201
|
Broude NE. Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol 2011; 80:1137-47. [DOI: 10.1111/j.1365-2958.2011.07652.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
202
|
Abstract
High-throughput gene expression screens provide a quantitative picture of the average expression signature of biological samples. However, the analysis of spatial gene expression patterns with single-cell resolution requires quantitative in situ measurement techniques. Here we describe recent technological advances in RNA fluorescence in situ hybridization (FISH) techniques that facilitate detection of individual fluorescently labeled mRNA molecules of practically any endogenous gene. These methods, which are based on advances in probe design, imaging technology and image processing, enable the absolute measurement of transcript abundance in individual cells with single-molecule resolution.
Collapse
|
203
|
Urbinati CR, Long RM. Techniques for following the movement of single RNAs in living cells. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:601-9. [PMID: 21957047 DOI: 10.1002/wrna.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability to investigate gene expression has evolved from static approaches that analyze a population of cells to dynamic approaches that analyze individual living cells. During the last decade, a number of different fluorescent methods have been developed for monitoring the dynamics of single RNAs in living cells. Spatial-temporal analyses of single RNAs in living cells have provided novel insight into nuclear transport, RNA localization, and decay. Technical advances with these approaches allow for single molecule detection, providing an unprecedented view of RNA movement. In this article, we discuss the methods for observing single RNAs in living cells, highlighting the advantages and limitations of each method.
Collapse
Affiliation(s)
- Carl R Urbinati
- Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
| | | |
Collapse
|
204
|
Ball DA, Ahn TH, Wang P, Chen KC, Cao Y, Tyson JJ, Peccoud J, Baumann WT. Stochastic exit from mitosis in budding yeast: model predictions and experimental observations. Cell Cycle 2011; 10:999-1009. [PMID: 21350333 PMCID: PMC3100879 DOI: 10.4161/cc.10.6.14966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
Unlike many mutants that are completely viable or inviable, the CLB2-dbΔ clb5Δ mutant of Saccharomyces cerevisiae is inviable in glucose but partially viable on slower growth media such as raffinose. On raffinose, the mutant cells can bud and divide but in each cycle there is a chance that a cell will fail to divide (telophase arrest), causing it to exit the cell cycle. This effect gives rise to a stochastic phenotype that cannot be explained by a deterministic model. We measure the inter-bud times of wild type and mutant cells growing on raffinose and compute statistics and distributions to characterize the mutant's behavior. We convert a detailed deterministic model of the budding yeast cell cycle to a stochastic model and determine the extent to which it captures the stochastic phenotype of the mutant strain. Predictions of the mathematical model are in reasonable agreement with our experimental data and suggest directions for improving the model. Ultimately, the ability to accurately model stochastic phenotypes may prove critical to understanding disease and therapeutic interventions in higher eukaryotes.
Collapse
Affiliation(s)
- David A Ball
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
206
|
Okabe K, Harada Y, Zhang J, Tadakuma H, Tani T, Funatsu T. Real time monitoring of endogenous cytoplasmic mRNA using linear antisense 2'-O-methyl RNA probes in living cells. Nucleic Acids Res 2011; 39:e20. [PMID: 21106497 PMCID: PMC3045578 DOI: 10.1093/nar/gkq1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/27/2010] [Accepted: 11/05/2010] [Indexed: 12/21/2022] Open
Abstract
Visualization and monitoring of endogenous mRNA in the cytoplasm of living cells promises a significant comprehension of refined post-transcriptional regulation. Fluorescently labeled linear antisense oligonucleotides can bind to natural mRNA in a sequence-specific way and, therefore, provide a powerful tool in probing endogenous mRNA. Here, we investigated the feasibility of using linear antisense probes to monitor the variable and dynamic expression of endogenous cytoplasmic mRNAs. Two linear antisense 2'-O-methyl RNA probes, which have different interactive fluorophores at the 5'-end of one probe and at the 3'-end of the other, were used to allow fluorescence resonance energy transfer (FRET) upon hybridization to the target mRNA. By characterizing the formation of the probe-mRNA hybrids in living cells, we found that the probe composition and concentration are crucial parameters in the visualization of endogenous mRNA with high specificity. Furthermore, rapid hybridization (within 1 min) of the linear antisense probe enabled us to visualize dynamic processes of endogenous c-fos mRNA, such as fast elevation of levels after gene induction and the localization of c-fos mRNA in stress granules in response to cellular stress. Thus, our approach provides a basis for real time monitoring of endogenous cytoplasmic mRNA in living cells.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshie Harada
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junwei Zhang
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hisashi Tadakuma
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tokio Tani
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
207
|
Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V, Lopez-Jones M, Singer RH. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 2011; 8:165-70. [PMID: 21240280 PMCID: PMC3076588 DOI: 10.1038/nmeth.1551] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/10/2010] [Indexed: 01/04/2023]
Abstract
Live-cell single mRNA imaging is a powerful tool but has been restricted in higher eukaryotes to artificial cell lines and reporter genes. We describe an approach that enables live-cell imaging of single endogenous labeled mRNA molecules transcribed in primary mammalian cells and tissue. We generated a knock-in mouse line with an MS2 binding site (MBS) cassette targeted to the 3' untranslated region of the essential β-actin gene. As β-actin-MBS was ubiquitously expressed, we could uniquely address endogenous mRNA regulation in any tissue or cell type. We simultaneously followed transcription from the β-actin alleles in real time and observed transcriptional bursting in response to serum stimulation with precise temporal resolution. We tracked single endogenous labeled mRNA particles being transported in primary hippocampal neurons. The MBS cassette also enabled high-sensitivity fluorescence in situ hybridization (FISH), allowing detection and localization of single β-actin mRNA molecules in various mouse tissues.
Collapse
Affiliation(s)
- Timothée Lionnet
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss Lipper Biophotonics Center. Albert Einstein College of Medicine
| | - Kevin Czaplinski
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xavier Darzacq
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS UMR 8197, Paris, France
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Amber L. Wells
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey A. Chao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hye Yoon Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss Lipper Biophotonics Center. Albert Einstein College of Medicine
| | - Valeria de Turris
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Melissa Lopez-Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss Lipper Biophotonics Center. Albert Einstein College of Medicine
| |
Collapse
|
208
|
Veith R, Sorkalla T, Baumgart E, Anzt J, Häberlein H, Tyagi S, Siebrasse JP, Kubitscheck U. Balbiani ring mRNPs diffuse through and bind to clusters of large intranuclear molecular structures. Biophys J 2011; 99:2676-85. [PMID: 20959109 DOI: 10.1016/j.bpj.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 07/07/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022] Open
Abstract
A detailed conception of intranuclear messenger ribonucleoprotein particle (mRNP) dynamics is required for the understanding of mRNP processing and gene expression outcome. We used complementary state-of-the-art fluorescence techniques to quantify native mRNP mobility at the single particle level in living salivary gland cell nuclei. Molecular beacons and fluorescent oligonucleotides were used to specifically label BR2.1 mRNPs by an in vivo fluorescence in situ hybridization approach. We characterized two major mobility components of the BR2.1 mRNPs. These components with diffusion coefficients of 0.3 ± 0.02 μm²/s and 0.73 ± 0.03 μm²/s were observed independently of the staining method and measurement technique used. The mobility analysis of inert tracer molecules revealed that the gland cell nuclei contain large molecular nonchromatin structures, which hinder the mobility of large molecules and particles. The mRNPs are not only hindered by these mobility barriers, but in addition also interact presumably with these structures, what further reduces their mobility and effectively leads to the occurrence of the two diffusion coefficients. In addition, we provide evidence that the remarkably high mobility of the large, 50 nm-sized BR2.1 mRNPs was due to the absence of retarding chromatin.
Collapse
Affiliation(s)
- Roman Veith
- Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein EM, Neugebauer KM, Darzacq X, Shav-Tal Y. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 2011; 9:e1000573. [PMID: 21264352 PMCID: PMC3019111 DOI: 10.1371/journal.pbio.1000573] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023] Open
Abstract
Kinetic analysis shows that RNA polymerase elongation kinetics are not modulated by co-transcriptional splicing and that post-transcriptional splicing can proceed at the site of transcription without the presence of the polymerase. RNA processing events that take place on the transcribed pre-mRNA include capping, splicing, editing, 3′ processing, and polyadenylation. Most of these processes occur co-transcriptionally while the RNA polymerase II (Pol II) enzyme is engaged in transcriptional elongation. How Pol II elongation rates are influenced by splicing is not well understood. We generated a family of inducible gene constructs containing increasing numbers of introns and exons, which were stably integrated in human cells to serve as actively transcribing gene loci. By monitoring the association of the transcription and splicing machineries on these genes in vivo, we showed that only U1 snRNP localized to the intronless gene, consistent with a splicing-independent role for U1 snRNP in transcription. In contrast, all snRNPs accumulated on intron-containing genes, and increasing the number of introns increased the amount of spliceosome components recruited. This indicates that nascent RNA can assemble multiple spliceosomes simultaneously. Kinetic measurements of Pol II elongation in vivo, Pol II ChIP, as well as use of Spliceostatin and Meayamycin splicing inhibitors showed that polymerase elongation rates were uncoupled from ongoing splicing. This study shows that transcription elongation kinetics proceed independently of splicing at the model genes studied here. Surprisingly, retention of polyadenylated mRNA was detected at the transcription site after transcription termination. This suggests that the polymerase is released from chromatin prior to the completion of splicing, and the pre-mRNA is post-transcriptionally processed while still tethered to chromatin near the gene end. The pre-mRNA emerging from RNA polymerase II during eukaryotic transcription undergoes a series of processing events. These include 5′-capping, intron excision and exon ligation during splicing, 3′-end processing, and polyadenylation. Processing events occur co-transcriptionally, meaning that a variety of enzymes assemble on the pre-mRNA while the polymerase is still engaged in transcription. The concept of co-transcriptional mRNA processing raises questions about the possible coupling between the transcribing polymerase and the processing machineries. Here we examine how the co-transcriptional assembly of the splicing machinery (the spliceosome) might affect the elongation kinetics of the RNA polymerase. Using live-cell microscopy, we followed the kinetics of transcription of genes containing increasing numbers of introns and measured the recruitment of transcription and splicing factors. Surprisingly, a sub-set of splicing factors was recruited to an intronless gene, implying that there is a polymerase-coupled scanning mechanism for intronic sequences. There was no difference in polymerase elongation rates on genes with or without introns, suggesting that the spliceosome does not modulate elongation kinetics. Experiments including inhibition of splicing or transcription, together with stochastic computational simulation, demonstrated that pre-mRNAs can be retained on the gene when polymerase termination precedes completion of splicing. Altogether we show that polymerase elongation kinetics are not affected by splicing events on the emerging pre-mRNA, that increased splicing leads to more splicing factors being recruited to the mRNA, and that post-transcriptional splicing can proceed at the site of transcription in the absence of the polymerase.
Collapse
Affiliation(s)
- Yehuda Brody
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Neufeld
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Nicole Bieberstein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastien Z. Causse
- Functional Imaging of Transcription, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, CNRS, UMR8197, Paris, France
| | - Eva-Maria Böhnlein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karla M. Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Xavier Darzacq
- Functional Imaging of Transcription, Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, CNRS, UMR8197, Paris, France
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
210
|
Zhang HY, Hill RJ. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes. J R Soc Interface 2011; 8:127-43. [PMID: 20504804 PMCID: PMC3024821 DOI: 10.1098/rsif.2010.0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2010] [Indexed: 12/23/2022] Open
Abstract
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction-diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient D(s) at concentrations in the range c ≈ 0.5-5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation D(s) = D(0)/(1 + αc), where D(0) ≈ 3.36 µm(2) s(-1) and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar-Abney-Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius a(e) ≈ 2.41 nm. On the other hand, the Bussell-Koch-Hammer theory, which includes hydrodynamic interactions, yields a(e) ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, R(F) ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, a(l) ≈ 0.46 nm. The diffusion coefficient at infinite dilution D(0) was interpreted using the Evans-Sackmann theory, furnishing an inter-leaflet frictional drag coefficient b(s) ≈ 1.33 × 10(8) N s m(-3). Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.
Collapse
Affiliation(s)
| | - Reghan J. Hill
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
211
|
Mao YS, Sunwoo H, Zhang B, Spector DL. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 2011; 13:95-101. [PMID: 21170033 PMCID: PMC3007124 DOI: 10.1038/ncb2140] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/20/2010] [Indexed: 01/05/2023]
Abstract
The cell nucleus is a highly compartmentalized organelle harbouring a variety of dynamic membraneless nuclear bodies. How these subnuclear domains are established and maintained is not well understood. Here, we investigate the molecular mechanism of how one nuclear body, the paraspeckle, is assembled and organized. Paraspeckles are discrete ribonucleoprotein bodies found in mammalian cells and implicated in nuclear retention of hyperedited mRNAs. We developed a live-cell imaging system that allows for the inducible transcription of Men ɛ/β (also known as Neat1; ref. 12) noncoding RNAs (ncRNAs) and the direct visualization of the recruitment of paraspeckle proteins. Using this system, we demonstrate that Men ɛ/β ncRNAs are essential to initiate the de novo assembly of paraspeckles. These newly formed structures effectively harbour nuclear-retained mRNAs confirming that they are bona fide functional paraspeckles. By three independent approaches, we show that it is the act of Men ɛ/β transcription, but not ncRNAs alone, that regulates paraspeckle maintenance. Finally, fluorescence recovery after photobleaching (FRAP) analyses supported a critical structural role for Men ɛ/β ncRNAs in paraspeckle organization. This study establishes a model in which Men ɛ/β ncRNAs serve as a platform to recruit proteins to assemble paraspeckles.
Collapse
Affiliation(s)
- Yuntao S. Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Hongjae Sunwoo
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Bin Zhang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - David L. Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
212
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
213
|
Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma 2010; 120:23-38. [PMID: 21079985 PMCID: PMC3028071 DOI: 10.1007/s00412-010-0298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023]
Abstract
Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP. Processes taking place at the gene locus and at the nuclear pore complex are crucial for integrating export as an essential part of gene expression. Spatial, temporal and structural aspects of these events have been highlighted in analyses of the Balbiani ring genes.
Collapse
|
214
|
Huranová M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. ACTA ACUST UNITED AC 2010; 191:75-86. [PMID: 20921136 PMCID: PMC2953428 DOI: 10.1083/jcb.201004030] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GFP-tagged snRNP components reveal the dynamics and rate for spliceosome assembly in vivo. Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15–30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.
Collapse
Affiliation(s)
- Martina Huranová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner WE. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc Natl Acad Sci U S A 2010; 107:17864-71. [PMID: 20921361 PMCID: PMC2964242 DOI: 10.1073/pnas.1012868107] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Optical imaging of single biomolecules and complexes in living cells provides a useful window into cellular processes. However, the three-dimensional dynamics of most important biomolecules in living cells remains essentially uncharacterized. The precise subcellular localization of mRNA-protein complexes plays a critical role in the spatial and temporal control of gene expression, and a full understanding of the control of gene expression requires precise characterization of mRNA transport dynamics beyond the optical diffraction limit. In this paper, we describe three-dimensional tracking of single mRNA particles with 25-nm precision in the x and y dimensions and 50-nm precision in the z dimension in live budding yeast cells using a microscope with a double-helix point spread function. Two statistical methods to detect intermittently confined and directed transport were used to quantify the three-dimensional trajectories of mRNA for the first time, using ARG3 mRNA as a model. Measurements and analysis show that the dynamics of ARG3 mRNA molecules are mostly diffusive, although periods of non-Brownian confinement and directed transport are observed. The quantitative methods detailed in this paper can be broadly applied to the study of mRNA localization and the dynamics of diverse other biomolecules in a wide variety of cell types.
Collapse
Affiliation(s)
| | - Jason M. Casolari
- Howard Hughes Medical Institute; and
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5080
| | | | - Patrick O. Brown
- Howard Hughes Medical Institute; and
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5080
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080
| |
Collapse
|
216
|
Interchromatin granule clusters of the scorpionfly oocytes contain poly(A)+RNA, heterogeneous ribonucleoproteins A/B and mRNA export factor NXF1. Cell Biol Int 2010; 34:1163-70. [DOI: 10.1042/cbi20090434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
217
|
Yum K, Wang N, Yu MF. Electrochemically controlled deconjugation and delivery of single quantum dots into the nucleus of living cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2109-2113. [PMID: 20827737 PMCID: PMC3018353 DOI: 10.1002/smll.201000855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
218
|
Chubb JR, Liverpool TB. Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr Opin Genet Dev 2010; 20:478-84. [PMID: 20638837 DOI: 10.1016/j.gde.2010.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
With a developing appreciation of how noisy gene expression can be, and difficulties in deciphering conventional gene expression data into cell control mechanisms, it has become clear that single cell techniques for measuring transcription are necessary to illuminate basic cell regulation strategies. The resultant use of in situ hybridisation and live cell RNA visualisation approaches in single cells revealed transcription is not adequately reflected by the smooth, seamless process we tend to infer from standard measures of RNA level. When RNA production is measured in single cells, the process of transcription has been shown to occur in bursts, or pulses. This review will highlight the evidence for these phenomena, the proposed mechanisms underlying discontinuity, and the biological implications of such behaviour.
Collapse
Affiliation(s)
- Jonathan R Chubb
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| | | |
Collapse
|
219
|
Lelandais G, Devaux F. Comparative Functional Genomics of Stress Responses in Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:501-15. [DOI: 10.1089/omi.2010.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot, Paris France
| | - Frédéric Devaux
- Laboratoire de génomique des microorganismes, CNRS FRE3214, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| |
Collapse
|
220
|
Prasanth KV, Camiolo M, Chan G, Tripathi V, Denis L, Nakamura T, Hübner MR, Spector DL. Nuclear organization and dynamics of 7SK RNA in regulating gene expression. Mol Biol Cell 2010; 21:4184-96. [PMID: 20881057 PMCID: PMC2993747 DOI: 10.1091/mbc.e10-02-0105] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have identified 7SK RNA to be enriched in nuclear speckles. Knock-down of 7SK results in the mislocalization of nuclear speckle constituents, and the transcriptional up-regulation of a reporter gene locus. 7SK RNA transiently associates with the locus upon transcriptional down-regulation correlating with the displacement of pTEF-b. Noncoding RNAs play important roles in various aspects of gene regulation. We have identified 7SK RNA to be enriched in nuclear speckles or interchromatin granule clusters (IGCs), a subnuclear domain enriched in pre-mRNA processing factors. 7SK RNA, in association with HEXIM 1 and 2, is involved in the inhibition of transcriptional elongation by RNA polymerase II. Inhibition occurs via sequestration of the active P-TEFb kinase complex (CDK 9 and Cyclin T1/T2a/b or K) that is involved in phosphorylating the C-terminal domain of RNA polymerase II. Our results demonstrate that knock-down of 7SK RNA, by specific antisense oligonucleotides, results in the mislocalization of nuclear speckle constituents in a transcription-dependent manner, and the transcriptional up-regulation of a RNA polymerase II transcribed reporter gene locus. Furthermore, 7SK RNA transiently associates with a stably integrated reporter gene locus upon transcriptional down-regulation and its presence correlates with the efficient displacement of P-TEFb constituents from the locus. Our results suggest that 7SK RNA plays a role in modulating the available level of P-TEFb upon transcriptional down-regulation by sequestering its constituents in nuclear speckles.
Collapse
|
221
|
Mor A, Shav-Tal Y. Dynamics and kinetics of nucleo-cytoplasmic mRNA export. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:388-401. [PMID: 21956938 DOI: 10.1002/wrna.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of the gene expression pathway in eukaryotic cells results in the nuclear transcription of mRNA molecules, many of which are destined for translation into protein by cytoplasmic ribosomes. mRNA transcripts are exported from the nucleus to the cytoplasm via passage through nuclear pore complexes (NPCs), ∼125 MDa supramolecular complexes set in the double-membraned nuclear envelope. Understanding the kinetics of mRNA translocation, from the point of transcription through export, localization, translation, and degradation, is of fundamental interest since gene expression is regulated at all the different levels of this pathway. In this review, we delineate the steps taken by an mRNA molecule in transit to the nuclear envelope and during mRNA export, with specific focus on the dynamic aspects of nucleo-cytoplasmic mRNA transport as revealed by electron microscopy and live-cell imaging.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
222
|
Mor A, Ben-Yishay R, Shav-Tal Y. On the right track: following the nucleo-cytoplasmic path of an mRNA. Nucleus 2010; 1:492-8. [PMID: 21327092 DOI: 10.4161/nucl.1.6.13515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
The transcription machinery in the eukaryotic nucleus generates messenger RNA molecules that translocate through the nucleoplasm, anchor to a nuclear pore, and find their way out into the cytoplasm. The dynamic aspects of these steps in the expression pathway were examined in order to understand the kinetic time-frames of gene activation and message dissemination. Utilizing live-cell imaging and tracking of single mRNPs containing different sized mRNAs and varying numbers of introns and exons, it was possible to quantify the temporal and spatial characteristics of the nucleoplasmic travels of mRNPs as well as the kinetics of translocation through the nuclear pore.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
223
|
Spiluttini B, Gu B, Belagal P, Smirnova AS, Nguyen VT, Hébert C, Schmidt U, Bertrand E, Darzacq X, Bensaude O. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J Cell Sci 2010; 123:2085-93. [PMID: 20519584 DOI: 10.1242/jcs.061358] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous non-coding RNAs are known to be involved in the regulation of gene expression. In this work, we analyzed RNAs that co-immunoprecipitated with human RNA polymerase II from mitotic cell extracts and identified U1 small nuclear RNA (snRNA) as a major species. To investigate a possible splicing-independent recruitment of U1 snRNA to transcription units, we established cell lines having integrated a reporter gene containing a functional intron or a splicing-deficient construction. Recruitment of U snRNAs and some splicing factors to transcription sites was evaluated using fluorescence in situ hybridization (FISH) and immunofluorescence. To analyze imaging data, we developed a quantitative procedure, 'radial analysis', based on averaging data from multiple fluorescence images. The major splicing snRNAs (U2, U4 and U6 snRNAs) as well as the U2AF65 and SC35 splicing factors were found to be recruited only to transcription units containing a functional intron. By contrast, U1 snRNA, the U1-70K (also known as snRNP70) U1-associated protein as well as the ASF/SF2 (also known as SFRS1) serine/arginine-rich (SR) protein were efficiently recruited both to normally spliced and splicing-deficient transcription units. The constitutive association of U1 small nuclear ribonucleoprotein (snRNP) with the transcription machinery might play a role in coupling transcription with pre-mRNA maturation.
Collapse
Affiliation(s)
- Béatrice Spiluttini
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Messenger RNAs (mRNAs) are synthesized in the cell nucleus and transported through nuclear pores to the cytoplasm for protein synthesis. Reporting in Nature Cell Biology, Mor et al. now track in living cells in real time the journey of single mRNA molecules as they transit from nucleus to cytoplasm.
Collapse
|
225
|
de Almeida SF, García-Sacristán A, Custódio N, Carmo-Fonseca M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res 2010; 38:8015-26. [PMID: 20699273 PMCID: PMC3001075 DOI: 10.1093/nar/gkq703] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein in the cytoplasm requires precise and extensive modification of the nascent transcript. Any failure that compromises the integrity of an mRNA may cause its retention in the nucleus and trigger its degradation. Multiple studies indicate that mRNAs with processing defects accumulate in nuclear foci or ‘dots’ located near the site of transcription, but how exactly are defective RNAs recognized and tethered is still unknown. Here, we present evidence suggesting that unprocessed β-globin transcripts render RNA polymerase II (Pol II) incompetent for termination and that this quality control process requires the integrity of the nuclear exosome. Our results show that unprocessed pre-mRNAs remain tethered to the DNA template in association with Pol II, in an Rrp6-dependent manner. This reveals an unprecedented link between nuclear RNA surveillance, the exosome and Pol II transcriptional termination.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
226
|
Single-allele analysis of transcription kinetics in living mammalian cells. Nat Methods 2010; 7:631-3. [PMID: 20639867 DOI: 10.1038/nmeth.1482] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/28/2010] [Indexed: 11/09/2022]
Abstract
We generated a system for in vivo visualization and analysis of mammalian mRNA transcriptional kinetics of single alleles in real time, using single-gene integrations. We obtained high-resolution transcription measurements of a single cyclin D1 allele under endogenous or viral promoter control, including quantification of temporal kinetics of transcriptional bursting, promoter firing, nascent mRNA numbers and transcription rates during the cell cycle, and in relation to DNA replication.
Collapse
|
227
|
Müller I, Boyle S, Singer RH, Bickmore WA, Chubb JR. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS One 2010; 5:e11560. [PMID: 20644634 PMCID: PMC2903487 DOI: 10.1371/journal.pone.0011560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/13/2010] [Indexed: 12/11/2022] Open
Abstract
Despite the distinctive structure of mitotic chromosomes, it has not been possible to visualise individual chromosomes in living interphase cells, where chromosomes spend over 90% of their time. Studies of interphase chromosome structure and dynamics use fluorescence in-situ hybridisation (FISH) on fixed cells, which potentially damages structure and loses dynamic information. We have developed a new methodology, involving photoactivation of labelled histone H3 at mitosis, to visualise individual and specific human chromosomes in living interphase cells. Our data revealed bulk chromosome volume and morphology are established rapidly after mitosis, changing only incrementally after the first hour of G1. This contrasted with the behaviour of specific loci on labelled chromosomes, which showed more progressive reorganisation, and revealed that "looping out" of chromatin from chromosome territories is a dynamic state. We measured considerable heterogeneity in chromosome decondensation, even between sister chromatids, which may reflect local structural impediments to decondensation and could potentially amplify transcriptional noise. Chromosome structure showed tremendous resistance to inhibitors of transcription, histone deacetylation and chromatin remodelling. Together, these data indicate steric constraints determine structure, rather than innate chromosome architecture or function-driven anchoring, with interphase chromatin organisation governed primarily by opposition between needs for decondensation and the space available for this to happen.
Collapse
Affiliation(s)
- Iris Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan R. Chubb
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
228
|
Abstract
Innovations in live-cell microscopy and single-molecule analysis have allowed a new direct view of nuclear messenger RNA dynamics. A new study extends previous analyses of mRNA-protein intranuclear transport and links this critical step to the kinetics of moving through nuclear pore complexes. Seeing nuclear mRNA on the move will impact future work on pore translocation and nuclear organization.
Collapse
|
229
|
Maiuri P, Knezevich A, Bertrand E, Marcello A. Real-time imaging of the HIV-1 transcription cycle in single living cells. Methods 2010; 53:62-7. [PMID: 20600934 DOI: 10.1016/j.ymeth.2010.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/29/2010] [Accepted: 06/19/2010] [Indexed: 01/09/2023] Open
Abstract
The dynamic nature of cellular processes is emerging as an important modulator of physiological and pathological events. The key event in the life cycle of the human immunodeficiency virus type 1 (HIV-1) is transcription: it controls both viral gene expression and the latent phenotype. The basal transcription machinery and cellular and viral regulatory elements are dynamically recruited to the proviral DNA embedded into chromatin and to newly synthesized viral RNA. Their interactions determine fundamental steps, such as RNA polymerase recruitment, initiation, elongation, splicing, termination, and processing of pre-mRNA. The study of these events requires a novel armamentarium of techniques for live-cell imaging and fluorescence tagging of proteins and nucleic acids. The final outcome should not be only a descriptive view of the process but, most importantly, a quantitative analysis of the kinetics involved. Here, we provide an overview of the methodologies available for fluorescent labeling proteins and nucleic acids in live-cell imaging. We also describe the concept of fluorescent recovery after photobleaching (FRAP) and how it can be used to obtain information about HIV RNA transcription dynamics in living cells.
Collapse
Affiliation(s)
- Paolo Maiuri
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
230
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
231
|
Wang D, Bodovitz S. Single cell analysis: the new frontier in 'omics'. Trends Biotechnol 2010; 28:281-90. [PMID: 20434785 PMCID: PMC2876223 DOI: 10.1016/j.tibtech.2010.03.002] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/09/2023]
Abstract
Cellular heterogeneity that arises from stochastic expression of genes, proteins and metabolites is a fundamental principle of cell biology, but single cell analysis has been beyond the capability of 'omics' technology. This is rapidly changing with the recent examples of single cell genomics, transcriptomics, proteomics and metabolomics. The rate of change is expected to accelerate owing to emerging technologies that range from micro/nanofluidics to microfabricated interfaces for mass spectrometry to third- and fourth-generation automated DNA sequencers. As described in this review, single cell analysis is the new frontier in omics, and single cell omics has the potential to transform systems biology through new discoveries derived from cellular heterogeneity.
Collapse
Affiliation(s)
- Daojing Wang
- Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | |
Collapse
|
232
|
Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, Singer RH, Shav-Tal Y. The life of an mRNA in space and time. J Cell Sci 2010; 123:1761-74. [PMID: 20427315 PMCID: PMC2864715 DOI: 10.1242/jcs.062638] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2010] [Indexed: 12/16/2022] Open
Abstract
Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed beta-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic beta-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the beta-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.
Collapse
Affiliation(s)
- Ya'ara Ben-Ari
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yehuda Brody
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Amir Mor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Toshiro Tsukamoto
- Department of Dermatology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - David L. Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
233
|
Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 2010; 12:543-52. [PMID: 20453848 DOI: 10.1038/ncb2056] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/15/2010] [Indexed: 12/16/2022]
Abstract
The flow of genetic information in eukaryotic cells occurs through the nucleocytoplasmic translocation of mRNAs. Knowledge of in vivo messenger RNA export kinetics remains poor in comparison with that of protein transport. We have established a mammalian system that allowed the real-time visualization and quantification of large single mRNA-protein complexes (mRNPs) during export. The in vivo dynamics of bulk mRNP transport and export, from transcription to the nuclear pore complex (NPC), occurred within a 5-40 minute time frame, with no NPC pile-up. mRNP export was rapid (about 0.5 s) and kinetically faster than nucleoplasmic diffusion. Export inhibition demonstrated that mRNA-NPC interactions were independent of ongoing export. Nucleoplasmic transport dynamics of intron-containing and intronless mRNAs were similar, yet an intron did increase export efficiency. Here we provide visualization and analysis at the single mRNP level of the various steps in nuclear gene expression and the inter-chromatin tracks through which mRNPs diffuse, and demonstrate the kinetics of mRNP-NPC interactions and translocation.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
234
|
Rafalska-Metcalf IU, Powers SL, Joo LM, LeRoy G, Janicki SM. Single cell analysis of transcriptional activation dynamics. PLoS One 2010; 5:e10272. [PMID: 20422051 PMCID: PMC2858074 DOI: 10.1371/journal.pone.0010272] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/27/2010] [Indexed: 12/20/2022] Open
Abstract
Background Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. Methodology/Principal Findings To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells. All accumulated rapidly with the VP16 activator as did the transcribed RNA. RNA was also detected at significantly more transcription sites in cells expressing the VP16-activator compared to a p53-activator. After α-amanitin pre-treatment, the VP16-activator, GCN5, and Brd2 are still recruited to the transcription site but the chromatin does not decondense. Conclusions/Significance This study demonstrates that a strong activator can rapidly overcome the condensed chromatin structure of an inactive transcription site and supercede the expected requirement for regulatory events to proceed in a temporally defined order. Additionally, activator strength determines the number of cells in which transcription is induced as well as the extent of chromatin decondensation. As chromatin decondensation is significantly reduced after α-amanitin pre-treatment, despite the recruitment of transcriptional activation factors, this provides further evidence that transcription drives large-scale chromatin decondensation.
Collapse
Affiliation(s)
- Ilona U. Rafalska-Metcalf
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Sara Lawrence Powers
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lucy M. Joo
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Susan M. Janicki
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
235
|
Keene JD. Minireview: global regulation and dynamics of ribonucleic Acid. Endocrinology 2010; 151:1391-7. [PMID: 20332203 PMCID: PMC2850242 DOI: 10.1210/en.2009-1250] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/29/2009] [Indexed: 01/09/2023]
Abstract
Gene expression starts with transcription and is followed by multiple posttranscriptional processes that carry out the splicing, capping, polyadenylation, and export of each mRNA. Interest in posttranscriptional regulation has increased recently with explosive discoveries of large numbers of noncoding RNAs such as microRNAs, yet posttranscriptional processes depend largely on the functions of RNA-binding proteins as well. Glucocorticoid nuclear receptors are classical examples of environmentally reactive activators and repressors of transcription, but there has also been a significant increase in studies of the role of posttranscriptional regulation in endocrine responses, including insulin and insulin receptors, and parathyroid hormone as well as other hormonal responses, at the levels of RNA stability and translation. On the global level, the transcriptome is defined as the total RNA complement of the genome, and thereby, represents the accumulated levels of all expressed RNAs, because they are each being produced and eventually degraded in either the nucleus or the cytoplasm. In addition to RNA turnover, the many underlying posttranscriptional layers noted above that follow from the transcriptome function within a dynamic ribonucleoprotein (RNP) environment of global RNA-protein and RNA-RNA interactions. With the exception of the spliceosome and the ribosome, thousands of heterodispersed RNP complexes wherein RNAs are dynamically processed, trafficked, and exchanged are heterogeneous in size and composition, thus providing significant challenges to their investigation. Among the diverse RNPs that show dynamic features in the cytoplasm are processing bodies and stress granules as well as a large number of smaller heterogeneous RNPs distributed throughout the cell. Although the localization of functionally related RNAs within these RNPs are responsive to developmental and environmental signals, recent studies have begun to elucidate the global RNA components of RNPs that are dynamically coordinated in response to these signals. Among the factors that have been found to affect coordinated RNA regulation are developmental signals and treatments with small molecule drugs, hormones, and toxins, but this field is just beginning to understand the role of RNA dynamics in these responses.
Collapse
Affiliation(s)
- Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
236
|
Christensen NM, Oparka KJ, Tilsner J. Advances in imaging RNA in plants. TRENDS IN PLANT SCIENCE 2010; 15:196-203. [PMID: 20153241 DOI: 10.1016/j.tplants.2010.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 05/09/2023]
Abstract
Increasing evidence shows that many RNAs are targeted to specific locations within cells, and that RNA-processing pathways occur in association with specific subcellular structures. Compartmentation of mRNA translation and RNA processing helps to assemble large RNA-protein complexes, while RNA targeting allows local protein synthesis and the asymmetric distribution of transcripts during cell polarisation. In plants, intercellular RNA trafficking also plays an additional role in plant development and pathogen defence. Methods that allow the visualisation of RNA sequences within a cellular context, and preferably at subcellular resolution, can help to answer important questions in plant cell and developmental biology. Here, we summarise the approaches currently available for localising RNA in vivo and address the specific limitations inherent with plant systems.
Collapse
Affiliation(s)
- Nynne M Christensen
- Biosystems Department, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
237
|
Bao G, Santangelo P, Nitin N, Rhee WJ. NANOSTRUCTURED PROBES FOR IN VIVO GENE DETECTION. NANOMEDICINE : DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS, AND NANOSYSTEMS 2010:143-165. [PMID: 22138717 DOI: 10.1002/9783527628155.nanotech054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability to visualize in real-time the expression dynamics and localization of specific RNAs in vivo offers tremendous opportunities for biological and disease studies including cancer detection. However, quantitative methods such as real-time PCR and DNA microarrays rely on the use of cell lysates thus not able to obtain important spatial and temporal information. Fluorescence proteins and other reporter systems cannot image endogenous RNA in living cells. Fluorescence in situ hybridization (FISH) assays require washing to achieve specificity, therefore can only be used with fixed cells. Here we review the recent development of nanostructured probes for living cell RNA detection, and discuss the biological and engineering issues and challenges of quantifying gene expression in vivo. In particular, we describe methods that use oligonucleotide probes, combined with novel delivery strategies, to image the relative level, localization and dynamics of RNA in live cells. Examples of detecting endogenous mRNAs, as well as imaging their subcellular localization are given to illustrate the biological applications, and issues in probe design, delivery and target accessibility are discussed. The nanostructured probes promise to open new and exciting opportunities in sensitive gene detection for a wide range of biological and medical applications.
Collapse
|
238
|
Brickner DG, Light W, Brickner JH. Quantitative localization of chromosomal loci by immunofluorescence. Methods Enzymol 2010; 470:569-80. [PMID: 20946825 DOI: 10.1016/s0076-6879(10)70022-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA within the yeast nucleus is spatially organized. Yeast telomeres cluster together at the nuclear periphery, centromeres cluster together near the spindle pole body, and both the rDNA repeats and tRNA genes cluster within the nucleolus. Furthermore, the localization of individual genes to subnuclear compartments can change with changes in transcriptional status. As such, yeast researchers interested in understanding nuclear events may need to determine the subnuclear localization of parts of the genome. This chapter describes a straightforward quantitative approach using immunofluorescence and confocal microscopy to localize chromosomal loci with respect to well characterized nuclear landmarks.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
239
|
Abstract
While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.
Collapse
Affiliation(s)
- Christopher M Austin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
240
|
Abstract
Asymmetric distribution of mRNA is a prevalent phenomenon observed in diverse cell types. The posttranscriptional movement and localization of mRNA provides an important mechanism to target certain proteins to specific cytoplasmic regions of their function. Recent technical advances have enabled real-time visualization of single mRNA molecules in living cells. Studies analyzing the motion of individual mRNAs have shed light on the complex RNA transport system. This chapter presents an overview of general approaches for single particle tracking and some methodologies that are used for single mRNA detection.
Collapse
Affiliation(s)
- Hye Yoon Park
- Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, USA
| | | | | |
Collapse
|
241
|
Single cell analytics: an overview. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:99-122. [PMID: 21072695 DOI: 10.1007/10_2010_96] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The research field of single cell analysis is rapidly expanding, driven by developments in flow cytometry, microscopy, lab-on-a-chip devices, and many other fields. The promises of these developments include deciphering cellular mechanisms and the quantification of cell-to-cell differences, ideally with spatio-temporal resolution. However, these promises are challenging as the analytical techniques have to cope with minute analyte amounts and concentrations. We formulate first these challenges and then present state-of-the-art analytical techniques available to investigate the different cellular hierarchies--from the genome to the phenome, i.e., the sum of all phenotypes.
Collapse
|
242
|
Vitali P, Royo H, Marty V, Bortolin-Cavaillé ML, Cavaillé J. Long nuclear-retained non-coding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J Cell Sci 2010; 123:70-83. [DOI: 10.1242/jcs.054957] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The imprinted Snurf-Snrpn domain, also referred to as the Prader-Willi syndrome region, contains two ∼100-200 kb arrays of repeated small nucleolar (sno)RNAs processed from introns of long, paternally expressed non-protein-coding RNAs whose biogenesis and functions are poorly understood. We provide evidence that C/D snoRNAs do not derive from a single transcript as previously envisaged, but rather from (at least) two independent transcription units. We show that spliced snoRNA host-gene transcripts accumulate near their transcription sites as structurally constrained RNA species that are prevented from diffusing, as well as multiple stable nucleoplasmic RNA foci dispersed in the entire nucleus but not in the nucleolus. Chromatin structure at these repeated arrays displays an outstanding parent-of-origin-specific higher-order organization: the transcriptionally active allele is revealed as extended DNA FISH signals whereas the genetically identical, silent allele is visualized as singlet DNA FISH signals. A similar allele-specific chromatin organization is documented for snoRNA gene arrays at the imprinted Dlk1-Dio3 domain. Our findings have repercussions for understanding the spatial organization of gene expression and the intra-nuclear fate of non-coding RNAs in the context of nuclear architecture.
Collapse
Affiliation(s)
- Patrice Vitali
- Université de Toulouse, UPS; Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
- CNRS; LBME, F-31000 Toulouse, France
| | - Hélène Royo
- Université de Toulouse, UPS; Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
- CNRS; LBME, F-31000 Toulouse, France
| | - Virginie Marty
- Université de Toulouse, UPS; Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
- CNRS; LBME, F-31000 Toulouse, France
| | - Marie-Line Bortolin-Cavaillé
- Université de Toulouse, UPS; Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
- CNRS; LBME, F-31000 Toulouse, France
| | - Jérôme Cavaillé
- Université de Toulouse, UPS; Laboratoire de Biologie Moléculaire Eucaryote, F-31000 Toulouse, France
- CNRS; LBME, F-31000 Toulouse, France
| |
Collapse
|
243
|
Llères D, James J, Swift S, Norman DG, Lamond AI. Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. ACTA ACUST UNITED AC 2009; 187:481-96. [PMID: 19948497 PMCID: PMC2779238 DOI: 10.1083/jcb.200907029] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FRET analysis of cell lines expressing fluorescently tagged histones on separate nucleosomes demonstrates that variations in chromosome compaction occur during mitosis. We present a quantitative Förster resonance energy transfer (FRET)–based assay using multiphoton fluorescence lifetime imaging microscopy (FLIM) to measure chromatin compaction at the scale of nucleosomal arrays in live cells. The assay uses a human cell line coexpressing histone H2B tagged to either enhanced green fluorescent protein (FP) or mCherry FPs (HeLaH2B-2FP). FRET occurs between FP-tagged histones on separate nucleosomes and is increased when chromatin compacts. Interphase cells consistently show three populations of chromatin with low, medium, or high FRET efficiency, reflecting spatially distinct regions with different levels of chromatin compaction. Treatment with inhibitors that either increase chromatin compaction (i.e., depletion of adenosine triphosphate) or decrease chromosome compaction (trichostatin A) results in a parallel increase or decrease in the FLIM–FRET signal. In mitosis, the assay showed variation in compaction level, as reflected by different FRET efficiency populations, throughout the length of all chromosomes, increasing to a maximum in late anaphase. These data are consistent with extensive higher order folding of chromatin fibers taking place during anaphase.
Collapse
Affiliation(s)
- David Llères
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
244
|
|
245
|
Kortmann H, Kurth F, Blank LM, Dittrich PS, Schmid A. Towards real time analysis of protein secretion from single cells. LAB ON A CHIP 2009; 9:3047-9. [PMID: 19823717 DOI: 10.1039/b908679j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Hendrik Kortmann
- ISAS Dortmund, Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany
| | | | | | | | | |
Collapse
|
246
|
Kylberg K, Björk P, Fomproix N, Ivarsson B, Wieslander L, Daneholt B. Exclusion of mRNPs and ribosomal particles from a thin zone beneath the nuclear envelope revealed upon inhibition of transport. Exp Cell Res 2009; 316:1028-38. [PMID: 19853599 DOI: 10.1016/j.yexcr.2009.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
We have studied the nucleocytoplasmic transport of a specific messenger RNP (mRNP) particle, named Balbiani ring (BR) granule, and ribosomal RNP (rRNP) particles in the salivary glands of the dipteran Chironomus tentans. The passage of the RNPs through the nuclear pore complex (NPC) was inhibited with the nucleoporin-binding wheat germ agglutinin, and the effects were examined by electron microscopy. BR mRNPs bound to the nuclear basket increased in number, while BR mRNPs translocating through the central channel decreased, suggesting that the initiation of translocation proper had been inhibited. The rRNPs accumulated heavily in nucleoplasm, while no or very few rRNPs were recorded within nuclear baskets. Thus, the transport of rRNPs had been blocked prior to the entry into the baskets. Remarkably, the rRNPs had been excluded both from baskets and the space in between the baskets. We propose that normally basket fibrils move freely and repel RNPs from the exclusion zone unless the particles have affinity for and bind to nucleoporins within the baskets.
Collapse
Affiliation(s)
- Karin Kylberg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
247
|
Bogolyubova I, Bogolyubov D, Parfenov V. Localization of poly(A)+ RNA and mRNA export factors in interchromatin granule clusters of two-cell mouse embryos. Cell Tissue Res 2009; 338:271-81. [DOI: 10.1007/s00441-009-0860-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
|
248
|
Santangelo PJ. Molecular beacons and related probes for intracellular RNA imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:11-9. [DOI: 10.1002/wnan.52] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
249
|
Suissa M, Place C, Goillot E, Freyssingeas E. Evolution of the global internal dynamics of a living cell nucleus during interphase. Biophys J 2009; 97:453-61. [PMID: 19619459 DOI: 10.1016/j.bpj.2009.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/27/2022] Open
Abstract
Progress in cellular biology based on fluorescent microscopy techniques, shows that the spatial organization of the nucleus is dynamic. This dynamic is very complex and involves a multitude of phenomena that occur on very different time and size scales. Using an original light scattering experimental device, we investigated the global internal dynamics of the nucleus of a living cell according to the phases of the cell cycle. This dynamic presents two different and independent kinds of relaxation that are well separated in time and specific to the phase of the cell cycle.
Collapse
Affiliation(s)
- M Suissa
- Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | |
Collapse
|
250
|
Mhlanga MM, Bratu DP, Genovesio A, Rybarska A, Chenouard N, Nehrbass U, Olivo-Marin JC. In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One 2009; 4:e6241. [PMID: 19597554 PMCID: PMC2705681 DOI: 10.1371/journal.pone.0006241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Efficient mRNA transport in eukaryotes requires highly orchestrated relationships between nuclear and cytoplasmic proteins. For oskar mRNA, the Drosophila posterior determinant, these spatio-temporal requirements remain opaque during its multi-step transport process. By in vivo covisualization of oskar mRNA with Staufen, its putative trafficking protein, we find oskar mRNA to be present in particles distinct from Staufen for part of its transport. oskar mRNA stably associated with Staufen near the posterior pole. We observe oskar mRNA to oligomerize as hundreds of copies forming large particles which are necessary for its long range transport and localization. We show the formation of these particles occurs in the nurse cell nucleus in an Hrp48-dependent manner. We present a more refined model of oskar mRNA transport in the Drosophila oocyte.
Collapse
Affiliation(s)
- Musa M Mhlanga
- Unité de Biologie Cellulaire du Noyau, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|