201
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
202
|
Lu XL, Zhao CH, Zhang H, Yao XL. iRhom2 is involved in lipopolysaccharide-induced cardiac injury in vivo and in vitro through regulating inflammation response. Biomed Pharmacother 2017; 86:645-653. [DOI: 10.1016/j.biopha.2016.11.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023] Open
|
203
|
Dopamine Increases CD14 +CD16 + Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 2017; 12:353-370. [PMID: 28133717 DOI: 10.1007/s11481-017-9726-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Collapse
|
204
|
Maruthappu T, Chikh A, Fell B, Delaney PJ, Brooke MA, Levet C, Moncada-Pazos A, Ishida-Yamamoto A, Blaydon D, Waseem A, Leigh IM, Freeman M, Kelsell DP. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16. Nat Commun 2017; 8:14174. [PMID: 28128203 PMCID: PMC5290154 DOI: 10.1038/ncomms14174] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated.
Collapse
Affiliation(s)
- Thiviyani Maruthappu
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Anissa Chikh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Benjamin Fell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Paul J. Delaney
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Matthew A. Brooke
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Clemence Levet
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | | | | | - Diana Blaydon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| | - Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Irene M. Leigh
- Centre for Centre Molecular Medicine, Clinical Research Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Matthew Freeman
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - David P. Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel London E1 2AT, UK
| |
Collapse
|
205
|
Li X, Maretzky T, Perez-Aguilar JM, Monette S, Weskamp G, Le Gall S, Beutler B, Weinstein H, Blobel CP. Structural modeling defines transmembrane residues in ADAM17 that are crucial for Rhbdf2-ADAM17-dependent proteolysis. J Cell Sci 2017; 130:868-878. [PMID: 28104813 DOI: 10.1242/jcs.196436] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) controls the release of the pro-inflammatory cytokine tumor necrosis factor α (TNFα, also known as TNF) and is crucial for protecting the skin and intestinal barrier by proteolytic activation of epidermal growth factor receptor (EGFR) ligands. The seven-membrane-spanning protein called inactive rhomboid 2 (Rhbdf2; also known as iRhom2) is required for ADAM17-dependent TNFα shedding and crosstalk with the EGFR, and a point mutation (known as sinecure, sin) in the first transmembrane domain (TMD) of Rhbdf2 (Rhbdf2sin) blocks TNFα shedding, yet little is known about the underlying mechanism. Here, we used a structure-function analysis informed by structural modeling to evaluate the interaction between the TMD of ADAM17 and the first TMD of Rhbdf2, and the role of this interaction in Rhbdf2-ADAM17-dependent shedding. Moreover, we show that double mutant mice that are homozygous for Rhbdf2sin/sin and lack Rhbdf1 closely resemble Rhbdf1/2-/- double knockout mice, highlighting the severe functional impact of the Rhbdf2sin/sin mutation on ADAM17 during mouse development. Taken together, these findings provide new mechanistic and conceptual insights into the critical role of the TMDs of ADAM17 and Rhbdf2 in the regulation of the ADAM17 and EGFR, and ADAM17 and TNFα signaling pathways.
Collapse
Affiliation(s)
- Xue Li
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA.,Dept. of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Jose Manuel Perez-Aguilar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA.,IBM Thomas J. Watson Research Center, Yorktown Heights, New York, NY 10598, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, NY 10021 USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Sylvain Le Gall
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harel Weinstein
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA .,Dept. of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| |
Collapse
|
206
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
207
|
van der Vorst EPC, Zhao Z, Rami M, Holdt LM, Teupser D, Steffens S, Weber C. Contrasting effects of myeloid and endothelial ADAM17 on atherosclerosis development. Thromb Haemost 2016; 117:644-646. [PMID: 28004058 DOI: 10.1160/th16-09-0674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/03/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Emiel P C van der Vorst
- Dr. Emiel P. C. van der Vorst, Institute for Cardiovascular Prevention, Pettenkoferstrasse 9, 80336 Munich, Germany, Tel. +49 89 4400 54633, Fax: + 49 89 4400 54352, E-mail:
| | | | | | | | | | | | - Christian Weber
- Univ.-Prof. Dr. med. Christian Weber, Institute for Cardiovascular Prevention, Pettenkoferstrasse 9, 80336 Munich, Germany, Tel. +49 89 4400 54633, Fax: + 49 89 4400 54352, E-mail:
| |
Collapse
|
208
|
Conrad N, Schwager SL, Carmona AK, Sturrock ED. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme. Biochem Biophys Res Commun 2016; 481:111-116. [DOI: 10.1016/j.bbrc.2016.10.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 01/29/2023]
|
209
|
Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2795-2808. [DOI: 10.1016/j.bbamcr.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/02/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
|
210
|
Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 2016; 13:711-721. [PMID: 27818489 PMCID: PMC5101451 DOI: 10.1038/cmi.2016.58] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
211
|
Urban S. A guide to the rhomboid protein superfamily in development and disease. Semin Cell Dev Biol 2016; 60:1-4. [PMID: 27751777 DOI: 10.1016/j.semcdb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
Abstract
Rhomboid proteins are considered to be the most widespread membrane proteins across all forms of life. This superfamily comprises both active intramembrane serine proteases that catalyze the release of factors from the membrane, and a eukaryotic subset of non-catalytic members in which rhomboid architecture supports deviating functions. Although rhomboid was discovered in genetic studies of insect development, rhomboid research has broadened dramatically over the past 15 years; rhomboid enzymes are now the best biophysically understood of all intramembrane proteases, and are considered promising therapeutic targets for diseases ranging from parasitic infections to Parkinsonian neurodegeneration. Perhaps the most rapid progress has come with the catalytically inert rhomboid proteins, some of which regulate protein trafficking and/or function, and their prominence is underscored by clinical mutations. Such a diverse collection of advances mark an excellent point to review the state of this vibrant area of research, not because central questions have been answered, but instead because a firm grip in key areas has been established, and the field is now poised for breakthroughs.
Collapse
Affiliation(s)
- Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
212
|
Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep 2016; 6:35067. [PMID: 27731361 PMCID: PMC5059621 DOI: 10.1038/srep35067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
An important, irreversible step in many signalling pathways is the shedding of membrane-anchored proteins. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. This central role in signalling implies that ADAM17 activity has to be tightly regulated, including at the level of localisation. Most mature ADAM17 is localised intracellularly, with only a small amount at the cell surface. We found that ADAM17 is constitutively internalised by clathrin-coated pits and that physiological stimulators such as GPCR ligands induce ADAM17-mediated shedding, but do not alter the cell-surface abundance of the protease. In contrast, the PKC-activating phorbol ester PMA, often used as a strong inducer of ADAM17, causes not only proteolysis by ADAM17 but also a rapid increase of the mature protease at the cell surface. This is followed by internalisation and subsequent degradation of the protease. Eventually, this leads to a substantial downregulation of mature ADAM17. Our results therefore imply that physiological activation of ADAM17 does not rely on its relocalisation, but that PMA-induced PKC activity drastically dysregulates the localisation of ADAM17.
Collapse
|
213
|
Qing X, Rogers L, Mortha A, Lavin Y, Redecha P, Issuree PD, Maretzky T, Merad M, McIlwain D, Mak TW, Overall CM, Blobel CP, Salmon JE. iRhom2 regulates CSF1R cell surface expression and non-steady state myelopoiesis in mice. Eur J Immunol 2016; 46:2737-2748. [PMID: 27601030 DOI: 10.1002/eji.201646482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
CSF1R (colony stimulating factor 1 receptor) is the main receptor for CSF1 and has crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by ADAM17 (A disintegrin and metalloprotease 17). Here, we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2-/- mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2-/- BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild-type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2-/- Lin- SCA-1+ c-Kit+ (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs.
Collapse
Affiliation(s)
- Xiaoping Qing
- Program in Inflammation and Autoimmunity, Hospital for Special Surgery, 535 East 71 St., New York, NY 10021, USA
| | - Lindsay Rogers
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Arthur Mortha
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - Yonit Lavin
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - Patricia Redecha
- Program in Inflammation and Autoimmunity, Hospital for Special Surgery, 535 East 71 St., New York, NY 10021, USA
| | - Priya D Issuree
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - David McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carl P Blobel
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.,Department of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Jane E Salmon
- Program in Inflammation and Autoimmunity, Hospital for Special Surgery, 535 East 71 St., New York, NY 10021, USA.,Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
214
|
Paschkowsky S, Hamzé M, Oestereich F, Munter LM. Alternative Processing of the Amyloid Precursor Protein Family by Rhomboid Protease RHBDL4. J Biol Chem 2016; 291:21903-21912. [PMID: 27563067 DOI: 10.1074/jbc.m116.753582] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is an ubiquitously expressed cell surface protein and a key molecule in the etiology of Alzheimer disease. Amyloidogenic processing of APP through secretases leads to the generation of toxic amyloid β (Aβ) peptides, which are regarded as the molecular cause of the disease. We report here an alternative processing pathway of APP through the mammalian intramembrane rhomboid protease RHBDL4. RHBDL4 efficiently cleaves APP inside the cell, thus bypassing APP from amyloidogenic processing, leading to reduced Aβ levels. RHBDL4 cleaves APP multiple times in the ectodomain, resulting in several N- and C-terminal fragments that are not further degraded by classical APP secretases. Knockdown of endogenous RHBDL4 results in decreased levels of C-terminal fragments derived from endogenous APP. Similarly, we found the APP family members APLP1 and APLP2 to be substrates of RHBDL4. We conclude that RHBDL4-mediated APP processing provides insight into APP and rhomboid physiology and qualifies for further investigations to elaborate its impact on Alzheimer disease pathology.
Collapse
Affiliation(s)
| | - Mehdi Hamzé
- From the Department of Pharmacology and Therapeutics and
| | - Felix Oestereich
- From the Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | |
Collapse
|
215
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
216
|
Zhao G, Liu L, Peek RM, Hao X, Polk DB, Li H, Yan F. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth. J Biol Chem 2016; 291:20462-72. [PMID: 27507810 DOI: 10.1074/jbc.m116.750182] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
EGF receptor (EGFR) in tumor cells serves as a tumor promoter. However, information about EGFR activation in macrophages in regulating M2 polarization and tumor development is limited. This study aimed to investigate the effects of EGFR activation in macrophages on M2 polarization and development of gastrointestinal tumors. IL-4, a cytokine to elicit M2 polarization, stimulated release of an EGFR ligand, HB-EGF, and transactivation and down-regulation of EGFR in Raw 264.7 cells and peritoneal macrophages from WT mice. Knockdown of HB-EGF in macrophages inhibited EGFR transactivation by IL-4. IL-4-stimulated STAT6 activation, Arg1 and YM1 gene expression, and HB-EGF production were further enhanced by inhibition of EGFR activity in Raw 264.7 cells using an EGFR kinase inhibitor and in peritoneal macrophages from Egfr(wa5) mice with kinase inactive EGFR and by knockdown of EGFR in peritoneal macrophages from Egfr(fl/fl) LysM-Cre mice with myeloid cell-specific EGFR deletion. Chitin induced a higher level of M2 polarization in peritoneal macrophages in Egfr(fl/fl) LysM-Cre mice than that in Egfr(fl/fl) mice. Accordingly, IL-4-conditioned medium stimulated growth and epithelial-to-mesenchymal transition in gastric epithelial and colonic tumor cells, which were suppressed by that from Raw 264.7 cells with HB-EGF knockdown but promoted by that from Egfr(wa5) and Egfr(fl/fl) LysM-Cre peritoneal macrophages. Clinical assessment revealed that the number of macrophages with EGFR expression became less, indicating decreased inhibitory effects on M2 polarization, in late stage of human gastric cancers. Thus, IL-4-stimulated HB-EGF-dependent transactivation of EGFR in macrophages may mediate inhibitory feedback for M2 polarization and HB-EGF production, thereby inhibiting gastrointestinal tumor growth.
Collapse
Affiliation(s)
- Gang Zhao
- From the Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee 37232, the Department of Gastrointestinal Cancer Biology, National Clinical Cancer Research Center, Tianjin Cancer Institute and Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Liping Liu
- From the Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Richard M Peek
- the Departments of Medicine and Cancer Biology, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Xishan Hao
- the Department of Gastrointestinal Cancer Biology, National Clinical Cancer Research Center, Tianjin Cancer Institute and Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - D Brent Polk
- the Departments of Pediatrics and Biochemistry and Molecular Biology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California 90027, and the Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Hui Li
- the Department of Gastrointestinal Cancer Biology, National Clinical Cancer Research Center, Tianjin Cancer Institute and Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China,
| | - Fang Yan
- From the Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee 37232,
| |
Collapse
|
217
|
Dreymueller D, Ludwig A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 2016; 28:354-361. [PMID: 27460023 DOI: 10.1080/09537104.2016.1203396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteases of the disintegrin and metalloproteinase (ADAM) family mediate the proteolytic shedding of various surface molecules including cytokine precursors, adhesion molecules, growth factors, and receptors. Within the vasculature ADAM10 and ADAM17 regulate endothelial permeability, transendothelial leukocyte migration, and the adhesion of leukocytes and platelets. In vivo studies show that both proteases are implicated in several inflammatory pathologies, for example, edema formation, leukocyte infiltration, and thrombosis. However, both proteases also contribute to developmental and regenerative processes. Thus, although ADAMs can be regarded as valuable drug targets in many aspects, the danger of severe side effects is clearly visible. To circumvent these side effects, traditional inhibition approaches have to be improved to target ADAMs at the right time in the right place. Moreover, the inhibitors need to be more selective for the target protease and if possible also for the substrate. Antibodies recognizing the active conformation of ADAMs or small molecules blocking exosites of ADAM proteases may represent inhibitors with the desired selectivities.
Collapse
Affiliation(s)
- Daniela Dreymueller
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| | - Andreas Ludwig
- a Institute of Pharmacology and Toxicology , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
218
|
iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol 2016; 17:1057-66. [DOI: 10.1038/ni.3510] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022]
|
219
|
Yang L, Li W, Liu B, Wang S, Zeng L, Zhang C, Li Y. iRhom2 Uncv mutation blocks bulge stem cells assuming the fate of hair follicle. Arch Dermatol Res 2016; 308:503-10. [DOI: 10.1007/s00403-016-1663-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/22/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
|
220
|
Lemberg MK, Adrain C. Inactive rhomboid proteins: New mechanisms with implications in health and disease. Semin Cell Dev Biol 2016; 60:29-37. [PMID: 27378062 DOI: 10.1016/j.semcdb.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
221
|
Liu J, Qian C, Cao X. Post-Translational Modification Control of Innate Immunity. Immunity 2016; 45:15-30. [DOI: 10.1016/j.immuni.2016.06.020] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/01/2023]
|
222
|
Cataisson C, Michalowski AM, Shibuya K, Ryscavage A, Klosterman M, Wright L, Dubois W, Liu F, Zhuang A, Rodrigues KB, Hoover S, Dwyer J, Simpson MR, Merlino G, Yuspa SH. MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis. Sci Signal 2016; 9:ra62. [PMID: 27330189 DOI: 10.1126/scisignal.aaf5106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The receptor tyrosine kinase MET is abundant in many human squamous cell carcinomas (SCCs), but its functional significance in tumorigenesis is not clear. We found that the incidence of carcinogen-induced skin squamous tumors was substantially increased in transgenic MT-HGF (mouse metallothionein-hepatocyte growth factor) mice, which have increased abundance of the MET ligand HGF. Squamous tumors also erupted spontaneously on the skin of MT-HGF mice that were promoted by wounding or the application of 12-O-tetradecanoylphorbol 13-acetate, an activator of protein kinase C. Carcinogen-initiated tumors had Ras mutations, but spontaneous tumors did not. Cultured keratinocytes from MT-HGF mice and oncogenic RAS-transduced keratinocytes shared phenotypic and biochemical features of initiation that were dependent on autocrine activation of epidermal growth factor receptor (EGFR) through increased synthesis and release of EGFR ligands, which was mediated by the kinase SRC, the pseudoproteases iRhom1 and iRhom2, and the metallopeptidase ADAM17. Pharmacological inhibition of EGFR caused the regression of MT-HGF squamous tumors that developed spontaneously in orthografts of MT-HGF keratinocytes combined with dermal fibroblasts and implanted onto syngeneic mice. The global gene expression profile in MET-transformed keratinocytes was highly concordant with that in RAS-transformed keratinocytes, and a core RAS/MET coexpression network was activated in precancerous and cancerous human skin lesions. Tissue arrays revealed that many human skin SCCs have abundant HGF at both the transcript and protein levels. Thus, through the activation of EGFR, MET activation parallels a RAS pathway to contribute to human and mouse cutaneous cancers.
Collapse
Affiliation(s)
- Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Shibuya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Klosterman
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Wright
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fan Liu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Zhuang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kameron B Rodrigues
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelley Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
223
|
Abstract
Here, I take a somewhat personal perspective on signalling control, focusing on the rhomboid-like superfamily of proteins that my group has worked on for almost 20 years. As well as describing some of the key and recent advances, I attempt to draw out signalling themes that emerge. One important message is that the genetic and biochemical perspective on signalling has tended to underplay the importance of cell biology. There is clear evidence that signalling pathways exploit the control of intracellular trafficking, protein quality control and degradation and other cell biological phenomena, as important regulatory opportunities.
Collapse
Affiliation(s)
- Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, U.K.
| |
Collapse
|
224
|
Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα. Sci Rep 2016; 6:27342. [PMID: 27264103 PMCID: PMC4893610 DOI: 10.1038/srep27342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022] Open
Abstract
Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.
Collapse
|
225
|
Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids. Platelets 2016; 28:333-341. [PMID: 27256961 PMCID: PMC5490636 DOI: 10.1080/09537104.2016.1184751] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are ubiquitous transmembrane “molecular scissors” which proteolytically cleave, or shed, the extracellular regions of other transmembrane proteins. ADAM10 is essential for development because it cleaves Notch proteins to induce Notch signaling and regulate cell fate decisions. ADAM17 is regarded as a first line of defense against injury and infection, by releasing tumor necrosis factor α (TNFα) to promote inflammation and epidermal growth factor (EGF) receptor ligands to maintain epidermal barrier function. However, the regulation of ADAM10 and ADAM17 trafficking and activation are not fully understood. This review will describe how the TspanC8 subgroup of tetraspanins (Tspan5, 10, 14, 15, 17, and 33) and the iRhom subgroup of protease-inactive rhomboids (iRhom1 and 2) have emerged as important regulators of ADAM10 and ADAM17, respectively. In particular, they are required for the enzymatic maturation and trafficking to the cell surface of the ADAMs, and there is evidence that different TspanC8s and iRhoms target the ADAMs to distinct substrates. The TspanC8s and iRhoms have not been studied functionally on platelets. On these cells, ADAM10 is the principal sheddase for the platelet collagen receptor GPVI, and the regulatory TspanC8s are Tspan14, 15, and 33, as determined from proteomic data. Platelet ADAM17 is the sheddase for the von Willebrand factor (vWF) receptor GPIb, and iRhom2 is the only iRhom that is expressed. Induced shedding of either GPVI or GPIb has therapeutic potential, since inhibition of either receptor is regarded as a promising anti-thrombotic therapy. Targeting of Tspan14, 15, or 33 to activate platelet ADAM10, or iRhom2 to activate ADAM17, may enable such an approach to be realized, without the toxic side effects of activating the ADAMs on every cell in the body.
Collapse
Affiliation(s)
- Alexandra L Matthews
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Peter J Noy
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Jasmeet S Reyat
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| | - Michael G Tomlinson
- a School of Biosciences, College of Life and Environmental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
226
|
Zhang Y, Wang X, Loesch K, May LA, Davis GE, Jiang J, Frank SJ. TIMP3 Modulates GHR Abundance and GH Sensitivity. Mol Endocrinol 2016; 30:587-599. [PMID: 27075707 PMCID: PMC4884343 DOI: 10.1210/me.2015-1302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
GH receptor (GHR) binds GH at the cell surface via its extracellular domain and initiates intracellular signal transduction, resulting in important anabolic and metabolic actions. GH signaling is subject to dynamic regulation, which in part is exerted by modulation of cell surface GHR levels. Constitutive and inducible metalloprotease-mediated cleavage of GHR regulate GHR abundance and thereby modulate GH action. We previously demonstrated that GHR proteolysis is catalyzed by the TNF-α converting enzyme (TACE; ADAM17). Tissue inhibitors of metalloproteases-3 (TIMP3) is a natural specific inhibitor of TACE, although mechanisms underlying this inhibition are not yet fully understood. In the current study, we use two model cell lines to examine the relationships between cellular TACE, TIMP3 expression, GHR metalloproteolysis, and GH sensitivity. These two cell lines exhibited markedly different sensitivity to inducible GHR proteolysis, which correlated directly to their relative levels of mature TACE vs unprocessed TACE precursor and indirectly to their levels of cellular TIMP3. Our results implicate TIMP3 as a modulator of cell surface GHR abundance and the ability of GH to promote cellular signaling; these modulatory effects may be conferred by endogenous TIMP3 expression as well as exogenous TIMP3 exposure. Furthermore, our analysis suggests that TIMP3, in addition to regulating the activity of TACE, may also modulate the maturation of TACE, thereby affecting the abundance of the active form of the enzyme.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Xiangdong Wang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Kimberly Loesch
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Larry A May
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - George E Davis
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Jing Jiang
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| | - Stuart J Frank
- Department of Medicine (Y.Z., J.J., S.J.F.), Division of Endocrinology, Diabetes, and Metabolism, and Department of Cell, Developmental, and Integrative Biology (S.J.F.), University of Alabama at Birmingham, Birmingham, Alabama 35294; The Institute of Cell Biology (X.W.), Shandong University School of Medicine, Jinan 250012, China; Department of Biochemistry and Biophysics (K.L.), Texas A&M University, College Station, Texas 77843; Department of Surgery (L.A.M.), University of Tennessee College of Medicine Chattanooga, Chattanooga, Tennessee 37403; Department of Medical Pharmacology and Physiology (G.E.D.), University of Missouri School of Medicine, Columbia, Missouri 65212; and Endocrinology Section (S.J.F.), Medical Service, Veterans Affairs Medical Center, Birmingham, Alabama 35233
| |
Collapse
|
227
|
Smith AR, Mill J, Smith RG, Lunnon K. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
228
|
Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, Düsterhöft S, Michalek M, Lorenzen I, Somasundaram P, Tholey A, Sönnichsen FD, Kunzelmann K, Heinbockel L, Nehls C, Gutsmann T, Grötzinger J, Bhakdi S, Reiss K. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun 2016; 7:11523. [PMID: 27161080 PMCID: PMC4866515 DOI: 10.1038/ncomms11523] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023] Open
Abstract
ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Felix Kordowski
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Joscha Büch
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Astrid Evers
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Jörg Andrä
- Hamburg University of Applied Science, Ulmenliet 20, Hamburg 21033, Germany
| | - Stefan Düsterhöft
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Matthias Michalek
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Prasath Somasundaram
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Kiel 24118, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Christian Nehls
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| |
Collapse
|
229
|
Mullooly M, McGowan PM, Crown J, Duffy MJ. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 2016; 17:870-80. [PMID: 27115328 DOI: 10.1080/15384047.2016.1177684] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ADAMs (a disintegrin and metalloproteases) are transmembrane multidomain proteins implicated in multiple biological processes including proteolysis, cell adhesion, cell fusion, cell proliferation and cell migration. Of these varied activities, the best studied is their role in proteolysis. However, of the 22 ADAMs believed to be functional in humans, only approximately a half possess matrix metalloproteinase (MMP)-like protease activity. In contrast to MMPs which are mostly implicated in the degradation of extracellular matrix proteins, the main ADAM substrates are the ectodomains of type I and type II transmembrane proteins. These include growth factor/cytokine precursors, growth factor/cytokine receptors and adhesion proteins. Recently, several different ADAMs, especially ADAM17, have been shown to play a role in the development and progression of multiple cancer types. Consistent with this role in cancer, targeting ADAM17 with either low molecular weight inhibitors or monoclonal antibodies was shown to have anti-cancer activity in multiple preclinical systems. Although early phase clinical trials have shown no serious side effects with a dual ADAM10/17 low molecular weight inhibitor, the consequences of long-term treatment with these agents is unknown. Furthermore, efficacy in clinical trials remains to be shown.
Collapse
Affiliation(s)
- Maeve Mullooly
- a National Institutes of Health , Bethesda , MD , USA.,b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland
| | - Patricia M McGowan
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,c Education and Research Center , St. Vincent's University Hospital , Dublin , Ireland
| | - John Crown
- d Department of Medical Oncology , St. Vincent's University Hospital , Dublin , Ireland
| | - Michael J Duffy
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,e UCD Clinical Research Center , St. Vincent's University Hospital , Dublin , Ireland
| |
Collapse
|
230
|
Green LA, Njoku V, Mund J, Case J, Yoder M, Murphy MP, Clauss M. Endogenous Transmembrane TNF-Alpha Protects Against Premature Senescence in Endothelial Colony Forming Cells. Circ Res 2016; 118:1512-24. [PMID: 27076598 DOI: 10.1161/circresaha.116.308332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
RATIONALE Transmembrane tumor necrosis factor-α (tmTNF-α) is the prime ligand for TNF receptor 2, which has been shown to mediate angiogenic and blood vessel repair activities in mice. We have previously reported that the angiogenic potential of highly proliferative endothelial colony-forming cells (ECFCs) can be explained by the absence of senescent cells, which in mature endothelial cells occupy >30% of the population, and that exposure to a chronic inflammatory environment induced premature, telomere-independent senescence in ECFCs. OBJECTIVE The goal of this study was to determine the role of tmTNF-α in the proliferation of ECFCs. METHODS AND RESULTS Here, we show that tmTNF-α expression on ECFCs selects for higher proliferative potential and when removed from the cell surface promotes ECFC senescence. Moreover, the induction of premature senescence by chronic inflammatory conditions is blocked by inhibition of tmTNF-α cleavage. Indeed, the mechanism of chronic inflammation-induced premature senescence involves an abrogation of tmTNF/TNF receptor 2 signaling. This process is mediated by activation of the tmTNF cleavage metalloprotease TNF-α-converting enzyme via p38 MAP kinase activation and its concurrent export to the cell surface by means of increased iRhom2 expression. CONCLUSIONS Thus, we conclude that tmTNF-α on the surface of highly proliferative ECFCs plays an important role in the regulation of their proliferative capacity.
Collapse
Affiliation(s)
- Linden A Green
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.).
| | - Victor Njoku
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Julie Mund
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Jaime Case
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Mervin Yoder
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Michael P Murphy
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| | - Matthias Clauss
- From the Department of Cellular and Integrative Physiology, RLR VA Medical Center, and Indiana Center for Vascular Biology and Medicine (L.A.G., M.P.M., M.C.), Department of Pediatrics (M.Y.), Department of Surgery (V.N., M.P.M.), and Department of Pediatrics, Herman B Wells Center for Pediatric Research, and Indiana University Simon Cancer Center (J.M., J.C.), Indiana University School of Medicine, Indianapolis; and Biomedical Sciences, University of Ulster, Coleraine, United Kingdom (M.C.)
| |
Collapse
|
231
|
Lee MY, Nam KH, Choi KC. iRhoms; Its Functions and Essential Roles. Biomol Ther (Seoul) 2016; 24:109-14. [PMID: 26869525 PMCID: PMC4774490 DOI: 10.4062/biomolther.2015.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and traffickingof tumor necrosis factor-alpha (TNF-α) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarifiedthat the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.
Collapse
Affiliation(s)
- Min-Young Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
232
|
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.
Collapse
Affiliation(s)
- Jennifer C Jones
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Shelly Rustagi
- Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Peter J Dempsey
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| |
Collapse
|
233
|
Jackson BC, Thompson DC, Charkoftaki G, Vasiliou V. Dead enzymes in the aldehyde dehydrogenase gene family: role in drug metabolism and toxicology. Expert Opin Drug Metab Toxicol 2015; 11:1839-47. [PMID: 26558415 DOI: 10.1517/17425255.2016.1108406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Dead enzymes are gene products (proteins) that lack key residues required for catalytic activity. In the pre-genome era, dead enzymes were thought to occur only rarely. However, they now have been shown to represent upwards of 10% of the total enzyme population in many families. The aldehyde dehydrogenase (ALDH) gene family encodes proteins that, depending on the isozyme, may be either catalytically-active or -inactive. Importantly, several ALDHs exhibit biological activities independent of their catalytic activity. For many of these, the physiological and pathophysiological functions remain to be established. AREAS COVERED This article reviews the non-enzymatic functions of the ALDH superfamily. In addition, a search for additional non-catalytic ALDH records is undertaken. Our computational analyses reveal that there are currently 182 protein records (divided into 19 groups) that meet the criteria for dead enzymes. EXPERT OPINION Dead enzymes have the potential to exert biological actions through protein-protein interaction and allosteric modulation of the activity of an active enzyme. In addition, a dead enzyme may also influence availability of substrate for other active enzymes by sequestering substrate, and/or anchoring the substrate to a particular subcellular space. A large number of putatively non-catalytic ALDH proteins exist that warrant further study.
Collapse
Affiliation(s)
- Brian C Jackson
- a Department of Pharmaceutical Sciences , University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado , Aurora , CO 80045 , USA
| | - David C Thompson
- b Department of Clinical Pharmacy , University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado , Aurora , CO 80045 , USA
| | - Georgia Charkoftaki
- c Department of Environmental Health Sciences , Yale School of Public Health , 60 College St, New Haven , CT 06250 , USA
| | - Vasilis Vasiliou
- c Department of Environmental Health Sciences , Yale School of Public Health , 60 College St, New Haven , CT 06250 , USA
| |
Collapse
|
234
|
Maney SK, McIlwain DR, Polz R, Pandyra AA, Sundaram B, Wolff D, Ohishi K, Maretzky T, Brooke MA, Evers A, Vasudevan AAJ, Aghaeepour N, Scheller J, Münk C, Häussinger D, Mak TW, Nolan GP, Kelsell DP, Blobel CP, Lang KS, Lang PA. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Sci Signal 2015; 8:ra109. [PMID: 26535007 PMCID: PMC7202466 DOI: 10.1126/scisignal.aac5356] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protease ADAM17 (a disintegrin and metalloproteinase 17) catalyzes the shedding of various transmembrane proteins from the surface of cells, including tumor necrosis factor (TNF) and its receptors. Liberation of TNF receptors (TNFRs) from cell surfaces can dampen the cellular response to TNF, a cytokine that is critical in the innate immune response and promotes programmed cell death but can also promote sepsis. Catalytically inactive members of the rhomboid family of proteases, iRhom1 and iRhom2, mediate the intracellular transport and maturation of ADAM17. Using a genetic screen, we found that the presence of either iRhom1 or iRhom2 lacking part of their extended amino-terminal cytoplasmic domain (herein referred to as ΔN) increases ADAM17 activity, TNFR shedding, and resistance to TNF-induced cell death in fibrosarcoma cells. Inhibitors of ADAM17, but not of other ADAM family members, prevented the effects of iRhom-ΔN expression. iRhom1 and iRhom2 were functionally redundant, suggesting a conserved role for the iRhom amino termini. Cells from patients with a dominantly inherited cancer susceptibility syndrome called tylosis with esophageal cancer (TOC) have amino-terminal mutations in iRhom2. Keratinocytes from TOC patients exhibited increased TNFR1 shedding compared with cells from healthy donors. Our results explain how loss of the amino terminus in iRhom1 and iRhom2 impairs TNF signaling, despite enhancing ADAM17 activity, and may explain how mutations in the amino-terminal region contribute to the cancer predisposition syndrome TOC.
Collapse
Affiliation(s)
- Sathish K Maney
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - David R McIlwain
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany. Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Robin Polz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Balamurugan Sundaram
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dorit Wolff
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Kazuhito Ohishi
- Department of Pathology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Matthew A Brooke
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Astrid Evers
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Ananda A Jaguva Vasudevan
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Nima Aghaeepour
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Carsten Münk
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Tak W Mak
- Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Carl P Blobel
- Department of Pathology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany. Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
235
|
The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog Neurobiol 2015; 135:1-20. [PMID: 26522965 DOI: 10.1016/j.pneurobio.2015.10.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023]
Abstract
Proteins belonging to the 'A Disintegrin And Metalloproteinase' (ADAM) family are membrane-anchored proteases that are able to cleave the extracellular domains of several membrane-bound proteins in a process known as 'ectodomain shedding'. In the central nervous system, ADAM10 has attracted the most attention, since it was described as the amyloid precursor protein α-secretase over ten years ago. Despite the excitement over the potential of ADAM10 as a novel drug target in Alzheimer disease, the physiological functions of ADAM10 in the brain are not yet well understood. This is largely because of the embryonic lethality of ADAM10-deficient mice, which results from the loss of cleavage and signaling of the Notch receptor, another ADAM10 substrate. However, the recent generation of conditional ADAM10-deficient mice and the identification of further ADAM10 substrates in the brain has revealed surprisingly numerous and fundamental functions of ADAM10 in the development of the embryonic brain and also in the homeostasis of adult neuronal networks. Mechanistically, ADAM10 controls these functions by utilizing unique postsynaptic substrates in the central nervous system, in particular synaptic cell adhesion molecules, such as neuroligin-1, N-cadherin, NCAM, Ephrin A2 and A5. Consequently, a dysregulation of ADAM10 activity is linked to psychiatric and neurological diseases, such as epilepsy, fragile X syndrome and Huntington disease. This review highlights the recent progress in understanding the substrates and function as well as the regulation and cell biology of ADAM10 in the central nervous system and discusses the value of ADAM10 as a drug target in brain diseases.
Collapse
|
236
|
Ellis A, Risk JM, Maruthappu T, Kelsell DP. Tylosis with oesophageal cancer: Diagnosis, management and molecular mechanisms. Orphanet J Rare Dis 2015; 10:126. [PMID: 26419362 PMCID: PMC4589029 DOI: 10.1186/s13023-015-0346-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/24/2015] [Indexed: 12/24/2022] Open
Abstract
Tylosis (hyperkeratosis palmaris et plantaris) is characterised by focal thickening of the skin of the hands and feet and is associated with a very high lifetime risk of developing squamous cell carcinoma of the oesophagus. This risk has been calculated to be 95% at the age of 65 in one large family, however the frequency of the disorder in the general population is not known and is likely to be less than one in 1,000,000. Oesophageal lesions appear as small (2-5 mm), white, polyploid lesions dotted throughout the oesophagus and oral leukokeratosis has also been described. Although symptoms of oesophageal cancer can include dysphagia, odynophagia, anorexia and weight loss, there may be an absence of symptoms in early disease, highlighting the importance of endoscopic surveillance in these patients. Oesophageal cancer associated with tylosis usually presents in middle to late life (from mid-fifties onwards) and shows no earlier development than the sporadic form of the disease. Tylosis with oesophageal cancer is inherited as an autosomal dominant trait with complete penetrance of the cutaneous features, usually by 7 to 8 years of age but can present as late as puberty. Mutations in RHBDF2 located on 17q25.1 have recently been found to be causative. A diagnosis of tylosis with oesophageal cancer is made on the basis of a positive family history, characteristic clinical features, including cutaneous and oesophageal lesions, and genetic analysis for mutations in RHBDF2. The key management goal is surveillance for early detection and treatment of oesophageal dysplasia. Surveillance includes annual gastroscopy with biopsy of any suspicious lesion together with quadratic biopsies from the upper, middle and lower oesophagus. This is coupled with dietary and lifestyle modification advice and symptom education. Symptomatic management of the palmoplantar keratoderma includes regular application of emollients, specialist footwear and early treatment of fissures and super-added infection, particularly tinea pedis. More specific treatment for the thick skin is available in the form of oral retinoids, which are very effective but commonly produce side effects, including nasal excoriation and bleeding, hypercholesterolaemia, and abnormal liver function tests. Genetic counselling can be offered to patients and family members once a family history has been established. The prognosis of tylosis with oesophageal cancer is difficult to determine due to the limited number of affected individuals. In the last 40 years of surveillance, five out of six cases of squamous oesophageal cancer in the Liverpool family were detected endoscopically and were surgically removed. Four of five patients had stage 1 disease at presentation and remain alive and well more than 8 years later. This suggests that the presence of a screening program improves prognosis for these patients.
Collapse
Affiliation(s)
- Anthony Ellis
- Department of Gastroenterology, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
| | - Janet M Risk
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, L69 3BX, Liverpool, UK
| | - Thiviyani Maruthappu
- Centre for Cell Biology and Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4AT, UK
| | - David P Kelsell
- Centre for Cell Biology and Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4AT, UK.
| |
Collapse
|
237
|
Liu B, Xu Y, Li WL, Zeng L. Proteomic analysis of differentially expressed skin proteins in iRhom2(Uncv) mice. BMB Rep 2015; 48:19-24. [PMID: 24667173 PMCID: PMC4345637 DOI: 10.5483/bmbrep.2015.48.1.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/13/2014] [Accepted: 03/16/2014] [Indexed: 12/03/2022] Open
Abstract
A mouse homozygous for the spontaneous mutation uncovered (Uncv) has a hairless phenotype. A 309-bp non-frameshift deletion mutation in the N-terminal cytoplasmic domain of iRhom2 was identified in Uncv mice (iRhom2Uncv) using target region sequencing. The detailed molecular basis for how the iRhom2 mutation causes the hairless phenotype observed in the homozygous iRhom2Uncv mouse remains unknown. To identify differentially expressed proteins in the skin of wild-type and homozygous iRhom2Uncv littermates at postnatal day 5, proteomic approaches, including two-dimensional gel electrophoresis and mass spectrometry were used. Twelve proteins were differentially expressed in the skin in a comparison between wild-type and homozygous iRhom2Uncv mice. A selection of the proteomic results were tested and verified using qRT-PCR, western blot and immunohistochemistry. These data indicate that differentially expressed proteins, especially KRT73, MEMO1 and Coro-1, might participate in the mechanism by which iRhom2 regulates the development of murine skin. [BMB Reports 2015; 48(1): 19-24]
Collapse
Affiliation(s)
- Bing Liu
- Institute of JingFeng Medical Laboratory Animal, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Yuan Xu
- Institute of JingFeng Medical Laboratory Animal, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Wen-Long Li
- Institute of JingFeng Medical Laboratory Animal, 20 Dongdajie, Fengtai, Beijing 100071, China
| | - Lin Zeng
- Institute of JingFeng Medical Laboratory Animal, 20 Dongdajie, Fengtai, Beijing 100071, China
| |
Collapse
|
238
|
Düsterhöft S, Michalek M, Kordowski F, Oldefest M, Sommer A, Röseler J, Reiss K, Grötzinger J, Lorenzen I. Extracellular Juxtamembrane Segment of ADAM17 Interacts with Membranes and Is Essential for Its Shedding Activity. Biochemistry 2015; 54:5791-801. [DOI: 10.1021/acs.biochem.5b00497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Felix Kordowski
- Department
of Dermatology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstrasse 7, 24105 Kiel, Germany
| | | | - Anselm Sommer
- Department
of Dermatology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstrasse 7, 24105 Kiel, Germany
| | | | - Karina Reiss
- Department
of Dermatology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstrasse 7, 24105 Kiel, Germany
| | | | | |
Collapse
|
239
|
Song W, Liu W, Zhao H, Li S, Guan X, Ying J, Zhang Y, Miao F, Zhang M, Ren X, Li X, Wu F, Zhao Y, Tian Y, Wu W, Fu J, Liang J, Wu W, Liu C, Yu J, Zong S, Miao S, Zhang X, Wang L. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat Commun 2015; 6:8022. [PMID: 26300397 PMCID: PMC4560765 DOI: 10.1038/ncomms9022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023] Open
Abstract
Rhomboid proteins perform a wide range of important functions in a variety of organisms. Recent studies have revealed that rhomboid proteins are involved in human cancer progression; however, the underlying molecular mechanism remains largely unclear. Here we show that RHBDD1, a rhomboid intramembrane serine protease, is highly expressed and closely associated with survival in patients with colorectal cancer. We observe that inactivation of RHBDD1 decreases tumor cell growth. Further studies show that RHBDD1 interacts with proTGFα and induces the ADAM-independent cleavage and secretion of proTGFα. The secreted TGFα further triggers the activation of the EGFR/Raf/MEK/ERK signalling pathway. Finally, the positive correlation of RHBDD1 expression with the EGFR/Raf/MEK/ERK signalling pathway is further corroborated in a murine model of colitis-associated colorectal cancer. These findings provide evidence of a growth-promoting role for RHBDD1 in colorectal cancer and may aid the development of tumor biomarkers or antitumor therapeutics.
Collapse
Affiliation(s)
- Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenjie Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Shangze Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jianming Ying
- Department of Pathology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yefan Zhang
- Department of Abdominal Surgical Oncology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fei Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Mengmeng Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoxia Ren
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Fan Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yuanyuan Tian
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun Fu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Shudong Zong
- National Research Institute for Family Planning, WHO Collaboration Center of Human Reproduction, Beijing 100081, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
240
|
Abstract
Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders.
Collapse
|
241
|
Li R, Uttarwar L, Gao B, Charbonneau M, Shi Y, Chan JSD, Dubois CM, Krepinsky JC. High Glucose Up-regulates ADAM17 through HIF-1α in Mesangial Cells. J Biol Chem 2015; 290:21603-14. [PMID: 26175156 DOI: 10.1074/jbc.m115.651604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/26/2022] Open
Abstract
We previously showed that ADAM17 mediates high glucose-induced matrix production by kidney mesangial cells. ADAM17 expression is increased in diabetic kidneys, suggesting that its up-regulation may augment high glucose profibrotic responses. We thus studied the effects of high glucose on ADAM17 gene regulation. Primary rat mesangial cells were treated with high glucose (30 mm) or mannitol as osmotic control. High glucose dose-dependently increased ADAM17 promoter activity, transcript, and protein levels. This correlated with augmented ADAM17 activity after 24 h versus 1 h of high glucose. We tested involvement of transcription factors shown in other settings to regulate ADAM17 transcription. Promoter activation was not affected by NF-κB or Sp1 inhibitors, but was blocked by hypoxia-inducible factor-1α (HIF-1α) inhibition or down-regulation. This also prevented ADAM17 transcript and protein increases. HIF-1α activation by high glucose was shown by its increased nuclear translocation and activation of the HIF-responsive hypoxia-response element (HRE)-luciferase reporter construct. Assessment of ADAM17 promoter deletion constructs coupled with mutation analysis and ChIP studies identified HIF-1α binding to its consensus element at -607 as critical for the high glucose response. Finally, inhibitors of epidermal growth factor receptor (EGFR) and downstream PI3K/Akt, or ADAM17 itself, prevented high glucose-induced HIF-1α activation and ADAM17 up-regulation. Thus, high glucose induces ADAM17 transcriptional up-regulation in mesangial cells, which is associated with augmentation of its activity. This is mediated by HIF-1α and requires EGFR/ADAM17 signaling, demonstrating the potentiation by ADAM17 of its own up-regulation. ADAM17 inhibition thus provides a potential novel therapeutic strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Renzhong Li
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Lalita Uttarwar
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Bo Gao
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6
| | - Martine Charbonneau
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Yixuan Shi
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - John S D Chan
- the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Claire M Dubois
- the Division of Immunology, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, and
| | - Joan C Krepinsky
- From the Division of Nephrology, McMaster University, Hamilton, Ontario L8N 4A6,
| |
Collapse
|
242
|
iRhom1 regulates proteasome activity via PAC1/2 under ER stress. Sci Rep 2015; 5:11559. [PMID: 26109405 PMCID: PMC4479803 DOI: 10.1038/srep11559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022] Open
Abstract
Proteasome is a protein degradation complex that plays a major role in maintaining cellular homeostasis. Despite extensive efforts to identify protein substrates that are degraded through ubiquitination, the regulation of proteasome activity itself under diverse signals is poorly understood. In this study, we have isolated iRhom1 as a stimulator of proteasome activity from genome-wide functional screening using cDNA expression and an unstable GFP-degron. Downregulation of iRhom1 reduced enzymatic activity of proteasome complexes and overexpression of iRhom1 enhanced it. Native-gel and fractionation analyses revealed that knockdown of iRhom1 expression impaired the assembly of the proteasome complexes. The expression of iRhom1 was increased by endoplasmic reticulum (ER) stressors, such as thapsigargin and tunicamycin, leading to the enhancement of proteasome activity, especially in ER-containing microsomes. iRhom1 interacted with the 20S proteasome assembly chaperones PAC1 and PAC2, affecting their protein stability. Moreover, knockdown of iRhom1 expression impaired the dimerization of PAC1 and PAC2 under ER stress. In addition, iRhom1 deficiency in D. melanogaster accelerated the rough-eye phenotype of mutant Huntingtin, while transgenic flies expressing either human iRhom1 or Drosophila iRhom showed rescue of the rough-eye phenotype. Together, these results identify a novel regulator of proteasome activity, iRhom1, which functions via PAC1/2 under ER stress.
Collapse
|
243
|
Dombernowsky SL, Samsøe-Petersen J, Petersen CH, Instrell R, Hedegaard AMB, Thomas L, Atkins KM, Auclair S, Albrechtsen R, Mygind KJ, Fröhlich C, Howell M, Parker P, Thomas G, Kveiborg M. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17. Nat Commun 2015; 6:7518. [PMID: 26108729 PMCID: PMC4481878 DOI: 10.1038/ncomms8518] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/16/2015] [Indexed: 01/07/2023] Open
Abstract
The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology.
Collapse
Affiliation(s)
- Sarah Louise Dombernowsky
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Camilla Hansson Petersen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rachael Instrell
- High Throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Anne-Mette Bornhardt Hedegaard
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
| | - Katelyn Mae Atkins
- Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
| | - Reidar Albrechtsen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kasper Johansen Mygind
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Camilla Fröhlich
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael Howell
- High Throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Peter Parker
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- Division of Cancer Studies, King’s College London, New Hunts House, Guy’s Campus, London SE1 1UL, UK
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
- Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Marie Kveiborg
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
244
|
Holding AN. XL-MS: Protein cross-linking coupled with mass spectrometry. Methods 2015; 89:54-63. [PMID: 26079926 DOI: 10.1016/j.ymeth.2015.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
With the continuing trend to study larger and more complex systems, the application of protein cross-linking coupled with mass spectrometry (XL-MS) provides a varied toolkit perfectly suited to achieve these goals. By freezing the transient interactions through the formation of covalent bonds, XL-MS provides a vital insight into both the structure and organization of proteins in a wide variety of conditions. This review covers some of the established methods that underpin the field alongside the more recent developments that hold promise to further realize its potential in new directions.
Collapse
Affiliation(s)
- Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
245
|
iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc Natl Acad Sci U S A 2015; 112:6080-5. [PMID: 25918388 DOI: 10.1073/pnas.1505649112] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The metalloproteinase ADAM17 (a disintegrin and metalloprotease 17) controls EGF receptor (EGFR) signaling by liberating EGFR ligands from their membrane anchor. Consequently, a patient lacking ADAM17 has skin and intestinal barrier defects that are likely caused by lack of EGFR signaling, and Adam17(-/-) mice die perinatally with open eyes, like Egfr(-/-) mice. A hallmark feature of ADAM17-dependent EGFR ligand shedding is that it can be rapidly and posttranslationally activated in a manner that requires its transmembrane domain but not its cytoplasmic domain. This suggests that ADAM17 is regulated by other integral membrane proteins, although much remains to be learned about the underlying mechanism. Recently, inactive Rhomboid 2 (iRhom2), which has seven transmembrane domains, emerged as a molecule that controls the maturation and function of ADAM17 in myeloid cells. However, iRhom2(-/-) mice appear normal, raising questions about how ADAM17 is regulated in other tissues. Here we report that iRhom1/2(-/-) double knockout mice resemble Adam17(-/-) and Egfr(-/-) mice in that they die perinatally with open eyes, misshapen heart valves, and growth plate defects. Mechanistically, we show lack of mature ADAM17 and strongly reduced EGFR phosphorylation in iRhom1/2(-/-) tissues. Finally, we demonstrate that iRhom1 is not essential for mouse development but regulates ADAM17 maturation in the brain, except in microglia, where ADAM17 is controlled by iRhom2. These results provide genetic, cell biological, and biochemical evidence that a principal function of iRhoms1/2 during mouse development is to regulate ADAM17-dependent EGFR signaling, suggesting that iRhoms1/2 could emerge as novel targets for treatment of ADAM17/EGFR-dependent pathologies.
Collapse
|
246
|
Rastew E, Morf L, Singh U. Entamoeba histolytica rhomboid protease 1 has a role in migration and motility as validated by two independent genetic approaches. Exp Parasitol 2015; 154:33-42. [PMID: 25889553 DOI: 10.1016/j.exppara.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Rhomboid proteins represent a recently discovered family of intramembrane proteases present in a broad range of organisms and with increasing links to human diseases. The enteric parasite Entamoeba histolytica has evolved multiple mechanisms to adapt to the human host environment and establish infection. Our recent studies identified EhROM1 as a functional E. histolytica rhomboid protease with roles in adhesion to and phagocytosis of host cells. Since those studies were performed in a non-virulent strain, roles in parasite virulence could not be assessed. We focused this study on the comparison and validation of two genetic manipulation techniques: overexpression of a dominant-negative catalytic mutant of EhROM1 and knock down of EhROM1 using a RNAi-based silencing approach followed by functional studies of phenotypic analyses in virulent parasites. Both the EhROM1 catalytic mutant and parasites with EhROM1 downregulation were reduced in cytotoxicity, hemolytic activity, and directional and non-directional transwell migration. Importantly, the role for EhROM1 in cell migration mimics similar roles for rhomboid proteases from mammalian and apicomplexan systems. However, the EhROM1 catalytic mutant and EhROM1 downregulation parasites had different phenotypes for erythrophagocytosis, while complement resistance was not affected in either strain. In summary, in this study we genetically manipulated E. histolytica rhomboid protease EhROM1 by two different approaches and identified similarly attenuated phenotypes by both approaches, suggesting a novel role for EhROM1 in amebic motility.
Collapse
Affiliation(s)
- Elena Rastew
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Morf
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Upinder Singh
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
247
|
Li Q, Zhang N, Zhang L, Ma H. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns. THE NEW PHYTOLOGIST 2015; 206:368-380. [PMID: 25417867 DOI: 10.1111/nph.13174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/16/2014] [Indexed: 05/29/2023]
Abstract
Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Ning Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Liangsheng Zhang
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
248
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
249
|
Chapnick DA, Bunker E, Liu X. A biosensor for the activity of the "sheddase" TACE (ADAM17) reveals novel and cell type-specific mechanisms of TACE activation. Sci Signal 2015; 8:rs1. [PMID: 25714465 DOI: 10.1126/scisignal.2005680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diverse environmental conditions stimulate protein "shedding" from the cell surface through proteolytic cleavage. The protease TACE [tumor necrosis factor-α (TNFα)--converting enzyme, encoded by ADAM17] mediates protein shedding, thereby regulating the maturation and release of various extracellular substrates, such as growth factors and cytokines, that induce diverse cellular responses. We developed a FRET (fluorescence resonance energy transfer)-based biosensor called TSen that quantitatively reports the kinetics of TACE activity in live cells. In combination with chemical biology approaches, we used TSen to probe the dependence of TACE activation on the induction of the kinases p38 and ERK (extracellular signal-regulated kinase) in various epithelial cell lines. Using TSen, we found that disruption of the actin cytoskeleton in keratinocytes induced rapid and robust TSen cleavage and the accumulation of TACE at the plasma membrane. Cytoskeletal disruption also increased the cleavage of endogenous TACE substrates, including transforming growth factor-α. Thus, TSen is a useful tool for unraveling the mechanisms underlying the spatiotemporal activation of TACE in live cells.
Collapse
Affiliation(s)
- Douglas A Chapnick
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Jennie Smoly Caruthers Biotechnology Building (JSCBB), 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Eric Bunker
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Jennie Smoly Caruthers Biotechnology Building (JSCBB), 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Jennie Smoly Caruthers Biotechnology Building (JSCBB), 3415 Colorado Avenue, Boulder, CO 80303, USA.
| |
Collapse
|
250
|
Hartmann M, Parra LM, Ruschel A, Böhme S, Li Y, Morrison H, Herrlich A, Herrlich P. Tumor Suppressor NF2 Blocks Cellular Migration by Inhibiting Ectodomain Cleavage of CD44. Mol Cancer Res 2015; 13:879-90. [PMID: 25652588 DOI: 10.1158/1541-7786.mcr-15-0020-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Ectodomain cleavage (shedding) of transmembrane proteins by metalloproteases (MMP) generates numerous essential signaling molecules, but its regulation is not totally understood. CD44, a cleaved transmembrane glycoprotein, exerts both antiproliferative or tumor-promoting functions, but whether proteolysis is required for this is not certain. CD44-mediated contact inhibition and cellular proliferation are regulated by counteracting CD44 C-terminal interacting proteins, the tumor suppressor protein merlin (NF2) and ERM proteins (ezrin, radixin, moesin). We show here that activation or overexpression of constitutively active merlin or downregulation of ERMs inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced [as well as serum, hepatocyte growth factor (HGF), or platelet-derived growth factor (PDGF)] CD44 cleavage by the metalloprotease ADAM10, whereas overexpressed ERM proteins promoted cleavage. Merlin- and ERM-modulated Ras or Rac activity was not required for this function. However, latrunculin (an actin-disrupting toxin) or an ezrin mutant which is unable to link CD44 to actin, inhibited CD44 cleavage, identifying a cytoskeletal C-terminal link as essential for induced CD44 cleavage. Cellular migration, an important tumor property, depended on CD44 and its cleavage and was inhibited by merlin. These data reveal a novel function of merlin and suggest that CD44 cleavage products play a tumor-promoting role. Neuregulin, an EGF ligand released by ADAM17 from its pro-form NRG1, is predominantly involved in regulating cellular differentiation. In contrast to CD44, release of neuregulin from its pro-form was not regulated by merlin or ERM proteins. Disruption of the actin cytoskeleton however, also inhibited NRG1 cleavage. This current study presents one of the first examples of substrate-selective cleavage regulation. IMPLICATIONS Investigating transmembrane protein cleavage and their regulatory pathways have provided new molecular insight into their important role in cancer formation and possible treatment.
Collapse
Affiliation(s)
- Monika Hartmann
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Liseth M Parra
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany. Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Ruschel
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Sandra Böhme
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Yong Li
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Helen Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Andreas Herrlich
- Harvard Institutes of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|