201
|
Young CM, Beziaud L, Dessen P, Madurga Alonso A, Santamaria-Martínez A, Huelsken J. Metabolic dependencies of metastasis-initiating cells in female breast cancer. Nat Commun 2023; 14:7076. [PMID: 37925484 PMCID: PMC10625534 DOI: 10.1038/s41467-023-42748-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Understanding the mechanisms that enable cancer cells to metastasize is essential in preventing cancer progression. Here we examine the metabolic adaptations of metastasis-initiating cells (MICs) in female breast cancer and how those shape their metastatic phenotype. We find that endogenous MICs depend on the oxidative tricarboxylic acid cycle and fatty acid usage. Sorting tumor cells based upon solely mitochondrial membrane potential or lipid storage is sufficient at identifying MICs. We further identify that mitochondrially-generated citrate is exported to the cytoplasm to yield acetyl-CoA, and this is crucial to maintaining heightened levels of H3K27ac in MICs. Blocking acetyl-CoA generating pathways or H3K27ac-specific epigenetic writers and readers reduces expression of epithelial-to-mesenchymal related genes, MIC frequency, and metastatic potential. Exogenous supplementation of a short chain carboxylic acid, acetate, increases MIC frequency and metastasis. In patient cohorts, we observe that higher expression of oxidative phosphorylation related genes is associated with reduced distant relapse-free survival. These data demonstrate that MICs specifically and precisely alter their metabolism to efficiently colonize distant organs.
Collapse
Affiliation(s)
- C Megan Young
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Laurent Beziaud
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pierre Dessen
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Angela Madurga Alonso
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
202
|
Mezawa Y, Wang T, Daigo Y, Takano A, Miyagi Y, Yokose T, Yamashita T, Yang L, Maruyama R, Seimiya H, Orimo A. Glutamine deficiency drives transforming growth factor-β signaling activation that gives rise to myofibroblastic carcinoma-associated fibroblasts. Cancer Sci 2023; 114:4376-4387. [PMID: 37706357 PMCID: PMC10637058 DOI: 10.1111/cas.15955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-β (TGF-β)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-β-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-β-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-β-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-β-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-β signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.
Collapse
Affiliation(s)
- Yoshihiro Mezawa
- Department of Molecular Pathogenesis, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Tingwei Wang
- Department of Molecular Pathogenesis, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against CancerShiga University of Medical ScienceOtsuJapan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Medical Oncology and Cancer Center; Center for Advanced Medicine against CancerShiga University of Medical ScienceOtsuJapan
| | - Yohei Miyagi
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | | | - Toshinari Yamashita
- Department of Breast Surgery and OncologyKanagawa Cancer CenterYokohamaJapan
| | - Liying Yang
- Project for Cancer EpigenomicsCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Reo Maruyama
- Project for Cancer EpigenomicsCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Akira Orimo
- Department of Molecular Pathogenesis, Graduate School of MedicineJuntendo UniversityTokyoJapan
| |
Collapse
|
203
|
Chen N, Zhao M, Guo Y, Wu N, Cao B, Zhan B, Zhou T, Li Y, Zhu F, Chen W, Li Y, Zhang L. D-mannose is a rapid inducer of ACSS2 to trigger rapid and long-lasting antidepressant responses through augmenting BDNF and TPH2 levels. Transl Psychiatry 2023; 13:338. [PMID: 37914710 PMCID: PMC10620401 DOI: 10.1038/s41398-023-02636-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The potentiation of synaptic plasticity and serotonin generation by brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (TPH2) is well characterized to facilitate rapid and long-lasting antidepressant actions. Therefore, the identification of the key protein that simultaneously controls both BDNF and TPH2 is important for the treatment of depression. We show here that a lack of acetyl-CoA synthetase short-chain family member 2 (ACSS2) causes impairments in BDNF-dependent synaptic plasticity and tryptophan hydroxylase 2 (TPH2)-mediated serotonin generation, thereby contributing to spontaneous and chronic restraint stress (CRS)-induced depressive-like behavior in mice. Conversely, D-mannose is identified as a rapid ACSS2 inducer and thus mediates rapid and long-lasting antidepressant-like effects. Mechanistically, acute and chronic D-mannose administration inhibits the phosphorylation of EF2 to increase BDNF levels and reverse the reduction of TPH2 histone acetylation and transcription. We reveal that ACSS2 promotes TPH2 histone acetylation and transcription with the requirement of AMPK activation. To elevate nuclear ACSS2 levels, D-mannose can rapidly and persistently activate AMPK via Ca2+-CAMKK2 and the lysosomal AXIN-LKB1 pathway to facilitate its fast-acting and persistent antidepressant responses. Taken together, the results presented here reveal that ACSS2 functions as a novel target to link rapid and persistent antidepressant actions and further suggest that D-mannose is a potential therapeutic agent to resist depression through its augmentation of the ACSS2 dependent BDNF and TPH2 pathways.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
204
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
205
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
206
|
Bei J, Chen Y, Zhang Q, Wang X, Lin L, Huang J, Huang W, Cai M, Cai W, Guo Y, Zhu K. HBV suppresses macrophage immune responses by impairing the TCA cycle through the induction of CS/PDHC hyperacetylation. Hepatol Commun 2023; 7:e0294. [PMID: 37820280 PMCID: PMC10578720 DOI: 10.1097/hc9.0000000000000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND It is now understood that HBV can induce innate and adaptive immune response disorders by affecting immunosuppressive macrophages, resulting in chronic HBV infection. However, the underlying mechanism is not fully understood. Dysregulated protein acetylation can reportedly influence the differentiation and functions of innate immune cells by coordinating metabolic signaling. This study aims to assess whether HBV suppresses macrophage-mediated innate immune responses by affecting protein acetylation and to elucidate the underlying mechanisms of HBV immune escape. METHODS We investigated the effect of HBV on the acetylation levels of human THP-1 macrophages and identified potential targets of acetylation that play a role in glucose metabolism. Metabolic and immune phenotypes of macrophages were analyzed using metabolomic and flow cytometry techniques. Western blot, immunoprecipitation, and immunofluorescence were performed to measure the interactions between deacetylase and acetylated targets. Chronic HBV persistent infected mice were established to evaluate the role of activating the tricarboxylic acid (TCA) cycle in macrophages for HBV clearance. RESULTS Citrate synthase/pyruvate dehydrogenase complex hyperacetylation in macrophages after HBV stimulation inhibited their enzymatic activities and was associated with impaired TCA cycle and M2-like polarization. HBV downregulated Sirtuin 3 (SIRT3) expression in macrophages by means of the toll-like receptor 2 (TLR2)-NF-κB- peroxisome proliferatoractivated receptor γ coactivator 1α (PGC-1α) axis, resulting in citrate synthase/pyruvate dehydrogenase complex hyperacetylation. In vivo administration of the TCA cycle agonist dichloroacetate inhibited macrophage M2-like polarization and effectively reduced the number of serum HBV DNA copies. CONCLUSIONS HBV-induced citrate synthase/pyruvate dehydrogenase complex hyperacetylation negatively modulates the innate immune response by impairing the TCA cycle of macrophages. This mechanism represents a potential therapeutic target for controlling HBV infection.
Collapse
Affiliation(s)
- Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Weiguo Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
207
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
208
|
He Y, Cheng X, Zhou T, Li D, Peng J, Xu Y, Huang W. β-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon 2023; 9:e21098. [PMID: 37928021 PMCID: PMC10623287 DOI: 10.1016/j.heliyon.2023.e21098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Previous studies have found that β-Hydroxybutyrate (BHB), the main component of ketone bodies, is of physiological importance as a backup energy source during starvation or induces diabetic ketoacidosis when insulin deficiency occurs. Ketogenic diets (KD) have been used as metabolic therapy for over a hundred years, it is well known that ketone bodies and BHB not only serve as ancillary fuel substituting for glucose but also induce anti-oxidative, anti-inflammatory, and cardioprotective features via binding to several target proteins, including histone deacetylase (HDAC), or G protein-coupled receptors (GPCRs). Recent advances in epigenetics, especially novel histone post-translational modifications (HPTMs), have continuously updated our understanding of BHB, which also acts as a signal transduction molecule and modification substrate to regulate a series of epigenetic phenomena, such as histone acetylation, histone β-hydroxybutyrylation, histone methylation, DNA methylation, and microRNAs. These epigenetic events alter the activity of genes without changing the DNA structure and further participate in the pathogenesis of related diseases. This review focuses on the metabolic process of BHB and BHB-mediated epigenetics in cardiovascular diseases, diabetes and complications of diabetes, neuropsychiatric diseases, cancers, osteoporosis, liver and kidney injury, embryonic and fetal development, and intestinal homeostasis, and discusses potential molecular mechanisms, drug targets, and application prospects.
Collapse
Affiliation(s)
- Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| |
Collapse
|
209
|
Santosa EK, Sun JC. Cardinal features of immune memory in innate lymphocytes. Nat Immunol 2023; 24:1803-1812. [PMID: 37828377 PMCID: PMC10998651 DOI: 10.1038/s41590-023-01607-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/28/2023] [Indexed: 10/14/2023]
Abstract
The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.
Collapse
Affiliation(s)
- Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
210
|
Tan L, Martinez SA, Lorenzi PL, Karlstaedt A. Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2567-2574. [PMID: 37812744 DOI: 10.1021/jasms.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.
Collapse
Affiliation(s)
- Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Los Angeles, California 90048, United States
| |
Collapse
|
211
|
Alberghina L. The Warburg Effect Explained: Integration of Enhanced Glycolysis with Heterogeneous Mitochondria to Promote Cancer Cell Proliferation. Int J Mol Sci 2023; 24:15787. [PMID: 37958775 PMCID: PMC10648413 DOI: 10.3390/ijms242115787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The Warburg effect is the long-standing riddle of cancer biology. How does aerobic glycolysis, inefficient in producing ATP, confer a growth advantage to cancer cells? A new evaluation of a large set of literature findings covering the Warburg effect and its yeast counterpart, the Crabtree effect, led to an innovative working hypothesis presented here. It holds that enhanced glycolysis partially inactivates oxidative phosphorylation to induce functional rewiring of a set of TCA cycle enzymes to generate new non-canonical metabolic pathways that sustain faster growth rates. The hypothesis has been structured by constructing two metabolic maps, one for cancer metabolism and the other for the yeast Crabtree effect. New lines of investigation, suggested by these maps, are discussed as instrumental in leading toward a better understanding of cancer biology in order to allow the development of more efficient metabolism-targeted anticancer drugs.
Collapse
Affiliation(s)
- Lilia Alberghina
- Centre of Systems Biology, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
212
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
213
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
214
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
215
|
Zhao J, Wang W, Zhang L, Zhang J, Sturmey R, Zhang J. Dynamic metabolism during early mammalian embryogenesis. Development 2023; 150:dev202148. [PMID: 37877936 DOI: 10.1242/dev.202148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Dynamic metabolism is exhibited by early mammalian embryos to support changing cell fates during development. It is widely acknowledged that metabolic pathways not only satisfy cellular energetic demands, but also play pivotal roles in the process of cell signalling, gene regulation, cell proliferation and differentiation. Recently, various new technological advances have been made in metabolomics and computational analysis, deepening our understanding of the crucial role of dynamic metabolism during early mammalian embryogenesis. In this Review, we summarize recent studies on oocyte and embryo metabolism and its regulation, with a particular focus on its association with key developmental events such as fertilization, zygote genome activation and cell fate determination. In addition, we discuss the mechanisms of certain metabolites that, in addition to serving as energy sources, contribute to epigenetic modifications.
Collapse
Affiliation(s)
- Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jia Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Roger Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
216
|
Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, Pan BS, Cai Z, Tsai PJ, Tsai YS, Chen ZZ, Li HY, Lin HK. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023; 35:1782-1798.e8. [PMID: 37586363 PMCID: PMC10726430 DOI: 10.1016/j.cmet.2023.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jie Luo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhengyu Wang
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
217
|
Xi C, Pang J, Barrett A, Horuzsko A, Ande S, Mivechi NF, Zhu X. Nrf2 Drives Hepatocellular Carcinoma Progression through Acetyl-CoA-Mediated Metabolic and Epigenetic Regulatory Networks. Mol Cancer Res 2023; 21:1079-1092. [PMID: 37364049 PMCID: PMC10592407 DOI: 10.1158/1541-7786.mcr-22-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Correlations between the oxidative stress response and metabolic reprogramming have been observed during malignant tumor formation; however, the detailed mechanism remains elusive. The transcription factor Nrf2, a master regulator of the oxidative stress response, mediates metabolic reprogramming in multiple cancers. In a mouse model of hepatocellular carcinoma (HCC), through metabolic profiling, genome-wide gene expression, and chromatin structure analyses, we present new evidence showing that in addition to altering antioxidative stress response signaling, Nrf2 ablation impairs multiple metabolic pathways to reduce the generation of acetyl-CoA and suppress histone acetylation in tumors, but not in tumor-adjacent normal tissue. Nrf2 ablation and dysregulated histone acetylation impair transcription complex assembly on downstream target antioxidant and metabolic regulatory genes for expression regulation. Mechanistic studies indicate that the regulatory function of Nrf2 is low glucose dependent, the effect of which is demolished under energy refeeding. Together, our results implicate an unexpected effect of Nrf2 on acetyl-CoA generation, in addition to its classic antioxidative stress response regulatory activity, integrates metabolic and epigenetic programs to drive HCC progression. IMPLICATIONS This study highlights that Nrf2 integrates metabolic and epigenetic regulatory networks to dictate tumor progression and that Nrf2 targeting is therapeutically exploitable in HCC treatment.
Collapse
Affiliation(s)
- Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Junfeng Pang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Radiation Oncology, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
218
|
Wartewig T, Daniels J, Schulz M, Hameister E, Joshi A, Park J, Morrish E, Venkatasubramani AV, Cernilogar FM, van Heijster FHA, Hundshammer C, Schneider H, Konstantinidis F, Gabler JV, Klement C, Kurniawan H, Law C, Lee Y, Choi S, Guitart J, Forne I, Giustinani J, Müschen M, Jain S, Weinstock DM, Rad R, Ortonne N, Schilling F, Schotta G, Imhof A, Brenner D, Choi J, Ruland J. PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma. NATURE CANCER 2023; 4:1508-1525. [PMID: 37723306 PMCID: PMC10597841 DOI: 10.1038/s43018-023-00635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.
Collapse
Affiliation(s)
- Tim Wartewig
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jay Daniels
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Miriam Schulz
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joonhee Park
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Emma Morrish
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anuroop V Venkatasubramani
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Filippo M Cernilogar
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Frits H A van Heijster
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Heike Schneider
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Filippos Konstantinidis
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith V Gabler
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Calvin Law
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yujin Lee
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sara Choi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ignasi Forne
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Jérôme Giustinani
- Institut Mondor de Recherche Biomédicale, Inserm U955, Paris-Est Créteil University, Créteil, France
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Salvia Jain
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck Research Laboratories, Boston, MA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicolas Ortonne
- Institut Mondor de Recherche Biomédicale, Inserm U955, Paris-Est Créteil University, Créteil, France
- Pathology Department, AP-HP Inserm U955, Henri Mondor Hospital, Créteil, France
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gunnar Schotta
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jaehyuk Choi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jürgen Ruland
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany.
| |
Collapse
|
219
|
Bishop TR, Subramanian C, Bilotta EM, Garnar-Wortzel L, Ramos AR, Zhang Y, Asiaban JN, Ott CJ, Rock CO, Erb MA. Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat Chem Biol 2023; 19:1215-1222. [PMID: 37127754 PMCID: PMC10538425 DOI: 10.1038/s41589-023-01320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.
Collapse
Affiliation(s)
- Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric M Bilotta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Anissa R Ramos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Joshua N Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
220
|
Wang T, Ye Z, Li Z, Jing D, Fan G, Liu M, Zhuo Q, Ji S, Yu X, Xu X, Qin Y. Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif 2023; 56:e13478. [PMID: 37060186 PMCID: PMC10542650 DOI: 10.1111/cpr.13478] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Lactate is not only an endpoint of glycolysis but is gradually being discovered to play the role of a universal metabolic fuel for energy via the 'lactate shuttle' moving between cells and transmitting signals. The glycolytic-dependent metabolism found in tumours and fast-growing cells has made lactate a pivotal player in energy metabolism reprogramming, which enables cells to obtain abundant energy in a short time. Moreover, lactate can provide favourable conditions for tumorigenesis by shaping the acidic tumour microenvironment, recruiting immune cells, etc. and the recently discovered lactate-induced lactylation moves even further on pro-tumorigenesis mechanisms of lactate production, circulation and utilization. As with other epigenetic modifications, lactylation can modify histone proteins to alter the spatial configuration of chromatin, affect DNA accessibility and regulate the expression of corresponding genes. What's more, the degree of lactylation is inseparable from the spatialized lactate concentration, which builds a bridge between epigenetics and metabolic reprogramming. Here, we review the important role of lactate in energy reprogramming, summarize the latest finding of lactylation in tumorigenesis and try to explore therapeutic strategies in oncotherapy that can kill two birds with one stone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zeng Ye
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zheng Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - De‐sheng Jing
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Gui‐xiong Fan
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Meng‐qi Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qi‐feng Zhuo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shun‐rong Ji
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xian‐jun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiao‐wu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
221
|
An YJ, Jo S, Kim JM, Kim HS, Kim HY, Jeon SM, Han D, Yook JI, Kang KW, Park S. Lactate as a major epigenetic carbon source for histone acetylation via nuclear LDH metabolism. Exp Mol Med 2023; 55:2238-2247. [PMID: 37779146 PMCID: PMC10618192 DOI: 10.1038/s12276-023-01095-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.
Collapse
Affiliation(s)
- Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Hyun Young Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sang-Min Jeon
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Gyeonggi-do, 16499, Korea
| | - Dawool Han
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Keon Wook Kang
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
222
|
Russo M, Pileri F, Ghisletti S. Novel insights into the role of acetyl-CoA producing enzymes in epigenetic regulation. Front Endocrinol (Lausanne) 2023; 14:1272646. [PMID: 37842307 PMCID: PMC10570720 DOI: 10.3389/fendo.2023.1272646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Inflammation-dependent changes in gene expression programs in innate immune cells, such as macrophages, involve extensive reprogramming of metabolism. This reprogramming is essential for the production of metabolites required for chromatin modifications, such as acetyl-CoA, and regulate their usage and availability impacting the macrophage epigenome. One of the most transcriptionally induced proinflammatory mediator is nitric oxide (NO), which has been shown to inhibit key metabolic enzymes involved in the production of these metabolites. Recent evidence indicates that NO inhibits mitochondrial enzymes such as pyruvate dehydrogenase (PDH) in macrophages induced by inflammatory stimulus. PDH is involved in the production of acetyl-CoA, which is essential for chromatin modifications in the nucleus, such as histone acetylation. In addition, acetyl-CoA levels in inflamed macrophages are regulated by ATP citrate lyase (ACLY) and citrate transporter SLC25A1. Interestingly, acetyl-CoA producing enzymes, such as PDH and ACLY, have also been reported to be present in the nucleus and to support the local generation of cofactors such as acetyl-CoA. Here, we will discuss the mechanisms involved in the regulation of acetyl-CoA production by metabolic enzymes, their inhibition by prolonged exposure to inflammation stimuli, their involvement in dynamic inflammatory expression changes and how these emerging findings could have significant implications for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| |
Collapse
|
223
|
Xu Q, He L, Zhang S, Di X, Jiang H. Deubiquitinase OTUD3: a double-edged sword in immunity and disease. Front Cell Dev Biol 2023; 11:1237530. [PMID: 37829187 PMCID: PMC10566363 DOI: 10.3389/fcell.2023.1237530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
224
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
225
|
Li AM, He B, Karagiannis D, Li Y, Jiang H, Srinivasan P, Ramirez Y, Zhou MN, Curtis C, Gruber JJ, Lu C, Rankin EB, Ye J. Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proc Natl Acad Sci U S A 2023; 120:e2302489120. [PMID: 37695911 PMCID: PMC10515173 DOI: 10.1073/pnas.2302489120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Bo He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Yang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Preethi Srinivasan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Yaniel Ramirez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Meng-Ning Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Christina Curtis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua J. Gruber
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Erinn B. Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
226
|
Boutagy NE, Fowler JW, Grabinska KA, Cardone R, Sun Q, Vazquez KR, Whalen MB, Zhu X, Chakraborty R, Martin KA, Simons M, Romanoski CE, Kibbey RG, Sessa WC. TNFα increases the degradation of pyruvate dehydrogenase kinase 4 by the Lon protease to support proinflammatory genes. Proc Natl Acad Sci U S A 2023; 120:e2218150120. [PMID: 37695914 PMCID: PMC10515159 DOI: 10.1073/pnas.2218150120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabinska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Qiushi Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kyla R Vazquez
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Michael B Whalen
- Department of Cellular & Molecular Medicine, Bioscience Research Laboratories, University of Arizona, College of Medicine, Tucson, AZ 85724
| | - Xiaolong Zhu
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Raja Chakraborty
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kathleen A Martin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Simons
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Casey E Romanoski
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- Department Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Cardiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
227
|
Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. J Clin Invest 2023; 133:e171953. [PMID: 37712418 PMCID: PMC10503791 DOI: 10.1172/jci171953] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
228
|
Qin F, Wei W, Gao J, Jiang X, Che L, Fang Z, Lin Y, Feng B, Zhuo Y, Hua L, Wang J, Sun M, Wu D, Xu S. Effect of Dietary Fiber on Reproductive Performance, Intestinal Microorganisms and Immunity of the Sow: A Review. Microorganisms 2023; 11:2292. [PMID: 37764136 PMCID: PMC10534349 DOI: 10.3390/microorganisms11092292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary fiber is a substance that cannot be digested by endogenous digestive enzymes but can be digested by the cellulolytic enzymes produced by intestinal microorganisms. In the past, dietary fiber was considered an anti-nutrient component in diets because it could resist digestion by endogenous enzymes secreted by the intestine and has a negative effect on the digestion of energy-producing nutrients. However, due to its functional properties, potential health benefits to animals, and innate fermentability, it has attracted increasing attention in recent years. There are a plethora of studies on dietary fiber. Evidence suggests that dietary fiber can provide energy for pigs through intestinal microbial fermentation and improve sow welfare, reproductive performance, intestinal flora, and immunity. This is a brief overview of the composition and classification of dietary fiber, the mechanism of action and effects of dietary fiber on reproductive performance, intestinal microorganisms, and the immune index of the sow. This review also provides scientific guidance for the application of dietary fiber in sow production.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Wenyan Wei
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Junjie Gao
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Xuemei Jiang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yan Lin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Bin Feng
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lun Hua
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Jianping Wang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Yucheng District, Ya’an 625014, China;
| | - De Wu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| |
Collapse
|
229
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
230
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
231
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
232
|
Jaccard A, Wyss T, Maldonado-Pérez N, Rath JA, Bevilacqua A, Peng JJ, Lepez A, Von Gunten C, Franco F, Kao KC, Camviel N, Martín F, Ghesquière B, Migliorini D, Arber C, Romero P, Ho PC, Wenes M. Reductive carboxylation epigenetically instructs T cell differentiation. Nature 2023; 621:849-856. [PMID: 37730993 DOI: 10.1038/s41586-023-06546-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.
Collapse
Affiliation(s)
- Alison Jaccard
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Tania Wyss
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Translational Data Science (TDS) Group, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Noelia Maldonado-Pérez
- Department of Genomic Medicine, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Jan A Rath
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Alessio Bevilacqua
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Jhan-Jie Peng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Anouk Lepez
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Christine Von Gunten
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Fabien Franco
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Kung-Chi Kao
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Nicolas Camviel
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Francisco Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, KU Leuven, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Denis Migliorini
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Caroline Arber
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland.
| | - Mathias Wenes
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
233
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, Tao P, Cai H. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl 2023; 17:e2200102. [PMID: 36853081 DOI: 10.1002/prca.202200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
Collapse
Affiliation(s)
- Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Fengyuan Dong
- Geriatrics Department, Lianyungang First People's Hospital, Lianyugang, China
| | - Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xiashuang Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
234
|
Convertini P, Santarsiero A, Todisco S, Gilio M, Palazzo D, Pappalardo I, Iacobazzi D, Frontuto M, Infantino V. ACLY as a modulator of liver cell functions and its role in Metabolic Dysfunction-Associated Steatohepatitis. J Transl Med 2023; 21:568. [PMID: 37620891 PMCID: PMC10463545 DOI: 10.1186/s12967-023-04431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Non-alcoholic Fatty Liver Disease (NAFLD), now better known as Metabolic (Dysfunction)-Associated Fatty Liver Disease (MAFLD) and its progression to Nonalcoholic Steatohepatitis (NASH), more recently referred to as Metabolic (Dysfunction)-Associated Steatohepatitis (MASH) are the most common causes of liver failure and chronic liver damage. The new names emphasize the metabolic involvement both in relation to liver function and pathological features with extrahepatic manifestations. This study aims to explore the role of the immunometabolic enzyme ATP citrate lyase (ACLY), with a critical function in lipogenesis, carbohydrate metabolism, gene expression and inflammation. METHODS ACLY function was investigated in TNFα-triggered human hepatocytes and in PBMC-derived macrophages from MASH patients. Evaluation of expression levels was carried out by western blotting and/or RT-qPCR. In the presence or absence of ACLY inhibitors, ROS, lipid peroxidation and GSSG oxidative stress biomarkers were quantified. Chromatin immunoprecipitation (ChIP), transient transfections, immunocytochemistry, histone acetylation quantitation were used to investigate ACLY function in gene expression reprogramming. IL-6 and IL-1β were quantified by Lumit immunoassays. RESULTS Mechanistically, ACLY inhibition reverted lipid accumulation and oxidative damage while reduced secretion of inflammatory cytokines in TNFα-triggered human hepatocytes. These effects impacted not only on lipid metabolism but also on other crucial features of liver function such as redox status and production of inflammatory mediators. Moreover, ACLY mRNA levels together with those of malic enzyme 1 (ME1) increased in human PBMC-derived macrophages from MASH patients when compared to age-matched healthy controls. Remarkably, a combination of hydroxycitrate (HCA), the natural ACLY inhibitor, with red wine powder (RWP) significantly lowered ACLY and ME1 mRNA amount as well as IL-6 and IL-1β production in macrophages from subjects with MASH. CONCLUSION Collectively, our findings for the first time highlight a broad spectrum of ACLY functions in liver as well as in the pathogenesis of MASH and its diagnostic and therapeutic potential value.
Collapse
Affiliation(s)
- Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Michele Gilio
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Donatella Palazzo
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Maria Frontuto
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
235
|
Miya TV, Marima R, Damane BP, Ledet EM, Dlamini Z. Dissecting Microbiome-Derived SCFAs in Prostate Cancer: Analyzing Gut Microbiota, Racial Disparities, and Epigenetic Mechanisms. Cancers (Basel) 2023; 15:4086. [PMID: 37627114 PMCID: PMC10452611 DOI: 10.3390/cancers15164086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the most diagnosed cancer and the second primary cause of fatalities in men globally. There is an abundance of scientific evidence suggesting that the human microbiome, together with its metabolites, plays a crucial role in carcinogenesis and has a significant impact on the efficacy of anticancer interventions in solid and hematological cancers. These anticancer interventions include chemotherapy, immune checkpoint inhibitors, and targeted therapies. Furthermore, the microbiome can influence systemic and local immune responses using numerous metabolites such as short-chain fatty acids (SCFAs). Despite the lack of scientific data in terms of the role of SCFAs in PCa pathogenesis, recent studies show that SCFAs have a profound impact on PCa progression. Several studies have reported racial/ethnic disparities in terms of bacterial content in the gut microbiome and SCFA composition. These studies explored microbiome and SCFA racial/ethnic disparities in cancers such as colorectal, colon, cervical, breast, and endometrial cancer. Notably, there are currently no published studies exploring microbiome/SCFA composition racial disparities and their role in PCa carcinogenesis. This review discusses the potential role of the microbiome in PCa development and progression. The involvement of microbiome-derived SCFAs in facilitating PCa carcinogenesis and their effect on PCa therapeutic response, particularly immunotherapy, are discussed. Racial/ethnic differences in microbiome composition and SCFA content in various cancers are also discussed. Lastly, the effects of SCFAs on PCa progression via epigenetic modifications is also discussed.
Collapse
Affiliation(s)
- Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Elisa Marie Ledet
- Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
236
|
Lieberman WK, Brown ZA, Kantner DS, Jing Y, Megill E, Evans ND, Crawford MC, Jhulki I, Grose C, Jones JE, Snyder NW, Meier JL. Chemoproteomics Yields a Selective Molecular Host for Acetyl-CoA. J Am Chem Soc 2023; 145:16899-16905. [PMID: 37486078 PMCID: PMC10696595 DOI: 10.1021/jacs.3c05489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chemoproteomic profiling is a powerful approach to define the selectivity of small molecules and endogenous metabolites with the human proteome. In addition to mechanistic studies, proteome specificity profiling also has the potential to identify new scaffolds for biomolecular sensing. Here, we report a chemoproteomics-inspired strategy for selective sensing of acetyl-CoA. First, we use chemoproteomic capture experiments to validate the N-terminal acetyltransferase NAA50 as a protein capable of differentiating acetyl-CoA and CoA. A Nanoluc-NAA50 fusion protein retains this specificity and can be used to generate a bioluminescence resonance energy transfer (BRET) signal in the presence of a CoA-linked fluorophore. This enables the development of a ligand displacement assay in which CoA metabolites are detected via their ability to bind the Nanoluc-NAA50 protein "host" and compete binding of the CoA-linked fluorophore "guest". We demonstrate that the specificity of ligand displacement reflects the molecular recognition of the NAA50 host, while the window of dynamic sensing can be controlled by tuning the binding affinity of the CoA-linked fluorophore guest. Finally, we show that the method's specificity for acetyl-CoA can be harnessed for gain-of-signal optical detection of enzyme activity and quantification of acetyl-CoA from cellular samples. Overall, our studies demonstrate the potential of harnessing insights from chemoproteomics for molecular sensing and provide a foundation for future applications in target engagement and selective metabolite detection.
Collapse
Affiliation(s)
- Whitney K Lieberman
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Zachary A Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel S Kantner
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Yihang Jing
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Emily Megill
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Nya D Evans
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - McKenna C Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Isita Jhulki
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Carissa Grose
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Jane E Jones
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
237
|
Menezes AP, Murillo AM, de Castro CG, Bellini NK, Tosi LRO, Thiemann OH, Elias MC, Silber AM, da Cunha JPC. Navigating the boundaries between metabolism and epigenetics in trypanosomes. Trends Parasitol 2023; 39:682-695. [PMID: 37349193 DOI: 10.1016/j.pt.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.
Collapse
Affiliation(s)
- Ana Paula Menezes
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana Milena Murillo
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Camila Gachet de Castro
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Natalia Karla Bellini
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | - Maria Carolina Elias
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
238
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
239
|
Huang L, Wang Q, Gu S, Cao N. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol 2023; 181:79-88. [PMID: 37331466 DOI: 10.1016/j.yjmcc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.
Collapse
Affiliation(s)
- Liying Huang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Qiyuan Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
240
|
Bucheli OTM, Eyer K. Insights into the relationship between persistent antibody secretion and metabolic programming - A question for single-cell analysis. Immunol Lett 2023; 260:35-43. [PMID: 37315849 DOI: 10.1016/j.imlet.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/28/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Vaccination aims to generate a protective and persisting antibody response. Indeed, humoral vaccine-mediated protection depends on the quality and quantity of the produced antigen-specific antibodies for its initial magnitude and the persistence of the plasma cells for its duration. Therefore, understanding the mechanisms behind the generation, selection and maintenance of long-lived plasma cells secreting protective antibodies is of fundamental importance for understanding long-term immunity, vaccine responses, therapeutical approaches for autoimmune disease and multiple myeloma. Recent studies have observed correlations between the generation, function and lifespan of plasma cells and their metabolism, with metabolism being both a main driver and primary consequence of changes in cellular behavior. This review introduces how metabolic programs influence and drive immune cell functions in general and plasma cell differentiation and longevity more specifically, summarizing the current knowledge on metabolic pathways and their influences on cellular fate. In addition, available technologies to profile metabolism and their limitations are discussed, leading to the unique and open technological challenges for further advancement of this research field.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
241
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
242
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
243
|
Fan W, Li X. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol 2023; 11:1236968. [PMID: 37554307 PMCID: PMC10405831 DOI: 10.3389/fcell.2023.1236968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase. Through deacetylation of transcriptional factors and co-factors, this protein modification enzyme is critically involved in metabolic and epigenetic regulation of stem cells, which is functionally important in maintaining their pluripotency and regulating their differentiation. C-Myc, a key member of Myc proton-oncogene family, is a pivotal factor for transcriptional regulation of genes that control acquisition and maintenance of stemness. Previous cancer research has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is crucial in tumorigenesis. Recent literature has uncovered important functions of this axis in regulation of maintenance and differentiation of stem cells, including pluripotent stem cells and cancer stem cells. This review highlights recent advances of the SIRT1-c-Myc axis in stem cells.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
244
|
Oger F, Moreno M, Derhourhi M, Thiroux B, Berberian L, Bourouh C, Durand E, Amanzougarene S, Badreddine A, Blanc E, Molendi-Coste O, Pineau L, Pasquetti G, Rolland L, Carney C, Bornaque F, Courty E, Gheeraert C, Eeckhoute J, Dombrowicz D, Kerr-Conte J, Pattou F, Staels B, Froguel P, Bonnefond A, Annicotte JS. Pharmacological HDAC inhibition impairs pancreatic β-cell function through an epigenome-wide reprogramming. iScience 2023; 26:107231. [PMID: 37496675 PMCID: PMC10366467 DOI: 10.1016/j.isci.2023.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments. We observed that TSA alters insulin secretion associated with β-cell specific transcriptome programming in both mouse and human β-cell lines, as well as on human pancreatic islets. We also demonstrated that this alternative β-cell transcriptional program in response to HDAC inhibition is related to an epigenome-wide remodeling at both promoters and enhancers. Our data indicate that HDAC activity could be required to protect against loss of β-cell identity with unsuitable expression of genes associated with alternative cell fates.
Collapse
Affiliation(s)
- Frédérik Oger
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Maeva Moreno
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Mehdi Derhourhi
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Bryan Thiroux
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Lionel Berberian
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Cyril Bourouh
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Emmanuelle Durand
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Souhila Amanzougarene
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Alaa Badreddine
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Etienne Blanc
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Olivier Molendi-Coste
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laurent Pineau
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Laure Rolland
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Charlène Carney
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Florine Bornaque
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Emilie Courty
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Céline Gheeraert
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Froguel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jean-Sébastien Annicotte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| |
Collapse
|
245
|
Srivastava S, Gajwani P, Jousma J, Miyamoto H, Kwon Y, Jana A, Toth PT, Yan G, Ong SG, Rehman J. Nuclear translocation of mitochondrial dehydrogenases as an adaptive cardioprotective mechanism. Nat Commun 2023; 14:4360. [PMID: 37468519 DOI: 10.1038/s41467-023-40084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Priyanka Gajwani
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Hiroe Miyamoto
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Youjeong Kwon
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Arundhati Jana
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter T Toth
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Research Resources Center, University of Illinois, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Pharmacology and Regenerative Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
246
|
da Fonseca Junior AM, Ispada J, Dos Santos EC, de Lima CB, da Silva JVA, Paulson E, Goszczynski DE, Goissis MD, Ross PJ, Milazzotto MP. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Sci Rep 2023; 13:11504. [PMID: 37460590 PMCID: PMC10352246 DOI: 10.1038/s41598-023-38686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The epigenetic reprogramming that occurs during the earliest stages of embryonic development has been described as crucial for the initial events of cell specification and differentiation. Recently, the metabolic status of the embryo has gained attention as one of the main factors coordinating epigenetic events. In this work, we investigate the link between pyruvate metabolism and epigenetic regulation by culturing bovine embryos from day 5 in the presence of dichloroacetate (DCA), a pyruvate analog that increases the pyruvate to acetyl-CoA conversion, and iodoacetate (IA), which inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to glycolysis inhibition. After 8 h of incubation, both DCA and IA-derived embryos presented higher mitochondrial membrane potential. Nevertheless, in both cases, lower levels of acetyl-CoA, ATP-citrate lyase and mitochondrial membrane potential were found in blastocysts, suggesting an adaptative metabolic response, especially in the DCA group. The metabolic alteration found in blastocysts led to changes in the global pattern of H3K9 and H3K27 acetylation and H3K27 trimethylation. Transcriptome analysis revealed that such alterations resulted in molecular differences mainly associated to metabolic processes, establishment of epigenetic marks, control of gene expression and cell cycle. The latter was further confirmed by the alteration of total cell number and cell differentiation in both groups when compared to the control. These results corroborate previous evidence of the relationship between the energy metabolism and the epigenetic reprogramming in preimplantation bovine embryos, reinforcing that the culture system is decisive for precise epigenetic reprogramming, with consequences for the molecular control and differentiation of cells.
Collapse
Affiliation(s)
- Aldcejam Martins da Fonseca Junior
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Jessica Ispada
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Cristina Dos Santos
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | | | - João Vitor Alcantara da Silva
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Paulson
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | | | | | - Pablo Juan Ross
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | - Marcella Pecora Milazzotto
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil.
| |
Collapse
|
247
|
Lin Y, Lin A, Cai L, Huang W, Yan S, Wei Y, Ruan X, Fang W, Dai X, Cheng J, Zhang J, Chen W, Ye Q, Chen X, Zhang J. ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer's disease. Mol Neurodegener 2023; 18:47. [PMID: 37438762 PMCID: PMC10339567 DOI: 10.1186/s13024-023-00625-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Nuclear acetyl-CoA pools govern histone acetylation that controls synaptic plasticity and contributes to cognitive deterioration in patients with Alzheimer's disease (AD). Nuclear acetyl-CoA pools are generated partially from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). However, the underlying mechanism of histone acetylation dysregulation in AD remains poorly understood. METHODS We detected ACSS2 expression and histone acetylation levels in the brains of AD patients and 5 × FAD mice. When we altered ACSS2 expression by injecting adeno-associated virus into the dorsal hippocampus of 5 × FAD mice and replenished ACSS2 substrate (acetate), we observed changes in cognitive function by Morris water maze. We next performed RNA-seq, ChIP-qPCR, and electrophysiology to study molecular mechanism underlying ACSS2-mediated spatial learning and memory in 5 × FAD mice. RESULTS We reported that ACSS2 expression and histone acetylation (H3K9, H4K12) were reduced in the hippocampus and prefrontal cortex of 5 × FAD mice. Reduced ACSS2 levels were also observed in the temporal cortex of AD patients. 5 × FAD mice exhibited a low enrichment of acetylated histones on the promoters of NMDARs and AMPARs, together with impaired basal and activity-dependent synaptic plasticity, all of which were rescued by ACSS2 upregulation. Moreover, acetate replenishment enhanced ac-H3K9 and ac-H4K12 in 5 × FAD mice, leading to an increase of NMDARs and AMPARs and a restoration of synaptic plasticity and cognitive function in an ACSS2-dependent manner. CONCLUSION ACSS2 is a key molecular switch of cognitive impairment and that targeting ACSS2 or acetate administration may serve as a novel therapeutic strategy for the treatment of intermediate or advanced AD. Nuclear acetyl-CoA pools are generated partly from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). Model depicts that ACSS2 expression is downregulated in the brains of 5×FAD model mice and AD patients. Of note, ACSS2 downregulation mediates a reduction in ionotropic glutamate receptor expression through histone acetylation, which exacerbates synaptic plasticity impairment in AD. These deficits can be rescued by ACSS2 upregulation or acetate supplementation (GTA, an FDA-approved food additive), which may serve as a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Yingbin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Anlan Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Weibin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shanzhi Yan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Wei
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wenting Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jinbo Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Present Address: Department of Neurology and Neurosurgery, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
248
|
Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab 2023; 35:1101-1113. [PMID: 37390822 PMCID: PMC10527949 DOI: 10.1016/j.cmet.2023.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
249
|
Wrede D, Bordak M, Abraham Y, Mehedi M. Pulmonary Pathogen-Induced Epigenetic Modifications. EPIGENOMES 2023; 7:13. [PMID: 37489401 PMCID: PMC10366755 DOI: 10.3390/epigenomes7030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Epigenetics generally involves genetic control by factors other than our own DNA sequence. Recent research has focused on delineating the mechanisms of two major epigenetic phenomena: DNA methylation and histone modification. As epigenetics involves many cellular processes, it is no surprise that it can also influence disease-associated gene expression. A direct link between respiratory infections, host cell epigenetic regulations, and chronic lung diseases is still unknown. Recent studies have revealed bacterium- or virus-induced epigenetic changes in the host cells. In this review, we focused on respiratory pathogens (viruses, bacteria, and fungi) induced epigenetic modulations (DNA methylation and histone modification) that may contribute to lung disease pathophysiology by promoting host defense or allowing pathogen persistence.
Collapse
Affiliation(s)
| | | | | | - Masfique Mehedi
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (D.W.); (M.B.); (Y.A.)
| |
Collapse
|
250
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|