201
|
Lerner A, Owens LA, Coates M, Simpson C, Poole G, Velupillai J, Liyanage M, Christopoulos G, Lavery S, Hardy K, Franks S. Expression of genes controlling steroid metabolism and action in granulosa-lutein cells of women with polycystic ovaries. Mol Cell Endocrinol 2019; 486:47-54. [PMID: 30802529 DOI: 10.1016/j.mce.2019.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Aberrant function of granulosa cells has been implicated in the pathophysiology of PCOS. MATERIALS & METHODS Granulosa lutein (GL) cells were collected during oocyte retrieval for IVF/ICSI. RT-qPCR was used to compare gene expression between 12 control women, 12 with ovulatory PCO and 12 with anovulatory PCOS. To examine which genes are directly regulated by androgens, GL cells from an additional 12 control women were treated in-vitro with 10 nM dihydrotestosterone (DHT). RESULTS GL cells from women with PCOS showed reduced expression of CYP11A1 3-fold (p = 0.005), HSD17B1 1.8-fold (p = 0.02) and increased expression of SULT1E1 7-fold (p = 0.0003). Similar results were seen in ovulatory women with PCO. GL cells treated with 10 nM DHT showed a 4-fold (p = 0.03) increase in expression of SULT1E1 and a 5-fold reduction in SRD5A1 (p = 0.03). CONCLUSIONS These findings support the notion that aberrant regulation of steroid metabolism or action play a part in ovarian dysfunction in PCOS.
Collapse
Affiliation(s)
- A Lerner
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - L A Owens
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK.
| | - M Coates
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - C Simpson
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - G Poole
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - J Velupillai
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - M Liyanage
- Wolfson Fertility Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - G Christopoulos
- Wolfson Fertility Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - S Lavery
- Wolfson Fertility Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
202
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
203
|
Barros RG, Lima PF, Soares ACS, Sanches L, Price CA, Buratini J. Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte. J Assist Reprod Genet 2019; 36:905-913. [PMID: 30887159 DOI: 10.1007/s10815-019-01436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE We first assessed regulation of FGF2 expression in cumulus cells by FSH and oocyte-secreted factors during in vitro maturation (IVM). Then, we tested the hypothesis that FGF2 regulates meiotic progression, cumulus expansion, and apoptosis in cumulus-oocyte complexes (COC) undergoing IVM. METHODS In vitro maturation of bovine COC was utilized as a model to assess regulation of FGF2 expression by FSH and oocyte-secreted factors (via microsurgical removal of the oocyte), as well as effects of graded doses of FGF2 on meiotic progression, degree of cumulus expansion, dissociation of cumulus cells, and cumulus cells apoptosis. Expression of genes regulating functional endpoints altered by FGF2 treatment was assessed in cumulus cells by real-time PCR. Cultures were replicated 4-5 times and effects of treatments were tested by ANOVA. RESULTS FGF2 mRNA expression was increased by FSH and oocyte-secreted factors during IVM. Addition of FGF2 to the IVM medium advanced meiosis resumption, decreased the ease with which cumulus cells were dissociated, and inhibited cumulus cells apoptosis. Decreased cumulus dissociation was accompanied by decreased expression of TNFAIP6. CONCLUSIONS This is the first study showing that FGF2 expression is regulated by the oocyte in cumulus cells. Moreover, we report novel effects of FGF2 on cumulus cell survival and extracellular matrix (ECM) quality during IVM that may favor acquisition of developmental competence and suggest physiological roles during the final steps of COC differentiation.
Collapse
Affiliation(s)
- Rodrigo G Barros
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil.
| | - Paula F Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil
| | - Ana Caroline S Soares
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil
| | - Lorena Sanches
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil
| | - Christopher A Price
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - José Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, Botucatu, São Paulo, 18618-970, Brazil
| |
Collapse
|
204
|
Mechanisms of FSH- and Amphiregulin-Induced MAP Kinase 3/1 Activation in Pig Cumulus-Oocyte Complexes During Maturation In Vitro. Int J Mol Sci 2019; 20:ijms20051179. [PMID: 30866587 PMCID: PMC6429514 DOI: 10.3390/ijms20051179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The maturation of mammalian oocytes in vitro can be stimulated by gonadotropins (follicle-stimulating hormone, FSH) or their intrafollicular mediator, epidermal growth factor (EGF)-like peptide—amphiregulin (AREG). We have shown previously that in pig cumulus-oocyte complexes (COCs), FSH induces expression and the synthesis of AREG that binds to EGF receptor (EGFR) and activates the mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. However, in this study we found that FSH also caused a rapid activation of MAPK3/1 in the cumulus cells, which cannot be explained by the de novo synthesis of AREG. The rapid MAPK3/1 activation required EGFR tyrosine kinase (TK) activity, was sensitive to SRC proto-oncogene non-receptor tyrosine kinase (SRC)-family and protein kinase C (PKC) inhibitors, and was resistant to inhibitors of protein kinase A (PKA) and metalloproteinases. AREG also induced the rapid activation of MAPK3/1 in cumulus cells, but this activation was only dependent on the EGFR TK activity. We conclude that in cumulus cells, FSH induces a rapid activation of MAPK3/1 by the ligand-independent transactivation of EGFR, requiring SRC and PKC activities. This rapid activation of MAPK3/1 precedes the second mechanism participating in the generation and maintenance of active MAPK3/1—the ligand-dependent activation of EGFR depending on the synthesis of EGF-like peptides.
Collapse
|
205
|
Xu D, He H, Jiang X, Yang L, Liu D, Yang L, Geng G, Cheng J, Chen H, Hua R, Duan J, Li X, Wu L, Li Y, Li Q. Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis in bovine ovarian granulosa cells. Reprod Domest Anim 2019; 54:741-749. [PMID: 30785650 DOI: 10.1111/rda.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022]
Abstract
Steroid hormones are required for normal reproductive function of female. The aim of this study was to investigate the role of Raf-ERK1/2 on steroid hormone synthesis in bovine ovarian granulosa cells. Immunohistochemistry assay showed that both B-Raf and C-Raf were expressed in granulosa cells, theca cells and Sertoli cells. The protein expression of Raf or ERK1/2 was clearly decreased by Raf inhibitor GSK2118436 or ERK1/2 inhibitor SCH772984, respectively (p < 0.05). In addition, western blotting was performed for investigating the crosstalk between Raf and ERK1/2, the data showed that Raf positively regulated ERK1/2, whereas ERK1/2 had a negative feedback effect on Raf. The biosynthesis of oestradiol or testosterone was significantly decreased by treatment with GSK2118436 or SCH772984 (p < 0.05). Conversely, the progesterone biosynthesis was clearly increased by treatment with those inhibitors (p < 0.05). Furthermore, the mRNA expression of STAR, aromatase and CYP17 was blocked by Raf-ERK1/2 signalling inhibition, which oppositely induced the mRNA expression of CYP11. Together, these findings suggested that Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis via affecting the expression of steroidogenic enzymes.
Collapse
Affiliation(s)
- Dejun Xu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huanshan He
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lulu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dinbang Liu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Li Yang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huali Chen
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Rongmao Hua
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jiaxin Duan
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lin Wu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuan Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
206
|
Kakuta H, Iguchi T, Sato T. The Involvement of Granulosa Cells in the Regulation by Gonadotropins of Cyp17a1 in Theca Cells. In Vivo 2019; 32:1387-1401. [PMID: 30348693 DOI: 10.21873/invivo.11391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Theca cells produce androgen by 17α-hydroxylase-17,20-lyase encoded by Cyp17a1, and conversion of androgen to estrogen in granulosa cells is regulated by gonadotropins. Women with polycystic ovarian syndrome (PCOS) exhibit elevated levels of androgens due to high Cyp17a1 expression and alterations in gene expression in granulosa cells. The aim of this study was to examine the interaction between theca and granulosa cells in PCOS-model mice. MATERIALS AND METHODS To produce PCOS-model mice, neonatal mice were injected with 1 μg TP for 3 days from the day of birth. Gonadotropins were injected according to the superovulation protocol to 3-month-old control mice and PCOS-model mice. Histological changes and expression of genes involved in steroidogenesis, ovulation and luteinization were investigated by immunohistochemistry and real-time RT-PCR, respectively. RESULTS Pregnant mare serum gonadotropin (PMSG) induced the expression of genes involved in steroidogenesis in control prepubertal mice, whereas human chorionic gonadotropin (hCG) reduced Cyp17a1 expression and induced phospho-ERK1/2 in granulosa cells. Cyp17a1 was reduced in PMSG-primed PCOS-model mice regardless of hCG injection, and PMSG induced phosphorylation of ERK1/2 in granulosa cells. CONCLUSION Phospho-ERK1/2 in granulosa cells can be correlated with reduced Cyp17a1 expression in theca cells, and the interaction between granulosa and theca cells may be impaired in PCOS-model mice.
Collapse
Affiliation(s)
- Hanako Kakuta
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
207
|
Wang X, Mittal P, Castro CA, Rajkovic G, Rajkovic A. Med12 regulates ovarian steroidogenesis, uterine development and maternal effects in the mammalian egg. Biol Reprod 2019; 97:822-834. [PMID: 29126187 DOI: 10.1093/biolre/iox143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
The transcriptional factor MED12 is part of the essential mediator transcriptional complex that acts as a transcriptional coactivator in all eukaryotes. Missense gain-of-function mutations in human MED12 are associated with uterine leiomyomas, yet the role of MED12 deficiency in tumorigenesis and reproductive biology has not been fully explored. We generated a Med12 reproductive conditional knockout mouse model to evaluate its role in uterine mesenchyme, granulosa cells, and oocytes. Mice heterozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/+ Amhr2-Cre) were subfertile, while mice homozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/fl Amhr2-Cre) were infertile. Morphological and histological analysis of the Med12fl/fl Amhr2-Cre reproductive tract revealed atrophic uteri and hyperchromatic granulosa cells with disrupted expression of Lhcgr, Esr1, and Esr2. Med12fl/fl Amhr2-Cre mice estrous cycle was disrupted, and serum analysis showed blunted rise in estradiol in response to pregnant mare serum gonadotropin. Uterine atrophy was partially rescued by exogenous steroid supplementation with dysregulation of Notch1 and Smo expression in steroid supplemented Med12fl/fl Amhr2-Cre uteri, indicating intrinsic uterine defects. Oocyte-specific ablation of Med12 caused infertility without disrupting normal folliculogenesis and ovulation, consistent with maternal effects of Med12 in early embryo development. These results show the critical importance of Med12 in reproductive tract development and that Med12 loss of function does not cause tumorigenesis in reproductive tissues.
Collapse
Affiliation(s)
- Xinye Wang
- Tsinghua MD Program, Tsinghua University School of Medicine, Beijing, China.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Priya Mittal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Gabriel Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
208
|
Meng K, Wang X, He Y, Yang J, Wang H, Zhang Y, Quan F. The Wilms tumor gene (WT1) (+/−KTS) isoforms regulate steroidogenesis by modulating the PI3K/AKT and ERK1/2 pathways in bovine granulosa cells†. Biol Reprod 2019; 100:1344-1355. [DOI: 10.1093/biolre/ioz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
209
|
Protein oligomerization is the biochemical process highly up-regulated in porcine oocytes before in vitro maturation (IVM). ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2018-0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
A wide variety of mechanisms controlling oligomerization are observed. The dynamic nature of protein oligomerization is important for bioactivity control. The oocyte must undergo a series of changes to become a mature form before it can fully participate in the processes associated with its function as a female gamete. The growth of oocytes in the follicular environment is accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). It has been shown that oocytes tested before and after in vitro maturation (IVM) differ significantly in the transcriptomic and proteomic profiles. The aim of this study was to determine new proteomic markers for the oligomerization of porcine oocyte proteins that are associated with cell maturation competence. The Affymetrix microarray assay was performed to examine the gene expression profile associated with protein oligomerization in oocytes before and after IVM. In total, 12258 different transcriptomes were analyzed, of which 419 genes with lower expression in oocytes after IVM. We found 9 genes: GJA1, VCP, JUP, MIF, MAP3K1, INSR, ANGPTL4, EIF2AK3, DECR1, which were significantly down-regulated in oocytes after IVM (in vitro group) compared to oocytes analyzed before IVM (in vivo group). The higher expression of genes involved in the oligomerization of the protein before IVM indicates that they can be recognized as important markers of biological activation of proteins necessary for the further growth and development of pig embryos.
Collapse
|
210
|
Nemer A, Azab AN, Rimon G, Lamprecht S, Ben-Menahem D. Different roles of cAMP/PKA and PKC signaling in regulating progesterone and PGE 2 levels in immortalized rat granulosa cell cultures. Gen Comp Endocrinol 2018; 269:88-95. [PMID: 30144443 DOI: 10.1016/j.ygcen.2018.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Follicular cells from various species secrete steroids and prostaglandins, which are crucial for reproduction, in response to gonadotropins. Here, we examined prostaglandin E2 (PGE2) secretion from immortalized rat granulosa cells derived from preovulaotry follicles expressing the rat follicle stimulating hormone receptor (denoted as FSHR cells) that produce progesterone in response to gonadotropins. The cells were stimulated with a) pregnant mare's serum gonadotropin (PMSG; a rat FSH receptor agonist), b) activators of the protein kinase A (PKA) pathway (forskolin and a cell permeable cAMP analog Dibutyryl-cAMP (DB-cAMP)) and c) protein kinase C (PKC) (12-O-tetradecanoylphorbol 13-acetate; TPA), alone and in combination for 24 h. Thereafter, PGE2 and progesterone levels in the culture media were determined. In accordance with previous studies, while PMSG and the PKA pathway activators induced progesterone accumulation in the media, TPA did not. In contrast, our data indicate that TPA, but neither PMSG, forskolin and DB-cAMP evoked PGE2 accumulation in the media. Western Blot analysis of cell lysate showed a drastic TPA induced increase of COX-2 levels, which was not seen with neither PMSG nor forskolin treatment. This association between the COX-2 and PGE2 levels suggests that the enzyme activity is the likely factor that determines the synthesis and levels of the prostaglandin in the culture media of the granulosa-derived cells. The addition of the PKA inhibitor H-89 to the FSHR cultures suppressed the gonadotropin and forskolin induction of progesterone secretion. Incubation in the presence of GF109203X (a PKC inhibitor) attenuated the TPA induced PGE2 accumulation in the culture media of the cells (a dose dependent reduction of 40-70%). In addition, while TPA inhibited the PMSG and forskolin induced-accumulation of progesterone in the media, the gonadotropin and forskolin inhibited the elevation of PGE2 levels evoked by TPA (a dose dependent decrease of 35-55%). These data suggest that cAMP/PKA and PKC signaling have opposite effects on PGE2 and progesterone synthesis in FSHR cells. We propose that this PKA and PKC interplay on progesterone and PGE2 may be advantageous for the coordination of these key mediators for successful ovulation and luteinization.
Collapse
Affiliation(s)
- Ala Nemer
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abed N Azab
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gilad Rimon
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sergio Lamprecht
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
211
|
Liu XM, Yan MQ, Ji SY, Sha QQ, Huang T, Zhao H, Liu HB, Fan HY, Chen ZJ. Loss of oocyte Rps26 in mice arrests oocyte growth and causes premature ovarian failure. Cell Death Dis 2018; 9:1144. [PMID: 30451825 PMCID: PMC6242890 DOI: 10.1038/s41419-018-1196-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022]
Abstract
Global transcriptional activity increases as oocytes grow and is silenced in fully grown oocytes. Thus, the chromatin configuration varies during oocyte growth, but the molecular mechanisms regulating these changes remain to be clarified. Here, we studied a susceptibility gene of polycystic ovary syndrome (PCOS), RPS26, which is a ribosomal protein-encoding gene that is highly expressed in the ovary, but the functions of which remain unknown. Specific knockout of Rps26 in mouse oocytes resulted in retarded follicle development from pre-antral follicles to antral follicles, while the chromatin configurations of the oocytes were arrested at the transition from the non-surrounded nucleolus (NSN) to surrounded nucleolus (SN)-type. As a consequence, all oocytes died by postnatal day 84 resulting in premature ovarian failure (POF). Loss of Rps26 in oocytes led to decreased mRNA transcription and low levels of histone trimethylation on H3K4/H3K9 and DNA methylation at 5-cytosine, high levels of which are required for oocytes to transform from NSN to SN-type. Low protein levels of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15, and the oocyte-granulosa cell gap junction protein connexin 37 inhibited oocyte growth and retarded follicle development. The disruption of the phosphoinositide 3-kinase/protein kinase B/Forkhead box O-3a pathway contributed to oocyte death and follicle atresia. These results provide genetic clues for the clinical diagnosis of POF, especially in PCOS patients without treatment.
Collapse
Affiliation(s)
- Xiao-Man Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China
| | - Ming-Qi Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China
| | - Shu-Yan Ji
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Qian Sha
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.
- The Key Laboratory for Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250001, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
212
|
Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Gonçalves PB, Bordignon V, Duggavathi R. ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 2018; 8:16170. [PMID: 30385793 PMCID: PMC6212447 DOI: 10.1038/s41598-018-34015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Collapse
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bernardo Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, 96010-610, Capão do Leão, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Santa Catarina, 88040-900, Brazil
| | - Juliana Ferst
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paulo B Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
213
|
Yerushalmi GM, Salmon-Divon M, Ophir L, Yung Y, Baum M, Coticchio G, Fadini R, Mignini-Renzini M, Dal Canto M, Machtinger R, Maman E, Hourvitz A. Characterization of the miRNA regulators of the human ovulatory cascade. Sci Rep 2018; 8:15605. [PMID: 30353018 PMCID: PMC6199329 DOI: 10.1038/s41598-018-33807-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Ovarian follicular development and ovulation are complex and tightly regulated processes that involve regulation by microRNAs (miRNAs). We previously identified differentially expressed mRNAs between human cumulus granulosa cells (CGCs) from immature early antral follicles (germinal vesicle - GV) and mature preovulatory follicles (metaphase II - M2). In this study, we performed an integrated analysis of the transcriptome and miRNome in CGCs obtained from the GV cumulus-oocyte complex (COC) obtained from IVM and M2 COC obtained from IVF. A total of 43 differentially expressed miRNAs were identified. Using Ingenuity IPA analysis, we identified 7288 potential miRNA-regulated target genes. Two hundred thirty-four of these target genes were also found in our previously generated ovulatory gene library while exhibiting anti-correlated expression to the identified miRNAs. IPA pathway analysis suggested that miR-21 and FOXM1 cooperatively inhibit CDC25A, TOP2A and PRC1. We identified a mechanism for the temporary inhibition of VEGF during ovulation by TGFB1, miR-16-5p and miR-34a-5p. The linkage bioinformatics analysis between the libraries of the coding genes from our preliminary study with the newly generated library of regulatory miRNAs provides us a comprehensive, integrated overview of the miRNA-mRNA co-regulatory networks that may play a key role in controlling post-transcriptomic regulation of the ovulatory process.
Collapse
Affiliation(s)
- G M Yerushalmi
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - M Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - L Ophir
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Yung
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Baum
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Coticchio
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Fadini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Mignini-Renzini
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - M Dal Canto
- Biogenesi, Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20052, Monza, Italy
| | - R Machtinger
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Maman
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Hourvitz
- Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, 52662, Tel Hashomer, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
214
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
215
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
216
|
Wang X, Jiang SW, Wang L, Sun Y, Xu F, He H, Wang S, Zhang Z, Pan X. Interfering effects of bisphenol A on in vitro growth of preantral follicles and maturation of oocyes. Clin Chim Acta 2018; 485:119-125. [DOI: 10.1016/j.cca.2018.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
|
217
|
Lee SH, Oh HJ, Kim MJ, Setyawan EMN, Lee BC. Interaction of the EGFR signaling pathway with porcine cumulus oocyte complexes and oviduct cells in a coculture system. J Cell Physiol 2018; 234:4030-4043. [PMID: 30252133 DOI: 10.1002/jcp.27170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/16/2018] [Indexed: 11/11/2022]
Abstract
It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
218
|
Robker RL, Hennebold JD, Russell DL. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018; 159:3209-3218. [PMID: 30010832 PMCID: PMC6456964 DOI: 10.1210/en.2018-00485] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself. The result is the induction of cumulus expansion, proteolysis, angiogenesis, inflammation, and smooth muscle contraction, which are each required for follicular rupture. These complex intercellular communication networks and the essential ovulatory genes have been well defined in mouse models and are highly conserved in primates, including humans. Importantly, recent discoveries in regulation of ovulation highlight new areas of investigation.
Collapse
Affiliation(s)
- Rebecca L Robker
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
- Correspondence: Rebecca L. Robker, PhD, Robinson Research Institute, School of Medicine, University of Adelaide, South Australia 5005, Australia. E-mail:
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Darryl L Russell
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
219
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
220
|
Regan SLP, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Almahbobi G, Dharmarajan A. The effect of ovarian reserve and receptor signalling on granulosa cell apoptosis during human follicle development. Mol Cell Endocrinol 2018; 470:219-227. [PMID: 29113831 DOI: 10.1016/j.mce.2017.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022]
Abstract
The poor oocyte quality in older women has previously been linked to the depletion of the ovarian reserve of primordial follicles and an increase in granulosal apoptosis. Granulosa cells were collected from 198 follicles and individually analysed by flow cytometry. In the young IVF patients, the level of apoptosis was inversely proportional to the expression of bone morphogenetic protein (BMPR1B) and follicle stimulating hormone (FSH) receptors. Conversely, in the older patients this relationship became dysregulated. In the older patients, at the time of preovulatory maturation, the reduced apoptosis reflects the poor mitogenic growth turnover rate of healthy follicles rather than the death rate in an atretic follicle. Restoring an optimum receptor density and down-regulation of receptors may improve oocyte quality and the pregnancy rate in older women.
Collapse
Affiliation(s)
- Sheena L P Regan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | - Phil G Knight
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | | | | | - Yee Leung
- Western Australian Gynaecologic Cancer Service, King Edward Memorial Hospital for Women, Perth, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Ghanim Almahbobi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
221
|
Xu Y, Niu J, Xi G, Niu X, Wang Y, Guo M, Yangzong Q, Yao Y, Sizhu SL, Tian J. TGF-β1 resulting in differential microRNA expression in bovine granulosa cells. Gene 2018; 663:88-100. [DOI: 10.1016/j.gene.2018.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023]
|
222
|
Kahnamouyi S, Nouri M, Farzadi L, Darabi M, Hosseini V, Mehdizadeh A. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation. Ther Adv Endocrinol Metab 2018; 9:209-215. [PMID: 29977499 PMCID: PMC6022971 DOI: 10.1177/2042018818772775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian reproduction systems are largely regulated by the secretion of two gonadotropins, that is, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The main action of LH and FSH on the ovary is to stimulate secretion of estradiol and progesterone, which play an important role in the ovarian function and reproductive cycle control. FSH and LH secretions are strictly controlled by the gonadotropin-releasing hormone (GnRH), which is secreted from the hypothalamus into the pituitary vascular system. Maintaining normal secretion of LH and FSH is dependent on pulsatile secretion of GnRH. Extracellular signal-regulated kinase (ERK) proteins, as the main components of mitogen-activated protein kinase (MAPK) signaling pathways, are involved in the primary regulation of GnRH-stimulated transcription of the gonadotropins' α subunit in the pituitary cells. However, GnRH-stimulated expression of the β subunit has not yet been reported. Furthermore, GnRH-mediated stimulation of ERK1 and ERK2 leads to several important events such as cell proliferation and differentiation. In this review, we briefly introduce the relationship between ERK signaling and gonadotropin secretion, and its importance in female infertility.
Collapse
Affiliation(s)
- Samira Kahnamouyi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
223
|
Dos Santos JT, De Cesaro MP, Ferst JG, Pereira Dau AM, da Rosa PRA, Pasqual BM, Antoniazzi AQ, Gasperin BG, Bordignon V, Gonçalves PBD. Luteinizing hormone upregulates NPPC and downregulates NPR3 mRNA abundance in bovine granulosa cells through activation of the EGF receptor. Theriogenology 2018; 119:28-34. [PMID: 29960164 DOI: 10.1016/j.theriogenology.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/25/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
During folliculogenesis, the luteinizing hormone (LH) surge triggers dynamic events in granulosa cells that culminate with ovulation. The aim of this study was to evaluate if the epidermal growth factor receptor (EGFR) is required for ovulation in cattle, and if it regulates the expression of the natriuretic peptide (NP) system in granulosa cells after gonadotropin-releasing hormone (GnRH)/LH stimulation. It was observed that GnRH induces amphiregulin (AREG) and epiregulin (EREG) mRNA at 3 and 6 h after in vivo treatment, but the expression of these genes was not regulated by atrial (ANP) and C-type (CNP) NPs in granulosa cells cultured in vitro. The abundance of mRNA encoding the NP receptors (NPR1, 2 and 3) was not altered by LH supplementation and/or EGFR inhibition (AG1478; AG) in granulosa cells after 6 h of in vitro culture. However, in the same conditions, mRNA encoding the natriuretic peptide precursor C (NPPC) was upregulated by LH, whereas AG (0.5 and 5 μM) inhibited the LH effect. In order to confirm those results, 5 μM AG or saline were intrafollicularly injected in preovulatory follicles and cows were simultaneously treated with GnRH intramuscularly. Granulosa cells harvested at 6 h after GnRH injection revealed higher NPR3 and lower NPPC mRNA levels in AG-treated, compared to control cows. However, intrafollicular injection of AG did not inhibit GnRH-induced ovulation. In granulosa cells cultured in vitro, ANP associated with LH increased prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA abundance. In conclusion, we inferred that LH modulated NPPC and NPR3 mRNA abundance through EGFR in bovine granulosa cells, but ovulation in cattle did not seem to depend on EGFR activation.
Collapse
Affiliation(s)
- Joabel T Dos Santos
- Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Frederico Westphalen, Brazil
| | - Matheus P De Cesaro
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil; Faculty of Veterinary Medicine, Meridional Institute (IMED), Passo Fundo, RS, Brazil; Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Juliana G Ferst
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Andressa M Pereira Dau
- Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Rolante, Brazil
| | - Paulo R A da Rosa
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bruno M Pasqual
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alfredo Q Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo G Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Capão do Leão, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada.
| | - Paulo B D Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
224
|
C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells. Genes (Basel) 2018; 9:genes9060295. [PMID: 29899261 PMCID: PMC6026978 DOI: 10.3390/genes9060295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3, respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3. Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3. These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.
Collapse
|
225
|
Bégay V, Baumeier C, Zimmermann K, Heuser A, Leutz A. The C/EBPβ LIP isoform rescues loss of C/EBPβ function in the mouse. Sci Rep 2018; 8:8417. [PMID: 29849099 PMCID: PMC5976626 DOI: 10.1038/s41598-018-26579-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
The transcription factor C/EBPβ regulates hematopoiesis, bone, liver, fat, and skin homeostasis, and female reproduction. C/EBPβ protein expression from its single transcript occurs by alternative in-frame translation initiation at consecutive start sites to generate three isoforms, two long (LAP*, LAP) and one truncated (LIP), with the same C-terminal bZip dimerization domain. The long C/EBPβ isoforms are considered gene activators, whereas the LIP isoform reportedly acts as a dominant-negative repressor. Here, we tested the putative repressor functions of the C/EBPβ LIP isoform in mice by comparing monoallelic WT or LIP knockin mice with Cebpb knockout mice, in combination with monoallelic Cebpa mice. The C/EBPβ LIP isoform was sufficient to function in coordination with C/EBPα in murine development, adipose tissue and sebocyte differentiation, and female fertility. Thus, the C/EBPβ LIP isoform likely has more physiological functions than its currently known role as a dominant-negative inhibitor, which are more complex than anticipated.
Collapse
Affiliation(s)
- Valérie Bégay
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.
| | - Christian Baumeier
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.,Department of experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DifE), 14558, Nuthetal, Germany, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Zimmermann
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Arnd Heuser
- Pathophysiology Group, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Humboldt-University, Berlin, Institute of Biology, 10115, Berlin, Germany.
| |
Collapse
|
226
|
Ben-Menahem D. Preparation, characterization and application of long-acting FSH analogs for assisted reproduction. Theriogenology 2018; 112:11-17. [DOI: 10.1016/j.theriogenology.2017.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|
227
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
228
|
Richards JS, Ascoli M. Endocrine, Paracrine, and Autocrine Signaling Pathways That Regulate Ovulation. Trends Endocrinol Metab 2018; 29:313-325. [PMID: 29602523 DOI: 10.1016/j.tem.2018.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The central role of luteinizing hormone (LH) and its receptor (LHCGR) in triggering ovulation has been recognized for decades. Because the LHCGR is present in the mural (outermost) granulosa cell layer of preovulatory follicles (POFs), the LH-initiated signal has to be transmitted to another somatic cell type (cumulus granulosa cells) and the oocyte to release a fertilizable oocyte. Recent studies have shown that activation of the LHCGR initiates vectorial transfer of information among the two somatic cell types and the oocyte and the molecules and signaling pathways involved are now better understood. This review summarizes the newer developments on the complex signaling pathways that regulate ovulation.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mario Ascoli
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
229
|
Gareis N, Huber E, Hein G, Rodríguez F, Salvetti N, Angeli E, Ortega H, Rey F. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci 2018; 192:298-312. [DOI: 10.1016/j.anireprosci.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
|
230
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
231
|
Yang F, Wang M, Zhang B, Xiang W, Zhang K, Chu M, Wang P. Identification of new progestogen-associated networks in mammalian ovulation using bioinformatics. BMC SYSTEMS BIOLOGY 2018; 12:36. [PMID: 29615037 PMCID: PMC5883354 DOI: 10.1186/s12918-018-0577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Background Progesterone plays an essential role in mammalian ovulation. Although much is known about this process, the gene networks involved in ovulation have yet to be established. When analyze the mechanisms of ovulation, we often need to determine key genes or pathways to investigate the reproduction features. However, traditional experimental methods have a number of limitations. Results Data, in this study, were acquired from GSE41836 and GSE54584 which provided different samples. They were analyzed with the GEO2R and 546 differentially expressed genes were obtained from two data sets using bioinformatics (absolute log2 FC > 1, P < 0.05). This study identified four genes (PGR, RELN, PDE10A and PLA2G4A) by protein-protein interaction networks and pathway analysis, and their functional enrichments were associated with ovulation. Then, the top 25 statistical pathway enrichments related to hCG treatment were analyzed. Furthermore, gene network analysis identified certain interconnected genes and pathways involved in progestogenic mechanisms, including progesterone-mediated oocyte maturation, the MAPK signaling pathway, the GnRH signaling pathway and focal adhesion, etc. Moreover, we explored the four target gene pathways. q-PCR analysis following hCG and RU486 treatments confirmed the certain novel progestogenic-associated genes (GNAI1, PRKCA, CAV1, EGFR, RHOA, ZYX, VCL, GRB2 and RAP1A). Conclusions The results suggested four key genes, nine predicted genes and eight pathways to be involved in progestogenic networks. These networks provide important regulatory genes and signaling pathways which are involved in ovulation. This study provides a fundamental basis for subsequent functional studies to investigate the regulation of mammalian ovulation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0577-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Yang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Medical Molecular Biology Research Center, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meng Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Baoyun Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wei Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ke Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mingxin Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
232
|
Sahu K, Gupta A, Sharma A, Tiwari M, Pandey AN, Prasad S, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of granulosa cell mitogen-activated protein kinase 3/1 in gonadotropin-mediated meiotic resumption from diplotene arrest of mammalian oocytes. Growth Factors 2018; 36:41-47. [PMID: 29842809 DOI: 10.1080/08977194.2018.1475372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.
Collapse
Affiliation(s)
- Kankshi Sahu
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Anumegha Gupta
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Alka Sharma
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Meenakshi Tiwari
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ashutosh N Pandey
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Shilpa Prasad
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Pramod K Yadav
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ajai K Pandey
- b Department of Kayachikitsa, Faculty of Ayurveda , Banaras Hindu University , Varanasi , India
| | - Tulsidas G Shrivastav
- c Department of Reproductive Biomedicine , National Institute of Health and Family Welfare , New Delhi , India
| | - Shail K Chaube
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| |
Collapse
|
233
|
Maurer JM, Sagerström CG. A parental requirement for dual-specificity phosphatase 6 in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2018; 18:6. [PMID: 29544468 PMCID: PMC5856328 DOI: 10.1186/s12861-018-0164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Background Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood. Results Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the 1-cell stage for several hours before dying by 10 h post fertilization. We demonstrate that dusp6 is expressed in gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults. Conclusions The fact that offspring of homozygous dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis and/or parentally-directed early development. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for proper embryogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other regulators of the ERK pathway compensate for loss of dusp6 at later stages. Electronic supplementary material The online version of this article (10.1186/s12861-018-0164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Maurer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
234
|
Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Involvement of Bone Morphogenetic Proteins (BMP) in the Regulation of Ovarian Function. VITAMINS AND HORMONES 2018; 107:227-261. [PMID: 29544632 DOI: 10.1016/bs.vh.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primordial germ cells migrate to the fetal gonads and proliferate during gestation to generate a fixed complement of primordial follicles, the so-called ovarian reserve. Primordial follicles comprise an oocyte arrested at the diplotene stage of meiosis, surrounded by a layer of pregranulosa cells. Activation of primordial follicles to grow beyond this arrested stage is of particular interest because, once activated, they are subjected to regulatory mechanisms involved in growth, selection, maturation, and ultimately, ovulation or atresia. The vast majority of follicles succumb to atresia and are permanently lost from the quiescent or growing pool of follicles. The bone morphogenetic proteins (BMPs), together with other intraovarian growth factors, are intimately involved in regulation of follicle recruitment, dominant follicle selection, ovulation, and atresia. Activation of primordial follicles appears to be a continuous process, and the number of small antral follicles at the beginning of the menstrual cycle provides an indirect indication of ovarian reserve. Continued antral follicle development during the follicular phase of the menstrual cycle is driven by follicle stimulating hormone (FSH) and luteinizing hormone (LH) in conjunction with many intraovarian growth factors and inhibitors interrelated in a complex web of regulatory balance. The BMP signaling system has a major intraovarian role in many species, including the human, in the generation of transcription factors that influence proliferation, steroidogenesis, cell differentiation, and maturation prior to ovulation, as well as formation of corpora lutea after ovulation. At the anterior pituitary level, BMPs also contribute to the regulation of gonadotrophin production.
Collapse
Affiliation(s)
- Sheena L P Regan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.
| | - Phil G Knight
- School of Biological Sciences, Hopkins Building, University of Reading, Reading, United Kingdom
| | - John L Yovich
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; PIVET Medical Centre, Perth, WA, Australia
| | - Yee Leung
- Western Australian Gynaecologic Cancer Service, King Edward Memorial Hospital for Women, Perth, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
235
|
Brown JL, Xie J, Brieño-Enriquez MA, Sones J, Angulo CN, Boehm U, Miller A, Toufaily C, Wang Y, Bernard DJ, Roberson MS. Sex- and Age-Specific Impact of ERK Loss Within the Pituitary Gonadotrope in Mice. Endocrinology 2018; 159:1264-1276. [PMID: 29300908 PMCID: PMC5802804 DOI: 10.1210/en.2017-00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
Abstract
Extracellular signal-regulated kinase (ERK) signaling regulates hormone action in the reproductive axis, but specific mechanisms have yet to be completely elucidated. In the current study, ERK1 null and ERK2 floxed mice were combined with a gonadotropin-releasing hormone receptor (GnRHR)-internal ribosomal entry site-Cre (GRIC) driver. Female ERK double-knockout (ERKdko) animals were hypogonadotropic, resulting in anovulation and complete infertility. Transcript levels of four gonadotrope-specific genes (GnRHR and the three gonadotropin subunits) were reduced in pituitaries at estrus in ERKdko females, and the postcastration response to endogenous GnRH hyperstimulation was blunted. As females aged, they exhibited abnormal ovarian histology, as well as increased body weight. ERKdko males were initially less affected, showing moderate subfertility, up to 6 months of age. Male ERKdko mice also displayed a blunted response to endogenous GnRH following castration. By 12 months of age, ERKdko males had reduced testicular weights and sperm production. By 18 months of age, the ERKdko males displayed reduced testis and seminal vesicle weights, marked seminiferous tubule degeneration, and a 77% reduction in sperm production relative to controls. As the GRIC is also active in the male germ line, we examined the specific role of ERK loss in the testes using the stimulated by retinoic acid 8 (Stra8)-Cre driver. Whereas ERK loss in GRIC and Stra8 males resulted in comparable losses in sperm production, seminiferous tubule histological degeneration was only observed in the GRIC-ERKdko animals. Our data suggest that loss of ERK signaling and hypogonadotropism within the reproductive axis impacts fertility and gonadal aging.
Collapse
Affiliation(s)
- Jessica L Brown
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jianjun Xie
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Jennifer Sones
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Cynthia N Angulo
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Andrew Miller
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Québec, Canada
| | - Mark S Roberson
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, New York
- Correspondence: Mark S. Roberson, PhD, Department of Biomedical Sciences, T4-018 Veterinary Research Tower, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853. E-mail:
| |
Collapse
|
236
|
Lei R, Bai X, Chang Y, Li J, Qin Y, Chen K, Gu W, Xia S, Zhang J, Wang Z, Xing G. Effects of Fullerenol Nanoparticles on Rat Oocyte Meiosis Resumption. Int J Mol Sci 2018; 19:ijms19030699. [PMID: 29494500 PMCID: PMC5877560 DOI: 10.3390/ijms19030699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
The excellent biocompatibility and biological effects of fullerenol and its derivatives make their biomedical application promising. The potential effects of fullerenol in mammals have been extensively studied, but little is known about its effects on female reproduction. Using canonical oocyte-granulosa cell complexes (OGCs) in vitro maturation culture model, we investigated the effect of fullerenol on the first oocyte meiotic resumption. In the surrounding granulosa cells, fullerenol nanoparticles occluded the extracellular domain of the epidermal growth factor receptor (EGFR) to reduce EGFR-ligand binding and subsequent extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation, which involved the regulation of connexin 43 (CX43) expression and internalization. Downregulation of CX43 expression and the retraction of transzonal projections (TZPs) interrupted the gap junction channel and TZPs based mass transportation. This effect decreased cyclic adenosine monophosphate (cAMP) levels in the oocyte and thereby accelerated rat oocyte meiosis resumption. Moreover, perinuclear distribution of CX43 and EGFR was observed in granulosa cells, which could further exacerbate the effects. Fullerenol nanoparticles interfered with the strict process of oocyte meiosis resumption, which likely reduced the oocyte quality.
Collapse
Affiliation(s)
- Runhong Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanxia Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
237
|
Akison LK, Robertson SA, Gonzalez MB, Richards JS, Smith CW, Russell DL, Robker RL. Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor. Am J Reprod Immunol 2018; 79:e12835. [DOI: 10.1111/aji.12835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/04/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lisa K. Akison
- Robinson Research Institute; School of Medicine; The University of Adelaide; Adelaide SA Australia
| | - Sarah A. Robertson
- Robinson Research Institute; School of Medicine; The University of Adelaide; Adelaide SA Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute; School of Medicine; The University of Adelaide; Adelaide SA Australia
| | - JoAnne S. Richards
- Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston TX USA
| | - C. Wayne Smith
- Section of Leukocyte Biology; Department of Pediatrics; Baylor College of Medicine; Houston TX USA
| | - Darryl L. Russell
- Robinson Research Institute; School of Medicine; The University of Adelaide; Adelaide SA Australia
| | - Rebecca L. Robker
- Robinson Research Institute; School of Medicine; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
238
|
Richards JS. From Follicular Development and Ovulation to Ovarian Cancers: An Unexpected Journey. VITAMINS AND HORMONES 2018; 107:453-472. [PMID: 29544640 DOI: 10.1016/bs.vh.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular development and ovulation are complex development processes that are regulated by multiple, interacting pathways and cell types. The oocyte, cumulus cells, granulosa cells, and theca cells communicate to impact follicular development and ovulation. Many hormones and cytokines control intracellular regulatory networks and transcription factors, some of which are cell type specific. Molecular biology approaches and mutant mouse models have contributed immensely to our knowledge of what genes and signaling cascades impact each stage of follicular development and ovulation, and how the alteration of gene expression profiles and the activation of specific signaling pathways can impact ovarian cancer development in ovarian surface epithelial cells as well as granulosa cells. This chapter explores how pathways controlling normal follicle development and ovulation can be diverted to abnormal development.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
239
|
Abstract
The "ovarian cycle" is an exquisite and dynamic endocrine system that includes ovarian events, hypothalamic-pituitary interactions, uterine endometrial and myometrial changes during implantation and pregnancy, cervical alterations in structure, and breast development. The ovarian cycle and the steroid hormones produced by the ovary also impact epithelial cancer development in the ovary, uterus, cervix, and breast. This chapter provides a personal view of recent developments that occur in this complex endocrine environment.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
240
|
Schuermann Y, Siddappa D, Pansera M, Duggavathi R. Activated receptor tyrosine kinases in granulosa cells of ovulating follicles in mice. Mol Reprod Dev 2018; 85:316-324. [DOI: 10.1002/mrd.22966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Dayananda Siddappa
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Melissa Pansera
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| | - Raj Duggavathi
- Department of Animal Science; McGill University; Sainte-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
241
|
Salustri A, Campagnolo L, Klinger FG, Camaioni A. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol 2018; 78-79:11-23. [PMID: 29408277 DOI: 10.1016/j.matbio.2018.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Successful ovulation and oocyte fertilization are essential prerequisites for the beginning of life in sexually reproducing animals. In mammalian fertilization, the relevance of the protein coat surrounding the oocyte plasma membrane, known as zona pellucida, has been widely recognized, while, until not too long ago, the general belief was that the cumulus oophorus, consisting of follicle cells embedded in a hyaluronan rich extracellular matrix, was not essential. This opinion was based on in vitro fertilization procedures, in which a large number of sperms are normally utilized and the oocyte can be fertilized even if depleted of cumulus cells. Conversely, in vivo, only very few sperm cells reach the fertilization site, arguing against the possibility of a coincidental encounter with the oocyte. In the last two decades, proteins required for HA organization in the cumulus extracellular matrix have been identified and the study of fertility in mice deprived of the corresponding genes have provided compelling evidence that this jelly-like coat is critical for fertilization. This review focuses on the advances in understanding the molecular interactions making the cumulus environment suitable for oocyte and sperm encounter. Most of the studies on the molecular characterization of the cumulus extracellular matrix have been performed in the mouse and we will refer essentially to findings obtained in this animal model.
Collapse
Affiliation(s)
- Antonietta Salustri
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, Histology and Embryology Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
242
|
Kitasaka H, Kawai T, Hoque SAM, Umehara T, Fujita Y, Shimada M. Inductions of granulosa cell luteinization and cumulus expansion are dependent on the fibronectin-integrin pathway during ovulation process in mice. PLoS One 2018; 13:e0192458. [PMID: 29420611 PMCID: PMC5805282 DOI: 10.1371/journal.pone.0192458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
It has been known that EGF-like factor secreted from LH-stimulated granuloma cells acts on granulosa cells and cumulus cells to induce ovulation process. Granulosa cells are changed the morphology with differentiating cell functions to produce progesterone. Cumulus cells are detached to make a space between the cells to accumulate hyaluronan rich matrix. LH also changes extracellular matrix (ECM) components including fibronectin in the follicular walls and granulosa cell layers. EGF like factor and fibronectin synergistically play important roles in numerous cell functions, especially cancer cell migration, estimating that fibronectin would impact on granulosa cells and cumulus cells. To clear this hypothesis, the localizations of fibronectin and its receptor integrin were observed by immunofluorescence technique. The functions were monitored by the detection of downstream signaling pathway, focal adhesion kinase (FAK). The pharmacological approach in both in vivo and in vitro were used for analyzing the physiological roles of FAK during ovulation process. The immunofluorescence staining revealed that fibronectin and integrin were observed in granulosa cells, cumulus cells and the space between cumulus cells and oocyte at 4 and 8 h after hCG injection. Concomitantly with the changes of fibronectin-integrin localization, FAK was phosphorylated in periovulatory follicles. The injection of FAK inhibitor suppressed not only ovulation but also luteinization of granulosa cells and cumulus expansion. In cultured-granulosa cells, fibronectin-integrin synergistically activated FAK with amphiregulin (AREG). Such cooperative stimulations induced a morphological change in granulosa cells, which resulted in the maximum level of progesterone production via the induction of Hsd3b. When cumulus-oocyte complexes (COCs) were cultured with AREG in the presence of serum, the maximum level of cumulus expansion was observed. The AREG-induced cumulus expansion was also suppressed by FAK inhibitor. Thus, it is concluded that fibronectin and AREG synergistically activate FAK not only in granulosa cells and cumulus cells to induce successful ovulation process.
Collapse
Affiliation(s)
- Hiroya Kitasaka
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Asada Ladies Clinic, Nagoya, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - S. A. Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Youko Fujita
- Women’s Clinic Oizumi-Gakuenn, Higashi-Oizumi, Tokyo, Japan
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
243
|
Bai L, Chang HM, Cheng JC, Chu G, Leung PCK, Yang G. Lithium chloride inhibits StAR and progesterone production through GSK-3β and ERK1/2 signaling pathways in human granulosa-lutein cells. Mol Cell Endocrinol 2018; 461:89-99. [PMID: 28867214 DOI: 10.1016/j.mce.2017.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023]
Abstract
Lithium chloride (LiCl) is a widely-used medication to treat neurological disorders that has undesirable side effects on the female reproductive system. It has been show that LiCl can inhibit ovarian folliculogenesis, promote follicle atresia and suppress steroid hormone production in rodents. However, the effects of LiCl on human ovarian steroidogenesis remain completely unknown. In this study, both primary and immortalized human granulosa-lutein (hGL) cells were used to investigate the effects of LiCl on progesterone production and its related enzyme expression as well as the underlying mechanisms. Our results showed that LiCl significantly down-regulated the steroidogenic acute regulatory protein (StAR) expression and subsequent progesterone production in hGL cells. Additionally, LiCl induced the phosphorylation of GSK-3β and ERK1/2 but not AKT or CREB. Knockdown of endogenous GSK-3β or inhibition of ERK1/2 partially reversed LiCl-induced down-regulation of StAR. Furthermore, by using dual inhibition approaches, the results showed that both GSK-3β and ERK1/2 signaling mediated the regulatory effect of LiCl on StAR expression. Our findings deepen our understanding of the pathological effects and the underlying molecular mechanisms of how lithium might affect the female reproductive system.
Collapse
Affiliation(s)
- Long Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
244
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
245
|
Kandaraki EA, Chatzigeorgiou A, Papageorgiou E, Piperi C, Adamopoulos C, Papavassiliou AG, Koutsilieris M, Diamanti-Kandarakis E. Advanced glycation end products interfere in luteinizing hormone and follicle stimulating hormone signaling in human granulosa KGN cells. Exp Biol Med (Maywood) 2018; 243:29-33. [PMID: 28914097 PMCID: PMC5788153 DOI: 10.1177/1535370217731288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/22/2017] [Indexed: 11/17/2022] Open
Abstract
Advanced glycation end products accumulate in the ovarian granulosa-cell layer of women with polycystic ovarian syndrome. Taken that the MAPK/ERK-pathway is a key regulator of oocyte maturation and function, consisting the main pathway used by the gonadotrophic hormones (luteinizing hormone, follicle stimulating hormone) to control ovulation, the present study aims to assess advanced glycation end products' interference into luteinizing hormone-and follicle stimulating hormone-signaling via the MAPK/ERK-pathway in the human granulosa KGN cell line. KGN cells were treated with luteinizing hormone or follicle stimulating hormone in the absence or presence of human glycated albumin. The specific activation of the main components of the MAPK/ERK1/2-pathway (namely c-Raf, MEK and ERK1/2) was assessed. Treatment of KGN cells with an MEK1/2-inhibitor or a blocking anti-RAGE-antibody was also performed to shed further light on the mechanism of the involvement of advanced glycation end products in luteinizing hormone and/or follicle stimulating hormone-related signaling pathways. Luteinizing hormone treatment increased p-ERK1/2 levels in human granulosa cells, while the combined treatment of luteinizing hormone and human glycated albumin provoked a decrease of p-ERK1/2 levels. A similar reducing effect was also observed for the upstream molecule phospho-cRaf upon combined treatment, while treatment with an MEK-inhibitor confirmed that the phenomenon is MAPK/ERK-pathway-dependent. Similarly, follicle stimulating hormone treatment increased p-ERK1/2 and p-MEK1/2 levels, while the combined treatment of follicle stimulating hormone and human glycated albumin downregulated their levels. Advanced glycation end products reduce the luteinizing hormone- and follicle stimulating hormone-induced ERK1/2 activation that is critical for granulosa cell mitogenesis and proliferation. Inappropriate activation of ERK1/2 in granulosa cells may block the granulosa cell differentiation pathway and/or impair follicular responses to hormones, potentially leading to ovulation failure that characterizes polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Eleni A Kandaraki
- Endocrinology Department, Hellenic Red Cross Hospital, Athens 11526, Greece
| | - Antonios Chatzigeorgiou
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Efstathia Papageorgiou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | | |
Collapse
|
246
|
Arias-Álvarez M, García-García RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Reprod Fertil Dev 2018; 30:1728-1738. [DOI: 10.1071/rd17525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.
Collapse
|
247
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
248
|
Sominsky L, Goularte JF, Andrews ZB, Spencer SJ. Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Front Endocrinol (Lausanne) 2018; 9:815. [PMID: 30697193 PMCID: PMC6340924 DOI: 10.3389/fendo.2018.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form of ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterize how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We combined the assessment of markers of reproductive maturity and the capacity to breed with measures of ovarian morphometry, as well as with ovarian RNA sequencing analysis. Our data show that while GOAT KO mice retain the capacity to breed in young adulthood, there is a diminished number of ovarian follicles (per mm3) in the juvenile and adult ovaries, due to a significant reduction in the number of small follicles, particularly the primordial follicles. We also show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of a potential for premature ovarian development. Collectively, these findings indicate that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Luba Sominsky
| | - Jeferson F. Goularte
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
249
|
Deady LD, Li W, Sun J. The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles. eLife 2017; 6:29887. [PMID: 29256860 PMCID: PMC5768419 DOI: 10.7554/elife.29887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. The release of an egg from the ovary of a female animal is a process known as ovulation. Animals as different as humans and fruit flies ovulate in largely similar ways. Yet the systems involved in controlling ovulation are still not well understood. An egg cell develops within a collection of cells that help the egg to form properly. Together, this unit is called a follicle. During ovulation, connections between the egg and the rest of the follicle break down and the egg is eventually ejected. Ovulation happens in response to a hormone signal from the brain. In humans, this hormone is called luteinizing hormone, whereas in flies it is called octopamine. Specialized protein molecules on the surface of the follicle cells receive these hormone signals, but can only cause ovulation in mature follicles. It was not clear what allows only mature follicles to ovulate. Deady et al. have now used the fruit fly Drosophila melanogaster to examine ovulation to identify how the process is controlled. The results showed that a protein called Hindsight primes follicle cells for ovulation. When a follicle reaches its final stage (called stage 14 in flies), the gene for Hindsight becomes active and produces the protein. This protein then activates other genes. One of the activated genes makes a protein that receives the hormone signal, while another makes a protein that breaks down follicle cells and allows the egg to be released. The findings of Deady et al. reveal that Hindsight is needed for ovulation in flies. Further experiments then showed that the gene for equivalent human protein can be transplanted into flies and can still prime follicles for ovulation. This indicates that the genes in humans and flies may perform the same tasks. Studying ovulation is an important part of understanding female fertility and could help scientists to understand more about human reproduction. These results may also lead to new contraceptives and improved approaches for treating infertility.
Collapse
Affiliation(s)
- Lylah D Deady
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Wei Li
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States.,Institute for Systems Genomics, University of Connecticut, Connecticut, United States
| |
Collapse
|
250
|
MAPK and ERK polymorphisms are associated with PCOS risk in Chinese women. Oncotarget 2017; 8:100261-100268. [PMID: 29245975 PMCID: PMC5725017 DOI: 10.18632/oncotarget.22153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022] Open
Abstract
In this case-control study, we analyzed the association between eight RegulomeDB-annotated single nucleotide polymorphisms (SNPs) in the MEK1, MEK2, ERK1 and ERK2 genes and polycystic ovarian syndrome (PCOS). Logistic regression analysis demonstrated that MEK1 rs12050732 (OR = 1.29 [95%CI: 1.06-1.58], P = 0.012), ERK2 rs2266966 (OR = 0.81 [95%CI: 0.67-0.99], P = 0.040) and ERK2 rs5999521 (OR = 0.66 [95%CI: 0.51-0.86], P = 0.002) were associated with PCOS risk without adjusting for age and body mass index. Moreover, PCOS risk increased with allele dosage when these three polymorphisms were combined (Ptrend = 0.001). These findings suggest that genetic variants in key MAPK and ERK genes contribute to PCOS risk in Chinese women.
Collapse
|