201
|
Affiliation(s)
- Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, and in the Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
202
|
Andreev DE, O'Connor PBF, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, Baranov PV. Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol 2015; 16:90. [PMID: 25943107 PMCID: PMC4419486 DOI: 10.1186/s13059-015-0651-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Background Oxygen and glucose metabolism play pivotal roles in many (patho)physiological conditions. In particular, oxygen and glucose deprivation (OGD) during ischemia and stroke results in extensive tissue injury and cell death. Results Using time-resolved ribosome profiling, we assess gene expression levels in a neural cell line, PC12, during the first hour of OGD. The most substantial alterations are seen to occur within the first 20 minutes of OGD. While transcription of only 100 genes is significantly altered during one hour of OGD, the translation response affects approximately 3,000 genes. This response involves reprogramming of initiation and elongation rates, as well as the stringency of start codon recognition. Genes involved in oxidative phosphorylation are most affected. Detailed analysis of ribosome profiles reveals salient alterations of ribosome densities on individual mRNAs. The mRNA-specific alterations include increased translation of upstream open reading frames, site-specific ribosome pauses, and production of alternative protein isoforms with amino-terminal extensions. Detailed analysis of ribosomal profiles also reveals six mRNAs with translated ORFs occurring downstream of annotated coding regions and two examples of dual coding mRNAs, where two protein products are translated from the same long segment of mRNA, but in two different frames. Conclusions These findings uncover novel regulatory mechanisms of translational response to OGD in mammalian cells that are different from the classical pathways such as hypoxia inducible factor (HIF) signaling, while also revealing sophisticated organization of protein coding information in certain genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitry E Andreev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Patrick B F O'Connor
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Institute of Biomedical Chemistry, Pogodinskaya street, Moscow, 119121, Russia.
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
203
|
Assaying PTEN catalysis in vitro. Methods 2015; 77-78:51-7. [DOI: 10.1016/j.ymeth.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
|
204
|
Ugalde-Olano A, Egia A, Fernández-Ruiz S, Loizaga-Iriarte A, Zuñiga-García P, Garcia S, Royo F, Lacasa-Viscasillas I, Castro E, Cortazar AR, Zabala-Letona A, Martín-Martín N, Arruabarrena-Aristorena A, Torrano-Moya V, Valcárcel-Jiménez L, Sánchez-Mosquera P, Caro-Maldonado A, González-Tampan J, Cachi-Fuentes G, Bilbao E, Montero R, Fernández S, Arrieta E, Zorroza K, Castillo-Martín M, Serra V, Salazar E, Macías-Cámara N, Tabernero J, Baselga J, Cordón-Cardo C, Aransay AM, Villar AD, Iovanna JL, Falcón-Pérez JM, Unda M, Bilbao R, Carracedo A. Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN. Methods 2015; 77-78:25-30. [PMID: 25697760 PMCID: PMC4503808 DOI: 10.1016/j.ymeth.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.
Collapse
Affiliation(s)
| | - Ainara Egia
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | | | | | - Stephane Garcia
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Félix Royo
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | | | - Erika Castro
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Ana R Cortazar
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
| | | | | | | | | | | | | | | | | | | | - Elena Bilbao
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Rocío Montero
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Sara Fernández
- Department of Pathology, Basurto University Hospital, 48013 Bilbao, Spain; Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Edurne Arrieta
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Kerman Zorroza
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | - Violeta Serra
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eider Salazar
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | - Jose Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jose Baselga
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain; Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Carlos Cordón-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana M Aransay
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Amaia Del Villar
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Juan L Iovanna
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan M Falcón-Pérez
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Roberto Bilbao
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
205
|
MicroRNA Expression Profile of Neural Progenitor-Like Cells Derived from Rat Bone Marrow Mesenchymal Stem Cells under the Influence of IGF-1, bFGF and EGF. Int J Mol Sci 2015; 16:9693-718. [PMID: 25938966 PMCID: PMC4463612 DOI: 10.3390/ijms16059693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip® miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
Collapse
|
206
|
Michel AM, Ahern AM, Donohue CA, Baranov PV. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms. Proteomics 2015; 15:2410-6. [PMID: 25736862 PMCID: PMC4832365 DOI: 10.1002/pmic.201400603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
Abstract
The boundaries of protein coding sequences are more difficult to define at the 5′ end than at the 3′ end due to potential multiple translation initiation sites (TISs). Even in the presence of phylogenetic data, the use of sequence information only may not be sufficient for the accurate identification of TISs. Traditional proteomics approaches may also fail because the N‐termini of newly synthesized proteins are often processed. Thus ribosome profiling (ribo‐seq), producing a snapshot of the ribosome distribution across the entire transcriptome, is an attractive experimental technique for the purpose of TIS location exploration. The GWIPS‐viz (Genome Wide Information on Protein Synthesis visualized) browser (http://gwips.ucc.ie) provides free access to the genomic alignments of ribo‐seq data and corresponding mRNA‐seq data along with relevant annotation tracks. In this brief, we illustrate how GWIPS‐viz can be used to explore the ribosome occupancy at the 5′ ends of protein coding genes to assess the activity of AUG and non‐AUG TISs responsible for the synthesis of proteoforms with alternative or heterogeneous N‐termini. The presence of ribo‐seq tracks for various organisms allows for cross‐species comparison of orthologous genes and the availability of datasets from multiple laboratories permits the assessment of the technical reproducibility of the ribosome densities.
Collapse
Affiliation(s)
- Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Anna M Ahern
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Claire A Donohue
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
207
|
Yalak G, Olsen BR. Proteomic database mining opens up avenues utilizing extracellular protein phosphorylation for novel therapeutic applications. J Transl Med 2015; 13:125. [PMID: 25927841 PMCID: PMC4427915 DOI: 10.1186/s12967-015-0482-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Recent advances in extracellular signaling suggest that extracellular protein phosphorylation is a regulatory mechanism outside the cell. The list of reported active extracellular protein kinases and phosphatases is growing, and phosphorylation of an increasing number of extracellular matrix molecules and extracellular domains of trans-membrane proteins is being documented. Here, we use public proteomic databases, collagens – the major components of the extracellular matrix, extracellular signaling molecules and proteolytic enzymes as examples to assess what the roles of extracellular protein phosphorylation may be in health and disease. We propose that novel tools be developed to help assess the role of extracellular protein phosphorylation and translate the findings for biomedical applications. Furthermore, we suggest that the phosphorylation state of extracellular matrix components as well as the presence of extracellular kinases be taken into account when designing translational medical applications.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Developmental Biology, Harvard Medical School/Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard Medical School/Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
208
|
Gil A, Rodríguez-Escudero I, Stumpf M, Molina M, Cid VJ, Pulido R. A functional dissection of PTEN N-terminus: implications in PTEN subcellular targeting and tumor suppressor activity. PLoS One 2015; 10:e0119287. [PMID: 25875300 PMCID: PMC4398541 DOI: 10.1371/journal.pone.0119287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations.
Collapse
Affiliation(s)
- Anabel Gil
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Miriam Stumpf
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Hubrecht Institute, Utrecht, The Netherlands
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
209
|
Howitt J, Low LH, Putz U, Doan A, Lackovic J, Goh CP, Gunnersen J, Silke J, Tan SS. Ndfip1 represses cell proliferation by controlling Pten localization and signaling specificity. J Mol Cell Biol 2015; 7:119-31. [PMID: 25801959 DOI: 10.1093/jmcb/mjv020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/28/2014] [Indexed: 01/16/2023] Open
Abstract
Pten controls a signaling axis that is implicated to regulate cell proliferation, growth, survival, migration, and metabolism. The molecular mechanisms underlying the specificity of Pten responses to such diverse cellular functions are currently poorly understood. Here we report the control of Pten activity and signaling specificity during the cell cycle by Ndfip1 regulation of Pten spatial distribution. Genetic deletion of Ndfip1 resulted in a loss of Pten nuclear compartmentalization and increased cell proliferation, despite cytoplasmic Pten remaining active in regulating PI3K/Akt signaling. Cells lacking nuclear Pten were found to have dysregulated levels of Plk1 and cyclin D1 that could drive cell proliferation. In vivo, transgene expression of Ndfip1 in the developing brain increased nuclear Pten and lengthened the cell cycle of neuronal progenitors, resulting in microencephaly. Our results show that local partitioning of Pten from the cytoplasm to the nucleus represents a key mechanism contributing to the specificity of Pten signaling during cell proliferation.
Collapse
Affiliation(s)
- Jason Howitt
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ulrich Putz
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anh Doan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Lackovic
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Choo-Peng Goh
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Silke
- Cell Signalling and Cell Death Laboratory, Walter and Eliza Hall Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seong-Seng Tan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
210
|
Wang H, Zhang P, Lin C, Yu Q, Wu J, Wang L, Cui Y, Wang K, Gao Z, Li H. Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma. PLoS One 2015; 10:e114250. [PMID: 25714556 PMCID: PMC4340966 DOI: 10.1371/journal.pone.0114250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023] Open
Abstract
PTEN-Long is a translational variant of PTEN (Phosphatase and Tensin Homolog). Like PTEN, PTEN-Long is able to antagonize the PI3K-Akt pathway and inhibits tumor growth. In this study, we investigated the role PTEN-Long plays in the development and progression of clear cell renal cell carcinoma (ccRCC) and explored the therapeutic possibility using proteinaceous PTEN-Long to treat ccRCC. We found that the protein levels of PTEN-Long were drastically reduced in ccRCC, which was correlated with increased levels of phosphorylated Akt (pAkt). Gain of function experiments showed overexpression of PTEN-Long in the ccRCC cell line 786-0 suppressed PI3K-Akt signaling, inhibited cell proliferation, migration and invasion, and eventually induced cell death. When purified PTEN-Long was added into cultured 786-0 cells, it entered cells, blocked Akt activation, and induced apoptosis involving Caspase 3 cleavage. Furthermore, PTEN-Long inhibited proliferation of 786-0 cells in xenograft mouse model. Our results implicated that understanding the roles of PTEN-Long in renal cell carcinogenesis has therapeutic significance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Peng Zhang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Chunhua Lin
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Qingxia Yu
- Critical Care Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Jitao Wu
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Lin Wang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Yupeng Cui
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Ke Wang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
| | - Zhenli Gao
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Institute of Urology, Zhifu, Yantai, Shandong, 264000, People’s Republic of China
- * E-mail: (ZG); (HL)
| | - Hong Li
- Minimally Invasive Abdominal Surgery, Ningbo Medical Center, LiHuiLi hospital, Ningbo, Zhejiang, 315040, People’s Republic of China
- * E-mail: (ZG); (HL)
| |
Collapse
|
211
|
Collaud S, Tischler V, Atanassoff A, Wiedl T, Komminoth P, Oehlschlegel C, Weder W, Soltermann A. Lung neuroendocrine tumors: correlation of ubiquitinylation and sumoylation with nucleo-cytosolic partitioning of PTEN. BMC Cancer 2015; 15:74. [PMID: 25884169 PMCID: PMC4350902 DOI: 10.1186/s12885-015-1084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background The tumor suppressor phosphatase and tensin homolog (PTEN) is a pleiotropic enzyme, inhibiting phosphatidyl-inositol-3 kinase (PI3K) signaling in the cytosol and stabilizing the genome in the nucleus. Nucleo-cytosolic partitioning is dependent on the post-translational modifications ubiquitinylation and sumoylation. This cellular compartmentalization of PTEN was investigated in lung neuroendocrine tumors (lung NET). Methods Tumor tissues from 192 lung NET patients (surgical specimens = 183, autopsies = 9) were investigated on tissue microarrays. PTEN was H-scored by two investigators in nucleus and cytosol using the monoclonal antibody 6H2.1. Results were correlated with immunoreactivity for USP7 (herpes virus-associated ubiquitin-specific protease 7) and SUMO2/3 (small ubiquitin-related modifier protein 2/3) as well as PTEN and p53 FISH gene status. Clinico-pathologic data including overall survival, proliferation rate and diagnostic markers (synaptophysin, chromogranin A, Mib-1, TTF-1) were recorded. Results The multicentre cohort included 58 typical carcinoids (TC), 42 atypical carcinoids (AC), 32 large cell neuroendocrine carcinomas (LCNEC) and 60 small cell lung carcinomas (SCLC). Carcinoids were smaller in size and had higher synaptophysin and chromogranin A, but lower TTF-1 expressions. Patients with carcinoids were predominantly female and 10 years younger than patients with LCNEC/SCLC. In comparison to the carcinoids, LCNEC/SCLC tumors presented a stronger loss of nuclear and cytosolic PTEN associated with a loss of PTEN and p53. Concomitantly, a loss of nuclear USP7 but increase of nuclear and cytosolic SUMO2/3 was found. Loss of nuclear and cytosolic PTEN, loss of nuclear USP7 and increase of cytosolic SUMO2/3 thus correlated with poor survival. Among carcinoids, loss of cytosolic PTEN was predominantly found in TTF1-negative larger tumors of male patients. Among SCLC, loss of both cytosolic and nuclear PTEN but not proliferation rate or tumor size delineated a subgroup with poorer survival (all p-values <0.05). Conclusions Cellular ubiquitinylation and sumoylation likely influence the functional PTEN loss in high grade lung NET. Both nuclear and cytosolic PTEN immunoreactivity should be considered for correlation with clinico-pathologic parameters.
Collapse
Affiliation(s)
- Stéphane Collaud
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Andrej Atanassoff
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Thomas Wiedl
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Paul Komminoth
- Institute of Pathology, Triemli Hospital, Zurich, Switzerland.
| | | | - Walter Weder
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| |
Collapse
|
212
|
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CMA, Vaccaro V, Vari S, Cognetti F, Ciuffreda L. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol 2015; 5:24. [PMID: 25763354 PMCID: PMC4329810 DOI: 10.3389/fonc.2015.00024] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.
Collapse
Affiliation(s)
- Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Nicola Inzerilli
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Carmen M A Nuzzo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
213
|
Johnston SB, Raines RT. Conformational stability and catalytic activity of PTEN variants linked to cancers and autism spectrum disorders. Biochemistry 2015; 54:1576-82. [PMID: 25647146 DOI: 10.1021/acs.biochem.5b00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have activity higher than the activity of those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has conformational stability greater than that of the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism and suggest that PTEN-L is a repository for a critical catalytic activity.
Collapse
Affiliation(s)
- Sean B Johnston
- Department of Biochemistry and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
214
|
Jia LT, Zhang R, Shen L, Yang AG. Regulators of carcinogenesis: emerging roles beyond their primary functions. Cancer Lett 2015; 357:75-82. [PMID: 25448403 DOI: 10.1016/j.canlet.2014.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Cancers are characterized by aberrant cell signaling that results in accelerated proliferation, suppressed cell death, and reprogrammed metabolism to provide sufficient energy and intermediate metabolites for macromolecular biosynthesis. Here, we summarize the emerging "unconventional" roles of these regulators based on their newly identified interaction partners, different subcellular localizations, and/or structural variants. For example, the epidermal growth factor receptor (EGFR) regulates DNA synthesis, microRNA maturation and drug resistance by interacting with previously undescribed partners; cyclins and cyclin-dependent kinases (CDKs) crosstalk with multiple canonical pathways by phosphorylating novel substrates or by functioning as transcriptional factors; apoptosis executioners play extensive roles in necroptosis, autophagy, and in the self-renewal of stem cells; and various metabolic enzymes and their mutants control carcinogenesis independently of their enzymatic activity. These recent findings will supplement the systemic functional annotation of cancer regulators and provide new rationales for potential molecular targeted cancer treatments.
Collapse
Affiliation(s)
- Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lan Shen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - An-Gang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
215
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
216
|
Catalysis by the tumor-suppressor enzymes PTEN and PTEN-L. PLoS One 2015; 10:e0116898. [PMID: 25607987 PMCID: PMC4301912 DOI: 10.1371/journal.pone.0116898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Phosphatase and tensin homologue deleted from chromosome ten (PTEN) is a lipid phosphatase tumor suppressor that is lost or inactivated in most human tumors. The enzyme catalyzes the hydrolysis of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) to form phosphatidylinositol-(4,5)-bisphosphate (PIP2) and inorganic phosphate. Here, we report on the first continuous assay for the catalytic activity of PTEN. Using this assay, we demonstrate that human PTEN is activated by the reaction product PIP2, as well as in solutions of low salt concentration. This activation is abrogated in the K13A variant, which has a disruption in a putative binding site for PIP2. We also demonstrate that PTEN-L, which derives from alternative translation of the PTEN mRNA, is activated constitutively. These findings have implications for catalysis by PTEN in physiological environments and could expedite the development of PTEN-based chemotherapeutic agents.
Collapse
|
217
|
WANG YIHONG, YANG JICHENG, SHENG WEIHUA, XIE YUFENG, LIU JISHENG. Adenovirus-mediated ING4/PTEN double tumor suppressor gene co-transfer modified by RGD enhances antitumor activity in human nasopharyngeal carcinoma cells. Int J Oncol 2015; 46:1295-303. [DOI: 10.3892/ijo.2015.2822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022] Open
|
218
|
Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neurosci Lett 2015; 588:131-6. [PMID: 25575796 DOI: 10.1016/j.neulet.2015.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.
Collapse
|
219
|
Putz U, Mah S, Goh CP, Low LH, Howitt J, Tan SS. PTEN secretion in exosomes. Methods 2014; 77-78:157-63. [PMID: 25542098 DOI: 10.1016/j.ymeth.2014.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
PTEN was discovered as a membrane-associated tumor suppressor protein nearly two decades ago, but the concept that it can be secreted and taken up by recipient cells is revolutionary. Since then, various laboratories have reported that PTEN is indeed secreted and available for uptake by other cells in at least two different guises. First, PTEN may be packaged and exported within extracellular vesicles (EV) called exosomes. Second, PTEN may also be secreted as a naked protein in a longer isoform called PTEN-long. While the conditions favouring the secretion of PTEN-long remain unknown, PTEN secretion in exosomes is enhanced by the Ndfip1/Nedd4 ubiquitination system. In this report, we describe conditions for packaging PTEN in exosomes and their potential use for mediating non cell-autonomous functions in recipient cells. We suggest that this mode of PTEN transfer may potentially provide beneficial PTEN for tumor suppression, however it may also propagate deleterious versions of mutated PTEN causing tumorigenesis.
Collapse
Affiliation(s)
- Ulrich Putz
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Sophia Mah
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Choo-Peng Goh
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Jason Howitt
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seong-Seng Tan
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
220
|
Yalak G, Vogel V. Ectokinases as novel cancer markers and drug targets in cancer therapy. Cancer Med 2014; 4:404-14. [PMID: 25504773 PMCID: PMC4380966 DOI: 10.1002/cam4.368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/13/2023] Open
Abstract
While small-molecule kinase inhibitors became the most prominent anticancer drugs, novel combinatorial strategies need to be developed as the fight against cancer is not yet won. We review emerging literature showing that the release of several ectokinases is significantly upregulated in body fluids from cancer patients and that they leave behind their unique signatures on extracellular matrix (ECM) proteins. Our analysis of proteomic data reveals that fibronectin is heavily phosphorylated in cancer tissues particularly within its growth factor binding sites and on domains that regulate fibrillogenesis. We are thus making the case that cancer is not only a disease of cells but also of the ECM. Targeting extracellular kinases or the extracellular signatures they leave behind might thus create novel opportunities in cancer diagnosis as well as new avenues to interfere with cancer progression and malignancy.
Collapse
Affiliation(s)
- Garif Yalak
- Harvard Medical School/Harvard School of Dental Medicine, Department of Developmental Biology, Harvard University, Boston, Massachusetts, 02115; Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | | |
Collapse
|
221
|
Liu J, Chin-Sang ID. C. elegans as a model to study PTEN's regulation and function. Methods 2014; 77-78:180-90. [PMID: 25514044 DOI: 10.1016/j.ymeth.2014.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
222
|
Liu Y, Lu X, Huang L, Wang W, Jiang G, Dean KC, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Darling DS, Postigo A, Dean DC. Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis. Nat Commun 2014; 5:5660. [PMID: 25434817 DOI: 10.1038/ncomms6660] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 01/28/2023] Open
Abstract
Ras pathway mutation is frequent in carcinomas where it induces expression of the transcriptional repressor ZEB1. Although ZEB1 is classically linked to epithelial-mesenchymal transition and tumour metastasis, it has an emerging second role in generation of cancer-initiating cells. Here we show that Ras induction of ZEB1 is required for tumour initiation in a lung cancer model, and we link this function to repression Pten, whose loss is critical for emergence of cancer-initiating cells. These two roles for ZEB1 in tumour progression can be distinguished by their requirement for different levels of ZEB1. A lower threshold of ZEB1 is sufficient for cancer initiation, whereas further induction is necessary for tumour metastasis.
Collapse
Affiliation(s)
- Yongqing Liu
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Li Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] College of Agriculture and Biotechnology, Zejiang University, Zejiang 310058, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Guomin Jiang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Brian Clem
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Sucheta Telang
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Alfred B Jenson
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Miriam Cuatrecasas
- 1] Department of Pathology, Centro de Diagnóstico Biomédico (CDB) Hospital Clínic, University of Barcelona, Barcelona 08036, Spain [2] Tumor Bank-Biobank, IDIBAPS, Barcelona 08036, Spain
| | - Jason Chesney
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Douglas S Darling
- Department of Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky 40202, USA
| | - Antonio Postigo
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Group of Transcriptional Regulation of Gene Expression, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain [3] ICREA, Barcelona 08010, Spain
| | - Douglas C Dean
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| |
Collapse
|
223
|
Michel AM, Andreev DE, Baranov PV. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. BMC Bioinformatics 2014; 15:380. [PMID: 25413677 PMCID: PMC4245810 DOI: 10.1186/s12859-014-0380-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Ribosome profiling (ribo-seq) provides experimental data on the density of elongating or initiating ribosomes at the whole transcriptome level that can be potentially used for estimating absolute levels of translation initiation at individual Translation Initiation Sites (TISs). These absolute levels depend on the mutual organisation of TISs within individual mRNAs. For example, according to the leaky scanning model of translation initiation in eukaryotes, a strong TIS downstream of another strong TIS is unlikely to be productive, since only a few scanning ribosomes would be able to reach the downstream TIS. In order to understand the dependence of translation initiation efficiency on the surrounding nucleotide context, it is important to estimate the strength of TISs independently of their mutual organisation, i.e. to estimate with what probability a ribosome would initiate at a particular TIS. Results We designed a simple computational approach for estimating the probabilities of ribosomes initiating at individual start codons using ribosome profiling data. The method is based on the widely accepted leaky scanning model of translation initiation in eukaryotes which postulates that scanning ribosomes may skip a start codon if the initiation context is unfavourable and continue on scanning. We tested our approach on three independent ribo-seq datasets obtained in mammalian cultured cells. Conclusions Our results suggested that the method successfully discriminates between weak and strong TISs and that the majority of numerous non-AUG TISs reported recently are very weak. Therefore the high frequency of non-AUG TISs observed in ribosome profiling experiments is due to their proximity to mRNA 5′-ends rather than their strength. Detectable translation initiation at non-AUG codons downstream of AUG codons is comparatively infrequent. The leaky scanning method will be useful for the characterization of differences in start codon selection between tissues, developmental stages and in response to stress conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0380-4) contains supplementary material, which is available to authorized users.
Collapse
|
224
|
Hodakoski C, Fine B, Hopkins B, Parsons R. Analysis of intracellular PTEN signaling and secretion. Methods 2014; 77-78:164-71. [PMID: 25462559 DOI: 10.1016/j.ymeth.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/28/2023] Open
Abstract
The tumor suppressor PTEN dephosphorylates PIP3 to inhibit PI3K signaling in cells. Altering PTEN intracellular signaling can therefore significantly affect cell behavior. Two novel mechanisms of PTEN regulation including the secretion and entry of the translational variant PTEN-L, and enzymatic inhibition by the interacting protein P-REX2, have been shown to modulate PI3K signaling, cellular proliferation and survival, and glucose metabolism. Here, we review the methods used to identify and validate the existence of both PTEN-L and the P-REX2-PTEN complex, to determine their effects on PTEN phosphatase activity, and to examine their role in cellular physiology.
Collapse
Affiliation(s)
- Cindy Hodakoski
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry Fine
- Department of Medicine, Division of Cardiovascular Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Hopkins
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
225
|
Stumpf M, Choorapoikayil S, den Hertog J. Pten function in zebrafish: anything but a fish story. Methods 2014; 77-78:191-6. [PMID: 25461815 DOI: 10.1016/j.ymeth.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/13/2022] Open
Abstract
Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of human PTEN that may facilitate cell membrane transfer, appears not to be conserved in zebrafish Ptena or Ptenb. Mutants that retain a single wild type pten allele develop tumors, predominantly hemangiosarcomas. Homozygous double mutants are embryonic lethal. Zebrafish embryos lacking functional Pten display enhanced proliferation of endothelial cells, resulting in hyperbranching of blood vessels. In addition, ptena-/-ptenb-/- mutant embryos display enhanced proliferation of hematopoietic stem and progenitor cells and concomitant arrest of differentiation, although Pten-deficient cells commit to all blood cell lineages. Zebrafish is an ideal model for intravital imaging and future work using ptena-/-ptenb-/- mutants will enhance our understanding of the function of Pten in vivo.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Suma Choorapoikayil
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; CNRS, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, Univ Montpellier 2, 34095 Montpellier, France
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
226
|
Yeast-based methods to assess PTEN phosphoinositide phosphatase activity in vivo. Methods 2014; 77-78:172-9. [PMID: 25448481 DOI: 10.1016/j.ymeth.2014.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/27/2023] Open
Abstract
The PTEN phosphoinositide 3-phosphatase is a tumor suppressor commonly targeted by pathologic missense mutations. Subject to multiple complex layers of regulation, its capital role in cancer relies on its counteracting function of class I phosphoinositide 3-kinase (PI3K), a key feature in oncogenic signaling pathways. Precise assessment of the involvement of PTEN mutations described in the clinics in loss of catalytic activity requires either tedious in vitro phosphatase assays or in vivo experiments involving transfection into mammalian cell lines. Taking advantage of the versatility of the model organism Saccharomyces cerevisiae, we have developed different functional assays by reconstitution of the mammalian PI3K-PTEN switch in this lower eukaryote. This methodology is based on the fact that regulated PI3K expression in yeast cells causes conversion of PtdIns(4,5)P2 in PtdIns(3,4,5)P3 and co-expression of PTEN counteracts this effect. This can be traced by monitoring growth, given that PtdIns(4,5)P2 pools are essential for the yeast cell, or by using fluorescent reporters amenable for microscopy or flow cytometry. Here we describe the methodology and review its application to evaluate the functionality of PTEN mutations. We show that the technique is amenable to both directed and systematic structure-function relationship studies, and present an example of its use for the study of the recently discovered PTEN-L variant.
Collapse
|
227
|
Malaney P, Uversky VN, Davé V. Identification of intrinsically disordered regions in PTEN and delineation of its function via a network approach. Methods 2014; 77-78:69-74. [PMID: 25449897 DOI: 10.1016/j.ymeth.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack stable higher order structures for the entire protein molecule or a significant portion of it. The discovery of IDPs evolved as an antithesis to the conventional structure-function paradigm wherein a higher order structure dictates protein function. Over the last decade, a number of proteins with functionally relevant unstructured regions have been discovered, which includes tumor suppressor PTEN. The protein domains that lack structure provide "hot-spots" for post-translational modifications (PTMs) and protein-protein interactions (PPIs), which facilitate their regulation and participation in multiple cellular processes. Consequently, dysregulation in IDPs contribute to aberrant cellular pathophysiology. Herein, we present PTEN and its translational isoform PTEN-L as a hybrid protein possessing ordered domain and intrinsically disordered C-terminal and an N-terminal tails. We review the role of intrinsic disorder in PTEN function and propose a methodology for the use of intrinsic disorder to study PTEN-regulated higher order protein-networks by associating basic principles of network biology to functional pathway analysis at the systems level.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
228
|
Bononi A, Pinton P. Study of PTEN subcellular localization. Methods 2014; 77-78:92-103. [PMID: 25312582 PMCID: PMC4396696 DOI: 10.1016/j.ymeth.2014.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023] Open
Abstract
The tumor suppressor PTEN is a key regulator of a plethora of cellular processes that are crucial in cancer development. Through its lipid phosphatase activity PTEN suppresses the PI3K/AKT pathway to govern cell proliferation, growth, migration, energy metabolism and death. The repertoire of roles fulfilled by PTEN has recently been expanded to include crucial functions in the nucleus, where it favors genomic stability and restrains cell cycle progression, as well as protein phosphatase dependent activity at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), where PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and regulates Ca2+ release from the ER and sensitivity to apoptosis. Indeed, PTEN is present in definite subcellular locations where it performs distinct functions acting on specific effectors. In this review, we summarize recent advantages in methods to study PTEN subcellular localization and the distinct biological functions of PTEN in different cellular compartments. A deeper understanding of PTEN’s compartmentalized-functions will guide the rational design of novel therapies.
Collapse
Affiliation(s)
- Angela Bononi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
229
|
Marchi S, Pinton P. Molecular Characterization of the Dominant-Negative Role of Cancer-Associated PTEN: Sometimes, Null is Better. Front Oncol 2014; 4:276. [PMID: 25346911 PMCID: PMC4193253 DOI: 10.3389/fonc.2014.00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/22/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
230
|
A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumour Biol 2014; 36:383-91. [PMID: 25266796 DOI: 10.1007/s13277-014-2617-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells exhibit the ability to metabolise glucose to lactate even under aerobic conditions for energy. This phenomenon is known as the Warburg effect and can be a potential target to kill cancer cells. Several studies have shown evidence for interplay between microRNAs and key metabolic enzyme effecters, which can facilitate the Warburg effect in cancer cells. In the present study, a microRNA sponge forcibly expressed using a lentiviral vector was utilised to knock down miR-21 expression in vitro. qPCR and Western blot assays were performed to evaluate the expression of a regulatory factor related to aerobic glycolysis and the signalling pathway it regulates. In bladder cancer specimens, expression levels of glycolysis-related genes [glucose transporter (GLUT)1, GLUT3, lactic dehydrogenase (LDH)A, LDHB, hexokinase (HK)1, HK2, pyruvate kinase type M (PKM) and hypoxia-inducible factor 1-alpha (HIF-1α)] were higher in tumour tissues than in adjacent tissues, suggesting the role of glycolysis in bladder cancer. miR-21 inhibition in bladder cancer cell lines resulted in reduction in tumour aerobic glycolysis. Decrease in glucose uptake and lactate production was observed upon expression of the miR-21 sponge, which promoted phosphatase and tensin homologue (PTEN) expression, decreased phosphorylated AKT and deactivated mTOR. Furthermore, messenger RNA (mRNA) and protein expression levels of glycolysis-related genes were also lower in miR-21 sponge cells compared to miR-21 control cells. Our findings suggest that miR-21 acts as a molecular switch to regulate aerobic glycolysis in bladder cancer cells via the PTEN/phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Blocking miR-21 function can be an effective diagnostic and therapeutic approach either by itself or in combination with existing methods to treat bladder cancer.
Collapse
|
231
|
Lusche DF, Wessels D, Richardson NA, Russell KB, Hanson BM, Soll BA, Lin BH, Soll DR. PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 2014; 9:e108495. [PMID: 25247494 PMCID: PMC4172592 DOI: 10.1371/journal.pone.0108495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in defects in motility, chemotaxis, aggregation and multicellular morphogenesis. D. discoideum also contains lpten, a newly discovered homolog of ptenA. Overexpressing lpten completely rescues all developmental and behavioral defects of the D. discoideum mutant ptenA−. This hypothesis must now be tested in human cells.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole A. Richardson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kanoe B. Russell
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brett M. Hanson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin A. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin H. Lin
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
232
|
Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, Vari S, Vaccaro V, Cognetti F, Milella M. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 2014; 56:66-80. [PMID: 25088603 DOI: 10.1016/j.jbior.2014.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression.
Collapse
Affiliation(s)
- Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
233
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
234
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
235
|
Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, Lunardi A, Webster K, Ng C, Newton RH, Knoblauch N, Guarnerio J, Ito K, Turka LA, Beck AH, Pinton P, Bronson RT, Wei W, Pandolfi PP. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 2014; 157:595-610. [PMID: 24766807 DOI: 10.1016/j.cell.2014.03.027] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/25/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here, we show that PTEN homodimerizes and, in this active conformation, exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants heterodimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and heterodimerization of wild-type and mutant PTEN in vivo, we generated Pten knockin mice harboring two cancer-associated PTEN mutations (PtenC124S and PtenG129E). Heterozygous Pten(C124S/+) and Pten(G129E/+) cells and tissues exhibit increased sensitivity to PI3-K/Akt activation compared to wild-type and Pten(+/-) counterparts, whereas this difference is no longer apparent between Pten(C124S/-) and Pten(-/-) cells. Notably, Pten KI mice are more tumor prone and display features reminiscent of complete Pten loss. Our findings reveal that PTEN loss and PTEN mutations are not synonymous and define a working model for the function and regulation of PTEN.
Collapse
Affiliation(s)
- Antonella Papa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine Section of General Pathology University of Ferrara, Ferrara 44124, Italy
| | - Leonardo Salmena
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Min Sup Song
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robin M Hobbs
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrea Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaitlyn Webster
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan H Newton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Knoblauch
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Keisuke Ito
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Laurence A Turka
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andy H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine Section of General Pathology University of Ferrara, Ferrara 44124, Italy
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
236
|
Pulido R, Baker SJ, Barata JT, Carracedo A, Cid VJ, Chin-Sang ID, Davé V, den Hertog J, Devreotes P, Eickholt BJ, Eng C, Furnari FB, Georgescu MM, Gericke A, Hopkins B, Jiang X, Lee SR, Lösche M, Malaney P, Matias-Guiu X, Molina M, Pandolfi PP, Parsons R, Pinton P, Rivas C, Rocha RM, Rodríguez MS, Ross AH, Serrano M, Stambolic V, Stiles B, Suzuki A, Tan SS, Tonks NK, Trotman LC, Wolff N, Woscholski R, Wu H, Leslie NR. A unified nomenclature and amino acid numbering for human PTEN. Sci Signal 2014; 7:pe15. [PMID: 24985344 PMCID: PMC4367864 DOI: 10.1126/scisignal.2005560] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site. To facilitate research in the field and to avoid ambiguities in the naming and identification of PTEN amino acids from publications and databases, we propose here a unifying nomenclature and amino acid numbering for this longer form of PTEN.
Collapse
Affiliation(s)
- Rafael Pulido
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain. BioCruces Health Research Institute, Barakaldo, Spain.
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, USA
| | - Joao T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain. CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Victor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33620, USA
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands, and Institute of Biology, Leiden, Leiden, Netherlands
| | - Peter Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Britta J Eickholt
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry and Cluster of Excellence NeuroCure, Berlin, German
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences and CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Benjamin Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xeujun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seung-Rock Lee
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mathias Lösche
- Physics Department and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Prerna Malaney
- Morsani College of Medicine, Department of Pathology and Cell Biology, Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33620, USA
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Biomedical Research Institute of Lleida (IRBLleida), Universitat de Lleida, Lleida, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, CIMUS, Universidade de Santiago de Compostela (USC), Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Rafael M Rocha
- Research Center, Antonio Prudente Foundation, Hospital A.C. Camargo; Department of Anatomic Pathology, Hospital A.C. Camargo, São Paulo, Brazil
| | - Manuel S Rodríguez
- Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastián, Spain
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vuk Stambolic
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Bangyan Stiles
- Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Akira Suzuki
- Global Centers of Excellence Program, Akita University Graduate School of Medicine, Akita, Japan
| | - Seong-Seng Tan
- Brain Development and Regeneration Division, Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nicolas Wolff
- Institut Pasteur, Unité de Résonance Magnétique Nucléaire des Biomolécules, Département de Biologie Structurale et Chimie, CNRS, Paris, France
| | - Rudiger Woscholski
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London, UK
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
237
|
Chua CEL, Chan SN, Tang BL. Non-Cell Autonomous or Secretory Tumor Suppression. J Cell Physiol 2014; 229:1346-52. [DOI: 10.1002/jcp.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shu Ning Chan
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| |
Collapse
|
238
|
Yalak G, Ehrlich YH, Olsen BR. Ecto-protein kinases and phosphatases: an emerging field for translational medicine. J Transl Med 2014; 12:165. [PMID: 24923278 PMCID: PMC4071215 DOI: 10.1186/1479-5876-12-165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022] Open
Abstract
Progress in translational research has led to effective new treatments of a large number of diseases. Despite this progress, diseases including cancer and cardiovascular disorders still are at the top in death statistics and disorders such as osteoporosis and osteoarthritis represent an increasing disease burden in the aging population. Novel strategies in research are needed more than ever to overcome such diseases. The growing field of extracellular protein phosphorylation provides excellent opportunities to make major discoveries of disease mechanisms that can lead to novel therapies. Reversible phosphorylation/dephosphorylation of sites in the extracellular domains of matrix, cell-surface and trans-membrane proteins is emerging as a critical regulatory mechanism in health and disease. Moreover, a new concept is emerging from studies of extracellular protein phosphorylation: in cells where ATP is stored within secretory vesicles and released by exocytosis upon cell-stimulation, phosphorylation of extracellular proteins can operate as a messenger operating uniquely in signaling pathways responsible for long-term cellular adaptation. Here, we highlight new concepts that arise from this research, and discuss translation of the findings into clinical applications such as development of diagnostic disease markers and next-generation drugs.
Collapse
Affiliation(s)
| | | | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
239
|
Affiliation(s)
- C Bassi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
240
|
Veleva-Rotse BO, Barnes AP. Brain patterning perturbations following PTEN loss. Front Mol Neurosci 2014; 7:35. [PMID: 24860420 PMCID: PMC4030135 DOI: 10.3389/fnmol.2014.00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022] Open
Abstract
This review will consider the impact of compromised PTEN signaling in brain patterning. We approach understanding the contribution of PTEN to nervous system development by surveying the findings from the numerous genetic loss-of-function models that have been generated as well as other forms of PTEN inactivation. By exploring the developmental programs influenced by this central transduction molecule, we can begin to understand the molecular mechanisms that shape the developing brain. A wealth of data indicates that PTEN plays critical roles in a variety of stages during brain development. Many of them are considered here including: stem cell proliferation, fate determination, polarity, migration, process outgrowth, myelination and somatic hypertrophy. In many of these contexts, it is clear that PTEN phosphatase activity contributes to the observed effects of genetic deletion or depletion, however recent studies have also ascribed non-catalytic functions to PTEN in regulating cell function. We also explore the potential impact this alternative pool of PTEN may have on the developing brain. Together, these elements begin to form a clearer picture of how PTEN contributes to the emergence of brain structure and binds form and function in the nervous system.
Collapse
Affiliation(s)
- Biliana O Veleva-Rotse
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA
| | - Anthony P Barnes
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA ; Department of Cell and Developmental Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
241
|
Heneberg P. Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxid Redox Signal 2014; 20:2191-209. [PMID: 24328688 PMCID: PMC3994915 DOI: 10.1089/ars.2013.5493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Redox modifications of thiols serve as a molecular code enabling precise and complex regulation of protein tyrosine phosphatases (PTPs) and other proteins. Particular gasotransmitters and even the redox modifications themselves affect each other, of which a typical example is S-nitrosylation-mediated protection against the further oxidation of protein thiols. RECENT ADVANCES For a long time, PTPs were considered constitutively active housekeeping enzymes. This view has changed substantially over the last two decades, and the PTP family is now recognized as a group of tightly and flexibly regulated fundamental enzymes. In addition to the conventional ways in which they are regulated, including noncovalent interactions, phosphorylation, and oxidation, the evidence that has accumulated during the past two decades suggests that many of these enzymes are also modulated by gasotransmitters, namely by nitric oxide (NO) and hydrogen sulfide (H2S). CRITICAL ISSUES The specificity and selectivity of the methods used to detect nitrosylation and sulfhydration remains to be corroborated, because several researchers raised the issue of false-positive results, particularly when using the most widespread biotin switch method. Further development of robust and straightforward proteomic methods is needed to further improve our knowledge of the full extent of the gasotransmitters-mediated changes in PTP activity, selectivity, and specificity. FURTHER DIRECTIONS: Results of the hitherto performed studies on gasotransmitter-mediated PTP signaling await translation into clinical medicine and pharmacotherapeutics. In addition to directly affecting the activity of particular PTPs, the use of reversible S-nitrosylation as a protective mechanism against oxidative stress should be of high interest.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University in Prague , Prague, Czech Republic
| |
Collapse
|
242
|
Malaney P, Uversky VN, Davé V. The PTEN Long N-tail is intrinsically disordered: increased viability for PTEN therapy. MOLECULAR BIOSYSTEMS 2014; 9:2877-88. [PMID: 24056727 DOI: 10.1039/c3mb70267g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant activation of the PI3K/Akt/mTOR pathway is observed in several cancers and hyper proliferative disorders. PTEN, a tumor suppressor gene, negatively regulates the PI3K/Akt/mTOR pathway. Inhibitors of various components of this pathway are currently being used for cancer therapy. However, the use of these small molecule inhibitors remains limited due to the presence of compensatory feedback loops within the pathway such that inhibition of one oncogenic molecule often results in the activation of another oncogenic molecule resulting in the development of chemoresistance. One novel strategy that has emerged as a means to circumvent the problem of feedback signaling is by activating tumor suppressor genes that abrogate oncogenic pathways and regress tumor growth. In this regard, a newly identified isoform of the PTEN protein shows promise for use in tumors with elevated PI3K/Akt/mTOR signaling. This isoform is a translational variant of PTEN, termed as PTEN Long, and has additional 173 amino acids at its N-terminus (N-173) than normal PTEN. The N-173 region is required for PTEN secretion and transport across the body. Given the potential of this N-173 region to act as a drug delivery system for PTEN, we herein analyze the structural properties of this region. This N-173 tail has a large intrinsically disordered region (IDR) and is composed of highly charged basic residues. Further, the region is enriched in potential linear binding motifs, protein-binding sites and post-translational modifications (PTMs) indicating its probable role in PTEN function and transport across cells. An extensive analysis of this region is warranted to better exploit its structural and biophysical peculiarities to drug discovery and drug delivery applications.
Collapse
Affiliation(s)
- Prerna Malaney
- Morsani College of Medicine, MDC 64, Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
243
|
PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 2014; 19:836-48. [PMID: 24768297 PMCID: PMC4097321 DOI: 10.1016/j.cmet.2014.03.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes.
Collapse
|
244
|
Ambrosio MR, Navari M, Di Lisio L, Leon EA, Onnis A, Gazaneo S, Mundo L, Ulivieri C, Gomez G, Lazzi S, Piris MA, Leoncini L, De Falco G. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 2014; 9:12. [PMID: 24731550 PMCID: PMC4005456 DOI: 10.1186/1750-9378-9-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/15/2022] Open
Abstract
Background Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Methods Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. Results We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Conclusions Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.
Collapse
Affiliation(s)
- Maria Raffaella Ambrosio
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Mohsen Navari
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Lorena Di Lisio
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Eduardo Andres Leon
- Bioinformatics Unit (UBio), Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna Onnis
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Sara Gazaneo
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Lucia Mundo
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | | | - Gonzalo Gomez
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Stefano Lazzi
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Miguel Angel Piris
- Department of Pathology, Hospital Universitario Marques de Valdecilla, IFIMAV, Santander, Spain
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| | - Giulia De Falco
- Department of Medical Biotechnologies, University of Siena, Via delle Scotte, 6-53100 Siena, Italy
| |
Collapse
|
245
|
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 2014; 7:23. [PMID: 24744697 PMCID: PMC3978343 DOI: 10.3389/fnmol.2014.00023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023] Open
Abstract
PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - George Leondaritis
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ivo Lieberam
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
246
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
247
|
Asano K. Why is start codon selection so precise in eukaryotes? ACTA ACUST UNITED AC 2014; 2:e28387. [PMID: 26779403 PMCID: PMC4705826 DOI: 10.4161/trla.28387] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.
Collapse
Affiliation(s)
- Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
248
|
Affiliation(s)
- Aaron Bender
- Diabetes, Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, Atran 5, 1 Gustave L. Levy Place, Box 1152, New York, NY, 10029, USA
| | | |
Collapse
|
249
|
Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets 2014; 15:65-79. [PMID: 24387334 PMCID: PMC4310752 DOI: 10.2174/1389450114666140106100909] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/30/2013] [Accepted: 11/02/2013] [Indexed: 02/08/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the most frequently disrupted tumor suppressors in cancer. The lipid phosphatase activity of PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway to repress tumor cell growth and survival. In the nucleus, PTEN promotes chromosome stability and DNA repair. Consequently, loss of PTEN function increases genomic instability. PTEN deficiency is caused by inherited germline mutations, somatic mutations, epigenetic and transcriptional silencing, post-translational modifications, and protein-protein interactions. Given the high frequency of PTEN deficiency across cancer subtypes, therapeutic approaches that exploit PTEN loss-of-function could provide effective treatment strategies. Herein, we discuss therapeutic strategies aimed at cancers with loss of PTEN function, and the challenges involved in treating patients afflicted with such cancers. We review preclinical and clinical findings, and highlight novel strategies under development to target PTENdeficient cancers.
Collapse
Affiliation(s)
| | - Todd W Miller
- Dartmouth-Hitchcock Medical Center, One Medical Center Dr. HB-7936, Lebanon, NH 03756, USA.
| |
Collapse
|
250
|
Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2013; 142:164-75. [PMID: 24333502 DOI: 10.1016/j.pharmthera.2013.12.004] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022]
Abstract
Aberrations in various cellular signaling pathways are instrumental in regulating cellular metabolism, tumor development, growth, proliferation, metastasis and cytoskeletal reorganization. The fundamental cellular signaling cascade involved in these processes, the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR), closely related to the mitogen-activated protein kinase (MAPK) pathway, is a crucial and intensively explored intracellular signaling pathway in tumorigenesis. Various activating mutations in oncogenes together with the inactivation of tumor suppressor genes are found in diverse malignancies across almost all members of the pathway. Substantial progress in uncovering PI3K/AKT/mTOR alterations and their roles in tumorigenesis has enabled the development of novel targeted molecules with potential for developing efficacious anticancer treatment. Two approved anticancer drugs, everolimus and temsirolimus, exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic and many others are in preclinical development as well as being tested in early clinical trials for many different types of cancer. This review focuses on targeted PI3K/AKT/mTOR signaling from the perspective of novel molecular targets for cancer therapy found in key pathway members and their corresponding experimental therapeutic agents. Various aberrant prognostic and predictive biomarkers are also discussed and examples are given. Novel approaches to PI3K/AKT/mTOR pathway inhibition together with a better understanding of prognostic and predictive markers have the potential to significantly improve the future care of cancer patients in the current era of personalized cancer medicine.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Histology and Embryology and Biomedical Centre, Faculty of Medicine Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic; Department of Neurology, Faculty Hospital Plzen, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|