201
|
Elliott KL, Hehman GL, Stay B. Isolation of the gene for the precursor of Phe-Gly-Leu-amide allatostatins in the termite Reticulitermes flavipes. Peptides 2009; 30:855-60. [PMID: 19428761 DOI: 10.1016/j.peptides.2009.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/26/2022]
Abstract
Allatostatins (ASTs), with a C-terminal sequence Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide, are multifunctional neuropeptides that were first discovered by their ability to inhibit juvenile hormone (JH) synthesis by the corpora allata (CA) in cockroaches. These A-type ASTs have since been demonstrated to inhibit JH synthesis in crickets, termites and more recently locusts. The gene for the precursor of A-type ASTs has been identified in several species of cockroaches, in crickets and in locusts, but not yet in termites, although 5 AST peptides were isolated from the lower termite Reticulitermes flavipes that are identical to known cockroach ASTs. In this study, primers designed from AST amino acid sequences of cockroaches are used to identify the gene for the preproAST peptides in R. flavipes. In addition, the expression of the gene in brain tissues is demonstrated for egg-laying and non-egg-laying neotenic reproductives. The gene codes for 14 individual peptides and its sequence is closer to that of cockroaches and the cricket than to that of other insect orders in which these peptides do not act as allatostatins. Among the known cockroach AST genes, the termite AST gene is most similar to that of Periplaneta americana, a species belonging to the primitive family Blattidae.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
202
|
|
203
|
Altelaar AFM, Mohammed S, Brans MAD, Adan RAH, Heck AJR. Improved identification of endogenous peptides from murine nervous tissue by multiplexed peptide extraction methods and multiplexed mass spectrometric analysis. J Proteome Res 2009; 8:870-6. [PMID: 19152261 DOI: 10.1021/pr800449n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, mass spectrometry (MS) based techniques have made their entrance in the analysis of endogenous peptides extracted from nervous tissue. In this study, we introduce a novel peptide extraction procedure using 8 M urea, next to the more established extraction method that uses acetic acid. The extracted peptide mixtures are analyzed by both high-resolution nanoLC MS/MS using collision induced dissociation (CID) on an LTQ-Orbitrap and nanoLC electron transfer induced dissociation (ETD) on a linear ion trap. The combined use of the two extraction methods significantly increased the yield of identified endogenous neuropeptides. The multiplexed use of high mass accuracy mass spectrometry and the ETD fragmentation technique further increased the yield and confidence of peptide identifications. Furthermore, reduction of disulfide bridges during sample preparation was essential in the identification of several endogenous peptides containing cysteine disulfide bonds. Through this study, we identified in total 142 peptides in extracts of the mouse pituitary tissue, whereby 43 uniquely in the urea extract and 11 uniquely in the acetic acid extract. A large number of detected endogenous peptides were reported previously, but we confidently identified 22 unreported peptides that possess characteristics of endogenous peptides and are thus interesting targets to be explored further.
Collapse
Affiliation(s)
- A F Maarten Altelaar
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
204
|
Choi MY, Vander Meer RK. Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta. INSECT MOLECULAR BIOLOGY 2009; 18:161-169. [PMID: 19320757 DOI: 10.1111/j.1365-2583.2009.00867.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. PBAN/Pyrokinin is a major neuropeptide family, characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. This family of peptides has been implicated in regulating various physiological functions including, pheromone biosynthesis, muscle contraction, diapause induction or termination, melanization, and puparium formation in different insect species. In the present study, we report a new member of the PBAN family from the red imported fire ant, Solenopsis invicta, Soi-PBAN, composed of 26-AA (GSGEDLSYGDAYEVDEDDHPLFVPRL). Three additional peptides were deduced from Soi-PBAN cDNA: 15-AA (TSQDIASGMWFGPRL), 8-AA (QPQFTPRL) and 9-AA (LPWIPSPRL), that correspond to diapause hormone (DH), beta-neuropeptide (NP), and gamma-NP, which are found in many lepidopteran moths. Five peptides, DH, alpha, beta, gamma NPs, and PBAN are encoded from PBAN genes of lepidopteran moths, but in the fire ant the alpha-NP is missing. Each of the four synthetic peptides from the fire ant Soi-PBAN cDNA showed significant pheromonotropic activity in a moth model, indicating that these peptides are cross-reactive. Soi-beta-NP induced the highest amount of pheromone production of the four peptides evaluated. The Soi-DH homologue had the lowest pheromonotropic activity, but was still significantly greater than control values. When the deduced amino acid sequences (entire ORF domains) from Soi-PBAN cDNA were compared with other known sequences, the fire ant was most similar to the honey bee, but phylogenetically distant from moth and beetle species. Soi-PBAN (26-AA) unlike the other three peptides shows a low degree of sequence identity with honeybee PBAN (33-AA). Based on the amino acid sequences encoded from insect PBAN genes identified to date, neuropeptide diversity is correlated with the taxonomic or phylogenetic classification of Insecta. From the present study we report the first neuropeptide identified and characterized from the central nervous system of Formicidae.
Collapse
Affiliation(s)
- M-Y Choi
- United States Department of Agriculture, Center of Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA.
| | | |
Collapse
|
205
|
Roth S, Fromm B, Gäde G, Predel R. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case. BMC Evol Biol 2009; 9:50. [PMID: 19257902 PMCID: PMC2667406 DOI: 10.1186/1471-2148-9-50] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed. Results Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably. Conclusion This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships.
Collapse
Affiliation(s)
- Steffen Roth
- Institute of Zoology, University of Jena, Erbertstrasse, Germany.
| | | | | | | |
Collapse
|
206
|
Neupert S, Schattschneider S, Predel R. Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons. Peptides 2009; 30:489-94. [PMID: 19071174 DOI: 10.1016/j.peptides.2008.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 11/23/2022]
Abstract
The first insect allatotropin-related peptide (ATRP) was isolated from head extracts of the adult sphinx moth Manduca sexta [Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ. Identification of an allatotropin from adult Manduca sexta. Science 1989;243:1481-3.]. Meanwhile ATRPs are known from different holometabolous insects but only a single ATRP could be identified from hemimetabolous insects [Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A. Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 1991;12:7-10.]. This means that the extensive analysis of neuropeptides from Leucophaea maderae and Periplaneta americana, which led to the discovery of many novel insect neuropeptides, did not result in the detection of any ATRP. In this study, we used another approach to find a cockroach ATRP by first identifying Manse-AT immunoreactive neurons in the terminal ganglion that can be stained by retrograde labeling and are suitable for dissection and subsequent mass spectrometric analysis. The peptidomic analysis of these putative ATRP neurons paved the way for the identification of the first cockroach ATRP. MALDI-TOF/TOF tandem mass spectrometry revealed a sequence identity with Locmi-AG-MT-1 which classifies this ATRP as a highly conserved neuropeptide. A mass spectrometric screening of the nervous system allowed the detection of ATRP-ion signals in different parts of the CNS of P. americana as well as L. maderae. The data obtained in this study will be incorporated in a map of peptidergic neurons from the CNS of the American cockroach, P. americana.
Collapse
Affiliation(s)
- Susanne Neupert
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | |
Collapse
|
207
|
Verleyen P, Chen X, Baron S, Preumont A, Hua YJ, Schoofs L, Clynen E. Cloning of neuropeptide-like precursor 1 in the gray flesh fly and peptide identification and expression. Peptides 2009; 30:522-30. [PMID: 19121352 DOI: 10.1016/j.peptides.2008.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 11/21/2022]
Abstract
The neuropeptide-like precursor 1 (NPLP1) was first identified in a peptidomics experiment on Drosophila melanogaster. Limited data on this novel neuropeptide precursor suggest a role in the regulation of ecdysis in holometabolous larvae. In this study, we characterized the NPLP1 precursor in the gray flesh fly, Neobellieria bullata, which is an excellent model for physiological assays and hence to discover the role of the NPLP1 peptides. Antisera against three of the D. melanogaster NPLP1 neuropeptides stained an identical set of neurons in the central nervous system of N. bullata compared to D. melanogaster. A novel approach was applied to identify the N. bullata NPLP1 orthologs. Using a combination of affinity chromatography, mass spectrometry, cDNA cloning and RACE experiments, we obtained almost the complete coding sequence of the NPLP1 mRNA. Three encoded NPLP1 peptides were identified in central nervous system extracts by mass spectrometry. Neither doses of 25-250pmol of synthetic Neb-MGYamide and Neb-PQNamide peptides, nor the NPLP1 antisera did affect the speed of retraction, contraction and tanning in the pupariation bioassay.
Collapse
Affiliation(s)
- Peter Verleyen
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
208
|
Veenstra JA. Allatostatin C and its paralog allatostatin double C: the arthropod somatostatins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:161-170. [PMID: 19063967 DOI: 10.1016/j.ibmb.2008.10.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 10/25/2008] [Accepted: 10/28/2008] [Indexed: 05/27/2023]
Abstract
Arthropods do not have one, but two genes encoding an allatostatin C-like peptide. The newly discovered paralog gene was called Ast-CC, and the peptide which it is predicted to make was called allatostatin double C (ASTCC). Genes for both allatostatin C (ASTC) and its paralog were found in the tick Ixodes scapularis as well as dipteran, lepidopteran, coleopteran, aphidoidean and phthirapteran insect species. In addition partial or complete cDNAs derived from Ast-CCs were found in a number of species, including Drosophila melanogaster, Bombyx mori and Rhodnius prolixus. The ASTCC precursors have a second conserved peptide sequence suggesting that they may produce two biologically active peptides. The predicted precursors encoded by the Ast-CCs have some unusual features, particularly in Drosophila, where they lack a signal peptide, and have instead a peptide anchor. These unusual structural features suggest that they are perhaps expressed by cells that are not specialized in neuropeptide synthesis and that in Drosophila ASTCC may be a juxtacrine. Data from the Fly Atlas project show that in Drosophila Ast-CC is little expressed. Nevertheless a P-element insertion in this gene is embryonic lethal, suggesting that it is an essential gene. Similarity between the precursors and receptors of ASTC/ASTCC and somatostatin suggests that ASTC/ASTCC and somatostatin have a common ancestor.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS CNIC UMR 5228, Talence Cedex, France.
| |
Collapse
|
209
|
Husson SJ, Landuyt B, Nys T, Baggerman G, Boonen K, Clynen E, Lindemans M, Janssen T, Schoofs L. Comparative peptidomics of Caenorhabditis elegans versus C. briggsae by LC-MALDI-TOF MS. Peptides 2009; 30:449-57. [PMID: 18760316 DOI: 10.1016/j.peptides.2008.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 11/21/2022]
Abstract
Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics Unit, Department of Biology, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Garcia L, Saraiva Garcia CH, Calábria LK, Costa Nunes da Cruz G, Sánchez Puentes A, Báo SN, Fontes W, Ricart CAO, Salmen Espindola F, Valle de Sousa M. Proteomic Analysis of Honey Bee Brain upon Ontogenetic and Behavioral Development. J Proteome Res 2009; 8:1464-73. [DOI: 10.1021/pr800823r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Liudy Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos H. Saraiva Garcia
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Luciana Karen Calábria
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel Costa Nunes da Cruz
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Aniel Sánchez Puentes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Sonia N. Báo
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Wagner Fontes
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos A. O. Ricart
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Foued Salmen Espindola
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Marcelo Valle de Sousa
- Mass Spectrometry Group, Physics Department, CEADEN, Havana, Cuba, Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil, Genetic and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, MG, Brazil, Department for Proteome Analysis, CIGB, Havana, Cuba, and Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
211
|
Gard AL, Lenz PH, Shaw JR, Christie AE. Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol 2009; 160:271-87. [PMID: 19135444 DOI: 10.1016/j.ygcen.2008.12.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/23/2022]
Abstract
The cladoceran crustacean Daphnia pulex has emerged as a model species for many biological fields, in particular environmental toxicology and toxicogenomics. Recently, this species has been the subject of an extensive transcriptome project, resulting in the generation and public deposition of over 150,000 expressed sequence tags (ESTs). This resource makes D. pulex an excellent model for protein discovery using bioinformatics. Here, in silico searches of the D. pulex EST database were conducted to identify transcripts encoding putative peptide precursors. Moreover, the mature peptides contained within the deduced prepro-hormones were predicted using online peptide processing programs and homology to known arthropod isoforms. In total, 63 putative peptide-encoding ESTs were identified encompassing 14 distinct peptide families/subfamilies: A-type allatostatin, B-type allatostatin, C-type allatostatin, bursicon (both alpha and beta subunit peptides), crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone (CHH)/ion transport peptide (both CHH- and moult-inhibiting hormone-like subfamilies), diuretic hormone (calcitonin-like), ecdysis-triggering hormone (ETH), FMRFamide (both neuropeptide F and short neuropeptide F subfamilies), orcokinin and pigment dispersing hormone. From these transcripts, the structures of 76 full-length/partial peptides were predicted, which included the first C-type allatostatin-like peptide identified from a crustacean, the first crustacean calcitonin-like diuretic hormone, an undescribed CCAP isoform, two hitherto unknown ETH variants, and two new orcokinins. Neuronal localization of several of the identified peptide families was confirmed using immunohistochemitry (i.e. A-type allatostatin, CCAP, FMRFamide and PDH). In addition, immunohistochemical analyses identified other putative neuropeptides for which no ESTs had been found (i.e. corazonin, insect kinin, proctolin, red pigment concentrating hormone, SIFamide, sulfakinin and tachykinin-related peptide). Collectively, the data presented here not only catalog an extensive array of putative D. pulex peptide paracrines/hormones, but also provide a strong foundation for future investigations of the effects of environmental/anthropogenic stressors on peptidergic control in this model organism.
Collapse
Affiliation(s)
- Ashley L Gard
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | | | | | | |
Collapse
|
212
|
|
213
|
Abstract
SUMMARY
Avenues of water gain and loss in bees are examined here at two levels of organisation: the individual and the colony. Compared with the majority of terrestrial insects, bees have a high water turnover. This is due to their nectar diet and, in larger species, substantial metabolic water production during flight, counteracted by high evaporative and excretory losses. Water fluxes at the colony level can also be very high. When incoming nectar is dilute, honeybees need to remove large volumes of water by evaporation. On the other hand, water is not stored in the nest and must be collected for evaporative cooling and for feeding the brood. Water regulation has many similarities at individual and colony levels. In particular, manipulation of nectar or water on the tongue is extensively used by bees to increase evaporation for either food-concentrating or cooling purposes.
Collapse
Affiliation(s)
- Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
214
|
Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci U S A 2009; 106:2383-8. [PMID: 19179284 DOI: 10.1073/pnas.0813021106] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The honey bee genome predicts approximately 100 peptides from 36 prohormones, but the functions of many of these peptides are unknown. We used differential isotope labeling combined with mass spectrometric analysis to quantify approximately 50% of known bee brain peptides in the context of foraging, with 8 showing robust and dynamic regulation. Some showed differences in brain abundance as a function of experience; specifically, nectar and pollen collection led to quick changes in abundance. These changes were related to the act of food collection, not ingestion, because foragers bring food back to the hive for storage rather than eating it themselves. Other peptide differences in brain abundance were seen in bees that either flew to a nectar feeder or a pollen feeder, but did not yet collect any food. These differences likely reflect well-known predispositions of some bees to collect either nectar or pollen, but not both. Tachykinin, PBAN, and sNPF were among the peptides with the strongest changes in association with nectar and pollen foraging. These peptides are known to be involved in regulating food intake in solitary insects, suggesting an evolutionary connection between that behavior and social foraging. These results demonstrate that it is now possible to use quantitative peptidomics to help determine which brain peptides are bioactive and to elucidate their function in the regulation of behavior.
Collapse
|
215
|
Southey BR, Sweedler JV, Rodriguez-Zas SL. A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Front Neuroinform 2008; 2:7. [PMID: 19169350 PMCID: PMC2610252 DOI: 10.3389/neuro.11.007.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023] Open
Abstract
Neuropeptides and hormones are signaling molecules that support cell–cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Chemistry, University of Illinois Urbana, IL, USA
| | | | | |
Collapse
|
216
|
Abstract
Quantitative mass spectrometry is often performed using isotopically labeled samples. Although the 4-trimethylammoniumbutyryl (TMAB) labels have many advantages over other isotopic tags, only two forms have previously been synthesized (i.e., a heavy form containing nine deuteriums and a light form without deuterium). In the present report, two additional forms containing three and six deuteriums have been synthesized and tested. These additional isotopic tags perform identically to the previously reported tags; peptides labeled with the new TMAB reagents coelute from reversed-phase HPLC columns with peptides labeled with the lighter and heavier TMAB reagents. Altogether, these four tags allow for multivariate analysis in a single liquid chromatography/mass spectrometry analysis, with each isotopically tagged peptide differing in mass by 3 Da per tag incorporated. The synthetic scheme is described in simple terms so that a biochemist without specific training in organic chemistry can perform the synthesis. The interpretation of tandem mass spectrometry data for the TMAB-labeled peptides is also described in more detail. The additional TMAB isotopic reagents described here, together with the additional description of the synthesis and analysis, should allow these labels to be more widely used for proteomics and peptidomics analyses.
Collapse
Affiliation(s)
| | | | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
217
|
Choi MY, Raina A, Vander Meer RK. PBAN/pyrokinin peptides in the central nervous system of the fire ant, Solenopsis invicta. Cell Tissue Res 2008; 335:431-9. [DOI: 10.1007/s00441-008-0721-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
|
218
|
A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 2008; 9:90. [PMID: 18803813 PMCID: PMC2569041 DOI: 10.1186/1471-2202-9-90] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/19/2008] [Indexed: 01/02/2023] Open
Abstract
Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS) of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7). Conclusion It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.
Collapse
|
219
|
Romanova EV, Hatcher NG, Rubakhin SS, Sweedler JV. Characterizing intercellular signaling peptides in drug addiction. Neuropharmacology 2008; 56 Suppl 1:196-204. [PMID: 18722391 PMCID: PMC2665169 DOI: 10.1016/j.neuropharm.2008.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/23/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate individual SPs, as well as entire intercellular signaling complements, in samples ranging from individual cells to entire organisms. Immunochemistry and in situ hybridization are commonly used for following preselected SPs. Discovery-type investigations targeting the transcriptome and proteome are accomplished using high-throughput characterization technologies such as microarrays and mass spectrometry. By integrating directed approaches with discovery approaches, multiplatform studies fill critical gaps in our knowledge of drug-induced alterations in intercellular signaling. Throughout the past 35 years, the National Institute on Drug Abuse has made significant resources available to scientists that study the mechanisms of drug addiction. The roles of SPs in the addiction process are highlighted, as are the analytical approaches used to detect and characterize them.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and Beckman Institute, University of Illinois, 600 South Mathews Avenue 63-5, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
220
|
Wisztorski M, Croix D, Macagno E, Fournier I, Salzet M. Molecular MALDI imaging: an emerging technology for neuroscience studies. Dev Neurobiol 2008; 68:845-58. [PMID: 18383549 DOI: 10.1002/dneu.20623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has become an essential tool for the detection, identification, and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of the nervous system. Generally, the application of these powerful techniques requires the destruction of the specimen under study, but recent technological advances have made it possible to apply the matrix-assisted laser desorption/ionization (MALDI) MS technique directly to tissue sections. The major advantage of direct MALDI analysis is that it enables the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps, which have the potential for introducing artifacts. With automation and the ability to display complex spectral data using imaging software, it is now possible to create multiple 2D maps of selected biomolecules in register with tissue sections, a method now known as MALDI Imaging, or MSI (for Mass Spectrometry Imaging). This creates, for example, an opportunity to correlate functional states, determined a priori with live recording or imaging, with the corresponding molecular maps obtained at the time the tissue is frozen and analyzed with MSI. We review the increasing application of MALDI Imaging to the analysis of molecular distributions of proteins and peptides in nervous tissues of both vertebrates and invertebrates, focusing in particular on recent studies of neurodegenerative diseases and early efforts to implement assays of neuronal development.
Collapse
Affiliation(s)
- Maxence Wisztorski
- Equipe Imagerie MALDI, Cité Scientifique, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
221
|
Gäde G, Marco HG, Simek P, Audsley N, Clark KD, Weaver RJ. Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: a case study with beetles and moths. Peptides 2008; 29:1124-39. [PMID: 18448200 DOI: 10.1016/j.peptides.2008.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/16/2022]
Abstract
This mass spectrometric study confines itself to peptide masses in the range of 500-1500Da. Adipokinetic hormones (AKHs) that are predicted from the genome of the red flour beetle, Tribolium castaneum, and the silk moth, Bombyx mori, are shown to exist as expressed peptides in the corpora cardiaca (CC) of the respective species as evidenced by various mass spectrometric methods. Additionally, some related species were included in this study, such as the tenebrionid beetles Tribolium brevicornis and Tenebrio molitor, as well as the moths Spodoptera frugiperda, Spodoptera littoralis, Mamestra brassicae and Lacanobia oleracea, to investigate whether AKH peptides are structurally conserved in the same genus or family. Interestingly, the AKH peptide of T. brevicornis is identical to that of T. molitor but not to the ones of its close relative T. castaneum. Moreover, other peptides in T. brevicornis, such as various FXPRL amides (=pyrokinins), also match the complement in T. molitor but differ from those in T. castaneum. All the CC of beetles lacked the signal for the mass of the peptide corazonin. All moths have the nonapeptide Manse-AKH expressed in their CC. In addition, whereas the silk moth has the decapeptide Bommo-AKH as a second peptide, all other moths (all noctuids) express the decapeptide Helze-HrTH. In M. brassicae and L. oleracea a novel amidated Gly-extended Manse-AKH is found as a possible third AKH. The noctuid moth species also all express the same FLRF amide-I, corazonin, and a group-specific isoform of a gamma-PGN-(=gamma-SGNP) peptide. In L. oleracea, however, the latter peptide has a novel sequence which is reported for the first time, and the peptide is code-named Lacol-PK.
Collapse
Affiliation(s)
- Gerd Gäde
- Zoology Department, University of Cape Town, Private Bag, ZA-7701 Rondebosch, South Africa.
| | | | | | | | | | | |
Collapse
|
222
|
Dickinson PS, Stemmler EA, Cashman CR, Brennan HR, Dennison B, Huber KE, Peguero B, Rabacal W, Goiney CC, Smith CM, Towle DW, Christie AE. SIFamide peptides in clawed lobsters and freshwater crayfish (Crustacea, Decapoda, Astacidea): a combined molecular, mass spectrometric and electrophysiological investigation. Gen Comp Endocrinol 2008; 156:347-60. [PMID: 18308319 DOI: 10.1016/j.ygcen.2008.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 12/30/2007] [Accepted: 01/16/2008] [Indexed: 11/18/2022]
Abstract
Recently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea. Here, we present the identification and characterization of an H. americanus prepro-SIFamide cDNA that encodes the Val(1) isoform. Moreover, we demonstrate via MALDI-FTMS the presence of Val(1)-SIFamide in a second Homarus species, Homarus gammarus. In contrast, only the Gly(1) isoform was detected in the other astacideans investigated, including the lobster Nephrops norvegicus, a member of the same family as Homarus, and the crayfish Cherax quadricarinatus, P. clarkii and Pacifastacus leniusculus, which represent members of each of the extant families of freshwater astacideans. These results suggest that Val(1)-SIFamide may be a genus (Homarus)-specific isoform. Interestingly, both Val(1)- and Gly(1)-SIFamide possess an internal dibasic site, Arg(3)-Lys(4), raising the possibility of the ubiquitously conserved isoform PPFNGSIFamide. However, this octapeptide was not detected via MALDI-FTMS in any of the investigated species, and when applied to the isolated STNS of H. americanus possessed little bioactivity relative to the full-length Val(1) isoform. Thus, it appears that the dodeca-variants Val(1)- and Gly(1)-SIFamide are the sole bioactive isoforms of this peptide family in clawed lobsters and freshwater crayfish.
Collapse
|
223
|
Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A 2008; 105:4226-31. [PMID: 18337502 DOI: 10.1073/pnas.0800630105] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been proposed that one route of behavioral evolution involves novel regulation of conserved genes. Age-related division of labor in honey bee colonies, a highly derived behavioral system, involves the performance of different feeding-related tasks by different groups of individuals. Older bees acquire the colony's food by foraging for nectar and pollen, and the younger "nurse" bees feed larvae processed foods. The transition from hive work to foraging has been shown to be socially regulated and associated both with decreases in abdominal lipid stores and with increases in brain expression of genes implicated in feeding behavior in Drosophila melanogaster. Here we show that division of labor is influenced by a canonical regulator of food intake and energy balance in solitary species, the insulin/insulin-like growth factor signaling (IIS) pathway. Foragers had higher levels of IIS gene expression in the brain and abdomen than did nurses, despite their low lipid stores. These differences are likely nutritionally mediated because manipulations that induced low lipid stores in young bees also up-regulated these genes. Changes in IIS also causally influenced the timing of behavioral maturation: inhibition of the insulin-related target of rapamycin pathway delayed the onset of foraging in a seasonally dependent manner. In addition, pathway analyses of microarray data revealed that nurses and foragers differ in brain energy metabolism gene expression, but the differences are opposite predictions based on their insulin-signaling status. These results suggest that changes in the regulation of the IIS pathway are associated with social behavior.
Collapse
|
224
|
Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L. Peptidomics: The integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 2008; 31:427-45. [DOI: 10.1002/jssc.200700450] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
225
|
Southey BR, Sweedler JV, Rodriguez-Zas SL. Prediction of neuropeptide cleavage sites in insects. ACTA ACUST UNITED AC 2008; 24:815-25. [PMID: 18252740 DOI: 10.1093/bioinformatics/btn044] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION The production of neuropeptides from their precursor proteins is the result of a complex series of enzymatic processing steps. Often, the annotation of new neuropeptide genes from sequence information outstrips biochemical assays and so bioinformatics tools can provide rapid information on the most likely peptides produced by a gene. Predicting the final bioactive neuropeptides from precursor proteins requires accurate algorithms to determine which locations in the protein are cleaved. RESULTS Predictive models were trained on Apis mellifera and Drosophila melanogaster precursors using binary logistic regression, multi-layer perceptron and k-nearest neighbor models. The final predictive models included specific amino acids at locations relative to the cleavage sites. Correct classification rates ranged from 78 to 100% indicating that the models adequately predicted cleaved and non-cleaved positions across a wide range of neuropeptide families and insect species. The model trained on D.melanogaster data had better generalization properties than the model trained on A. mellifera for the data sets considered. The reliable and consistent performance of the models in the test data sets suggests that the bioinformatics strategies proposed here can accurately predict neuropeptides in insects with sequence information based on neuropeptides with biochemical and sequence information in well-studied species.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Chemistry and Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
226
|
Weaver RJ, Audsley N. Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome. Peptides 2008; 29:168-78. [PMID: 18201799 DOI: 10.1016/j.peptides.2007.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/06/2007] [Indexed: 11/17/2022]
Abstract
Four neuropeptides were identified from the brain and corpora cardiaca-corpora allata (CC-CA) of the mealworm beetle Tenebrio molitor using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and information derived from the genome of the red flour beetle, Tribolium castaneum. Leucomyosuppressin (a FLRFamide), previously associated with cockroaches, but also subsequently identified from honey bee seen as a prominent peptide in both brain and CC-CA of T.molitor. A coding sequence for this peptide is found in the genome of T. castaneum. In addition, three FXPRLamides (pyrokinins), provisionally Tenmo-PK-1, Tenmo-PK-2 and Tenmo-PK-3 (HVVNFTPRLamide, SPPFAPRLamide, HL(I)SPFSPRLamide) were identified in both CC-CA and brain of T. molitor, again on the basis of predicted occurrence or similarity in T. castaneum. The sequence of Tenmo-PK-2 is the same as the PK-2 of the cockroach, Periplaneta americana. Other peptides readily predicted from the genome of T. castaneum include two AKH/HrTH peptides (Trica-AKH-1; pELNFSTDWamide and Trica-AKH-2; pELNFTPNWamide), the second of which is identical to Pyrap-AKH, an AKH-related peptide (Trica AKH-L; pEVTFSRDWPamide), two CRF-related diuretic factors (Trica-DH 37 and Trica-DH 47), the latter identical to Tenmo-DH 47, a putative antidiuretic factor (Trica-ADFb; LYDDGSYKPHVYGF-OH), two sulfakinin-like peptides (Trica-SK-1; pETSDDY(SO(3))GHLRFamide, and Trica SK-2; GEEPFDDYGHMRFamide), a potential allatostatin-C (Trica-AS; pESRYRQCYFNPISCF-OH), six allatostatin-B/myoinhibitory peptides (Trica-AST-B-1,2,3,4,5 & 6; DWNKDLHIWamide, GWNNLHEGWamide, AWQSLQSGWamide, NWGQFHGGWamide, SKWDNFRGSWamide, EPAWSNLGIWamide), an allatotropin-like peptide (Trica-ATL; GIEALKYHNMDLGTARGYamide), four 'CAPA'-related peptides (Trica-CAPA-1,2,3,4; NKLASVYALTPSLRVamide, RIGKMVSFPRIamide, PGANSGGMWFGPRLamide, SENFTPWAYIILNGEAPIIREVHYSPRLamide), proctolin (RYLPT), a potential SIFamide (Trica-SIFa; TYRKPPFNGSIFamide), an arginine-vasopressin-related peptide (Trica-AVP; CLITNCPRGamide) and an ITP-related peptide (Trica-ITP). No evidence was found for the presence of 'A' allatostatins (Y/FxFGLamides) or corazonin, either in T. molitor, or in the genome of T. castaneum.
Collapse
Affiliation(s)
- Robert J Weaver
- Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK.
| | | |
Collapse
|
227
|
Li L, Sweedler JV. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:451-483. [PMID: 20636086 DOI: 10.1146/annurev.anchem.1.031207.113053] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The function and activity of almost every circuit in the human brain are modified by the signaling peptides (SPs) surrounding the neurons. As the complement of peptides can vary even in adjacent neurons and their physiological actions can occur over a broad range of concentrations, the required figures of merit for techniques to characterize SPs are surprisingly stringent. In this review, we describe the formation and catabolism of SPs and highlight a range of mass spectrometric techniques used to characterize SPs. Approaches that supply high chemical information content, direct tissue profiling, spatially resolved data, and temporal information on peptide release are also described. Because of advances in measurement technologies, our knowledge of SPs has greatly increased over the last decade, and SP discoveries will continue as the capabilities of modern measurement approaches improve.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, 53705-2222, USA.
| | | |
Collapse
|
228
|
Reumer A, Van Loy T, Clynen E, Schoofs L. How functional genomics and genetics complements insect endocrinology. Gen Comp Endocrinol 2008; 155:22-30. [PMID: 17686480 DOI: 10.1016/j.ygcen.2007.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 01/19/2023]
Abstract
Insects are the most abundant animal group on Earth and have been the subject of genetic and physiological studies since the beginning of the 19th century. The public interest in understanding their biology increased as many insects have proven to exert a severe impact on human welfare and the environment. To trigger insect physiological and endocrinological research, the genome of several economical and ecological important insect species was recently sequenced. Following the availability of these genomic data many so called 'post-genomic' technologies have been developed to characterise gene function and to unravel signalling pathways underlying biological processes. For some species genomic research is further complemented with mutagenesis and reverse genetic studies. In the following, we present an overview of genomic and functional genetic methodologies that boosted endocrine research in insects.
Collapse
Affiliation(s)
- Ank Reumer
- Animal Physiology and Neurobiology Section, Research Group Functional Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
229
|
De Loof A. Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges. Gen Comp Endocrinol 2008; 155:3-13. [PMID: 17716674 DOI: 10.1016/j.ygcen.2007.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 11/21/2022]
Abstract
In the recent decade, tremendous progress has been realized in insect endocrinology as the result of the application of a variety of advanced methods in neuropeptidome- and receptor research. Hormones of which the existence had been shown by bioassays four decades ago, e.g. bursicon (a member of the glycoprotein hormone family) and pupariation factor (Neb-pyrokinin 2, a myotropin), could be identified, along with their respective receptors. In control of diurnal rhythms, clock genes got company from the neuropeptide Pigment Dispersing Factor (PDF), of which the receptor could also be identified. The discovery of Inka cells and their function in metamorphosis was a true hallmark. Analysis of the genomes of Caenorhabditis elegans, Drosophila melanogaster and Apis mellifera yielded about 75, 100 and 200 genes coding for putative signaling peptides, respectively, corresponding to approximately 57, 100 and 100 peptides of which the expression could already be proven by means of mass spectrometry. The comparative approach invertebrates-vertebrates recently yielded indications for the existence of counterparts in insects for prolactin, atrial natriuretic hormone and Growth Hormone Releasing Hormone (GRH). Substantial progress has been realized in identifying the Halloween genes, a membrane receptor(s) for ecdysteroids, a nuclear receptor for methylfarnesoate, and dozens of GPCRs for insect neuropeptides. The major remaining challenges concern the making match numerous orphan GPCRs with orphan peptidic ligands, and elucidating their functions. Furthermore, the endocrine control of growth, feeding-digestion, and of sexual differentiation, in particular of males, is still poorly understood. The finding that the prothoracic glands produce an autocrine factor with growth factor-like properties and secrete proteins necessitates a reevaluation of their role in development.
Collapse
Affiliation(s)
- Arnold De Loof
- Zoological Institute of the Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
230
|
Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco L, Vassart G, Vanden Broeck J. Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol 2008; 155:14-21. [PMID: 17706217 DOI: 10.1016/j.ygcen.2007.06.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 06/27/2007] [Indexed: 11/18/2022]
Abstract
Leucine-rich repeats containing G protein-coupled receptors (LGRs) constitute a unique cluster of transmembrane proteins sharing a large leucine-rich extracellular domain for hormone binding. In mammals, LGRs steer important developmental, metabolic and reproductive processes as receptors for glycoprotein hormones and insulin/relaxin-related proteins. In insects, a receptor structurally related to human LGRs mediates the activity of the neurohormone bursicon thereby regulating wing expansion behaviour and remodelling of the newly synthesized exoskeleton. In the past decade, novel insights into the molecular evolution of LGR encoding genes accumulated rapidly due to comparative genome analyses indicating that the endocrine LGR signalling system likely emerged before the radiation of metazoan phyla and expanded throughout evolution. Here, we present a short survey on the evolution of LGRs and the hormones they interact with.
Collapse
Affiliation(s)
- Tom Van Loy
- Department of Animal Physiology and Neurobiology, Molecular Developmental Physiology and Signal Transduction Research Group, Zoological Institute K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Rubakhin SS, Sweedler JV. Characterizing peptides in individual mammalian cells using mass spectrometry. Nat Protoc 2007; 2:1987-97. [PMID: 17703210 DOI: 10.1038/nprot.2007.277] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell-to-cell chemical signaling plays multiple roles in coordinating the activity of the functional elements of an organism, with these elements ranging from a three-neuron reflex circuit to the entire animal. In recent years, single-cell mass spectrometry (MS) has enabled the discovery of cell-to-cell signaling molecules from the nervous system of a number of invertebrates. We describe a protocol for analyzing individual cells from rat pituitary using matrix-assisted laser desorption/ionization MS. Each step in the sample preparation process, including cell stabilization, isolation, sample preparation, signal acquisition and data interpretation, is detailed here. Although we employ this method to investigate peptides in individual pituitary cells, it can be adapted to other cell types and even subcellular sections from a range of animals. This protocol allows one to obtain 20-30 individual cell samples and acquire mass spectra from them in a single day.
Collapse
Affiliation(s)
- Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
232
|
Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 2007; 18:113-22. [DOI: 10.1101/gr.6714008] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
233
|
Che FY, Zhang X, Berezniuk I, Callaway M, Lim J, Fricker LD. Optimization of neuropeptide extraction from the mouse hypothalamus. J Proteome Res 2007; 6:4667-76. [PMID: 17979226 DOI: 10.1021/pr060690r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sample preparation for neuropeptidomic studies is a critical issue since protein degradation can produce high levels of peptides that obscure the endogenous neuropeptides. We compared different extraction conditions for the recovery of neuropeptides and the formation of protein breakdown fragments from mouse hypothalami. Sonication and heating in water (70 degrees C for 20 min) followed by cold acid and centrifugation enabled the efficient extraction of many neuropeptides without the formation of protein degradation fragments seen with hot acid extractions. The hot water/cold acid extraction procedure resulted in the reproducible recovery of many hypothalamic peptides, including several novel peptides.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
234
|
Meyering-Vos M, Müller A. Structure of the sulfakinin cDNA and gene expression from the Mediterranean field cricket Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2007; 16:445-54. [PMID: 17488300 DOI: 10.1111/j.1365-2583.2007.00737.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The sulfakinins are multifunctional insect neuropeptides displaying sequence similarities with the gastrin/ cholecystokinin (CCK) peptide family. In vertebrates, the peptides gastrin and CCK are involved in the regulation of digestion and food-intake. In this study sulfakinin cDNA was cloned and sequenced from the Mediterranean field cricket Gryllus bimaculatus. The cDNA encodes two peptides flanked by endoproteolytic processing sites, designated GrybiSKI (QSDDYGHMRFG) and GrybiSKII (EPFDDYGHMRFG). The peptides include the characteristic amino acid Tyr, which is potentially sulphated, and a Gly, as a recognition site for amidation yeilding the common C-terminal amino acid sequence of the sulfakinin peptide family. RT-PCR studies indicate an expression of the gene restricted to the brain, with a constant level of expression throughout the last larval stage, but showing an age-dependent decrease of expression in adult females.
Collapse
|
235
|
Husson SJ, Janssen T, Baggerman G, Bogert B, Kahn-Kirby AH, Ashrafi K, Schoofs L. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 2007; 102:246-60. [PMID: 17564681 DOI: 10.1111/j.1471-4159.2007.04474.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active peptides are synthesized from inactive pre-proproteins or peptide precursors by the sequential actions of processing enzymes. Proprotein convertases cleave the precursor at pairs of basic amino acids, which are then removed from the carboxyl terminus of the generated fragments by a specific carboxypeptidase. Caenorhabditis elegans strains lacking proprotein convertase EGL-3 display a severely impaired neuropeptide profile (Husson et al. 2006, J. Neurochem.98, 1999-2012). In the present study, we examined the role of the C. elegans carboxypeptidase E orthologue EGL-21 in the processing of peptide precursors. More than 100 carboxy-terminally extended neuropeptides were detected in egl-21 mutant strains. These findings suggest that EGL-21 is a major carboxypeptidase involved in the processing of FMRFamide-like peptide (FLP) precursors and neuropeptide-like protein (NLP) precursors. The impaired peptide profile of egl-3 and egl-21 mutants is reflected in some similar phenotypes. They both share a severe widening of the intestinal lumen, locomotion defects, and retention of embryos. In addition, egl-3 animals have decreased intestinal fat content. Taken together, these results suggest that EGL-3 and EGL-21 are key enzymes for the proper processing of neuropeptides that control egg-laying, locomotion, fat storage and the nutritional status.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Honeybees, termites and ants occupy the 'pinnacle of social evolution' with societies of a complexity that rivals our own. The sequencing of the honeybee genome will provide a strong foundation for studying the genetic basis of complex social behavior.
Collapse
Affiliation(s)
- Yannick Wurm
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
237
|
Abstract
Neuropeptides and neurohormones are among the more diverse and functionally important classes of cell-to-cell signaling molecules involved in animal development and behavior. Less is known about the hormones and neuropeptides of the red flour beetle, Tribolium castaneum, than many other insects. However, the genomic information becoming available from this organism presents an opportunity to identify multiple neuropeptide and hormone genes, and hence their associated protein precursors. Using similarity-based prediction, we report new neuropeptides and hormone precursors from T. castaneum, bringing the number of annotated precursors to 37. We identified one prohormone (SVDPIDGDLIG-containing) having little similarity to other insect prohormones. The conversion of the protein precursors into bioactive peptides requires a suite of processing enzymes and a number of enzymatic steps; using the web-based NeuroPred application and similarity-based bioinformatics approaches, we predict 132 likely peptides that may result from the enzymatic processing of these gene products.
Collapse
Affiliation(s)
- Andinet Amare
- Department of Chemistry and the Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
238
|
Hunt GJ. Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:399-410. [PMID: 17379239 PMCID: PMC2606975 DOI: 10.1016/j.jinsphys.2007.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/10/2007] [Accepted: 01/16/2007] [Indexed: 05/08/2023]
Abstract
Honey bee nest defense involves guard bees that specialize in olfaction-based nestmate recognition and alarm-pheromone-mediated recruitment of nestmates to sting. Stinging is influenced by visual, tactile and olfactory stimuli. Both quantitative trait locus (QTL) mapping and behavioral studies point to guarding behavior as a key factor in colony stinging response. Results of reciprocal F1 crosses show that paternally inherited genes have a greater influence on colony stinging response than maternally inherited genes. The most active alarm pheromone component, isoamyl acetate (IAA) causes increased respiration and may induce stress analgesia in bees. IAA primes worker bees for 'fight or flight', possibly through actions of neuropeptides and/or biogenic amines. Studies of aggression in other species lead to an expectation that octopamine or 5-HT might play a role in honey bee defensive response. Genome sequence and QTL mapping identified 128 candidate genes for three regions known to influence defensive behavior. Comparative bioinformatics suggest possible roles of genes involved in neurogenesis and central nervous system (CNS) activity, and genes involved in sensory tuning through G-protein coupled receptors (GPCRs), such as an arrestin (AmArr4) and the metabotropic GABA(B) receptor (GABA-B-R1).
Collapse
Affiliation(s)
- G J Hunt
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA.
| |
Collapse
|
239
|
Utz S, Huetteroth W, Wegener C, Kahnt J, Predel R, Schachtner J. Direct peptide profiling of lateral cell groups of the antennal lobes ofManduca sextareveals specific composition and changes in neuropeptide expression during development. Dev Neurobiol 2007; 67:764-77. [PMID: 17443823 DOI: 10.1002/dneu.20381] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The paired antennal lobes are the first integration centers for odor information in the insect brain. In the sphinx moth Manduca sexta, like in other holometabolous insects, they are formed during metamorphosis. To further understand mechanisms involved in the formation of this particularly well investigated brain area, we performed a direct peptide profiling of a well defined cell group (the lateral cell group) of the antennal lobe throughout development by MALDI-TOF mass spectrometry. Although the majority of the about 100 obtained ion signals represent still unknown substances, this first peptidomic characterization of this cell group indicated the occurrence of 12 structurally known neuropeptides. Among these peptides are helicostatin 1, cydiastatins 2, 3, and 4, M. sexta-allatotropin (Mas-AT), M. sexta-FLRFamide (Mas-FLRFamide) I, II, and III, nonblocked Mas-FLRFamide I, and M. sexta-myoinhibitory peptides (Mas-MIPs) III, V, and VI. The identity of two of the allatostatins (cydiastatins 3 and 4) and Mas-AT were confirmed by tandem mass spectrometry (MALDI-TOF/TOF). During development of the antennal lobe, number and frequency of ion signals including those representing known peptides generally increased at the onset of glomeruli formation at pupal Stage P7/8, with cydiastatin 2, helicostatin 1, and Mas-MIP V being the exceptions. Cydiastatin 2 showed transient occurrence mainly during the period of glomerulus formation, helicostatin 1 was restricted to late pupae and adults, while Mas-MIP V occurred exclusively in adult antennal lobes. The power of the applied direct mass spectrometric profiling lies in the possibility of chemically identifying neuropeptides of a given cell population in a fast and reliable manner, at any developmental stage in single specimens. The identification of neuropeptides in the antennal lobes now allows to specifically address the function of these signaling molecules during the formation of the antennal lobe network.
Collapse
Affiliation(s)
- Sandra Utz
- Fachbereich Biologie, Tierphysiologie, Philipps Universität, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
240
|
Predel R, Neupert S. Social behavior and the evolution of neuropeptide genes: lessons from the honeybee genome. Bioessays 2007; 29:416-21. [PMID: 17450560 DOI: 10.1002/bies.20571] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Honeybees display a fascinating social behavior. The structural basis for this behavior, which made the bee a model organism for the study of communication, learning and memory formation, is the tiny insect brain. Neurons of the brain communicate via messenger molecules. Among these molecules, neuropeptides represent the structurally most-diverse group and occupy a high hierarchic position in the modulation of behavior. A recent analysis of the honeybee genome revealed a considerable number of predicted (200) and confirmed (100) neuropeptides in this insect. Is this quantity merely the result of advanced mass spectrometric techniques and bioinformatic tools or does it reflect the expression of more of these important messenger molecules, more than known from other insects studied so far? Our analysis of the data suggests that the social behavior is by no means correlated with a specific increase in the number of neuropeptides. Indeed, the honeybee genome is likely to contain fewer neuropeptide genes, neuropeptide paralogues and neuropeptide receptor genes than the solitary fruitfly Drosophila.
Collapse
Affiliation(s)
- Reinhard Predel
- Institut of Zoology, Friedrich-Schiller-Universität, Jena, Germany.
| | | |
Collapse
|
241
|
Abstract
Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.
Collapse
Collaborators
George M Weinstock, Gene E Robinson, Richard A Gibbs, George M Weinstock, Gene E Robinson, Kim C Worley, Jay D Evans, Ryszard Maleszka, Hugh M Robertson, Daniel B Weaver, Martin Beye, Peer Bork, Christine G Elsik, Jay D Evans, Klaus Hartfelder, Greg J Hunt, Hugh M Robertson, Gene E Robinson, Ryszard Maleszka, George M Weinstock, Kim C Worley, Evgeny M Zdobnov, Klaus Hartfelder, Gro V Amdam, Márcia M G Bitondi, Anita M Collins, Alexandre S Cristino, Jay D Evans, Michael G Lattorff, Carlos H Lobo, Robin F A Moritz, Francis M F Nunes, Robert E Page, Zilá L P Simões, Diana Wheeler, Piero Carninci, Shiro Fukuda, Yoshihide Hayashizaki, Chikatoshi Kai, Jun Kawai, Naoko Sakazume, Daisuke Sasaki, Michihira Tagami, Ryszard Maleszka, Gro V Amdam, Stefan Albert, Geert Baggerman, Kyle T Beggs, Guy Bloch, Giuseppe Cazzamali, Mira Cohen, Mark David Drapeau, Dorothea Eisenhardt, Christine Emore, Michael A Ewing, Susan E Fahrbach, Sylvain Forêt, Cornelis J P Grimmelikhuijzen, Frank Hauser, Amanda B Hummon, Greg J Hunt, Jurgen Huybrechts, Andrew K Jones, Tatsuhiko Kadowaki, Noam Kaplan, Robert Kucharski, Gérard Leboulle, Michal Linial, J Troy Littleton, Alison R Mercer, Robert E Page, Hugh M Robertson, Gene E Robinson, Timothy A Richmond, Sandra L Rodriguez-Zas, Elad B Rubin, David B Sattelle, David Schlipalius, Liliane Schoofs, Yair Shemesh, Jonathan V Sweedler, Rodrigo Velarde, Peter Verleyen, Evy Vierstraete, Michael R Williamson, Martin Beye, Seth A Ament, Susan J Brown, Miguel Corona, Peter K Dearden, W Augustine Dunn, Michelle M Elekonich, Christine G Elsik, Sylvain Forêt, Tomoko Fujiyuki, Eriko Gattermeier, Tanja Gempe, Martin Hasselmann, Tatsuhiko Kadowaki, Eriko Kage, Azusa Kamikouchi, Takeo Kubo, Robert Kucharski, Takekazu Kunieda, Marcé Lorenzen, Ryszard Maleszka, Natalia V Milshina, Mizue Morioka, Kazuaki Ohashi, Ross Overbeek, Robert E Page, Hugh M Robertson, Gene E Robinson, Christian A Ross, Morten Schioett, Teresa Shippy, Hideaki Takeuchi, Amy L Toth, Judith H Willis, Megan J Wilson, Hugh M Robertson, Evgeny M Zdobnov, Peer Bork, Christine G Elsik, Karl H J Gordon, Ivica Letunic, Kevin Hackett, Jane Peterson, Adam Felsenfeld, Mark Guyer, Michel Solignac, Richa Agarwala, Jean Marie Cornuet, Christine G Elsik, Christine Emore, Greg J Hunt, Monique Monnerot, Florence Mougel, Justin T Reese, David Schlipalius, Dominique Vautrin, Daniel B Weaver, Joseph J Gillespie, Jamie J Cannone, Robin R Gutell, J Spencer Johnston, Christine G Elsik, Giuseppe Cazzamali, Michael B Eisen, Cornelis J P Grimmelikhuijzen, Frank Hauser, Amanda B Hummon, Venky N Iyer, Vivek Iyer, Peter Kosarev, Aaron J Mackey, Ryszard Maleszka, Justin T Reese, Timothy A Richmond, Hugh M Robertson, Victor Solovyev, Alexandre Souvorov, Jonathan V Sweedler, George M Weinstock, Michael R Willliamson, Evgeny M Zdobnov, Jay D Evans, Katherine A Aronstein, Katarina Bilikova, Yan Ping Chen, Andrew G Clark, Laura I Decanini, William M Gelbart, Charles Hetru, Dan Hultmark, Jean-Luc Imler, Haobo Jiang, Michael Kanost, Kiyoshi Kimura, Brian P Lazzaro, Dawn L Lopez, Jozef Simuth, Graham J Thompson, Zhen Zou, Pieter De Jong, Erica Sodergren, Miklós Csûrös, Aleksandar Milosavljevic, J Spencer Johnston, Kazutoyo Osoegawa, Stephen Richards, Chung-Li Shu, George M Weinstock, Christine G Elsik, Laurent Duret, Eran Elhaik, Dan Graur, Justin T Reese, Hugh M Robertson, Hugh M Robertson, Christine G Elsik, Ryszard Maleszka, Daniel B Weaver, Gro V Amdam, Juan M Anzola, Kathryn S Campbell, Kevin L Childs, Derek Collinge, Madeline A Crosby, C Michael Dickens, Christine G Elsik, Karl H J Gordon, L Sian Grametes, Christina M Grozinger, Peter L Jones, Mireia Jorda, Xu Ling, Beverly B Matthews, Jonathan Miller, Natalia V Milshina, Craig Mizzen, Miguel A Peinado, Justin T Reese, Jeffrey G Reid, Hugh M Robertson, Gene E Robinson, Susan M Russo, Andrew J Schroeder, Susan E St Pierre, Ying Wang, Pinglei Zhou, Hugh M Robertson, Richa Agarwala, Christine G Elsik, Natalia V Milshina, Justin T Reese, Daniel B Weaver, Kim C Worley, Kevin L Childs, C Michael Dickens, Christine G Elsik, William M Gelbart, Huaiyang Jiang, Paul Kitts, Natalia V Milshina, Justin T Reese, Barbara Ruef, Susan M Russo, Anad Venkatraman, George M Weinstock, Lan Zhang, Pinglei Zhou, J Spencer Johnston, Gildardo Aquino-Perez, Jean Marie Cornuet, Monique Monnerot, Michel Solignac, Dominique Vautrin, Charles W Whitfield, Susanta Behura, Stewart H Berlocher, Andrew G Clark, Richard A Gibbs, J Spencer Johnston, Walter S Sheppard, Deborah R Smith, Andrew V Suarez, Neil D Tsutsui, Daniel B Weaver, Xuehong Wei, David Wheeler, George M Weinstock, Kim C Worley, Paul Havlak, Bingshan Li, Yue Liu, Erica Sodergren, Lan Zhang, Martin Beye, Martin Hasselmann, Angela Jolivet, Sandra Lee, Lynne V Nazareth, Ling-Ling Pu, Rachel Thorn, George M Weinstock, Viktor Stolc, Gene E Robinson, Ryszard Maleszka, Thomas Newman, Manoj Samanta, Waraporn A Tongprasit, Katherine A Aronstein, Charles Claudianos, May R Berenbaum, Sunita Biswas, Dirk C de Graaf, Rene Feyereisen, Reed M Johnson, John G Oakeshott, Hilary Ranson, Mary A Schuler, Donna Muzny, Richard A Gibbs, George M Weinstock, Joseph Chacko, Clay Davis, Huyen Dinh, Rachel Gill, Judith Hernandez, Sandra Hines, Jennifer Hume, LaRonda Jackson, Christie Kovar, Lora Lewis, George Miner, Margaret Morgan, Lynne V Nazareth, Ngoc Nguyen, Geoffrey Okwuonu, Heidi Paul, Stephen Richards, Jireh Santibanez, Glenford Savery, Erica Sodergren, Amanda Svatek, Donna Villasana, Rita Wright,
Collapse
|
242
|
Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 2006; 34:W267-72. [PMID: 16845008 PMCID: PMC1538825 DOI: 10.1093/nar/gkl161] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NeuroPred is a web application designed to predict cleavage sites at basic amino acid locations in neuropeptide precursor sequences. The user can study one amino acid sequence or multiple sequences simultaneously, selecting from several prediction models and optional, user-defined functions. Logistic regression models are trained on experimentally verified or published cleavage data from mollusks, mammals and insects, and amino acid motifs reported to be associated with cleavage. Confidence interval limits of the probabilities of cleavage indicate the precision of the predictions; these predictions are transformed into cleavage or non-cleavage events according to user-defined thresholds. In addition to the precursor sequence, NeuroPred accepts user-specified cleavage information, providing model accuracy statistics based on observed and predicted cleavages. Neuropred also computes the mass of the predicted peptides, including user-selectable post-translational modifications. The resulting mass list aids the discovery and confirmation of new neuropeptides using mass spectrometry techniques. The NeuroPred application, manual, reference manuscripts and training sequences are available at .
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA
- Department of Chemistry, University of IllinoisUrbana, IL, USA
| | - Andinet Amare
- Department of Chemistry, University of IllinoisUrbana, IL, USA
| | | | | | - Jonathan V. Sweedler
- Department of Chemistry, University of IllinoisUrbana, IL, USA
- To whom correspondence should be addressed. Tel: +1 217 244 7359; Fax: +1 217 244 8068;
| |
Collapse
|