201
|
Gobin K, Hintermeyer M, Boisson B, Chrabieh M, Ghandil P, Puel A, Picard C, Casanova JL, Routes J, Verbsky J. IRAK4 Deficiency in a Patient with Recurrent Pneumococcal Infections: Case Report and Review of the Literature. Front Pediatr 2017; 5:83. [PMID: 28503543 PMCID: PMC5408006 DOI: 10.3389/fped.2017.00083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Primary immunodeficiencies are genetic defects of the innate or adaptive immune system, resulting in a propensity to infections. The innate immune system is the first line of defense against pathogens and is critical to recognize microbes and start the inflammatory cascade. Sensing of microbes occurs by a number of pathogen-recognition receptors, resulting in the activation of inflammatory signal transduction pathways, such as the activation of NF-κB. Herein, we describe a case of IRAK4 deficiency, a key signal transduction molecule of toll-like and IL-1 receptors. We highlight the complexities in diagnosis of these disorders and review genetic defects of the NF-κB pathway.
Collapse
Affiliation(s)
- Karina Gobin
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Hintermeyer
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Pegah Ghandil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Center for the Study of Primary Immunodeficiencies AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - John Routes
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
202
|
Toll like receptor 3 and viral infections of nervous system. J Neurol Sci 2017; 372:40-48. [DOI: 10.1016/j.jns.2016.11.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
|
203
|
Majer O, Liu B, Barton GM. Nucleic acid-sensing TLRs: trafficking and regulation. Curr Opin Immunol 2016; 44:26-33. [PMID: 27907816 DOI: 10.1016/j.coi.2016.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) play an important role in innate immune responses against pathogenic microorganisms or tissue damage. Nucleic acid (NA)-sensing TLRs localize in intracellular vesicular compartments and recognize foreign-derived and host-derived nucleic acid ligands. Inappropriate activation of NA-sensing TLRs can cause pathogenic inflammation and autoimmunity. Multiple regulatory mechanisms exist to limit recognition of self-NAs. This review summarizes recent progress that has been made in understanding how NA-sensing TLRs are regulated via trafficking, proteolytic cleavage, as well as ligand processing and recognition.
Collapse
Affiliation(s)
- Olivia Majer
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Bo Liu
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gregory M Barton
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
204
|
Pelka K, Shibata T, Miyake K, Latz E. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol Rev 2016; 269:60-75. [PMID: 26683145 DOI: 10.1111/imr.12375] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Invasion of pathogenic microorganisms or tissue damage activates innate immune signaling receptors that sample subcellular locations for foreign molecular structures, altered host molecules, or signs of compartment breaches. Upon engagement of innate immune receptors an acute but transient inflammatory response is initiated, aimed at the clearance of pathogens and cellular debris. Among the molecules that are sensed are nucleic acids, which activate several members of the transmembrane Toll-like receptor (TLR) family. Inappropriate recognition of nucleic acids by TLRs can cause inflammatory pathologies and autoimmunity. Here, we review the mechanisms involved in triggering nucleic acid-sensing TLRs and indicate checkpoints that restrict their activation to endolysosomal compartments. These mechanisms are crucial to sample the content of endosomes for nucleic acids in the context of infection or tissue damage, yet prevent accidental activation by host nucleic acids under physiological conditions. Decoding the molecular mechanisms that regulate nucleic acid recognition by TLRs is central to understand pathologies linked to unrestricted nucleic acid sensing and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Karin Pelka
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | - Takuma Shibata
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Kensuke Miyake
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
205
|
Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency. Virology 2016; 497:323-327. [PMID: 27518540 DOI: 10.1016/j.virol.2016.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNβ promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency.
Collapse
|
206
|
Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V. Human TBK1: A Gatekeeper of Neuroinflammation. Trends Mol Med 2016; 22:511-527. [PMID: 27211305 PMCID: PMC4890605 DOI: 10.1016/j.molmed.2016.04.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The importance of TANK binding kinase-1 (TBK1), a multimeric kinase that modulates inflammation and autophagy, in human health has been highlighted for the first time by the recent discoveries of mutations in TBK1 that underlie amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), normal tension glaucoma (NTG) or childhood herpes simplex encephalitis (HSE). Gain-of-function of TBK1 are associated with NTG, whereas loss-of-function mutations result in ALS/FTD or in HSE. In light of these new findings, we review the role of TBK1 in these seemingly unrelated, yet allelic diseases, and discuss the role of TBK1 in neuroinflammatory diseases. This discovery has the potential to significantly increase our understanding of the molecular basis of these poorly understood diseases.
Collapse
Affiliation(s)
- Liyana Ahmad
- Department of Virology, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris Descartes, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Vanessa Sancho-Shimizu
- Department of Virology, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK; Department of Pediatrics, Division of Medicine, Imperial College London, Norfolk Place, London W2 1 PG, UK.
| |
Collapse
|
207
|
Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS One 2016; 11:e0155832. [PMID: 27224245 PMCID: PMC4880288 DOI: 10.1371/journal.pone.0155832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.
Collapse
|
208
|
DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 2016; 17:495-504. [PMID: 27019227 PMCID: PMC4836962 DOI: 10.1038/ni.3409] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
Abstract
Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.
Collapse
|
209
|
Jaeger M, Stappers MHT, Joosten LAB, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 2016; 10:989-1008. [PMID: 26059622 DOI: 10.2217/fmb.15.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Mark H T Stappers
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
210
|
Sánchez-Ramón S, Faure F. Through the Immune Looking Glass: A Model for Brain Memory Strategies. Front Cell Neurosci 2016; 10:17. [PMID: 26869886 PMCID: PMC4740784 DOI: 10.3389/fncel.2016.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust's madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model's approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San CarlosMadrid, Spain; Department of Microbiology I, Complutense University School of MedicineMadrid, Spain
| | - Florence Faure
- Institut National de la Santé et de la Recherche Médicale U932, Institut Curie Paris, France
| |
Collapse
|
211
|
Britton PN, Dale RC, Nissen MD, Crawford N, Elliott E, Macartney K, Khandaker G, Booy R, Jones CA. Parechovirus Encephalitis and Neurodevelopmental Outcomes. Pediatrics 2016; 137:e20152848. [PMID: 26791970 DOI: 10.1542/peds.2015-2848] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We aimed to describe the clinical features and outcome of human parechovirus (HPeV) encephalitis cases identified by the Australian Childhood Encephalitis (ACE) study. METHODS Infants with suspected encephalitis were prospectively identified in 5 hospitals through the (ACE) study. Cases of confirmed HPeV infection had comprehensive demographic, clinical, laboratory, imaging, and outcome at discharge data reviewed by an expert panel and were categorized by using predetermined case definitions. Twelve months after discharge, neurodevelopment was assessed by using the Ages and Stages Questionnaire (ASQ). RESULTS We identified thirteen cases of suspected encephalitis with HPeV infection between May 2013 and December 2014. Nine infants had confirmed encephalitis; median age was 13 days, including a twin pair. All had HPeV detected in cerebrospinal fluid with absent pleocytosis. Most were girls (7), admitted to ICU (8), and had seizures (8). Many were born preterm (5). Seven patients had white matter diffusion restriction on MRI; 3 with normal cranial ultrasounds. At discharge, 3 of 9 were assessed to have sequelae; however, at 12 months' follow-up, by using the ASQ, 5 of 8 infants showed neurodevelopmental sequelae: 3 severe (2 cerebral palsy, 1 central visual impairment). A further 2 showed concern in gross motor development. CONCLUSIONS Children with HPeV encephalitis were predominantly young, female infants with seizures and diffusion restriction on MRI. Cranial ultrasound is inadequately sensitive. HPeV encephalitis is associated with neurodevelopmental sequelae despite reassuring short-term outcomes. Given the absent cerebrospinal fluid pleocytosis and need for specific testing, HPeV could be missed as a cause of neonatal encephalopathy and subsequent cerebral palsy.
Collapse
Affiliation(s)
- Philip N Britton
- Sydney Medical School, Sydney, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia;
| | - Russell C Dale
- Sydney Medical School, Sydney, Australia; Department of Neurology, The Children's Hospital at Westmead, Sydney, Australia
| | - Michael D Nissen
- Department of Infectious Diseases, Royal Children's Hospital, Brisbane, Australia
| | - Nigel Crawford
- SAEFVIC, Murdoch Children's Research Institute, Melbourne, Australia; Department of General Medicine, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Elizabeth Elliott
- Sydney Medical School, Sydney, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; Australian Paediatric Surveillance Unit, Sydney, Australia; and
| | - Kristine Macartney
- Sydney Medical School, Sydney, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; National Centre for Immunization Research and Surveillance, Sydney, Australia
| | - Gulam Khandaker
- Sydney Medical School, Sydney, Australia; National Centre for Immunization Research and Surveillance, Sydney, Australia
| | - Robert Booy
- Sydney Medical School, Sydney, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; National Centre for Immunization Research and Surveillance, Sydney, Australia
| | - Cheryl A Jones
- Sydney Medical School, Sydney, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia
| | | |
Collapse
|
212
|
Lee YR, Kang W, Kim YM. Detection of Interaction Between Toll-Like Receptors and Other Transmembrane Proteins by Co-immunoprecipitation Assay. Methods Mol Biol 2016; 1390:107-120. [PMID: 26803625 DOI: 10.1007/978-1-4939-3335-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Toll-like receptors are type I membrane proteins and bind other membrane proteins often via a specific interaction between transmembrane domains. The co-immunoprecipitation assay is a widely used biochemical technique for assessing interactions among proteins in cell lysates or tissue extracts. By isolating a native protein complex with a specific antibody against a protein of interest, followed by western blotting with an antibody for a binding partner, the co-immunoprecipitation assay can be used to confirm a putative interaction between two proteins. The co-immunoprecipitation assay can also be combined with a proteomics approach such as protein mass spectrometry to build an interactome of a target protein. Despite its usefulness and popularity to probe protein interactions within complex biological samples, the co-immunoprecipitation assay of membrane proteins is rather tricky, often resulting in false data. Here, we describe a co-immunoprecipitation method for analyzing interactions between toll-like receptors and other membrane proteins, using the interaction between TLR9 and UNC93B1 as an example. Especially, we describe an optimal cell lysis and sample preparation method to preserve protein interactions mediated by transmembrane domains.
Collapse
Affiliation(s)
- Yu-Ran Lee
- Division of Integrative Biosciences and Biotechnologies, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - Wondae Kang
- Division of Integrative Biosciences and Biotechnologies, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | - You-Me Kim
- Division of Integrative Biosciences and Biotechnologies, Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
213
|
Profile of Jean-Laurent Casanova. Proc Natl Acad Sci U S A 2015; 112:15533-5. [DOI: 10.1073/pnas.1522529112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
214
|
Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 2015; 112:E7128-37. [PMID: 26621750 PMCID: PMC4697435 DOI: 10.1073/pnas.1521651112] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.
Collapse
MESH Headings
- Adolescent
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Child
- Complement System Proteins/genetics
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Epidermodysplasia Verruciformis/genetics
- Epidermodysplasia Verruciformis/immunology
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/immunology
- Genetic Predisposition to Disease
- Humans
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infections/genetics
- Infections/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Malaria/genetics
- Malaria/immunology
- Models, Genetic
- Models, Immunological
- Mycobacterium Infections/genetics
- Mycobacterium Infections/immunology
- Neisseria/immunology
- Neisseria/pathogenicity
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Tinea/genetics
- Tinea/immunology
- Young Adult
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; Howard Hughes Medical Institute, New York, NY 10065; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France; Imagine Institute, Paris Descartes University, 75015 Paris, France; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
215
|
Tanne A, Muniz LR, Puzio-Kuter A, Leonova KI, Gudkov AV, Ting DT, Monasson R, Cocco S, Levine AJ, Bhardwaj N, Greenbaum BD. Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells. Proc Natl Acad Sci U S A 2015; 112:15154-9. [PMID: 26575629 PMCID: PMC4679042 DOI: 10.1073/pnas.1517584112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have demonstrated abundant transcription of a set of noncoding RNAs (ncRNAs) preferentially within tumors as opposed to normal tissue. Using an approach from statistical physics, we quantify global transcriptome-wide motif use for the first time, to our knowledge, in human and murine ncRNAs, determining that most have motif use consistent with the coding genome. However, an outlier subset of tumor-associated ncRNAs, typically of recent evolutionary origin, has motif use that is often indicative of pathogen-associated RNA. For instance, we show that the tumor-associated human repeat human satellite repeat II (HSATII) is enriched in motifs containing CpG dinucleotides in AU-rich contexts that most of the human genome and human adapted viruses have evolved to avoid. We demonstrate that a key subset of these ncRNAs functions as immunostimulatory "self-agonists" and directly activates cells of the mononuclear phagocytic system to produce proinflammatory cytokines. These ncRNAs arise from endogenous repetitive elements that are normally silenced, yet are often very highly expressed in cancers. We propose that the innate response in tumors may partially originate from direct interaction of immunogenic ncRNAs expressed in cancer cells with innate pattern recognition receptors, and thereby assign a previously unidentified danger-associated function to a set of dark matter repetitive elements. These findings potentially reconcile several observations concerning the role of ncRNA expression in cancers and their relationship to the tumor microenvironment.
Collapse
Affiliation(s)
- Antoine Tanne
- Tisch Cancer Institute, Department of Medicine, Hematology, and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Luciana R Muniz
- Tisch Cancer Institute, Department of Medicine, Hematology, and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | | - David T Ting
- Massachusetts General Hospital, Charlestown, MA 02129
| | - Rémi Monasson
- Laboratoire de Physique Théorique, CNRS and Ecole Normale Supérieure, 75005 Paris, France
| | - Simona Cocco
- Laboratoire de Physique Statistique, CNRS and Ecole Normale Supérieure, 75005 Paris, France
| | - Arnold J Levine
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903; The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540;
| | - Nina Bhardwaj
- Tisch Cancer Institute, Department of Medicine, Hematology, and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Benjamin D Greenbaum
- Tisch Cancer Institute, Department of Medicine, Hematology, and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
216
|
Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci 2015; 1356:1-21. [PMID: 25930993 PMCID: PMC4629506 DOI: 10.1111/nyas.12763] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| | - Noa Simchoni
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
217
|
Mørk N, Kofod-Olsen E, Sørensen KB, Bach E, Ørntoft TF, Østergaard L, Paludan SR, Christiansen M, Mogensen TH. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis. Genes Immun 2015; 16:552-66. [PMID: 26513235 DOI: 10.1038/gene.2015.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.
Collapse
Affiliation(s)
- N Mørk
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - E Kofod-Olsen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - K B Sørensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - E Bach
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - T F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - L Østergaard
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - S R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M Christiansen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - T H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
218
|
Harris KG, Coyne CB. Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases. PLoS One 2015; 10:e0141383. [PMID: 26509685 PMCID: PMC4624986 DOI: 10.1371/journal.pone.0141383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 02/02/2023] Open
Abstract
Unc93b is an endoplasmic reticulum (ER)-resident transmembrane protein that serves to bind and traffic toll-like receptors (TLRs) from the ER to their appropriate subcellular locations for ligand sensing. Because of its role in TLR trafficking, Unc93b is necessary for an effective innate immune response to coxsackievirus B3 (CVB), a positive-sense single stranded RNA virus belonging to the enterovirus family. Here, we show that Unc93b is cleaved by a CVB-encoded cysteine protease (3Cpro) during viral replication. Further, we define a role for Unc93b in the induction of apoptotic cell death and show that expression of wild-type Unc93b, but not a mutant incapable of binding TLRs or exiting the ER (H412R), induces apoptosis. Furthermore, we show that cellular caspases activated during apoptosis directly cleave Unc93b. Interestingly, we show that the 3Cpro- and caspase-mediated cleavage of Unc93b both occur within ten amino acids in the distal N-terminus of Unc93b. Mechanistically, neither caspase-mediated nor 3Cpro-mediated cleavage of Unc93b altered its trafficking function, inhibited its role in facilitating TLR3 or TLR8 signaling, or altered its apoptosis-inducing effects. Taken together, our studies show that Unc93b is targeted by both viral- and host cell-specific proteases and identify a function of Unc93b in the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Katharine G. Harris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
219
|
Dendritic Cell Autophagy Contributes to Herpes Simplex Virus-Driven Stromal Keratitis and Immunopathology. mBio 2015; 6:e01426-15. [PMID: 26507231 PMCID: PMC4626854 DOI: 10.1128/mbio.01426-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpetic stromal keratitis (HSK) is a blinding ocular disease that is initiated by HSV-1 and characterized by chronic inflammation in the cornea. Although HSK immunopathology of the cornea is well documented in animal models, events preceding this abnormal inflammatory cascade are poorly understood. In this study, we have examined the activation of pathological CD4+ T cells in the development of HSK. Dendritic cell autophagy (DC-autophagy) is an important pathway regulating major histocompatibility complex class II (MHCII)-dependent antigen presentation and proper CD4+ T cell activation during infectious diseases. Using DC-autophagy-deficient mice, we found that DC-autophagy significantly and specifically contributes to HSK disease without impacting early innate immune infiltration, viral clearance, or host survival. Instead, the observed phenotype was attributable to the abrogated activation of CD4+ T cells and reduced inflammation in HSK lesions. We conclude that DC-autophagy is an important contributor to primary HSK immunopathology upstream of CD4+ T cell activation. Herpetic stromal keratitis (HSK) is the leading cause of infectious blindness in the United States and a rising cause worldwide. HSK is induced by herpes simplex virus 1 but is considered a disease of inappropriately sustained inflammation driven by CD4+ T cells. In this study, we investigated whether pathways preceding CD4+ T cell activation affect disease outcome. We found that autophagy in dendritic cells significantly contributed to the incidence of HSK. Dendritic cell autophagy did not alter immune control of the virus or neurological disease but specifically augmented CD4+ T cell activation and pathological corneal inflammation. This study broadens our understanding of the immunopathology that drives HSK and implicates the autophagy pathway as a new target for therapeutic intervention against this incurable form of infectious blindness.
Collapse
|
220
|
Cook MC. Medical case reports in the age of genomic medicine. Clin Transl Immunology 2015; 4:e45. [PMID: 26682053 PMCID: PMC4673439 DOI: 10.1038/cti.2015.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/14/2015] [Accepted: 06/14/2015] [Indexed: 11/09/2022] Open
Abstract
The case report has been a pillar of medical literature but has been displaced recently because of inherent risks of bias. As we move towards precision medicine, however, the case report format could provide an important method for describing disease mechanisms based on rare genetic variants. Empirical evidence reveals that many previously unexplained Mendelian diseases are accounted for by rare heterozygous alleles, de novo mutations or compound heterozygous mutations, and that disease-associated variants are often confined to the kindred of the affected individual. Elucidation of the phenotypes of these rare genetic variants will necessarily offer unique insights into disease mechanisms. Even when the association between variants in a specific gene and a disease has already been identified, individual cases are valuable. Allelic series extend both the clinical and laboratory phenotypes. Finally, the prevalence of a disease is not a reliable indicator of the therapeutic importance of the underlying mechanism, so resolving extreme phenotypes even in single cases has the potential to identify new treatment strategies relevant to more common disease.
Collapse
Affiliation(s)
- Matthew C Cook
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Woden, Australian Capital Territory, Australia ; Translational Research Unit, Canberra Hospital , Woden, Australian Capital Territory, Australia
| |
Collapse
|
221
|
Duncan CJA, Mohamad SMB, Young DF, Skelton AJ, Leahy TR, Munday DC, Butler KM, Morfopoulou S, Brown JR, Hubank M, Connell J, Gavin PJ, McMahon C, Dempsey E, Lynch NE, Jacques TS, Valappil M, Cant AJ, Breuer J, Engelhardt KR, Randall RE, Hambleton S. Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci Transl Med 2015; 7:307ra154. [PMID: 26424569 PMCID: PMC4926955 DOI: 10.1126/scitranslmed.aac4227] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Department of Infectious Diseases and Tropical Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK.
| | - Siti M B Mohamad
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Advanced Medical and Dental Institute, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Andrew J Skelton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - T Ronan Leahy
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Diane C Munday
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Karina M Butler
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Julianne R Brown
- Virology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London WC1N 3JH, UK. National Institutes of Health Research Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Mike Hubank
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J Gavin
- Department of Pediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Cathy McMahon
- Department of Pediatric Intensive Care and Anaesthetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Eugene Dempsey
- INFANT Centre, Cork University Maternity Hospital, University College Cork, Ireland
| | - Niamh E Lynch
- Department of Pediatrics, Bon Secours Hospital, Cork, Ireland
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Manoj Valappil
- Public Health England, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Andrew J Cant
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Pediatric Immunology Service, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK. Virology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London WC1N 3JH, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 4LP, UK. Pediatric Immunology Service, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK.
| |
Collapse
|
222
|
de Almeida SM, Crippa A, Cruz C, de Paola L, de Souza LP, Noronha L, Torres LFB, Koneski JAS, Pessa LFC, Nogueira MB, Raboni SM, Silvado CE, Vidal LR. Reactivation of herpes simplex virus-1 following epilepsy surgery. EPILEPSY & BEHAVIOR CASE REPORTS 2015; 4:76-8. [PMID: 26543809 PMCID: PMC4556748 DOI: 10.1016/j.ebcr.2014.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/25/2014] [Indexed: 12/02/2022]
Abstract
Purpose The present study reports a case of encephalitis due to herpes simplex virus-1 (HSV-1), following surgical manipulation of the site of a primary infection. Methods Herpes simplex virus-1 infection was confirmed by CSF PCR and DNA sequencing. Results The patient was an 11-year-old girl who required temporal lobe surgery for epilepsy. She had meningoencephalitis due to HSV at the age of 20 months, and she was treated with acyclovir. Three years later, the patient developed uncontrolled seizures that became more frequent and changed in character at 11 years of age. On the 12th postoperative day, she developed fever and seizures, and she was diagnosed with HSV-1 by positive CSF PCR. She was treated with acyclovir (30 mg/kg/day for 21 days). In this report, we describe the patient and review the relevant literature. Conclusion The authors stress the potential risk of reactivation of HSV encephalitis after intracranial surgery. Herpes simplex virus encephalitis must be considered in neurosurgical patients who develop postoperative seizures and fever.
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil ; Instituto de Pesquisa Pelé Pequeno Príncipe & Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Ana Crippa
- Serviço de Epilepsia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cristina Cruz
- Serviço de Infectologia Pediátrica, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luciano de Paola
- Serviço de Epilepsia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luciana Paula de Souza
- Serviço de Epilepsia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lucia Noronha
- Serviço de Anatomia Patológica, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luis Fernando Bleggi Torres
- Serviço de Anatomia Patológica, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Luis Felipe Cavalli Pessa
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Meri Bordignon Nogueira
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Sonia Mara Raboni
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Eduardo Silvado
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luine Rosele Vidal
- Laboratório de Virologia, 1-4 Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
223
|
McGlasson S, Jury A, Jackson A, Hunt D. Type I interferon dysregulation and neurological disease. Nat Rev Neurol 2015; 11:515-23. [PMID: 26303851 DOI: 10.1038/nrneurol.2015.143] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type I interferon is an essential component of the brain's innate immune defence, conferring protection against viral infection. Recently, dysregulation of the type I interferon pathway has been implicated in the pathogenesis of a spectrum of neuroinfectious and neuroinflammatory disorders. Underactivity of the type I interferon response is associated with a predisposition to herpes simplex encephalitis. Conversely, a group of 'interferonopathic' disorders, characterized by severe neuroinflammation and overactivity of type I interferon, has been described. Elucidation of the genetic basis of these Mendelian neuroinflammatory diseases has uncovered important links between nucleic acid sensors, innate immune activation and neuroinflammatory disease. These mechanisms have an important role in the pathogenesis of more common polygenic diseases that can affect the brain, such as lupus and cerebral small vessel disease. In this article, we review the spectrum of neurological disease associated with type I interferon dysregulation, as well as advances in our understanding of the molecular and cellular pathogenesis of these conditions. We highlight the potential utility of type I interferon as both a biomarker and a therapeutic target in neuroinflammatory disease.
Collapse
Affiliation(s)
- Sarah McGlasson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alexa Jury
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andrew Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - David Hunt
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
224
|
Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev 2015; 15:1-8. [PMID: 26299984 DOI: 10.1016/j.autrev.2015.08.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) constitute an important mechanism in the activation of innate immune cells including monocytes, macrophages and dendritic cells. Macrophage activation by TLRs is pivotal in the initiation of the rapid expression of pro-inflammatory cytokines TNF, IL-1β and IL-6 while promoting Th17 responses, all of which play critical roles in autoimmunity. Surprisingly, in inflammatory arthritis, activation of specific TLRs can not only induce but also inhibit cellular processes associated with bone destruction. The intercellular and intracellular orchestration of signals from different TLRs, their endogenous or microbial ligands and accessory molecules determine the activating or inhibitory responses. Herein, we review the TLR-mediated activation of innate immune cells in their activation and differentiation to osteoclasts and the capacity of these signals to contribute to bone destruction in arthritis. Detailed understanding of the opposing mechanisms of TLRs in the induction and suppression of cellular processes in arthritis may pave the way to develop novel therapies to treat autoimmunity.
Collapse
Affiliation(s)
| | - M Eric Gerswhin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, CA, 95817, USA.
| |
Collapse
|
225
|
Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. ACTA ACUST UNITED AC 2015. [PMID: 26216125 PMCID: PMC4548062 DOI: 10.1084/jem.20142274] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Line S Reinert
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Ryo Narita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Sofie E Jørgensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Kristian A Skipper
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Klara Höning
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Veit Hornung
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Søren R Paludan
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Takashi Fujita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Mette Christiansen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine H Mogensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| |
Collapse
|
226
|
Piret J, Boivin G. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Rev Med Virol 2015. [PMID: 26205506 DOI: 10.1002/rmv.1848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
227
|
Paediatric Acute Encephalitis: Infection and Inflammation. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-015-0089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
228
|
Abstract
The innate immune system provides the first barrier against pathogens. Intracellular Toll-like receptors (TLR3, 7 and 9) localise in endosomes and sense nucleotides from viruses and bacteria. This recognition induces their conformational changes resulting in the production of proinflammatory cytokines and MHC class II (MHCII) antigenic presentation. In the absence of stimulation, TLRs are retained in the endoplasmic reticulum. Upon stimulation, they relocate to the endo-lysosomal compartment, allowing the recruitment of the adaptor molecules, MyD88 or TRIF. Increasing evidences describe a cross talk between proteins that regulate both innate and adaptive immune responses. For example, proteolytic enzymes which are required for breaking down exogenous antigen to generate suitable peptides for MHCII molecules are also essential to activate endosomal TLRs and MHCII molecules were recently described to regulate TLR signalling. But other proteins are possibly involved and regulated differentially between cell types. We have observed that intracellular TLR trafficking and signalling in B cells are different from dendritic cells and macrophages and involved the MHCII chaperone molecule, the invariant chain (Ii).
Collapse
|
229
|
Trevisan M, Sinigaglia A, Desole G, Berto A, Pacenti M, Palù G, Barzon L. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems. Viruses 2015; 7:3835-56. [PMID: 26184286 PMCID: PMC4517129 DOI: 10.3390/v7072800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/25/2022] Open
Abstract
The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | | | - Giovanna Desole
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Alessandro Berto
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, Padova 35121, Italy.
- Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, Padova 35128, Italy.
| |
Collapse
|
230
|
Rosato PC, Leib DA. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host-pathogen standoff. Future Virol 2015; 10:699-714. [PMID: 26213562 PMCID: PMC4508759 DOI: 10.2217/fvl.15.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus.
Collapse
Affiliation(s)
- Pamela C Rosato
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David A Leib
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
231
|
Abstract
OBJECTIVE Kleine-Levin Syndrome (KLS) is a rare sleep disorder causing recurrent symptomatic episodes of severe hypersomnia, cognitive impairment, apathy, and derealization. These episodes are interspersed with long periods of normal sleep, cognition, and behavior. The pathogenesis of KLS is still unknown. The objective of this study was to determine serum cytokine levels in patients with KLS during and between episodes. PATIENTS/METHODS Fifty-two typical KLS patients were included in the study of whom 17 patients donated blood samples both during and between episodes. Blood samples were collected in USA, France, and Taiwan in a clinical setting. Processing of the samples was performed at the Stanford Center for Sleep Sciences and Medicine. RESULTS We did not observe any changes in serum cytokine levels during KLS episodes compared to between episodes. In a small cohort of asymptomatic KLS patients and age- and gender matched healthy controls (n = 8/group) whose blood samples were all collected and processed at the same day; asymptomatic KLS patients had significantly higher levels of serum sVCAM1 cytokine compared to healthy controls. CONCLUSION These data suggest that KLS episodes are not accompanied by an abnormal systemic immune reaction.
Collapse
|
232
|
Lafaille FG, Ciancanelli MJ, Studer L, Smith G, Notarangelo L, Casanova JL, Zhang SY. Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System. Front Immunol 2015; 6:208. [PMID: 26005444 PMCID: PMC4424875 DOI: 10.3389/fimmu.2015.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common virus that can rarely invade the human central nervous system (CNS), causing devastating encephalitis. The permissiveness to HSV-1 of the various relevant cell types of the CNS, neurons, astrocytes, oligodendrocytes, and microglia cells, as well as their response to viral infection, has been extensively studied in humans and other animals. Nevertheless, human CNS cell-based models of anti-HSV-1 immunity are of particular importance, as responses to any given neurotropic virus may differ between humans and other animals. Human CNS neuron cell lines as well as primary human CNS neurons, astrocytes, and microglia cells cultured/isolated from embryos or cadavers, have enabled the study of cell-autonomous anti-HSV-1 immunity in vitro. However, the paucity of biological samples and their lack of purity have hindered progress in the field, which furthermore suffers from the absence of testable primary human oligodendrocytes. Recently, the authors have established a human induced pluripotent stem cells (hiPSCs)-based model of anti-HSV-1 immunity in neurons, oligodendrocyte precursor cells, astrocytes, and neural stem cells, which has widened the scope of possible in vitro studies while permitting in-depth explorations. This mini-review summarizes the available data on human primary and iPSC-derived CNS cells for anti-HSV-1 immunity. The hiPSC-mediated study of anti-viral immunity in both healthy individuals and patients with viral encephalitis will be a powerful tool in dissecting the disease pathogenesis of CNS infections with HSV-1 and other neurotropic viruses.
Collapse
Affiliation(s)
- Fabien G Lafaille
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Michael J Ciancanelli
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research , New York, NY , USA
| | - Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Luigi Notarangelo
- Division of Immunology, Boston Children's Hospital and Harvard Medical School , Boston, MA , USA
| | - Jean-Laurent Casanova
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA ; Howard Hughes Medical Institute , New York, NY , USA ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children , Paris , France ; Imagine Institute, Paris Descartes University , Paris , France ; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children , Paris , France
| | - Shen-Ying Zhang
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children , Paris , France ; Imagine Institute, Paris Descartes University , Paris , France
| |
Collapse
|
233
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
234
|
Skevaki C, Pararas M, Kostelidou K, Tsakris A, Routsias JG. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clin Exp Immunol 2015; 180:165-77. [PMID: 25560985 PMCID: PMC4408151 DOI: 10.1111/cei.12578] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility.
Collapse
Affiliation(s)
- C Skevaki
- Research Laboratories, Second Department of PediatricsAthens, Greece
| | - M Pararas
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| | - K Kostelidou
- Research Laboratories, Second Department of PediatricsAthens, Greece
- Department of Food Science and Nutrition, University of the AegeanLemnos, Greece
| | - A Tsakris
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| | - J G Routsias
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| |
Collapse
|
235
|
Bryant CE, Gay NJ, Heymans S, Sacre S, Schaefer L, Midwood KS. Advances in Toll-like receptor biology: Modes of activation by diverse stimuli. Crit Rev Biochem Mol Biol 2015; 50:359-79. [DOI: 10.3109/10409238.2015.1033511] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Nick J. Gay
- Department of Biochemistry, University of Cambridge, Cambridge, UK,
| | - Stephane Heymans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium,
- ICIN – Netherlands Heart Institute, Utrecht, The Netherlands,
| | - Sandra Sacre
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK,
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany, and
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
236
|
Sutter R, Kaplan PW. What to see when you are looking at confusion: a review of the neuroimaging of acute encephalopathy. J Neurol Neurosurg Psychiatry 2015; 86:446-59. [PMID: 25091365 DOI: 10.1136/jnnp-2014-308216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute encephalopathy is a clinical conundrum in neurocritical care facing physicians with diagnostic and therapeutic challenges. Encephalopathy arises from several concurrent causes, and delayed diagnosis adds to its grim prognosis. Diagnosis is reached by melding clinical, neurophysiological and biochemical features with various neuroimaging studies. We aimed to compile the pathophysiology of acute encephalopathies in adults, and the contribution of cerebral CT, MRI, MR spectroscopy (MRS), positron emission tomography (PET) and single-photon emission CT (SPECT) to early diagnosis, treatment and prognostication. Reports from 1990 to 2013 were identified. Therefore, reference lists were searched to identify additional publications. Encephalopathy syndromes best studied by neuroimaging emerge from hypoxic-ischaemic injury, sepsis, metabolic derangements, autoimmune diseases, infections and rapidly evolving dementias. Typical and pathognomonic neuroimaging patterns are presented. Cerebral imaging constitutes an important component of diagnosis, management and prognosis of acute encephalopathy. Its respective contribution is dominated by rapid exclusion of acute cerebral lesions and further varies greatly depending on the underlying aetiology and the range of possible differential diagnoses. CT has been well studied, but is largely insensitive, while MRI appears to be the most helpful in the evaluation of encephalopathies. MRS may provide supplementary biochemical information and determines spectral changes in the affected brain tissue. The less frequently used PET and SPECT may delineate areas of high or low metabolic activity or cerebral blood flow. However, publications of MRS, PET and SPECT are limited only providing anecdotal evidence of their usefulness and sensitivity.
Collapse
Affiliation(s)
- Raoul Sutter
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA Clinic of Intensive Care Medicine, University Hospital Basel, Basel, Switzerland Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Peter W Kaplan
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
237
|
Evasion of early antiviral responses by herpes simplex viruses. Mediators Inflamm 2015; 2015:593757. [PMID: 25918478 PMCID: PMC4396904 DOI: 10.1155/2015/593757] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency.
Collapse
|
238
|
Kajita AI, Morizane S, Takiguchi T, Yamamoto T, Yamada M, Iwatsuki K. Interferon-Gamma Enhances TLR3 Expression and Anti-Viral Activity in Keratinocytes. J Invest Dermatol 2015; 135:2005-2011. [PMID: 25822580 DOI: 10.1038/jid.2015.125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) recognize specific microbial products in the innate immune response. TLR3, a double-stranded RNA sensor, is thought to have an important role in viral infections, but the regulation of TLR3 expression and its function in keratinocytes are not fully understood. Here we show the Th1 cytokine IFN-γ increased the TLR3 expression via STAT1 in cultured normal human epidermal keratinocytes (NHEKs). Co-stimulation with IFN-γ and the TLR3 ligand poly (I:C) synergistically increased the expression of IFN-β, IL-6, IL-8, and human β-defensin-2 in NHEKs compared with poly (I:C) or IFN-γ alone. These synergistic inductions were significantly inhibited by an endosomal acidification inhibitor, chloroquine, and by TLR3 siRNA. Co-stimulation with IFN-γ and poly (I:C) also significantly enhanced the anti-viral activity against herpes simplex virus type-1 in NHEKs compared with poly (I:C) or IFN-γ alone. In addition to the in vitro findings, an immunohistochemical analysis revealed IFN-γ-positive cells surrounding herpetic vesicles. These findings indicate that IFN-γ might contribute to the innate immune response to cutaneous viral infections by enhancing TLR3 expression and function in keratinocytes.
Collapse
Affiliation(s)
- A I Kajita
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Tetsuya Takiguchi
- Department of Plastic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takenobu Yamamoto
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Masao Yamada
- Department of Virology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
239
|
Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2735-45. [PMID: 25681348 DOI: 10.4049/jimmunol.1402566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
When Staphylococcus aureus penetrates the epidermis and reaches the dermis, polymorphonuclear leukocytes (PMLs) accumulate and an abscess is formed. However, the molecular mechanisms that orchestrate initiation and termination of inflammation in skin infection are incompletely understood. In human myeloid differentiation primary response gene 88 (MyD88) deficiency, staphylococcal skin and soft tissue infections are a leading and potentially life-threatening problem. In this study, we found that MyD88-dependent sensing of S. aureus by dermal macrophages (Mϕ) contributes to both timely escalation and termination of PML-mediated inflammation in a mouse model of staphylococcal skin infection. Mϕs were key to recruit PML within hours in response to staphylococci, irrespective of bacterial viability. In contrast with bone marrow-derived Mϕs, dermal Mϕs did not require UNC-93B or TLR2 for activation. Moreover, PMLs, once recruited, were highly activated in an MyD88-independent fashion, yet failed to clear the infection if Mϕs were missing or functionally impaired. In normal mice, clearance of the infection and contraction of the PML infiltrate were accompanied by expansion of resident Mϕs in a CCR2-dependent fashion. Thus, whereas monocytes were dispensable for the early immune response to staphylococci, they contributed to Mϕ renewal after the infection was overcome. Taken together, MyD88-dependent sensing of staphylococci by resident dermal Mϕs is key for a rapid and balanced immune response, and PMLs are dependent on intact Mϕ for full function. Renewal of resident Mϕs requires both local control of bacteria and inflammatory monocytes entering the skin.
Collapse
Affiliation(s)
- Reinhild Feuerstein
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Institute of Pathology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany; and
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
240
|
Lafferty EI, Wiltshire SA, Angers I, Vidal SM, Qureshi ST. Unc93b1 -Dependent Endosomal Toll-Like Receptor Signaling Regulates Inflammation and Mortality during Coxsackievirus B3 Infection. J Innate Immun 2015; 7:315-30. [PMID: 25675947 DOI: 10.1159/000369342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/26/2014] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus strain B serotype 3 (CVB3)-induced myocarditis is an important human disease that causes permanent tissue damage and can lead to death from acute infection or long-term morbidity caused by chronic inflammation. The timing and magnitude of immune activation following CVB3 infection can mediate a positive host outcome or increase tissue pathology. To better elucidate the role of endosomal Toll-like receptor (TLR) signaling in acute CVB3 infection, we studied mice with a loss-of-function mutation, known as Letr for 'loss of endosomal TLR response', in Unc93b1, which is a chaperone protein for TLR3, TLR7 and TLR9. Using Unc93b1(Letr/)(Letr) mice, we determined that Unc93b1-dependent TLR activation was essential for the survival of acute CVB3-induced myocarditis. We also determined that a lack of endosomal TLR signaling was associated with a higher viral load in target organs and that it increased inflammation, necrosis and fibrosis in cardiac tissue. Loss of Unc93b1 function was also associated with increased cardiac expression of Ifn-b and markers of tissue injury and fibrosis including Lcn2 and Serpina3n early after CVB3 infection. These observations establish a significant role for Unc93b1 in the regulation of the host inflammatory response to CVB3 infection and also reveal potential mediators of host tissue damage that merit further investigation in acute viral myocarditis.
Collapse
Affiliation(s)
- Erin I Lafferty
- Meakins-Christie Laboratories, McGill University, Montréal, Qué., Canada
| | | | | | | | | |
Collapse
|
241
|
Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2015; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
MESH Headings
- Animals
- Central Nervous System/pathology
- Central Nervous System/virology
- Disease Models, Animal
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/virology
- Guinea Pigs
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Rabbits
- Species Specificity
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Christina M Kollias
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | | | | | | |
Collapse
|
242
|
Britton PN, Dale RC, Booy R, Jones CA. Acute encephalitis in children: Progress and priorities from an Australasian perspective. J Paediatr Child Health 2015; 51:147-58. [PMID: 24953748 DOI: 10.1111/jpc.12650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 11/27/2022]
Abstract
Encephalitis is a complex neurological syndrome caused by inflammation of the brain that occurs with highest incidence in children. It is challenging to diagnose and manage due to the variety of aetiologies and non-specific clinical presentations. We discuss the recent progress in clinical case definitions; review recent, large, prospective epidemiological studies; and describe aetiologies. We emphasise infectious causes relevant to children in Australasia but also consider emerging immune-mediated syndromes responsive to immune therapies. We identify priorities for future research in children, given the potential for climate change and international travel to influence the emergence of infectious agents in our region.
Collapse
Affiliation(s)
- Philip N Britton
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
243
|
Infektionen. NEUROINTENSIV 2015. [PMCID: PMC7175474 DOI: 10.1007/978-3-662-46500-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In diesem Kapitel werden zunächst die für die Neurointensivmedizin wesentlichen bakteriellen Infektionen (Meningitis, spinale und Hirnabszesse, Spondylodiszitis, septisch-embolische Herdenzephalitis) abgehandelt, die trotz gezielt eingesetzter Antibiotika und neurochirurgischer Therapieoptionen noch mit einer erheblichen Morbidität und Mortalität behaftet sind. Besonderheiten wie neurovaskuläre Komplikationen, die Tuberkulose des Nervensystems, Neuroborreliose, Neurosyphilis und opportunistische Infektionen bei Immunsuppressionszuständen finden hierbei besondere Berücksichtigung. Der zweite Teil dieses Kapitels behandelt akute und chronische Virusinfektionen des ZNS sowie in einem gesonderten Abschnitt die HIVInfektion und HIV-assoziierte Krankheitsbilder sowie Parasitosen und Pilzinfektionen, die in Industrieländern seit Einführung der HAART bei HIV zwar eher seltener, aber mit zunehmender Globalisierung auch in unseren Breiten immer noch anzutreffen sind.
Collapse
|
244
|
Cold sore susceptibility gene-1 genotypes affect the expression of herpes labialis in unrelated human subjects. Hum Genome Var 2014; 1:14024. [PMID: 27081513 PMCID: PMC4785534 DOI: 10.1038/hgv.2014.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/02/2023] Open
Abstract
Our group has recently described a gene on human chromosome 21, the Cold Sore Susceptibility Gene-1 (CSSG-1, also known as C21orf91), which may confer susceptibility to frequent cold sores in humans. We present here a genotype–phenotype analysis of CSSG-1 in a new, unrelated human population. Seven hundred fifty-eight human subjects were enrolled in a case/control Cold Sore Study. CSSG-1 genotyping, herpes simplex virus 1 (HSV1) serotyping, demographic and phenotypic data was available from 622 analyzed subjects. Six major alleles (H1–H6) were tested for associations with each of the self-reported phenotypes. The statistical analysis was adjusted for age, sex and ethnicity. Genotype–phenotype associations were analyzed from 388 HSV1-seropositive subjects. There were significant CSSG-1 haplotype effects on annual cold sore outbreaks (P=0.006), lifetime cold sores (P=0.012) and perceived cold sore severity (P=0.012). There were relatively consistent trends toward protection from frequent and severe cold sores among those with the H3 or H5/6 haplotypes, whereas those with H1, H2, and H4 haplotypes tended to have more frequent and more severe episodes. Different alleles of the newly described gene CSSG-1 affect the expression of cold sore phenotypes in this new, unrelated human population, confirming the findings of the previous family-based study.
Collapse
|
245
|
Abstract
The field of immunology has undergone recent discoveries of genetic causes for many primary immunodeficiency diseases (PIDD). The ever-expanding knowledge has led to increased understanding behind the pathophysiology of these diseases. Since these diseases are rare, the patients are frequently misdiagnosed early in the presentation of their illnesses. The identification of new genes has increased our opportunities for recognizing and making the diagnosis in patients with PIDD before they succumb to infections that may result secondary to their PIDD. Some mutations lead to a variety of presentations of severe combined immunodeficiency (SCID). The myriad and ever-growing genetic mutations which lead to SCID phenotypes have been identified in recent years. Other mutations associated with some genetic syndromes have associated immunodeficiency and are important for making the diagnosis of primary immunodeficiency in patients with some syndromes, who may otherwise be missed within the larger context of their syndromes. A variety of mutations also lead to increased susceptibility to infections due to particular organisms. These patterns of infections due to specific organisms are important keys in properly identifying the part of the immune system which is affected in these patients. This review will discuss recent genetic discoveries that enhance our understanding of these complex diseases.
Collapse
|
246
|
Lund VK, Delotto R. Regulation of Toll and Toll-like receptor signaling by the endocytic pathway. Small GTPases 2014; 2:95-98. [PMID: 21776409 DOI: 10.4161/sgtp.2.2.15378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 12/21/2022] Open
Abstract
The Toll/TLR receptor family plays a central role in both vertebrate and insect immunity, driving the activation of humoral immunity in response to pathogens. In Drosophila, Toll is also responsible for directing the formation of the Dorsal/NFkappaB gradient specifying dorsoventral patterning of the embryo. Two recent studies have revealed that endocytosis and elements of the molecular machinery governing endosomal progression are required for Drosophila Toll signaling in development and immunity. We demonstrated that Toll is not only present at the plasma membrane but also in a Rab5(+) early endosomal compartment in the embryo and that the distribution of constitutively active Toll(10B) is shifted towards endosomes. Localized inhibition of Rab5 function on the ventral side leads to a reduction of nuclear Dorsal levels, while locally increasing Rab5 function leads to potentiation of signaling. Independently, another laboratory identified the endosomal protein Mop as a potentiator of Toll signaling in Drosophila cell culture and fat-body tissue. Mop functions together with the ESCRT 0 component, Hrs, previously reported to stimulate endosomal progression and the signaling ability of internalized EGFR. We discuss these studies and briefly summarize the most significant findings concerning the role of intracellular localization and trafficking in mammalian TLR function.
Collapse
Affiliation(s)
- Viktor K Lund
- Department of Biology; University of Copenhagen; Denmark
| | | |
Collapse
|
247
|
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14:546-58. [PMID: 25060580 DOI: 10.1038/nri3713] [Citation(s) in RCA: 606] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.
Collapse
Affiliation(s)
- Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martyn F Symmons
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
248
|
Toll-like receptor expression in the nervous system of bovine alpha-herpesvirus-infected calves. Res Vet Sci 2014; 97:422-9. [DOI: 10.1016/j.rvsc.2014.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/29/2014] [Accepted: 06/28/2014] [Indexed: 12/25/2022]
|
249
|
Bin L, Edwards MG, Heiser R, Streib JE, Richers B, Hall CF, Leung DYM. Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol 2014; 134:848-55. [PMID: 25159465 PMCID: PMC4186924 DOI: 10.1016/j.jaci.2014.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND A subset of patients with atopic dermatitis (AD) is prone to disseminated herpes simplex virus (HSV) infection (ie, atopic dermatitis with a history of eczema herpeticum [ADEH+]). Biomarkers that identify ADEH+ are lacking. OBJECTIVE We sought to search for novel ADEH+ gene signatures in PBMCs. METHODS An RNA-sequencing approach was applied to evaluate global transcriptional changes by using PBMCs from patients with ADEH+ and patients with atopic dermatitis without a history of eczema herpeticum (ADEH-). Candidate genes were confirmed by means of quantitative PCR or ELISA. RESULTS PBMCs from patients with ADEH+ had distinct changes to the transcriptome when compared with those from patients with ADEH- after HSV-1 stimulation: 792 genes were differentially expressed at a false discovery rate of less than 0.05 (ANOVA), and 15 type I and type III interferon genes were among the top 20 most downregulated genes in patients with ADEH+. We further validated that IFN-α and IL-29 mRNA and protein levels were significantly decreased in HSV-1-stimulated PBMCs from patients with ADEH+ compared with those from patients with ADEH- and healthy subjects. Ingenuity Pathway Analysis demonstrated that the upstream regulators of type I and type III interferons, interferon regulatory factor (IRF) 3 and IRF7, were significantly inhibited in patients with ADEH+ based on the downregulation of their target genes. Furthermore, we found that gene expression of IRF3 and IRF7 was significantly decreased in HSV-1-stimulated PBMCs from patients with ADEH+. CONCLUSIONS PBMCs from patients with ADEH+ have a distinct immune response after HSV-1 exposure compared with those from patients with ADEH-. Inhibition of the IRF3 and IRF7 innate immune pathways in patients with ADEH+ might be an important mechanism for increased susceptibility to disseminated viral infection.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Michael G Edwards
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Ryan Heiser
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Joanne E Streib
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
250
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|