201
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
202
|
Fu L, Suflita M, Linhardt RJ. Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev 2016; 97:237-49. [PMID: 26555370 PMCID: PMC4753095 DOI: 10.1016/j.addr.2015.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
Abstract
Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates.
Collapse
Affiliation(s)
- Li Fu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA
| | - Matthew Suflita
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA
| | - Robert J Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 121806, USA
| |
Collapse
|
203
|
Yin FX, Wang FS, Sheng JZ. Uncovering the Catalytic Direction of Chondroitin AC Exolyase: FROM THE REDUCING END TOWARDS THE NON-REDUCING END. J Biol Chem 2016; 291:4399-406. [PMID: 26742844 DOI: 10.1074/jbc.c115.708396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans (GAGs) are polysaccharides that play vital functional roles in numerous biological processes, and compounds belonging to this class have been implicated in a wide variety of diseases. Chondroitin AC lyase (ChnAC) (EC 4.2.2.5) catalyzes the degradation of various GAGs, including chondroitin sulfate and hyaluronic acid, to give the corresponding disaccharides containing an Δ(4)-unsaturated uronic acid at their non-reducing terminus. ChnAC has been isolated from various bacteria and utilized as an enzymatic tool for study and evaluating the sequencing of GAGs. Despite its substrate specificity and the fact that its crystal structure has been determined to a high resolution, the direction in which ChnAC catalyzes the cleavage of oligosaccharides remain unclear. Herein, we have determined the structural cues of substrate depolymerization and the cleavage direction of ChnAC using model substrates and recombinant ChnAC protein. Several structurally defined oligosaccharides were synthesized using a chemoenzymatic approach and subsequently cleaved using ChnAC. The degradation products resulting from this process were determined by mass spectrometry. The results revealed that ChnAC cleaved the β1,4-glycosidic linkages between glucuronic acid and glucosamine units when these bonds were located on the reducing end of the oligosaccharide. In contrast, the presence of a GlcNAc-α-1,4-GlcA unit at the reducing end of the oligosaccharide prevented ChnAC from cleaving the GalNAc-β1,4-GlcA moiety located in the middle or at the non-reducing end of the chain. These interesting results therefore provide direct proof that ChnAC cleaves oligosaccharide substrates from their reducing end toward their non-reducing end. This conclusion will therefore enhance our collective understanding of the mode of action of ChnAC.
Collapse
Affiliation(s)
- Feng-Xin Yin
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and
| | - Feng-Shan Wang
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- From the Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China and National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|
204
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
205
|
Wang WX, Kusari S, Spiteller M. Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
206
|
Abstract
INTRODUCTION Anticoagulants have been prescribed to patients to prevent deep vein thrombosis or pulmonary embolism. However, because of several problems in anticoagulant therapy, much attention has been directed at developing an ideal anticoagulant, and numerous attempts have been made to develop new anticoagulant delivery systems in recent years. AREAS COVERED This review discusses the challenges associated with the recent development of anticoagulants and their delivery systems. Various delivery methods have been developed to improve the use of anticoagulants. Recent advances in anticoagulant delivery and antidote development are also discussed in the context of their current progression states. EXPERT OPINION There have been many different approaches to developing the delivery system of anticoagulants. One approach has been to expand the use of new oral agents and develop their antidotes. Reducing the size of heparins to use smaller heparins for delivery, and developing oral or topical heparins are also some of the approaches used. Various physical formulations or chemical modifications are other ways that have enhanced the therapeutic potential of anticoagulant agents. On the whole, recent advances have contributed to increasing the efficacy and safety of anticoagulant clinically and have benefited the field of anticoagulant delivery.
Collapse
Affiliation(s)
- Jooho Park
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Youngro Byun
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea.,b Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
207
|
Dai X, Liu W, Zhou Q, Cheng C, Yang C, Wang S, Zhang M, Tang P, Song H, Zhang D, Qin Y. Formal Synthesis of Anticoagulant Drug Fondaparinux Sodium. J Org Chem 2015; 81:162-84. [PMID: 26650028 DOI: 10.1021/acs.joc.5b02468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The practical formal synthesis of the anticoagulant drug fondaparinux sodium 1 was accomplished using an optimized modular synthetic strategy. The important pentasaccharide 2, a precursor for the synthesis of fondaparinux sodium, was synthesized on a 10 g scale in 14 collective steps with 3.5% overall yield from well-functionalized monosaccharide building blocks. The strategy involved a convergent [3 + 2] coupling approach, with excellent stereoselectivity in every step of glycosylation from the monosaccharide building blocks. Efficient routes to the syntheses of these fully functionalized building blocks were developed, minimizing oligosaccharide stage functional-group modifications. The syntheses of all building blocks avoided rigorous reaction conditions and the use of expensive reagents. In addition, common intermediates and a series of one-pot reactions were employed to enhance synthetic efficiency, improving the yield considerably. In the monosaccharide-to-oligosaccharide assembly reactions, cheaper activators (e.g., NIS/TfOH, TESOTf, and TfOH) were used to facilitate highly efficient glycosylations. Furthermore, crystallization of several monosaccharide and oligosaccharide intermediates significantly simplified purification procedures, which would be greatly beneficial to the scalable synthesis of fondaparinux sodium.
Collapse
Affiliation(s)
- Xiang Dai
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Wentao Liu
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Qilong Zhou
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Chunwei Cheng
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Chao Yang
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Shuqing Wang
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Min Zhang
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Pei Tang
- Innovative Drug Research Centre, Chongqing University , Chongqing, 401331, China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu, 610041, China
| |
Collapse
|
208
|
Dulaney S, Xu Y, Wang P, Tiruchinapally G, Wang Z, Kathawa J, El-Dakdouki MH, Yang B, Liu J, Huang X. Divergent Synthesis of Heparan Sulfate Oligosaccharides. J Org Chem 2015; 80:12265-79. [PMID: 26574650 PMCID: PMC4685427 DOI: 10.1021/acs.joc.5b02172] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/01/2022]
Abstract
Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis.
Collapse
Affiliation(s)
- Steven
B. Dulaney
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Yongmei Xu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gopinath Tiruchinapally
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhen Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jolian Kathawa
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Bo Yang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jian Liu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
209
|
Su G, Li L, Huang H, Zhong W, Yu P, Zhang F, Linhardt RJ. Production of a low molecular weight heparin production using recombinant glycuronidase. Carbohydr Polym 2015; 134:151-7. [DOI: 10.1016/j.carbpol.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
210
|
Bao F, Yan H, Sun H, Yang P, Liu G, Zhou X. Hydrolysis of by-product adenosine diphosphate from 3'-phosphoadenosine-5'-phosphosulfate preparation using Nudix hydrolase NudJ. Appl Microbiol Biotechnol 2015; 99:10771-8. [PMID: 26293337 DOI: 10.1007/s00253-015-6911-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is the obligate cosubstrate and source of the sulfonate group in the chemoenzymatic synthesis of heparin, a clinically used anticoagulant drug. Previously, we have developed a method to synthesize PAPS with Escherichia coli crude extracts, which include three overexpressed enzymes and a fourth unidentified protein. The unknown protein degrades adenosine diphosphate (ADP), the by-product of PAPS synthesis reaction. To further understand and control the process of in vitro enzymatic PAPS synthesis, we decide to identify the fourth protein and develop a defined method to synthesize PAPS using purified enzymes. Here, we show that the purified Nudix hydrolase NudJ degrades ADP at high efficiency and serves as the fourth enzyme in PAPS synthesis. Under the defined condition of PAPS synthesis, all of the 10-mM ADP is hydrolyzed to form adenosine monophosphate (AMP) in a 15-min reaction. ADP is a better substrate for NudJ than adenosine triphosphate (ATP). Most importantly, the purified NudJ does not cleave the product PAPS. The removal of ADP makes the PAPS peak more separable from other components in the chromatographic purification process. This developed enzymatic approach of PAPS production will contribute to the chemoenzymatic synthesis of heparin.
Collapse
Affiliation(s)
- Feifei Bao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China
| | - Huihui Yan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China
| | - Hanju Sun
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China
| | - Peizhou Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China
| | - Guoqing Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
- Wanjiang Institute of Poultry Technology, Hefei University of Technology, Xuancheng Campus, Xuancheng, 242000, China.
| |
Collapse
|
211
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
212
|
Miller GJ, Broberg KR, Rudd C, Helliwell MR, Jayson GC, Gardiner JM. A latent reactive handle for functionalising heparin-like and LMWH deca- and dodecasaccharides. Org Biomol Chem 2015; 13:11208-19. [PMID: 26381107 PMCID: PMC4672752 DOI: 10.1039/c5ob01706h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disaccharide units containing a latent aldehyde surrogate at O4 provide late-stage access to terminal aldehyde LMWH and HS deca and dodecasaccharides.
d-Glucosamine derivatives bearing latent O4 functionality provide modified H/HS-type disaccharide donors for a final stage capping approach enabling introduction of conjugation-suitable, non-reducing terminal functionality to biologically important glycosaminoglycan oligosaccharides. Application to the synthesis of the first O4-terminus modified synthetic LMWH decasaccharide and an HS-like dodecasaccharide is reported.
Collapse
Affiliation(s)
- Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry, 131 Princess Street, University of Manchester M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
213
|
Suflita M, Fu L, He W, Koffas M, Linhardt RJ. Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl Microbiol Biotechnol 2015; 99:7465-79. [PMID: 26219501 PMCID: PMC4546523 DOI: 10.1007/s00253-015-6821-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 01/14/2023]
Abstract
Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes suggest a need for new approaches for their production. Over the past decade, there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates.
Collapse
Affiliation(s)
- Matthew Suflita
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Li Fu
- Department of Chemistry and Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Wenqin He
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Mattheos Koffas
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| | - Robert J. Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemistry and Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 121806
| |
Collapse
|
214
|
Mancini RS, McClary CA, Anthonipillai S, Taylor MS. Organoboron-Promoted Regioselective Glycosylations in the Synthesis of a Saponin-Derived Pentasaccharide from Spergularia ramosa. J Org Chem 2015; 80:8501-10. [PMID: 26292956 DOI: 10.1021/acs.joc.5b00950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Organoboron-mediated regioselective glycosylations were employed as key steps in the total synthesis of a branched pentasaccharide from a saponin natural product. The ability to use organoboron activation to differentiate OH groups in an unprotected glycosyl acceptor, followed by substrate-controlled reactions of the obtained disaccharide, enabled a streamlining of the synthesis relative to a protective group-based approach. This study revealed a matching/mismatching effect of the relative configuration of donor and acceptor on the efficiency of a regioselective glycosylation reaction, a problem that was solved through the development of a novel boronic acid-amine copromoter system for glycosyl acceptor activation.
Collapse
Affiliation(s)
- Ross S Mancini
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Corey A McClary
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Stefi Anthonipillai
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
215
|
Lam DCL, Chan SCH, Mak JCW, Freeman C, Ip MSM, Shum DKY. S-maltoheptaose targets syndecan-bound effectors to reduce smoking-related neutrophilic inflammation. Sci Rep 2015; 5:12945. [PMID: 26256047 PMCID: PMC4530444 DOI: 10.1038/srep12945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/08/2015] [Indexed: 01/13/2023] Open
Abstract
Cigarette smoke induces injury and neutrophilic inflammation in the airways of smokers. The stability and activity of inflammatory effectors, IL8 and neutrophil elastase (NE), can be prolonged by binding to airway heparan sulfate (HS)/syndecan-1, posing risk for developing chronic obstructive pulmonary disease(COPD). We hypothesize that antagonizing HS/syndecan-1 binding of the inflammatory effectors could reduce smoking-related neutrophil-mediated airway inflammation. Analysis of bronchoalveolar lavage fluid(BALF) of COPD patients found both total and unopposed NE levels to be significantly higher among smokers with COPD than non-COPD subjects. Similar NE burden was observed in smoke-exposed rats compared to sham air controls. We chose sulfated-maltoheptaose(SM), a heparin-mimetic, to antagonize HS/sydecan-1 binding of the inflammatory mediators in airway fluids and lung tissues of the smoke-exposed rat model. Airway treatment with SM resulted in displacement of CINC-1 and NE from complexation with bronchio-epithelial HS/syndecan-1, dissipating the chemokine gradient for neutrophil flux across to the bronchial lumen. Following SM displacement of NE from shed HS/syndecan-1 in bronchial fluids, NE became accessible to inhibition by α1-antitrypsin endogenous in test samples. The antagonistic actions of SM against syndecan-1 binding of NE and CINC-1 in smoke-exposed airways suggest new therapeutic opportunities for modulating airway inflammation in smokers with SM delivery.
Collapse
Affiliation(s)
- David C L Lam
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Stanley C H Chan
- 1] Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China. [2] Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Judith C W Mak
- 1] Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China. [2] Department of Pharmacology &Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Craig Freeman
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Mary S M Ip
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Daisy K Y Shum
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| |
Collapse
|
216
|
Cao X, Lv Q, Li D, Ye H, Yan X, Yang X, Gan H, Zhao W, Jin L, Wang P, Shen J. Direct C5-Isomerization Approach tol-Iduronic Acid Derivatives. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xuefeng Cao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Qingqing Lv
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hui Ye
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xu Yan
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Xiande Yang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Hao Gan
- Chenxin Homes; Huaihe Road Tianjin 300410 PR China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Lan Jin
- National Glycoengineering Research Center; Shandong University; No.44 West Wenhua Road, Jinan Shandong 250012 PR China) address
| | - Peng Wang
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| | - Jie Shen
- State Key Laboratory of Medicinal Chemical Biology and; College of Pharmacy; Tianjin 300071 PR China
| |
Collapse
|
217
|
Hansen SU, Miller GJ, Cliff MJ, Jayson GC, Gardiner JM. Making the longest sugars: a chemical synthesis of heparin-related [4] n oligosaccharides from 16-mer to 40-mer. Chem Sci 2015; 6:6158-6164. [PMID: 30090231 PMCID: PMC6054106 DOI: 10.1039/c5sc02091c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
The chemical synthesis of long oligosaccharides remains a major challenge. In particular, the synthesis of glycosaminoglycan (GAG) oligosaccharides belonging to the heparin and heparan sulfate (H/HS) family has been a high profile target, particularly with respect to the longer heparanome. Herein we describe a synthesis of the longest heparin-related oligosaccharide to date and concurrently provide an entry to the longest synthetic oligosaccharides of any type yet reported. Specifically, the iterative construction of a series of [4] n -mer heparin-backbone oligosaccharides ranging from 16-mer through to the 40-mer in length is described. This demonstrates for the first time the viability of generating long sequence heparanoids by chemical synthesis, via practical solution-phase synthesis. Pure-Shift HSQC NMR provides a dramatic improvement in anomeric signal resolution, allowing full resolution of all 12 anomeric protons and extrapolation to support anomeric integrity of the longer species. A chemically pure 6-O-desfulfated GlcNS-IdoAS icosasaccharide (20-mer) represents the longest pure synthetic heparin-like oligosaccharide.
Collapse
Affiliation(s)
- Steen U Hansen
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Faculty of Life Sciences , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK
| | - Gordon C Jayson
- Institute or Cancer Studies , University of Manchester , Manchester , UK
| | - John M Gardiner
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| |
Collapse
|
218
|
Abstract
Heparin-antithrombin interaction is one of the most documented examples of heparin/protein complexes. The specific heparin sequence responsible for the binding corresponds to a pentasaccharide sequence with an internal 3-O-sulfated glucosamine residue. Moreover, the position of the pentasaccharide along the chain as well as the structure of the neighbor units affects the affinity to antithrombin. The development of separation and purification techniques, in conjunction with physico-chemical approaches (mostly NMR), allowed to characterize several structural variants of antithrombin-binding oligosaccharides, both in the free state and in complex with antithrombin. The article provides an overview of the studies that lead to the elucidation of the mechanism of interaction as well as acquiring new knowledge in heparin biosynthesis.
Collapse
|
219
|
Zhao L, Wu M, Xiao C, Yang L, Zhou L, Gao N, Li Z, Chen J, Chen J, Liu J, Qin H, Zhao J. Discovery of an intrinsic tenase complex inhibitor: Pure nonasaccharide from fucosylated glycosaminoglycan. Proc Natl Acad Sci U S A 2015; 112:8284-9. [PMID: 26100870 PMCID: PMC4500213 DOI: 10.1073/pnas.1504229112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective inhibition of the intrinsic coagulation pathway is a promising strategy for developing safer anticoagulants that do not cause serious bleeding. Intrinsic tenase, the final and rate-limiting enzyme complex in the intrinsic coagulation pathway, is an attractive but less explored target for anticoagulants due to the lack of a pure selective inhibitor. Fucosylated glycosaminoglycan (FG), which has a distinct but complicated and ill-defined structure, is a potent natural anticoagulant with nonselective and adverse activities. Herein we present a range of oligosaccharides prepared via the deacetylation-deaminative cleavage of FG. Analysis of these purified oligosaccharides reveals the precise structure of FG. Among these fragments, nonasaccharide is the minimum fragment that retains the potent selective inhibition of the intrinsic tenase while avoiding the adverse effects of native FG. In vivo, the nonasaccharide shows 97% inhibition of venous thrombus at a dose of 10 mg/kg in rats and has no obvious bleeding risk. This nonasaccharide may therefore serve as a novel promising anticoagulant.
Collapse
Affiliation(s)
- Longyan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hongbo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
| |
Collapse
|
220
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
221
|
Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. J Biol Chem 2015; 290:20427-37. [PMID: 26109066 DOI: 10.1074/jbc.m115.664409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.
Collapse
Affiliation(s)
- Wenfang Dou
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, the Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China, and
| | - Yongmei Xu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vijayakanth Pagadala
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lars C Pedersen
- the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jian Liu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
222
|
Nguyen TH, Greinacher A, Delcea M. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds. NANOSCALE 2015; 7:10130-9. [PMID: 25981976 DOI: 10.1039/c5nr02132d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed bond dynamics of the PF4/heparin complexes have not been clearly understood. In this study, single molecule force spectroscopy (SMFS) is utilized to characterize the interaction of PF4 with heparins of defined length (5-, 6-, 8-, 12-, and 16-mers). Analysis of the force-distance curves shows that PF4/heparin binding strength rises with increasing heparin length. In addition, two binding pathways in the PF4/short heparins (≤8-mers) and three binding pathways in the PF4/long heparins (≥8-mers) are identified. We provide a model for the PF4/heparin complexes in which short heparins bind to one PF4 tetramer, while long heparins bind to two PF4 tetramers. We propose that the interaction between long heparins and PF4s is not only due to charge differences as generally assumed, but also due to hydrophobic interaction between two PF4s which are brought close to each other by long heparin. This complicated interaction induces PF4/heparin complexes more stable than other ligand-receptor interactions. Our results also reveal that the boundary between antigenic and non-antigenic heparins is between 8- and 12-mers. These observations are particularly important to understand processes in which PF4-heparin interactions are involved and to develop new heparin-derived drugs.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany.
| | | | | |
Collapse
|
223
|
Quantification of aldehyde terminated heparin by SEC-MALLS-UV for the surface functionalization of polycaprolactone biomaterials. Colloids Surf B Biointerfaces 2015; 132:253-63. [PMID: 26052108 DOI: 10.1016/j.colsurfb.2015.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/16/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
A straight forward strategy of heparin surface grafting employs a terminal reactive-aldehyde group introduced through nitrous acid depolymerization. An advanced method that allows simultaneously monitoring of both heparin molar mass and monomer/aldehyde ratio by size exclusion chromatography, multi-angle laser light scattering and UV-absorbance (SEC-MALLS-UV) has been developed to improve upon heparin surface grafting. Advancements over older methods allow quantitative characterization by direct (aldehyde absorbance) and indirect (Schiff-based absorbance) evaluation of terminal functional aldehydes. The indirect quantitation of functional aldehydes through labeling with aniline (and the formation of a Schiff-base) allows independent quantitation of both polymer mass and terminal functional groups with the applicable UV mass extinction coefficients determined. The protocol was subsequently used to synthesize an optimized heparin-aldehyde that had minimal polydispersity (PDI<2) and high reaction yields (yield >60% by mass). The 8 kDa weight averaged molar mass heparin-aldehyde was then grafted on polycaprolactone (PCL), a common implant material. This optimized heparin-aldehyde retained its antithrombin activity, assessed in freshly drawn blood or surface immobilized on PCL films. Anticoagulant activity was equal to or better than the 24 kDa unmodified heparin it was fragmented from.
Collapse
|
224
|
Wu B, Wei N, Thon V, Wei M, Yu Z, Xu Y, Chen X, Liu J, Wang PG, Li T. Facile chemoenzymatic synthesis of biotinylated heparosan hexasaccharide. Org Biomol Chem 2015; 13:5098-101. [PMID: 25858766 PMCID: PMC4472006 DOI: 10.1039/c5ob00462d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A biotinylated heparosan hexasaccharide was synthesized using a one-pot multi-enzyme strategy, in situ activation and transfer of N-trifluoroacetylglucosamine (GlcNTFA) to a heparin backbone significantly improved the synthetic efficiency. The biotinylated hexasaccharide could serve as a flexible core to diversify its conversion into heparan sulfate isoforms with potential biological applications and therapeutics.
Collapse
Affiliation(s)
- Baolin Wu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Na Wei
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Vireak Thon
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Mohui Wei
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zaikuan Yu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peng George Wang
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Tiehai Li
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
225
|
Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA. Carbohydr Res 2015; 411:1-5. [PMID: 25942062 DOI: 10.1016/j.carres.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/03/2015] [Indexed: 01/11/2023]
Abstract
Uridine 5'-diphosphate-glucuronic acid (UDP-GlcA) and UDP-galacturonic acid (UDP-GalA), the unique carboxylic acid-formed sugar nucleotides, are key precursors involved in the biosynthesis of numerous cell components. Limited availability of those components has been hindering the development of efficient ways towards facile synthesis of bioactive glycans such as glycosaminoglycans. In current study, we biochemically characterized two UDP-sugar pyrophosphorylases from Arabidopsis thaliana (AtUSP) and Bifidobacterium infantis ATCC15697 (BiUSP), and compared their activities towards a panel of sugar-1-phosphates and derivatives. Both enzymes showed significant pyrophosphorylation activities towards GlcA-1-phosphate, and AtUSP also exhibited comparable activity towards GalA-1-phosphate. By combining with monosaccharide-1-phosphate kinases, we have developed an efficient and facile one-pot three-enzyme approach to quickly obtain hundreds milligrams of UDP-GlcA and UDP-GalA.
Collapse
|
226
|
Modular synthesis of heparin-related tetra-, hexa- and octasaccharides with differential o-6 protections: programming for regiodefined 6-o-modifications. Molecules 2015; 20:6167-6180. [PMID: 25859776 PMCID: PMC4421873 DOI: 10.3390/molecules20046167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/19/2023] Open
Abstract
Heparin and heparan sulphate (H/HS) are important members of the glycosaminoglycan family of sugars that regulate a substantial number of biological processes. Such biological promiscuity is underpinned by hetereogeneity in their molecular structure. The degree of O-sulfation, particularly at the 6-position of constituent D-GlcN units, is believed to play a role in modulating the effects of such sequences. Synthetic chemistry is essential to be able to extend the diversity of HS-like fragments with defined molecular structure, and particularly to deconvolute the biological significance of modifications at O6. Here we report a synthetic approach to a small matrix of protected heparin-type oligosaccharides, containing orthogonal D-GlcN O-6 protecting groups at programmed positions along the chain, facilitating access towards programmed modifications at specific sites, relevant to sulfation or future mimetics.
Collapse
|
227
|
Hansen SU, Dalton CE, Baráth M, Kwan G, Raftery J, Jayson GC, Miller GJ, Gardiner JM. Synthesis of l-Iduronic Acid Derivatives via [3.2.1] and [2.2.2] l-Iduronic Lactones from Bulk Glucose-Derived Cyanohydrin Hydrolysis: A Reversible Conformationally Switched Superdisarmed/Rearmed Lactone Route to Heparin Disaccharides. J Org Chem 2015; 80:3777-89. [DOI: 10.1021/jo502776f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Steen U. Hansen
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Charlotte E. Dalton
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Marek Baráth
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Glenn Kwan
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - James Raftery
- The
School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Gordon C. Jayson
- Institute
of Cancer Sciences, Christie Hospital and University of Manchester, Wilmslow Road, Manchester M20 4BX, U.K
| | - Gavin J. Miller
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
- The
School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - John M. Gardiner
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
228
|
Farrugia BL, Lord MS, Melrose J, Whitelock JM. Can we produce heparin/heparan sulfate biomimetics using "mother-nature" as the gold standard? Molecules 2015; 20:4254-76. [PMID: 25751786 PMCID: PMC6272578 DOI: 10.3390/molecules20034254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are heterogeneous in nature, not only due to differing disaccharide combinations, but also their sulfate modifications. HS is well known for its interactions with various growth factors and cytokines; and heparin for its clinical use as an anticoagulant. Due to their potential use in tissue regeneration; and the recent adverse events due to contamination of heparin; there is an increased surge to produce these GAGs on a commercial scale. The production of HS from natural sources is limited so strategies are being explored to be biomimetically produced via chemical; chemoenzymatic synthesis methods and through the recombinant expression of proteoglycans. This review details the most recent advances in the field of HS/heparin synthesis for the production of low molecular weight heparin (LMWH) and as a tool further our understanding of the interactions that occur between GAGs and growth factors and cytokines involved in tissue development and repair.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- The Raymond Purves Research Labs, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, The Royal North Shore Hospital of Sydney, St. Leonards, NSW 2065, Australia.
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
229
|
Nie C, Ma L, Cheng C, Deng J, Zhao C. Nanofibrous heparin and heparin-mimicking multilayers as highly effective endothelialization and antithrombogenic coatings. Biomacromolecules 2015; 16:992-1001. [PMID: 25668587 DOI: 10.1021/bm501882b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combining the advantages of the fibrous nanostructure of carbon nanotubes (CNTs) and the bioactivities of heparin/heparin-mimicking polyanions, functional nanofibrous heparin or heparin-mimicking multilayers were constructed on PVDF membrane with highly promoted endothelialization and antithrombogenic activities. Oxidized CNT (oCNT) was first functionalized with water-soluble chitosan (polycation), then enwrapped with heparin or a typical sulfonated heparin-mimicking polymers (poly(sodium 4-styrenesulfonate-co-sodium methacrylate)) to construct the multilayers. Then, the surface-deposited multilayers were constructed via electrostatic layer-by-layer assembly of the functionalized oCNTs. The scanning electron microscope and atom force microscope images confirmed that the coated multilayers exhibited nanofibrous and porous structure. The live/dead cell staining and cell viability assay results indicated that the coated nanofibrous multilayers had excellent compatibility with endothelial cells. The cell morphology observation further confirmed the promotion ability of surface endothelialization due to the coated heparin/heparin-mimicking multilayers. Further systematical evaluation on blood compatibility revealed that the surface heparin/heparin-mimicking multilayer-coated membranes also had significantly improved blood compatibility including restrained platelet adhesion and activation, prolonged blood clotting times, and inhibited activation of coagulation and complement factors. In summary, the proposed nanofibrous multilayers integrated endothelialization and antithrombogenic properties; meanwhile, the heparin-mimicking coating validated comparable performances as heparin coating. Herein, it is expected that the surface coating of nanofibrous multilayers, especially the facilely constructed heparin-mimicking coating, may have great application potential in biomedical fields.
Collapse
Affiliation(s)
- Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | | | | | | | | |
Collapse
|
230
|
Rowlands D, Sugahara K, Kwok JCF. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules 2015; 20:3527-48. [PMID: 25706756 PMCID: PMC6272379 DOI: 10.3390/molecules20033527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
With recent advances in the construction of synthetic glycans, selective targeting of the extracellular matrix (ECM) as a potential treatment for a wide range of diseases has become increasingly popular. The use of compounds that mimic the structure or bioactive function of carbohydrate structures has been termed glycomimetics. These compounds are mostly synthetic glycans or glycan-binding constructs which manipulate cellular interactions. Glycosaminoglycans (GAGs) are major components of the ECM and exist as a diverse array of differentially sulphated disaccharide units. In the central nervous system (CNS), they are expressed by both neurons and glia and are crucial for brain development and brain homeostasis. The inherent diversity of GAGs make them an essential biological tool for regulating a complex range of cellular processes such as plasticity, cell interactions and inflammation. They are also involved in the pathologies of various neurological disorders, such as glial scar formation and psychiatric illnesses. It is this diversity of functions and potential for selective interventions which makes GAGs a tempting target. In this review, we shall describe the molecular make-up of GAGs and their incorporation into the ECM of the CNS. We shall highlight the different glycomimetic strategies that are currently being used in the nervous system. Finally, we shall discuss some possible targets in neurological disorders that may be addressed using glycomimetics.
Collapse
Affiliation(s)
- Dáire Rowlands
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| |
Collapse
|
231
|
Qin Y, Ke J, Gu X, Fang J, Wang W, Cong Q, Li J, Tan J, Brunzelle JS, Zhang C, Jiang Y, Melcher K, Li JP, Xu HE, Ding K. Structural and functional study of D-glucuronyl C5-epimerase. J Biol Chem 2015; 290:4620-4630. [PMID: 25568314 DOI: 10.1074/jbc.m114.602201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a glycosaminoglycan present on the cell surface and in the extracellular matrix, which interacts with diverse signal molecules and is essential for many physiological processes including embryonic development, cell growth, inflammation, and blood coagulation. D-glucuronyl C5-epimerase (Glce) is a crucial enzyme in HS synthesis, converting D-glucuronic acid to L-iduronic acid to increase HS flexibility. This modification of HS is important for protein ligand recognition. We have determined the crystal structures of Glce in apo-form (unliganded) and in complex with heparin hexasaccharide (product of Glce following O-sulfation), both in a stable dimer conformation. A Glce dimer contains two catalytic sites, each at a positively charged cleft in C-terminal α-helical domains binding one negatively charged hexasaccharide. Based on the structural and mutagenesis studies, three tyrosine residues, Tyr(468), Tyr(528), and Tyr(546), in the active site were found to be crucial for the enzymatic activity. The complex structure also reveals the mechanism of product inhibition (i.e. 2-O- and 6-O-sulfation of HS keeps the C5 carbon of L-iduronic acid away from the active-site tyrosine residues). Our structural and functional data advance understanding of the key modification in HS biosynthesis.
Collapse
Affiliation(s)
- Yi Qin
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China,; the VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Ke
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503,.
| | - Xin Gu
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Jianping Fang
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China,; the Department of Medical Biochemistry and Microbiology, University of Uppsala, Biomedical Center, SE-751 23 Uppsala, Sweden, and
| | - Wucheng Wang
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China
| | - Qifei Cong
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China
| | - Jie Li
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China
| | - Jinzhi Tan
- the VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Joseph S Brunzelle
- the Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439
| | - Chenghai Zhang
- the VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- the VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Jin-Ping Li
- the Department of Medical Biochemistry and Microbiology, University of Uppsala, Biomedical Center, SE-751 23 Uppsala, Sweden, and
| | - H Eric Xu
- the VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503,.
| | - Kan Ding
- From the Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Pudong, Shanghai 201203, China,.
| |
Collapse
|
232
|
Yang X, Du H, Liu J, Zhai G. Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules 2015; 16:423-36. [DOI: 10.1021/bm501532e] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoye Yang
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Hongliang Du
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jiyong Liu
- Department
of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guangxi Zhai
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| |
Collapse
|
233
|
Joice A, Raman K, Mencio C, Quintero MV, Brown S, Nguyen TKN, Kuberan B. Enzymatic synthesis of heparan sulfate and heparin. Methods Mol Biol 2015; 1229:11-19. [PMID: 25325939 DOI: 10.1007/978-1-4939-1714-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heparan sulfate (HS) polysaccharide chains have been shown to orchestrate distinct biological functions in several systems. Study of HS structure-function relations is, however, hampered due to the lack of availability of HS in sufficient quantities as well as the molecular heterogeneity of naturally occurring HS. Enzymatic synthesis of HS is an attractive alternative to the use of naturally occurring HS, as it reduces molecular heterogeneity, or a long and daunting chemical synthesis of HS. Heparosan, produced by E. coli K5 bacteria, has a structure similar to the unmodified HS backbone structure and can be used as a precursor in the enzymatic synthesis of HS-like polysaccharides. Here, we describe an enzymatic approach to synthesize several specifically sulfated HS polysaccharides for biological studies using the heparosan backbone and a combination of recombinant biosynthetic enzymes such as C5-epimerase and sulfotransferases.
Collapse
Affiliation(s)
- April Joice
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Skaggs #307, Salt Lake City, UT, 84112, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
He C, Shi ZQ, Ma L, Cheng C, Nie CX, Zhou M, Zhao CS. Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. J Mater Chem B 2015; 3:592-602. [DOI: 10.1039/c4tb01806k] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired from the chemical and biological benefits of heparinized hydrogels, this study presented the substituted hemocompatible design of graphene oxide based heparin-mimicking polymeric hydrogels for versatile biomedical applications.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
235
|
Tanaka H. Recent Approaches to the Chemical Synthesis of Sugar Nucleoside Diphosphates. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1423.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hidenori Tanaka
- Oceanography Section, Science Research Center, Kochi University
| |
Collapse
|
236
|
Abstract
Heparan sulfate is a polysaccharide that plays essential physiological functions in the animal kingdom. Heparin, a highly sulfated form of heparan sulfate, is a widely prescribed anticoagulant drug worldwide. The heparan sulfate and heparin isolated from natural sources are highly heterogeneous mixtures differing in their polysaccharide chain lengths and sulfation patterns. The access to structurally defined heparan sulfate and heparin is critical to probe the contribution of specific sulfated saccharide structures to the biological functions as well as for the development of the next generation of heparin-based anticoagulant drugs. The synthesis of heparan sulfate and heparin, using a purely chemical approach, has proven extremely difficult, especially for targets larger than octasaccharides having a high degree of site-specific sulfation. A new chemoenzymatic method has emerged as an effective alternative approach. This method uses recombinant heparan sulfate biosynthetic enzymes combined with unnatural uridine diphosphate-monosaccharide donors. Recent examples demonstrate the successful synthesis of ultra-low molecular weight heparin, low-molecular weight heparin and bioengineered heparin with unprecedented efficiency. The new method provides an opportunity to develop improved heparin-based therapeutics.
Collapse
Affiliation(s)
- Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
237
|
Bhaskar U, Li G, Fu L, Onishi A, Suflita M, Dordick JS, Linhardt RJ. Combinatorial one-pot chemoenzymatic synthesis of heparin. Carbohydr Polym 2014; 122:399-407. [PMID: 25817684 DOI: 10.1016/j.carbpol.2014.10.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
Contamination in heparin batches during early 2008 has resulted in a significant effort to develop a safer bioengineered heparin using bacterial capsular polysaccharide heparosan and recombinant enzymes derived from the heparin/heparan sulfate biosynthetic pathway. This requires controlled chemical N-deacetylation/N-sulfonation of heparosan followed by epimerization of most of its glucuronic acid residues to iduronic acid and O-sulfation of the C2 position of iduronic acid and the C3 and C6 positions of the glucosamine residues. A combinatorial study of multi-enzyme, one-pot, in vitro biocatalytic synthesis, carried out in tandem with sensitive analytical techniques, reveals controlled structural changes leading to heparin products similar to animal-derived heparin active pharmaceutical ingredients. Liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy analysis confirms an abundance of heparin's characteristic trisulfated disaccharide, as well as 3-O-sulfo containing residues critical for heparin binding to antithrombin III and its anticoagulant activity. The bioengineered heparins prepared using this simplified one-pot chemoenzymatic synthesis also show in vitro anticoagulant activity.
Collapse
Affiliation(s)
- Ujjwal Bhaskar
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Guoyun Li
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Li Fu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Akihiro Onishi
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mathew Suflita
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
238
|
Huang Y, Shaw MA, Mullins ES, Kirley TL, Ayres N. Synthesis and anticoagulant activity of polyureas containing sulfated carbohydrates. Biomacromolecules 2014; 15:4455-66. [PMID: 25329742 PMCID: PMC4261991 DOI: 10.1021/bm501245v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Polyurea-based synthetic glycopolymers
containing sulfated glucose,
mannose, glucosamine, or lactose as pendant groups have been synthesized
by step-growth polymerization of hexamethylene diisocyanate and corresponding
secondary diamines. The obtained polymers were characterized by gel
permeation chromatography, nuclear magnetic resonance spectroscopy,
and Fourier transform infrared spectroscopy. The nonsulfated polymers
showed similar results to the commercially available biomaterial polyurethane
TECOFLEX in a platelet adhesion assay. The average degree of sulfation
after reaction with SO3 was calculated from elemental analysis
and found to be between three and four −OSO3 groups
per saccharide. The blood-compatibility of the synthetic polymers
was measured using activated partial thromboplastin time, prothrombin
time, thrombin time, anti-IIa, and anti-Xa assays. Activated partial
thromboplastin time, prothrombin time, and thrombin time results indicated
that the mannose and lactose based polymers had the highest anticoagulant
activities among all the sulfated polymers. The mechanism of action
of the polymers appears to be mediated via an anti-IIa pathway rather
than an anti-Xa pathway.
Collapse
Affiliation(s)
- Yongshun Huang
- Department of Chemistry and ‡Materials Science and Engineering Program, The University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | | | | | | | |
Collapse
|
239
|
Zhao S, Wang Z, Chen J, Chen J. Preparation of heparan sulfate-like polysaccharide and application in stem cell chondrogenic differentiation. Carbohydr Res 2014; 401:32-8. [PMID: 25464079 DOI: 10.1016/j.carres.2014.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
Abstract
Heparan sulfate is a component of the extracellular matrix (ECM) that modulates individual development and cell growth through its interaction with growth factors. Structurally, heparan sulfate consists of repeating linear sulfated poly-anionic disaccharide structures. The K5 polysaccharide has the same structure as heparosan, and is the capsular polysaccharide of Escherichia coli K5 strain which serves as a precursor in heparin and heparan sulfate biosynthesis. Here, we prepared sulfated K5 polysaccharides that are structurally similar to heparan sulfate and investigated their biocompatibility and bioactivity in stem cell chondrogenic differentiation. Briefly, sulfation groups were added to -NH- and/or -OH of a precursor heparosan and the modified heparosan was qualitatively analyzed by FT-IR, (1)H NMR, and (13)C NMR techniques. Cell viability was not significantly affected by the sulfated K5 capsular polysaccharide. Relative mRNA expression of the chondrogenic differentiation marker COL2A1 was significantly upregulated in cells treated with the N,O-sulfated K5 polysaccharide confirming that the sulfated K5 capsular polysaccharide is able to stimulate chondrogenic differentiation. The main sulfation pattern for chondrogenic activity is N,6-O sulfation and the activity was not proportional to the sulfation level. This type of mimic was prepared in nearly a gram scale, supporting further structural study and 3 dimension stem cell culture. Together, the results of this study show that sulfated K5 capsular polysaccharides are able to stimulate chondrogenic differentiation without affecting cell viability.
Collapse
Affiliation(s)
- Shancheng Zhao
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Zhen Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Jingxiao Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
240
|
Binding of anti–platelet factor 4/heparin antibodies depends on the thermodynamics of conformational changes in platelet factor 4. Blood 2014; 124:2442-9. [DOI: 10.1182/blood-2014-03-559518] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Besides clustering, platelet factor 4/polyanion complexes require input of energy to become immunogenic. Minute differences in chain length determine the induction of antigenicity of PF4.
Collapse
|
241
|
Arafuka S, Koshiba N, Takahashi D, Toshima K. Systematic synthesis of sulfated oligofucosides and their effect on breast cancer MCF-7 cells. Chem Commun (Camb) 2014; 50:9831-4. [PMID: 24946717 DOI: 10.1039/c4cc03544e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sulfated tetrafucosides with different sulfation patterns, and a non-sulfated tetrafucoside , were designed and systematically synthesized from the common key intermediate . In addition, their anti-proliferative activities and apoptosis-inducing activities against human breast cancer MCF-7 cells were evaluated. Our results demonstrated that the sulfated tetrafucosides reduced the number of MCF-7 cells in a dose-dependent manner, and of these, 3,4-O-sulfated type showed the highest anti-proliferative activity, comparable to the activity of fucoidan isolated from Fucus vesiculosus. Furthermore, it was revealed that both and exhibited apoptosis-inducing activities through activation of caspase-8 on MCF-7 cells.
Collapse
Affiliation(s)
- Shinsuke Arafuka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | |
Collapse
|
242
|
Driguez PA, Potier P, Trouilleux P. Synthetic oligosaccharides as active pharmaceutical ingredients: lessons learned from the full synthesis of one heparin derivative on a large scale. Nat Prod Rep 2014; 31:980-9. [PMID: 24705477 DOI: 10.1039/c4np00012a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2013. Heparin and heparan sulfate are natural polysaccharides with strong structural variations, which are responsible for their numerous specific biological properties. One key target of heparin, among others, is antithrombin, a serine protease inhibitor that, upon activation, mainly targets anticoagulation factors IIa and Xa. It is well documented that inhibition of the latter is due to a specific pentasaccharidic sequence, its synthetic analog being the registered drug fondaparinux. The replacement of hydroxyls by methoxy groups, N-sulfates by O-sulfonates and the modulation of the sulfation pattern gave rise to both idraparinux and its neutralizable form, idrabiotaparinux, two pentasaccharides with a significantly increased half-life compared to fondaparinux. Although numerous efforts have been devoted to improving the chemoenzymatic preparation of heparin fragments, enzymes are usually selective for their natural substrates, which limits the generation of some specific non-natural structures. Up to now, total synthesis has proved to be a valuable approach for the preparation of tailor-made and pure saccharides in the milligram to gram scale. This highlight will focus on the synthesis and the technical challenges associated with the development and the production of complex carbohydrates which will be exemplified with idrabiotaparinux. Particular attention will be paid to the process improvements needed in order to implement the production in a pilot plant, achieving batch generation on a multi-kilogram scale with a purity higher than 99.5%, and with no unknown impurity over 0.1%.
Collapse
Affiliation(s)
- Pierre-Alexandre Driguez
- Sanofi R&D, Early to Candidate Unit, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin Cedex, France
| | | | | |
Collapse
|
243
|
Chang CH, Lico LS, Huang TY, Lin SY, Chang CL, Arco SD, Hung SC. Synthesis of the heparin-based anticoagulant drug fondaparinux. Angew Chem Int Ed Engl 2014; 53:9876-9. [PMID: 25044485 DOI: 10.1002/anie.201404154] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/10/2022]
Abstract
Fondaparinux, a synthetic pentasaccharide based on the heparin antithrombin-binding domain, is an approved clinical anticoagulant. Although it is a better and safer alternative to pharmaceutical heparins in many cases, its high cost, which results from the difficult and tedious synthesis, is a deterrent for its widespread use. The chemical synthesis of fondaparinux was achieved in an efficient and concise manner from commercially available D-glucosamine, diacetone α-D-glucose, and penta-O-acetyl-D-glucose. The method involves suitably functionalized building blocks that are readily accessible and employs shared intermediates and a series of one-pot reactions that considerably reduce the synthetic effort and improve the yield.
Collapse
Affiliation(s)
- Cheng-Hsiu Chang
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 115 (Taiwan); Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300 (Taiwan)
| | | | | | | | | | | | | |
Collapse
|
244
|
Chang CH, Lico LS, Huang TY, Lin SY, Chang CL, Arco SD, Hung SC. Synthesis of the Heparin-Based Anticoagulant Drug Fondaparinux. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
245
|
Mead G, Hiley M, Ng T, Fihn C, Hong K, Groner M, Miner W, Drugan D, Hollingsworth W, Udit AK. Directed Polyvalent Display of Sulfated Ligands on Virus Nanoparticles Elicits Heparin-Like Anticoagulant Activity. Bioconjug Chem 2014; 25:1444-52. [DOI: 10.1021/bc500200t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Griffin Mead
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Megan Hiley
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Taryn Ng
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Conrad Fihn
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Kevin Hong
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Myles Groner
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Walker Miner
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Daniel Drugan
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - William Hollingsworth
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Andrew K. Udit
- Department
of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
246
|
Casu B, Naggi A, Torri G. Re-visiting the structure of heparin. Carbohydr Res 2014; 403:60-8. [PMID: 25088334 DOI: 10.1016/j.carres.2014.06.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 01/12/2023]
Abstract
The sulfated polysaccharide heparin has been used as a life-saving anticoagulant in clinics well before its detailed structure was known. This mini-review is a survey of the evolution in the discovery of the primary and secondary structure of heparin. Highlights in this history include elucidation and synthesis of the specific sequence that binds to antithrombin, the development of low-molecular-weight heparins currently used as antithrombotic drugs, and the most promising start of chemo-enzymatic synthesis. Special emphasis is given to peculiar conformational properties contributing to interaction with proteins that modulate different biological properties.
Collapse
Affiliation(s)
- Benito Casu
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy.
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| | - Giangiacomo Torri
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo, 81 20133 Milan, Italy
| |
Collapse
|
247
|
Myung S, Rollin J, You C, Sun F, Chandrayan S, Adams MW, Zhang YHP. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng 2014; 24:70-7. [DOI: 10.1016/j.ymben.2014.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
248
|
Yoshida K, Yang B, Yang W, Zhang Z, Zhang J, Huang X. Chemical Synthesis of Syndecan-3 Glycopeptides Bearing Two Heparan Sulfate Glycan Chains. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
249
|
Yoshida K, Yang B, Yang W, Zhang Z, Zhang J, Huang X. Chemical synthesis of syndecan-3 glycopeptides bearing two heparan sulfate glycan chains. Angew Chem Int Ed Engl 2014; 53:9051-8. [PMID: 24981920 DOI: 10.1002/anie.201404625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 11/05/2022]
Abstract
Despite the ubiquitous presence of proteoglycans in mammalian systems, methodologies to synthesize this class of glycopeptides with homogeneous glycans are not well developed. Herein, we report the first synthesis of a glycosaminoglycan family glycopeptide containing two different heparan sulfate chains, namely the extracellular domain of syndecan-3. With the large size and tremendous structural complexity of these molecules, multiple unexpected obstacles were encountered during the synthesis, including high sensitivity to base treatment and the instability of glycopeptides with two glycan chains towards catalytic hydrogenation conditions. A successful strategy was established by constructing the partially deprotected single glycan chain containing glycopeptides first, followed by union of the glycan-bearing fragments and cleavage of the ester-type protecting groups. This work lays the foundation for preparing other members of this important class of molecules.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824 (USA)
| | | | | | | | | | | |
Collapse
|
250
|
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, Zong C, Boons GJ, Lin C, Xia Y, Zaia J. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics 2014; 13:2490-502. [PMID: 24925905 DOI: 10.1074/mcp.m114.039560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools.
Collapse
Affiliation(s)
- Han Hu
- From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Huang
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yang Mao
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Xiang Yu
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yongmei Xu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jian Liu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chengli Zong
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Cheng Lin
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Xia
- ‖Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Zaia
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA;
| |
Collapse
|