reversal of the myotonia and potentially other symptoms of the DM1 disease can be achieved by inhibiting the toxic MBNL1-r(CUG)(exp) interaction. Using rational design, we discovered an RNA-groove binding inhibitor (ligand 3) that contains two triaminotriazine units connected by a bisamidinium linker. Ligand 3 binds r(CUG)12 with a low micromolar affinity (K(d) = 8 ± 2 μM) and disrupts the MBNL1-r(CUG)12 interaction in vitro (K(i) = 8 ± 2 μM). In addition, ligand 3 is cell and nucleus permeable, exhibits negligible toxicity to mammalian cells, dissolves MBNL1-r(CUG)(exp) ribonuclear foci, and restores misregulated splicing of IR and cTNT in a DM1 cell culture model. Importantly, suppression of r(CUG)(exp) RNA-induced toxicity in a DM1 Drosophila model was observed after treatment with ligand 3. These results suggest ligand 3 as a lead for the treatment of DM1.
Collapse
Affiliation(s)
- Chun-Ho Wong
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Lien Nguyen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Jessie Peh
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Long M. Luu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Jeannette
S. Sanchez
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Stacie L. Richardson
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | | | - Ho Tsoi
- Laboratory of Drosophila
Research and School of Life Sciences and School of Biomedical
Sciences, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong SAR, The People's Republic
of China
| | - Wood Yee Chan
- Laboratory of Drosophila
Research and School of Life Sciences and School of Biomedical
Sciences, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong SAR, The People's Republic
of China
| | - H. Y.
Edwin Chan
- Laboratory of Drosophila
Research and School of Life Sciences and School of Biomedical
Sciences, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong SAR, The People's Republic
of China
| | - Anne M. Baranger
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Paul J. Hergenrother
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Steven C. Zimmerman
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| |
Collapse
|
247
|
Rehman S, Gladman JT, Periasamy A, Sun Y, Mahadevan MS. Development of an AP-FRET based analysis for characterizing RNA-protein interactions in myotonic dystrophy (DM1). PLoS One 2014; 9:e95957. [PMID: 24781112 PMCID: PMC4004549 DOI: 10.1371/journal.pone.0095957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023] Open
Abstract
Förster Resonance Energy Transfer (FRET) microscopy is a powerful tool used to identify molecular interactions in live or fixed cells using a non-radiative transfer of energy from a donor fluorophore in the excited state to an acceptor fluorophore in close proximity. FRET can be a very sensitive tool to study protein-protein and/or protein-nucleic acids interactions. RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy. Myotonic dystrophy (DM1) is caused by a (CTG)n repeat expansion in the 3′ UTR of the DMPK gene which results in nuclear retention of mutant DMPK transcripts in RNA foci. This results in toxic gain-of-function effects mediated through altered functions of RNA-binding proteins (e.g. MBNL1, hnRNPH, CUGBP1). In this study we demonstrate the potential of a new acceptor photobleaching assay to measure FRET (AP-FRET) between RNA and protein. We chose to focus on the interaction between MBNL1 and mutant DMPK mRNA in cells from DM1 patients due to the strong microscopic evidence of their co-localization. Using this technique we have direct evidence of intracellular interaction between MBNL1 and the DMPK RNA. Furthermore using the AP-FRET assay and MBNL1 mutants, we show that all four zinc-finger motifs in MBNL1 are crucial for MBNL1-RNA foci interactions. The data derived using this new assay provides compelling evidence for the interaction between RNA binding proteins and RNA foci, and mechanistic insights into MBNL1-RNA foci interaction demonstrating the power of AP-FRET in examining RNA-Protein interactions in DM1.
Collapse
Affiliation(s)
- Shagufta Rehman
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan T Gladman
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ammasi Periasamy
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yuansheng Sun
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
248
|
Santoro M, Piacentini R, Masciullo M, Bianchi MLE, Modoni A, Podda MV, Ricci E, Silvestri G, Grassi C. Alternative splicing alterations of Ca2+handling genes are associated with Ca2+signal dysregulation in myotonic dystrophy type 1 (DM1) and type 2 (DM2) myotubes. Neuropathol Appl Neurobiol 2014; 40:464-76. [DOI: 10.1111/nan.12076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Marcella Masciullo
- Department of Geriatrics, Neuroscience and Orthopedics; Center of Neuromuscular Disorders; Università Cattolica; Rome Italy
- IRCCS San Raffaele Pisana; Rome Italy
| | - Maria Laura Ester Bianchi
- Department of Geriatrics, Neuroscience and Orthopedics; Center of Neuromuscular Disorders; Università Cattolica; Rome Italy
| | - Anna Modoni
- Department of Geriatrics, Neuroscience and Orthopedics; Center of Neuromuscular Disorders; Università Cattolica; Rome Italy
| | | | - Enzo Ricci
- Department of Geriatrics, Neuroscience and Orthopedics; Center of Neuromuscular Disorders; Università Cattolica; Rome Italy
| | - Gabriella Silvestri
- Department of Geriatrics, Neuroscience and Orthopedics; Center of Neuromuscular Disorders; Università Cattolica; Rome Italy
| | - Claudio Grassi
- Institute of Human Physiology; Università Cattolica; Rome Italy
| |
Collapse
|
249
|
Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation. Heart Rhythm 2014; 11:1393-400. [PMID: 24768612 DOI: 10.1016/j.hrthm.2014.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1), a muscular dystrophy due to CTG expansion in the DMPK gene, can cause cardiac conduction disorders and sudden death. These cardiac manifestations are similar to those observed in loss-of-function SCN5A mutations, which are also responsible for Brugada syndrome (BrS). OBJECTIVE The purpose of this study was to investigate DM1 effects on clinical expression of a loss-of-function SCN5A mutation causing BrS. METHODS We performed complete clinical evaluation, including ajmaline test, in 1 family combining DM1 and BrS. We screened the known BrS susceptibility genes. We characterized an SCN5A mutation using whole-cell patch-clamp experiments associated with cell surface biotinylation. RESULTS The proband, a 15-year-old female, was a survivor of out-of-hospital cardiac arrest with ventricular fibrillation. She combined a DMPK CTG expansion from the father's side and an SCN5A mutation (S910L) from the mother's side. S910L is a trafficking defective mutant inducing a dominant negative effect when transfected with wild-type Nav1.5. This loss-of-function SCN5A mutation caused a Brugada phenotype during the mother's ajmaline test. Surprisingly, in the father, a DM1 patient without SCN5A mutation, ajmaline also unmasked a Brugada phenotype. Furthermore, association of both genetic abnormalities in the proband exacerbated the response to ajmaline with a massive conduction defect. CONCLUSION Our study is the first to describe the deleterious effect of DM1 on clinical expression of a loss-of-function SCN5A mutation and to show a provoked BrS phenotype in a DM1 patient. The modification of the ECG pattern by ajmaline supports the hypothesis of a link between DM1 and Nav1.5 loss of -function.
Collapse
|
250
|
Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2. PLoS One 2014; 9:e93983. [PMID: 24722564 PMCID: PMC3983107 DOI: 10.1371/journal.pone.0093983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/10/2014] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.
Collapse
|