201
|
Jiménez-Torres JA, Peery SL, Sung KE, Beebe DJ. LumeNEXT: A Practical Method to Pattern Luminal Structures in ECM Gels. Adv Healthc Mater 2016; 5:198-204. [PMID: 26610188 PMCID: PMC4776323 DOI: 10.1002/adhm.201500608] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/22/2015] [Indexed: 12/12/2022]
Abstract
In vitro biomimetic modeling of physio-logical structures bridges the gap between 2D in vitro culture and animal models. Lumens (tubular structures) are ubiquitous in vivo, being present in blood vessels, mammary ducts, and the lymphatic system. A method 'LumeNEXT' is presented here that allows the fabrication of 3D embedded lumens where size, structure, distance, and configuration can be controlled using standard poly-dimethylsiloxane micromolding methods.
Collapse
Affiliation(s)
- José A. Jiménez-Torres
- Microtechnology, Medicine and Biology Lab, Biomedical Engineering-College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Stephen L. Peery
- Microtechnology, Medicine and Biology Lab, Biomedical Engineering-College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Kyung E. Sung
- Microtechnology, Medicine and Biology Lab, Biomedical Engineering-College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - David J. Beebe
- Microtechnology, Medicine and Biology Lab, Biomedical Engineering-College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
202
|
Abstract
Microscale 3D in vitro systems have attracted significant interest as tools for cancer research because the microscale systems offer better organization of the cellular microenvironment and enhance throughput of the systems by lowering costs and reducing the amount of reagents and cells. Lumens (i.e., tubular structures) are ubiquitous in vivo being present in blood vessels, mammary ducts, prostate ducts, and the lymphatic system. Lumen structures of varying size and geometry are involved in key normal and disease processes including morphogenesis, angiogenesis, cancer development, and drug delivery. Therefore, there is a need for practical methods that create various lumen structures having different size and geometries to investigate how cells in the lumen structure respond to certain microenvironmental conditions during cancer development and progression. Here, we present a method to create multiple three-dimensional (3D) luminal structures, where parameters, such as size, geometry, and distance, can easily be controlled using simple poly-dimethylsiloxane (PDMS) micro-molds.
Collapse
|
203
|
Enemchukwu NO, Cruz-Acuña R, Bongiorno T, Johnson CT, García JR, Sulchek T, García AJ. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J Cell Biol 2015; 212:113-24. [PMID: 26711502 PMCID: PMC4700478 DOI: 10.1083/jcb.201506055] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial cells cultured within collagen and laminin gels proliferate to form hollow and polarized spherical structures, recapitulating the formation of a rudimentary epithelial organ. However, the contributions of extracellular matrix (ECM) biochemical and biophysical properties to morphogenesis are poorly understood because of uncontrolled presentation of multiple adhesive ligands, limited control over mechanical properties, and lot-to-lot compositional variability in these natural ECMs. We engineered synthetic ECM-mimetic hydrogels with independent control over adhesive ligand density, mechanical properties, and proteolytic degradation to study the impact of ECM properties on epithelial morphogenesis. Normal cyst growth, polarization, and lumen formation were restricted to a narrow range of ECM elasticity, whereas abnormal morphogenesis was observed at lower and higher elastic moduli. Adhesive ligand density dramatically regulated apicobasal polarity and lumenogenesis independently of cell proliferation. Finally, a threshold level of ECM protease degradability was required for apicobasal polarity and lumen formation. This synthetic ECM technology provides new insights into how cells transduce ECM properties into complex morphogenetic behaviors.
Collapse
Affiliation(s)
- Nduka O Enemchukwu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ricardo Cruz-Acuña
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tom Bongiorno
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332 Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
204
|
Du V, Fayol D, Reffay M, Luciani N, Bacri JC, Gay C, Wilhelm C. Magnetic engineering of stable rod-shaped stem cell aggregates: circumventing the pitfall of self-bending. Integr Biol (Camb) 2015; 7:170-7. [PMID: 25580701 DOI: 10.1039/c4ib00219a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates.
Collapse
Affiliation(s)
- V Du
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris 7, France.
| | | | | | | | | | | | | |
Collapse
|
205
|
Ma NKL, Lim JK, Leong MF, Sandanaraj E, Ang BT, Tang C, Wan ACA. Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model. Biomaterials 2015; 78:62-73. [PMID: 26684838 DOI: 10.1016/j.biomaterials.2015.11.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness.
Collapse
Affiliation(s)
- Nina K L Ma
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jia Kai Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; School of Applied Science, Temasek Polytechnic, Singapore 529757, Singapore
| | - Edwin Sandanaraj
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Beng Ti Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore; Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
206
|
Todhunter ME, Jee NY, Hughes AJ, Coyle MC, Cerchiari A, Farlow J, Garbe JC, LaBarge MA, Desai TA, Gartner ZJ. Programmed synthesis of three-dimensional tissues. Nat Methods 2015; 12:975-81. [PMID: 26322836 PMCID: PMC4589502 DOI: 10.1038/nmeth.3553] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022]
Abstract
Reconstituting tissues from their cellular building blocks facilitates the modeling of morphogenesis, homeostasis and disease in vitro. Here we describe DNA-programmed assembly of cells (DPAC), a method to reconstitute the multicellular organization of organoid-like tissues having programmed size, shape, composition and spatial heterogeneity. DPAC uses dissociated cells that are chemically functionalized with degradable oligonucleotide 'Velcro', allowing rapid, specific and reversible cell adhesion to other surfaces coated with complementary DNA sequences. DNA-patterned substrates function as removable and adhesive templates, and layer-by-layer DNA-programmed assembly builds arrays of tissues into the third dimension above the template. DNase releases completed arrays of organoid-like microtissues from the template concomitant with full embedding in a variety of extracellular matrix (ECM) gels. DPAC positions subpopulations of cells with single-cell spatial resolution and generates cultures several centimeters long. We used DPAC to explore the impact of ECM composition, heterotypic cell-cell interactions and patterns of signaling heterogeneity on collective cell behaviors.
Collapse
Affiliation(s)
- Michael E Todhunter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA
| | - Noel Y Jee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Chemistry &Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California, USA
| | - Alex J Hughes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Maxwell C Coyle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Alec Cerchiari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley, California, USA
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA
| | - James C Garbe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mark A LaBarge
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tejal A Desai
- Chemistry &Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley, California, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA.,Chemistry &Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley, California, USA.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
207
|
E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci U S A 2015; 112:10932-7. [PMID: 26290581 DOI: 10.1073/pnas.1513775112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.
Collapse
|
208
|
Herklotz M, Prewitz MC, Bidan CM, Dunlop JW, Fratzl P, Werner C. Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 2015; 60:121-9. [DOI: 10.1016/j.biomaterials.2015.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
|
209
|
Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res 2015; 16:459. [PMID: 25606594 PMCID: PMC4384274 DOI: 10.1186/s13058-014-0459-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell–cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM–integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, β1 and β4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Paola Nisticò
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, 00144, Italy.
| | | | | | | |
Collapse
|
210
|
Gjorevski N, Piotrowski AS, Varner VD, Nelson CM. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep 2015; 5:11458. [PMID: 26165921 PMCID: PMC4499882 DOI: 10.1038/srep11458] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/27/2015] [Indexed: 01/07/2023] Open
Abstract
Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra S Piotrowski
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Victor D Varner
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- 1] Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA [2] Department of Molecular Biology Princeton University, Princeton, NJ 08544
| |
Collapse
|
211
|
Lee DH, Bae CY, Kwon S, Park JK. User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users' needs. LAB ON A CHIP 2015; 15:2379-2387. [PMID: 25857752 DOI: 10.1039/c5lc00239g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell-containing hydrogel modules as cell-hydrogel microunits for creating a physiologically relevant 3D in vivo-like microenvironment with multiple cell types and unique extracellular matrix (ECM) compositions facilitate long-term cell maintenance and bioassays. To date, there have been many important advances in microfluidic bioassays, which incorporate hydrogel scaffolds into surface-accessible microchambers, driven by the strong demand for the application of spatiotemporally defined biochemical stimuli to construct in vivo-like conditions and perform real-time imaging of cell-matrix interactions. In keeping with the trend of fostering collaborations among biologists, clinicians, and microfluidic engineers, it is essential to create a simpler approach for coupling cell-containing hydrogel modules and an automated bioassay platform in a user-friendly format. In this article, we review recent progress in hydrogel-incorporated microfluidics for long-term cell maintenance and discuss some of the simpler and user-friendly 3D bioassay techniques combined with cell-containing hydrogel modules that can be applied to mutually beneficial collaborations with non-engineers. We anticipate that this modular and user-friendly format interfaced with existing laboratory infrastructure will help address several clinical questions in ways that extend well beyond the current 2D cell-culture systems.
Collapse
Affiliation(s)
- Do-Hyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
212
|
Fischer FD, Zickler GA, Dunlop JWC, Fratzl P. Tissue growth controlled by geometric boundary conditions: a simple model recapitulating aspects of callus formation and bone healing. J R Soc Interface 2015; 12:rsif.2015.0108. [PMID: 26018964 DOI: 10.1098/rsif.2015.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The shape of tissues arises from a subtle interplay between biochemical driving forces, leading to cell growth, division and extracellular matrix formation, and the physical constraints of the surrounding environment, giving rise to mechanical signals for the cells. Despite the inherent complexity of such systems, much can still be learnt by treating tissues that constantly remodel as simple fluids. In this approach, remodelling relaxes all internal stresses except for the pressure which is counterbalanced by the surface stress. Our model is used to investigate how wettable substrates influence the stability of tissue nodules. It turns out for a growing tissue nodule in free space, the model predicts only two states: either the tissue shrinks and disappears, or it keeps growing indefinitely. However, as soon as the tissue wets a substrate, stable equilibrium configurations become possible. Furthermore, by investigating more complex substrate geometries, such as tissue growing at the end of a hollow cylinder, we see features reminiscent of healing processes in long bones, such as the existence of a critical gap size above which healing does not occur. Despite its simplicity, the model may be useful in describing various aspects related to tissue growth, including biofilm formation and cancer metastases.
Collapse
Affiliation(s)
- F Dieter Fischer
- Montanuniversität Leoben, Institute of Mechanics, Leoben 8700, Austria
| | - Gerald A Zickler
- Montanuniversität Leoben, Institute of Mechanics, Leoben 8700, Austria
| | - John W C Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
213
|
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 2015; 142:1028-42. [DOI: 10.1242/dev.087643] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the ‘stem/progenitor’ cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.
Collapse
Affiliation(s)
- Jamie L. Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Claire Robertson
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Joni D. Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
214
|
Zhang P, Lo A, Huang Y, Huang G, Liang G, Mott J, Karpen GH, Blakely EA, Bissell MJ, Barcellos-Hoff MH, Snijders AM, Mao JH. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment. Sci Rep 2015; 5:8919. [PMID: 25747469 PMCID: PMC4352890 DOI: 10.1038/srep08919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/25/2022] Open
Abstract
The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genes involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.
Collapse
Affiliation(s)
- Pengju Zhang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alvin Lo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yurong Huang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ge Huang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Guozhou Liang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Joni Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Gary H. Karpen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Eleanor A. Blakely
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | - Antoine M. Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
215
|
Kojima T, Moraes C, Cavnar SP, Luker GD, Takayama S. Surface-templated hydrogel patterns prompt matrix-dependent migration of breast cancer cells towards chemokine-secreting cells. Acta Biomater 2015; 13:68-77. [PMID: 25463502 PMCID: PMC4293228 DOI: 10.1016/j.actbio.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
This paper describes a novel technique for fabricating spatially defined cell-laden collagen hydrogels, using patterned, non-adhesive polyacrylamide-coated polydimethylsiloxane (PDMS) surfaces as a template. Precisely patterned embedded co-cultures of breast cancer cells and chemokine-producing cells generated with this technique revealed matrix-dependent and chemokine isoform-dependent migration of cancer cells. CXCL12 chemokine-secreting cells induce significantly more chemotaxis of cancer cells when the 3-D extracellular matrix (ECM) includes components that bind the secreted CXCL12 chemokines. Experimental observations using cells that secrete CXCL12 isoforms with different matrix affinities together with computational simulations show that stronger ligand-matrix interactions sharpen chemoattractant gradients, leading to increased chemotaxis of the CXCL12 gradient-sensing CXCR4 receptor-expressing (CXCR4+) cells patterned in the hydrogel. These results extend our recent report on CXCL12 isoform-dependent chemotaxis studies from 2-D to 3-D environments and additionally reveal the important role of ECM composition. The developed technology is simple, versatile and robust; and as chemoattractant-matrix interactions are common, the methods described here should be broadly applicable for study of physiological migration of many different cell types in response to a variety of chemoattractants.
Collapse
Affiliation(s)
- Taisuke Kojima
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Shuichi Takayama
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
216
|
Abstract
Ectodermal appendages such as feathers, hair, mammary glands, salivary glands, and sweat glands form branches, allowing much-increased surface for functional differentiation and secretion. Here, the principles of branching morphogenesis are exemplified by the mammary gland and feathers.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA; Center of Wound Repair and Regeneration, Cheng Kung University, Tainan, Taiwan
| | - Ramray Bhat
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
217
|
Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer 2015; 15:12. [PMID: 25605670 PMCID: PMC4305264 DOI: 10.1186/s12885-015-1007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/03/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer that is thought to be a precursor to most invasive and metastatic breast cancers. Understanding the mechanisms regulating the invasive transition of DCIS is critical in order to better understand how some types of DCIS become invasive. While significant insights have been gained using traditional in vivo and in vitro models, existing models do not adequately recapitulate key structure and functions of human DCIS well. In addition, existing models are time-consuming and costly, limiting their use in routine screens. Here, we present a microscale DCIS model that recapitulates key structures and functions of human DCIS, while enhancing the throughput capability of the system to simultaneously screen numerous molecules and drugs. METHODS Our microscale DCIS model is prepared in two steps. First, viscous finger patterning is used to generate mammary epithelial cell-lined lumens through extracellular matrix hydrogels. Next, DCIS cells are added to fill the mammary ducts to create a DCIS-like structure. For coculture experiments, human mammary fibroblasts (HMF) are added to the two side channels connected to the center channel containing DCIS. To validate the invasive transition of the DCIS model, the invasion of cancer cells and the loss of cell-cell junctions are then examined. A student t-test is conducted for statistical analysis. RESULTS We demonstrate that our DCIS model faithfully recapitulates key structures and functions of human mammary DCIS and can be employed to study the mechanisms involved in the invasive progression of DCIS. First, the formation of cell-cell junctions and cell polarity in the normal mammary duct, and the structure of the DCIS model are characterized. Second, coculture with HMF is shown to induce the invasion of DCIS. Third, multiple endpoint analyses are demonstrated to validate the invasion. CONCLUSIONS We have developed and characterized a novel in vitro model of normal and DCIS-inflicted mammary ducts with 3D lumen structures. These models will enable researchers to investigate the role of microenvironmental factors on the invasion of DCIS in more in vivo-like conditions.
Collapse
Affiliation(s)
- Lauren L Bischel
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - Kyung E Sung
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
218
|
Baker RM, Brasch ME, Manning ML, Henderson JH. Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density. J R Soc Interface 2015; 11:20140386. [PMID: 24920119 DOI: 10.1098/rsif.2014.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells.
Collapse
Affiliation(s)
- Richard M Baker
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan E Brasch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| | - M Lisa Manning
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | - James H Henderson
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
219
|
Balois T, Chatelain C, Ben Amar M. Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis. J R Soc Interface 2015; 11:20140339. [PMID: 24872499 PMCID: PMC4208365 DOI: 10.1098/rsif.2014.0339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In glabrous skin, nevi and melanomas exhibit pigmented stripes during clinical dermoscopic examination. They find their origin in the basal layer geometry which periodically exhibits ridges, alternatively large (limiting ridges) and thin (intermediate ridges). However, nevus and melanoma lesions differ by the localization of the pigmented stripes along furrows or ridges of the epidermis surface. Here, we propose a biomechanical model of avascular tumour growth which takes into account this specific geometry in the epidermis where both kinds of lesions first appear. Simulations show a periodic distribution of tumour cells inside the lesion, with a global contour stretched out along the ridges. In order to be as close as possible to clinical observations, we also consider the melanin transport by the keratinocytes. Our simulations show that reasonable assumptions on melanocytic cell repartition in the ridges favour the limiting ridges of the basal compared with the intermediate ones in agreement with nevus observations but not really with melanomas. It raises the question of cell aggregation and repartition of melanocytic cells in acral melanomas and requires further biological studies of these cells in situ.
Collapse
Affiliation(s)
- Thibaut Balois
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| | - Clément Chatelain
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| | - Martine Ben Amar
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, Paris 75005, France Faculté de médecine, Institut Universitaire de Cancérologie, Université Pierre et Marie Curie-Paris 6, 91 Boulevard de l'hôpital, Paris 75013, France
| |
Collapse
|
220
|
Moraes C, Labuz JM, Shao Y, Fu J, Takayama S. Supersoft lithography: candy-based fabrication of soft silicone microstructures. LAB ON A CHIP 2015; 15:3760-5. [PMID: 26245893 PMCID: PMC4550510 DOI: 10.1039/c5lc00722d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 2B2, Canada
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Joseph M. Labuz
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 2200 Bonisteel Blvd Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC, MI 48109-2800, USA
- Macromolecular science and Engineering Center, College of Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109, USA
| |
Collapse
|
221
|
Nguyen-Ngoc KV, Shamir ER, Huebner RJ, Beck JN, Cheung KJ, Ewald AJ. 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 2015; 1189:135-62. [PMID: 25245692 DOI: 10.1007/978-1-4939-1164-6_10] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epithelia are fundamental tissues that line cavities, glands, and outer body surfaces. We use three-dimensional (3D) embedded culture of primary murine mammary epithelial ducts, called "organoids," to recapitulate in days in culture epithelial programs that occur over weeks deep within the body. Modulating the composition of the extracellular matrix (ECM) allows us to model cell- and tissue-level behaviors observed in normal development, such as branching morphogenesis, and in cancer, such as invasion and dissemination. Here, we describe a collection of protocols for 3D culture of mammary organoids in different ECMs and for immunofluorescence staining of 3D culture samples and mammary gland tissue sections. We illustrate expected phenotypic outcomes of each assay and provide troubleshooting tips for commonly encountered technical problems.
Collapse
Affiliation(s)
- Kim-Vy Nguyen-Ngoc
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD, 21205, USA
| | | | | | | | | | | |
Collapse
|
222
|
Sung KE, Beebe DJ. Microfluidic 3D models of cancer. Adv Drug Deliv Rev 2014; 79-80:68-78. [PMID: 25017040 DOI: 10.1016/j.addr.2014.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023]
Abstract
Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer. Traditional animal cancer models and in vitro cancer models are limited in their ability to recapitulate human structures and functions, thus hindering the identification of appropriate drug targets and therapeutic strategies. The development and application of microfluidic 3D cancer models have the potential to overcome some of the limitations inherent to traditional models. This review summarizes the progress in microfluidic 3D cancer models, their benefits, and their broad application to basic cancer biology, drug screening, and drug discovery.
Collapse
|
223
|
Boghaert E, Radisky DC, Nelson CM. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state. PLoS Comput Biol 2014; 10:e1003997. [PMID: 25473842 PMCID: PMC4256017 DOI: 10.1371/journal.pcbi.1003997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo. Breast cancer is a complex disease that affects women worldwide. One heterogeneous group of lesions, ductal carcinoma in situ (DCIS), often begins as a nonmalignant disease but can readily progress if left untreated. The progression of this disease is not well understood because DCIS is typically removed upon detection. Therefore, computational models might help predict whether DCIS will remain nonmalignant or progress towards invasive ductal carcinoma. Here we used a multi-cell lattice-based model to explore the relative effects of cell proliferation, death, division axis, adhesion and contractility on the development and progression of DCIS. We also examined the emergence and progression of DCIS in physiologically relevant geometries of the mammary duct. Our model suggests several plausible progressions between morphologies of DCIS, and predicts that some regions of a duct are preferential for tumor cell invasion.
Collapse
Affiliation(s)
- Eline Boghaert
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
224
|
Freire J, Domínguez-Hormaetxe S, Pereda S, De Juan A, Vega A, Simón L, Gómez-Román J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol Res Pract 2014; 210:879-84. [DOI: 10.1016/j.prp.2014.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/06/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022]
|
225
|
Menshykau D, Blanc P, Unal E, Sapin V, Iber D. An interplay of geometry and signaling enables robust lung branching morphogenesis. Development 2014; 141:4526-36. [PMID: 25359721 DOI: 10.1242/dev.116202] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early branching events during lung development are stereotyped. Although key regulatory components have been defined, the branching mechanism remains elusive. We have now used a developmental series of 3D geometric datasets of mouse embryonic lungs as well as time-lapse movies of cultured lungs to obtain physiological geometries and displacement fields. We find that only a ligand-receptor-based Turing model in combination with a particular geometry effect that arises from the distinct expression domains of ligands and receptors successfully predicts the embryonic areas of outgrowth and supports robust branch outgrowth. The geometry effect alone does not support bifurcating outgrowth, while the Turing mechanism alone is not robust to noisy initial conditions. The negative feedback between the individual Turing modules formed by fibroblast growth factor 10 (FGF10) and sonic hedgehog (SHH) enlarges the parameter space for which the embryonic growth field is reproduced. We therefore propose that a signaling mechanism based on FGF10 and SHH directs outgrowth of the lung bud via a ligand-receptor-based Turing mechanism and a geometry effect.
Collapse
Affiliation(s)
- Denis Menshykau
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Pierre Blanc
- R2D2/Retinoids, Reproduction, Developmental Diseases, Faculté de Médecine, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Erkan Unal
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland Developmental Genetics, Department Biomedicine, University of Basel, Mattenstraße 28, 4058 Basel, Switzerland
| | - Vincent Sapin
- R2D2/Retinoids, Reproduction, Developmental Diseases, Faculté de Médecine, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| |
Collapse
|
226
|
Wheeler SE, Clark AM, Taylor DP, Young CL, Pillai VC, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer 2014; 111:2342-50. [PMID: 25314052 PMCID: PMC4264444 DOI: 10.1038/bjc.2014.533] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/25/2022] Open
Abstract
Background: Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases. Methods: Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added. Results: The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU− or Ki67−). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent. Conclusions: These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy.
Collapse
Affiliation(s)
- S E Wheeler
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA
| | - A M Clark
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA
| | - D P Taylor
- 1] Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA [2] Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - C L Young
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - V C Pillai
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D B Stolz
- 1] Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA [2] Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA [3] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA [4] University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - R Venkataramanan
- 1] Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA [2] Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Wells
- 1] Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, USA [2] Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA [3] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA [4] University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA [5] Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
227
|
Gilchrist CL, Ruch DS, Little D, Guilak F. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation. Biomaterials 2014; 35:10015-24. [PMID: 25263687 DOI: 10.1016/j.biomaterials.2014.08.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, "micro-scale" cues on the order of ∼1-2 μm, and "meso-scale" cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (∼500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes.
Collapse
Affiliation(s)
| | - David S Ruch
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
228
|
Zhao Y, Tan YS, Aupperlee MD, Langohr IM, Kirk EL, Troester MA, Schwartz RC, Haslam SZ. Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res 2014; 15:R100. [PMID: 24156623 PMCID: PMC3978633 DOI: 10.1186/bcr3561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/11/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD.
Collapse
|
229
|
A self-avoidance mechanism in patterning of the urinary collecting duct tree. BMC DEVELOPMENTAL BIOLOGY 2014; 14:35. [PMID: 25205115 PMCID: PMC4448276 DOI: 10.1186/s12861-014-0035-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022]
Abstract
Background Glandular organs require the development of a correctly patterned epithelial tree. These arise by iterative branching: early branches have a stereotyped anatomy, while subsequent branching is more flexible, branches spacing out to avoid entanglement. Previous studies have suggested different genetic programs are responsible for these two classes of branches. Results Here, working with the urinary collecting duct tree of mouse kidneys, we show that the transition from the initial, stereotyped, wide branching to narrower later branching is independent from previous branching events but depends instead on the proximity of other branch tips. A simple computer model suggests that a repelling molecule secreted by branches can in principle generate a well-spaced tree that switches automatically from wide initial branch angles to narrower subsequent ones, and that co-cultured trees would distort their normal shapes rather than colliding. We confirm this collision-avoidance experimentally using organ cultures, and identify BMP7 as the repelling molecule. Conclusions We propose that self-avoidance, an intrinsically error-correcting mechanism, may be an important patterning mechanism in collecting duct branching, operating along with already-known mesenchyme-derived paracrine factors.
Collapse
|
230
|
Vu LT, Jain G, Veres BD, Rajagopalan P. Cell migration on planar and three-dimensional matrices: a hydrogel-based perspective. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:67-74. [PMID: 25011932 DOI: 10.1089/ten.teb.2013.0782] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of cells is a complex process that is dependent on the properties of the surrounding environment. In vivo, the extracellular environment is complex with a wide range of physical features, topographies, and protein compositions. There have been a number of approaches to design substrates that can recapitulate the complex architecture in vivo. Two-dimensional (2D) substrates have been widely used to study the effect of material properties on cell migration. However, such substrates do not capture the intricate structure of the extracellular environment. Recent advances in hydrogel assembly and patterning techniques have enabled the design of new three-dimensional (3D) scaffolds and microenvironments. Investigations conducted on these matrices provide growing evidence that several established migratory trends obtained from studies on 2D substrates could be significantly different when conducted in a 3D environment. Since cell migration is closely linked to a wide range of physiological functions, there is a critical need to examine migratory trends on 3D matrices. In this review, our goal is to highlight recent experimental studies on cell migration within engineered 3D hydrogel environments and how they differ from planar substrates. We provide a detailed examination of the changes in cellular characteristics such as morphology, speed, directionality, and protein expression in 3D hydrogel environments. This growing field of research will have a significant impact on tissue engineering, regenerative medicine, and in the design of biomaterials.
Collapse
Affiliation(s)
- Lucas T Vu
- 1 Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia
| | | | | | | |
Collapse
|
231
|
Galgoczy R, Pastor I, Colom A, Giménez A, Mas F, Alcaraz J. A spectrophotometer-based diffusivity assay reveals that diffusion hindrance of small molecules in extracellular matrix gels used in 3D cultures is dominated by viscous effects. Colloids Surf B Biointerfaces 2014; 120:200-7. [DOI: 10.1016/j.colsurfb.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 11/29/2022]
|
232
|
Miyoshi H, Adachi T. Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:609-27. [PMID: 24720435 DOI: 10.1089/ten.teb.2013.0728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiological role of the actin cytoskeleton is well known: it provides mechanical support and endogenous force generation for formation of a cell shape and for migration. Furthermore, a growing number of studies have demonstrated another significant role of the actin cytoskeleton: it offers dynamic epigenetic memory for guiding cell fate, in particular, proliferation and differentiation. Because instantaneous imbalance in the mechanical homeostasis is adjusted through actin remodeling, a synthetic extracellular matrix (ECM) niche as a source of topographical and mechanical cues is expected to be effective at modulation of the actin cytoskeleton. In this context, the synthetic ECM niche determines cell migration, proliferation, and differentiation, all of which have to be controlled in functional tissue engineering scaffolds to ensure proper regulation of tissue/organ formation, maintenance of tissue integrity and repair, and regeneration. Here, with an emphasis on the epigenetic role of the actin cytoskeletal system, we propose a design concept of micro/nanotopography of a tissue engineering scaffold for control of cell migration, proliferation, and differentiation in a stable and well-defined manner, both in vitro and in vivo.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- 1 Ultrahigh Precision Optics Technology Team , RIKEN Center for Advanced Photonics, Saitama, Japan
| | | |
Collapse
|
233
|
Bischel LL, Sung KE, Jiménez-Torres JA, Mader B, Keely PJ, Beebe DJ. The importance of being a lumen. FASEB J 2014; 28:4583-90. [PMID: 25077562 DOI: 10.1096/fj.13-243733] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in tissue engineering and microtechnology have enabled researchers to more easily generate in vitro tissue models that mimic the tissue geometry and spatial organization found in vivo (e.g., vessel or mammary duct models with tubular structures). However, the widespread adoption of these models for biological studies has been slow, in part due to the lack of direct comparisons between existing 2-dimensional and 3-dimensional cell culture models and new organotypic models that better replicate tissue structure. Using previously developed vessel and mammary duct models with 3-dimensional lumen structures, we have begun to explore this question. In a direct comparison between these next generation organotypic models and more traditional methods, we observed differences in the levels of several secreted growth factors and cytokines. In addition, endothelial vessel geometry profoundly affects the phenotypic behavior of carcinoma cells, suggesting that more traditional in vitro assays may not capture in vivo events. Here, we seek to review and add to the increasing evidence supporting the hypothesis that using cell culture models with more relevant tissue structure influences cell fate and behavior, potentially increasing the relevance of biological findings.
Collapse
Affiliation(s)
- Lauren L Bischel
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyung E Sung
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José A Jiménez-Torres
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brianah Mader
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia J Keely
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin Carbone Comprehensive Cancer Center, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
234
|
Bae CY, Min MK, Kim H, Park JK. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters. LAB ON A CHIP 2014; 14:2183-90. [PMID: 24609000 DOI: 10.1039/c3lc51421h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A microstructure-based hydrogel was employed to study the relationship between spatial specificity and cellular behavior, including cell fate, proliferation, morphology, and insulin secretion in pancreatic β-cells. To effectively form homogeneous cell clusters in vitro, we made cell-containing hydrogel membrane constructs with an adapted grid structure based on a hexagonal micropattern. Homogeneous cell clusters (average diameter: 83.6 ± 14.2 μm) of pancreatic insulinoma (MIN6) cells were spontaneously generated in the floating hydrogel membrane constructs, including a hexagonal grid structure (size of cavity: 100 μm, interval between cavities: 30 μm). Interestingly, 3D clustering of MIN6 cells mimicking the structure of pancreatic islets was coalesced into a merged aggregate attaching to each hexagonal cavity of the hydrogel grid structure. The fate and insulin secretion of homogeneous cell clusters in the hydrogel grid structure were also assessed. The results of these designable hydrogel-cell membrane constructs suggest that facultative in vitro β-cell proliferation and maintenance can be applied to biofunctional assessments.
Collapse
Affiliation(s)
- Chae Yun Bae
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
235
|
Affiliation(s)
| | - Celeste M. Nelson
- Departments of 1Chemical & Biological Engineering and
- Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
236
|
Du Y, Guo D, Wu Q, Liu D, Bi H. Zinc chloride inhibits human lens epithelial cell migration and proliferation involved in TGF-β1 and TNF-α signaling pathways in HLE B-3 cells. Biol Trace Elem Res 2014; 159:425-33. [PMID: 24752973 DOI: 10.1007/s12011-014-9979-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 01/23/2023]
Abstract
Zinc is one of the most abundant essential elements in the human body, which is an essential, coenzyme-like component of many enzymes, and is indispensable to their functions. However, high levels of zinc ions can lead to cell damage. In the present study, we explored the effects of high concentrations of zinc chloride (ZnCl2) on lens epithelial cell proliferation and migration and further investigated the effects of different concentrations of ZnCl2 on caspase-9 and caspase-12, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α). We found that ZnCl2 could inhibit human lens epithelial (HLE) B-3 cell migration and induce apoptosis/necrosis. In addition, ZnCl2 can efficiently decrease the expressions of caspase-9 and caspase-12, increase the expression of TNF-α at both gene and protein levels, and thus induces cell death. Taken together, our results indicate that ZnCl2 can inhibit HLE B-3 cell migration and proliferation by decreasing the expression of TGF-β1 and increasing the expression of TNF-α and finally lead to HLE B-3 cell death.
Collapse
Affiliation(s)
- Yuxiang Du
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | | | | | | | | |
Collapse
|
237
|
Gu Z. 0.1 kilopascal difference for mechanophenotyping: soft matrix precisely regulates cellular architecture for invasion. BIOARCHITECTURE 2014; 4:116-8. [PMID: 25029598 DOI: 10.4161/bioa.29175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current knowledge understands the mesenchymal cell invasion in a 3D matrix as a combined process of cell-to-matrix adhesion based cell migration and matrix remodeling. Excluding cell invasion stimulated by cytokines and chemokines, the basal cell invasion itself is a complicated process that can be regulated by matrix ligand type, density, geometry, and stiffness, etc. Understanding such a complicated biological process requires delicate dissections into simplified model studies by altering only one or two elements at a time. Past cell motility studies focusing on matrix stiffness have revealed that a stiffer matrix promotes 2D X-Y axis lateral cell motility. Here, we comment on two recent studies that report, instead of stiffer matrix, a softer matrix promotes matrix proteolysis and the formation of invadosome-like protrusions (ILPs) along the 3D Z axis. These studies also reveal that soft matrix precisely regulates such ILPs formation in the stiffness scale range of 0.1 kilopascal in normal cells. In contrast, malignant cells such as cancer cells can form ILPs in response to a much wider range of matrix stiffness. Further, different cancer cells respond to their own favorable range of matrix stiffness to spontaneously form ILPs. Thus, we hereby propose the idea of utilizing the matrix stiffness to precisely regulate ILP formation as a mechanophenotyping tool for cancer metastasis prediction and pathological diagnosis.
Collapse
Affiliation(s)
- Zhizhan Gu
- Division of Rheumatology, Immunology, and Allergy; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
238
|
Greene AC, Lord SJ, Tian A, Rhodes C, Kai H, Groves JT. Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1. Biophys J 2014; 106:2196-205. [PMID: 24853748 PMCID: PMC4052362 DOI: 10.1016/j.bpj.2014.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022] Open
Abstract
EphA2 is a receptor tyrosine kinase (RTK) that is sensitive to spatial and mechanical aspects of the cell's microenvironment. Misregulation of EphA2 occurs in many aggressive cancers. Although its juxtacrine signaling geometry (EphA2's cognate ligand ephrinA1 is expressed on the surface of an apposing cell) provides a mechanism by which the receptor may experience extracellular forces, this also renders the system challenging to decode. By depositing living cells on synthetic supported lipid membranes displaying ephrinA1, we have reconstituted key features of the juxtacrine EphA2-ephrinA1 signaling system while maintaining the ability to perturb the spatial and mechanical properties of the membrane-cell interface with precision. In addition, we developed a trans-endocytosis assay to monitor internalization of ephrinA1 from a supported membrane into the apposing cell using a quantitative three-dimensional fluorescence microscopy assay. Using this experimental platform to mimic a cell-cell junction, we found that the signaling complex is not efficiently internalized when lateral reorganization at the membrane-cell contact sites is physically hindered. This suggests that EphA2-ephrinA1 trans-endocytosis is sensitive to the mechanical properties of a cell's microenvironment and may have implications in physical aspects of tumor biology.
Collapse
Affiliation(s)
- Adrienne C Greene
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Samuel J Lord
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Aiwei Tian
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Christopher Rhodes
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Department of Mechanical Engineering, University of California, Berkeley, California
| | - Hiroyuki Kai
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Jay T Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
239
|
Clark AM, Wheeler SE, Taylor DP, Pillai VC, Young CL, Prantil-Baun R, Nguyen T, Stolz DB, Borenstein JT, Lauffenburger DA, Venkataramanan R, Griffith LG, Wells A. A microphysiological system model of therapy for liver micrometastases. Exp Biol Med (Maywood) 2014; 239:1170-9. [PMID: 24821820 DOI: 10.1177/1535370214532596] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metastasis accounts for almost 90% of cancer-associated mortality. The effectiveness of cancer therapeutics is limited by the protective microenvironment of the metastatic niche and consequently these disseminated tumors remain incurable. Metastatic disease progression continues to be poorly understood due to the lack of appropriate model systems. To address this gap in understanding, we propose an all-human microphysiological system that facilitates the investigation of cancer behavior in the liver metastatic niche. This existing LiverChip is a 3D-system modeling the hepatic niche; it incorporates a full complement of human parenchymal and non-parenchymal cells and effectively recapitulates micrometastases. Moreover, this system allows real-time monitoring of micrometastasis and assessment of human-specific signaling. It is being utilized to further our understanding of the efficacy of chemotherapeutics by examining the activity of established and novel agents on micrometastases under conditions replicating diurnal variations in hormones, nutrients and mild inflammatory states using programmable microdispensers. These inputs affect the cues that govern tumor cell responses. Three critical signaling groups are targeted: the glucose/insulin responses, the stress hormone cortisol and the gut microbiome in relation to inflammatory cues. Currently, the system sustains functioning hepatocytes for a minimum of 15 days; confirmed by monitoring hepatic function (urea, α-1-antitrypsin, fibrinogen, and cytochrome P450) and injury (AST and ALT). Breast cancer cell lines effectively integrate into the hepatic niche without detectable disruption to tissue, and preliminary evidence suggests growth attenuation amongst a subpopulation of breast cancer cells. xMAP technology combined with systems biology modeling are also employed to evaluate cellular crosstalk and illustrate communication networks in the early microenvironment of micrometastases. This model is anticipated to identify new therapeutic strategies for metastasis by elucidating the paracrine effects between the hepatic and metastatic cells, while concurrently evaluating agent efficacy for metastasis, metabolism and tolerability.
Collapse
Affiliation(s)
- Amanda M Clark
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | - Sarah E Wheeler
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | - Donald P Taylor
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | - Venkateswaran C Pillai
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | - Carissa L Young
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | | | - Transon Nguyen
- Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | - Donna B Stolz
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | | | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | - Raman Venkataramanan
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | - Alan Wells
- Departments of Pathology, Cell Biology, Pharmaceutical Sciences, and Bioengineering, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
| |
Collapse
|
240
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
241
|
Huebner RJ, Ewald AJ. Cellular foundations of mammary tubulogenesis. Semin Cell Dev Biol 2014; 31:124-31. [PMID: 24747369 DOI: 10.1016/j.semcdb.2014.04.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Abstract
The mammary gland is composed of a highly branched network of epithelial tubes, embedded within a complex stroma. The mammary epithelium originates during embryonic development from an epidermal placode. However, the majority of ductal elongation and bifurcation occurs postnatally, in response to steroid hormone and growth factor receptor signaling. The process of pubertal branching morphogenesis involves both elongation of the primary ducts across the length of the fat pad and a wave of secondary branching that elaborates the ductal network. Recent studies have revealed that mammary epithelial morphogenesis is accomplished by transitions between simple and stratified organization. During active morphogenesis, the epithelium is stratified, highly proliferative, has few intercellular junctions, and exhibits incomplete apico-basal polarity. In this review, we discuss recent advances in our understanding of the relationship between epithelial architecture, epithelial polarity, and ductal elongation.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855N. Wolfe Street, Baltimore, MD 21205, USA
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
242
|
Deforet M, van Ditmarsch D, Carmona-Fontaine C, Xavier JB. Hyperswarming adaptations in a bacterium improve collective motility without enhancing single cell motility. SOFT MATTER 2014; 10:2405-13. [PMID: 24622509 PMCID: PMC3955847 DOI: 10.1039/c3sm53127a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pseudomonas aeruginosa is a monoflagellated bacterium that can use its single polar flagellum to swim through liquids and move collectively over semisolid surfaces, a behavior called swarming. Previous studies have shown that experimental evolution in swarming colonies leads to the selection of hyperswarming bacteria with multiple flagella. Here we show that the advantage of such hyperswarmer mutants cannot be explained simply by an increase in the raw swimming speed of individual bacteria in liquids. Cell tracking of time-lapse microscopy to quantify single-cell swimming patterns reveals that both wild-type and hyperswarmers alternate between forward and backward runs, rather than doing the run-and-tumble characteristic of enteric bacteria such as E. coli. High-throughput measurement of swimming speeds reveals that hyperswarmers do not swim faster than wild-type in liquid. Wild-type reverses swimming direction in sharp turns without a significant impact on its speed, whereas multiflagellated hyperswarmers tend to alternate fast and slow runs and have wider turning angles. Nonetheless, macroscopic measurement of swimming and swarming speed in colonies shows that hyperswarmers expand faster than wild-type on surfaces and through soft agar matrices. A mathematical model explains how wider turning angles lead to faster spreading when swimming through agar. Our study describes for the first time the swimming patterns in multiflagellated P. aeruginosa mutants and reveals that collective and individual motility in bacteria are not necessarily correlated. Understanding bacterial adaptations to surface motility, such as hyperswarming, requires a collective behavior approach.
Collapse
Affiliation(s)
- Maxime Deforet
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | |
Collapse
|
243
|
Varner VD, Nelson CM. Let's push things forward: disruptive technologies and the mechanics of tissue assembly. Integr Biol (Camb) 2014; 5:1162-73. [PMID: 23907401 DOI: 10.1039/c3ib40080h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
244
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|
245
|
Kourouklis AP, Lerum RV, Bermudez H. Cell adhesion mechanisms on laterally mobile polymer films. Biomaterials 2014; 35:4827-34. [PMID: 24651034 DOI: 10.1016/j.biomaterials.2014.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 01/17/2023]
Abstract
In contrast with the majority of substrates used to study cell adhesion, the natural extracellular matrix (ECM) is dynamic and remodeled over time. Here we use amphiphilic block copolymers to create self-assembled supported films with tunable lateral mobility. These films are intended to serve as partial mimics of the ECM in order to better understand cell adhesion responses, specifically in the context of dynamic substrates. Block copolymers are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion, and the addition of a trace hydrophobic homopolymer is used to control the film lateral mobility. We find that NIH 3T3 fibroblasts cultured on these biomimetic films exhibit non-linear spreading behavior in response to substrate mobility. In the absence of RGD ligands, however, fibroblasts do not spread. Employing quantitative analysis of focal adhesions (FA) and integrin ligation, we discover the presence of FA-dependent and FA-independent mechanisms responsible for the biphasic cell spreading behavior. The use of designed biomimetic platforms therefore yields insight into ECM mechanosensing by revealing that cells can engage distinct mechanisms to promote adhesion onto substrates with different time-dependent properties.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ronald V Lerum
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Harry Bermudez
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
246
|
Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1494-533. [PMID: 24339188 PMCID: PMC4076293 DOI: 10.1002/adma.201304431] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Indexed: 04/14/2023]
Abstract
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.
Collapse
Affiliation(s)
- Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 (USA). Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109 (USA)
| |
Collapse
|
247
|
Zegers MM. 3D in vitro cell culture models of tube formation. Semin Cell Dev Biol 2014; 31:132-40. [PMID: 24613912 DOI: 10.1016/j.semcdb.2014.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Department of Cell Biology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
248
|
Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications. Biofabrication 2014; 6:015012. [PMID: 24589999 DOI: 10.1088/1758-5082/6/1/015012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibrous scaffolds engineered to direct the growth of tissues can be important in forming architecturally functional tissue such as aligning regenerating nerves with their target. Collagen is a commonly used substrate used for neuronal growth applications in the form of surface coatings and hydrogels. The wet spinning technique can create collagen fibers without the use of organic solvents and is typically accomplished by extruding a collagen dispersion into a coagulation bath. To create well-controlled and uniform collagen fibers, we developed an automatic wet spinning device with precise control over the spinning and fiber collection parameters. A fiber collection belt allowed the continuous formation of very soft and delicate fibers up to half a meter in length. Wet-spun collagen fibers were characterized by tensile and thermal behavior, diameter uniformity, the swelling response in phosphate buffered saline and their biocompatibility with dorsal root ganglion (DRG) neurons and Schwann cells. Fibers formed from 0.75% weight by volume (w/v) collagen dispersions formed the best fibers in terms of tensile behavior and fiber uniformity. Fibers post-treated with the cross-linkers glutaraldehyde and genipin exhibited increased mechanical stability and reduced swelling. Importantly, genipin-treated fibers were conducive to DRG neurons and Schwann cell survival and growth, which validated the use of this cross-linker for neural tissue engineering applications.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | |
Collapse
|
249
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
250
|
Hauser PV, Nishikawa M, Kimura H, Fujii T, Yanagawa N. Controlled tubulogenesis from dispersed ureteric bud-derived cells using a micropatterned gel. J Tissue Eng Regen Med 2014; 10:762-71. [DOI: 10.1002/term.1871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 11/15/2013] [Accepted: 01/02/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Peter V. Hauser
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Masaki Nishikawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Hiroshi Kimura
- Institute of Industrial Science; University of Tokyo; Japan
| | - Teruo Fujii
- Institute of Industrial Science; University of Tokyo; Japan
| | - Norimoto Yanagawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| |
Collapse
|