201
|
Meyer KA, Davis TW, Watson SB, Denef VJ, Berry MA, Dick GJ. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms. PLoS One 2017; 12:e0183859. [PMID: 29020009 PMCID: PMC5647855 DOI: 10.1371/journal.pone.0183859] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022] Open
Abstract
Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01) and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02), and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes) and resistance to foreign genetic elements (such as CRISPR-Cas systems). Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.
Collapse
Affiliation(s)
- Kevin Anthony Meyer
- Cooperative Institute for Great Lakes Research (CIGLR), University of
Michigan, Ann Arbor, MI, United States of America
- Department of Earth and Environmental Sciences, University of Michigan,
Ann Arbor, MI, United States of America
| | - Timothy W. Davis
- NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI, United
States of America
| | - Susan B. Watson
- Environment and Climate Change Canada, Burlington, ON,
Canada
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology, University of Michigan,
Ann Arbor, MI, United States of America
| | - Michelle A. Berry
- Department of Ecology and Evolutionary Biology, University of Michigan,
Ann Arbor, MI, United States of America
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan,
Ann Arbor, MI, United States of America
| |
Collapse
|
202
|
Abstract
Marine microbial communities exert a large influence on ocean ecosystem processes, and viruses in these communities play key roles in controlling microbial abundances, nutrient cycling, and productivity. We show here that dominant viruses in the open ocean persist for long time periods and that many appear tightly locked in coordinated diel oscillations with their bacterial hosts. The persistent structure of viral assemblages, as well as synchronized daily oscillations of viruses and hosts, are in part the result of the regular diurnal coupling of viral and host replication cycles. Collectively, our results suggest that viruses, as key components of marine ecosystems, are intrinsically synchronized with the daily rhythms of microbial community processes in the ocean’s photic zone. Viruses are fundamental components of marine microbial communities that significantly influence oceanic productivity, biogeochemistry, and ecosystem processes. Despite their importance, the temporal activities and dynamics of viral assemblages in natural settings remain largely unexplored. Here we report the transcriptional activities and variability of dominant dsDNA viruses in the open ocean’s euphotic zone over daily and seasonal timescales. While dsDNA viruses exhibited some fluctuation in abundance in both cellular and viral size fractions, the viral assemblage was remarkably stable, with the most abundant viral types persisting over many days. More extended time series indicated that long-term persistence (>1 y) was the rule for most dsDNA viruses observed, suggesting that both core viral genomes as well as viral community structure were conserved over interannual periods. Viral gene transcription in host cell assemblages revealed diel cycling among many different viral types. Most notably, an afternoon peak in cyanophage transcriptional activity coincided with a peak in Prochlorococcus DNA replication, indicating coordinated diurnal coupling of virus and host reproduction. In aggregate, our analyses suggested a tightly synchronized diel coupling of viral and cellular replication cycles in both photoautotrophic and heterotrophic bacterial hosts. A surprising consequence of these findings is that diel cycles in the ocean’s photic zone appear to be universal organizing principles that shape ecosystem dynamics, ecological interactions, and biogeochemical cycling of both cellular and acellular community components.
Collapse
|
203
|
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat Methods 2017; 14:1063-1071. [PMID: 28967888 DOI: 10.1038/nmeth.4458] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
Collapse
Affiliation(s)
- Alexander Sczyrba
- Faculty of Technology, Bielefeld University, Bielefeld, Germany.,Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Peter Hofmann
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Peter Belmann
- Faculty of Technology, Bielefeld University, Bielefeld, Germany.,Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - David Koslicki
- Mathematics Department, Oregon State University, Corvallis, Oregon, USA
| | - Stefan Janssen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Department of Pediatrics, University of California, San Diego, California, USA.,Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - Johannes Dröge
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Ivan Gregor
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Stephan Majda
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
| | - Jessika Fiedler
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Eik Dahms
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Andreas Bremges
- Faculty of Technology, Bielefeld University, Bielefeld, Germany.,Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Adrian Fritz
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Ruben Garrido-Oter
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Tue Sparholt Jørgensen
- Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University, Roskilde, Denmark.,Department of Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Philip D Blood
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Matthew Z DeMaere
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Rayan Chikhi
- Department of Computer Science, Research Center in Computer Science (CRIStAL), Signal and Automatic Control of Lille, Lille, France.,National Centre of the Scientific Research (CNRS), Rennes, France
| | - Niranjan Nagarajan
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Christopher Quince
- Department of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fernando Meyer
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Monika Balvočiūtė
- Department of Computer Science, University of Tuebingen, Tuebingen, Germany
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Søren J Sørensen
- Department of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Burton K H Chia
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Bertrand Denis
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Jeff L Froula
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Zhong Wang
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Robert Egan
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Dongwan Don Kang
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Charles Deltel
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France.,Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claire Lemaitre
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France.,Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Pierre Peterlongo
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France.,Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Guillaume Rizk
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France.,Algorizk-IT consulting and software systems, Paris, France
| | - Dominique Lavenier
- National Centre of the Scientific Research (CNRS), Rennes, France.,Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Yu-Wei Wu
- Joint BioEnergy Institute, Emeryville, California, USA.,Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chirag Jain
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marc Strous
- Energy Engineering and Geomicrobiology, University of Calgary, Calgary, Alberta, Canada
| | - Heiner Klingenberg
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Peter Meinicke
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Michael D Barton
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hsin-Hung Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Taiwan
| | | | - Daniel A Cuevas
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Robert A Edwards
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, New York, New York, USA
| | - Vitor C Piro
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany.,Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA.,Department of Computer Science, University of Maryland, College Park, Maryland, USA
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Edward M Rubin
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Aaron E Darling
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Alice C McHardy
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany.,Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS)
| |
Collapse
|
204
|
Cohan FM. Transmission in the Origins of Bacterial Diversity, From Ecotypes to Phyla. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0014-2016. [PMID: 29027519 PMCID: PMC11687548 DOI: 10.1128/microbiolspec.mtbp-0014-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Any two lineages, no matter how distant they are now, began their divergence as one population splitting into two lineages that could coexist indefinitely. The rate of origin of higher-level taxa is therefore the product of the rate of speciation times the probability that two new species coexist long enough to reach a particular level of divergence. Here I have explored these two parameters of disparification in bacteria. Owing to low recombination rates, sexual isolation is not a necessary milestone of bacterial speciation. Rather, irreversible and indefinite divergence begins with ecological diversification, that is, transmission of a bacterial lineage to a new ecological niche, possibly to a new microhabitat but at least to new resources. Several algorithms use sequence data from a taxon of focus to identify phylogenetic groups likely to bear the dynamic properties of species. Identifying these newly divergent lineages allows us to characterize the genetic bases of speciation, as well as the ecological dimensions upon which new species diverge. Speciation appears to be least frequent when a given lineage has few new resources it can adopt, as exemplified by photoautotrophs, C1 heterotrophs, and obligately intracellular pathogens; speciation is likely most rapid for generalist heterotrophs. The genetic basis of ecological divergence may determine whether ecological divergence is irreversible and whether lineages will diverge indefinitely into the future. Long-term coexistence is most likely when newly divergent lineages utilize at least some resources not shared with the other and when the resources themselves will coexist into the remote future.
Collapse
|
205
|
Chen Z, Chen L, Zhang W. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level. Front Microbiol 2017; 8:1831. [PMID: 28979258 PMCID: PMC5611438 DOI: 10.3389/fmicb.2017.01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.
Collapse
Affiliation(s)
- Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China.,Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
206
|
Abstract
Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.
Collapse
Affiliation(s)
- Mikhail Tikhonov
- Center of Mathematical Sciences and Applications, John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
207
|
Juhász J, Bihary D, Jády A, Pongor S, Ligeti B. Differential signal sensitivities can contribute to the stability of multispecies bacterial communities. Biol Direct 2017; 12:22. [PMID: 28915909 PMCID: PMC5602943 DOI: 10.1186/s13062-017-0192-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 01/10/2023] Open
Abstract
Background Bacterial species present in multispecies microbial communities often react to the same chemical signal but at vastly different concentrations. The existence of different response thresholds with respect to the same signal molecule has been well documented in quorum sensing which is one of the best studied inter-cellular signalling mechanisms in bacteria. The biological significance of this phenomenon is still poorly understood, and cannot be easily studied in nature or in laboratory models. The aim of this study is to establish the role of differential signal response thresholds in stabilizing microbial communities. Results We tested binary competition scenarios using an agent-based model in which competing bacteria had different response levels with respect to signals, cooperation factors or both, respectively. While in previous scenarios fitter species outcompete slower growing competitors, we found that stable equilibria could form if the fitter species responded to a higher chemical concentration level than the slower growing competitor. We also found that species secreting antibiotic could form a stable community with other competing species if antibiotic production started at higher response thresholds. Conclusions Microbial communities in nature rely on the stable coexistence of species that necessarily differ in their fitness. We found that differential response thresholds provide a simple and elegant way for keeping slower growing species within the community. High response thresholds can be considered as self-restraint of the fitter species that allows metabolically useful but slower growing species to remain within a community, and thereby the metabolic repertoire of the community will be maintained. Reviewers This article was reviewed by Michael Gromiha, Sebastian Maurer-Stroh, István Simon and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0192-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- János Juhász
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Street 50/A, Budapest, H-1085, Hungary.
| | - Dóra Bihary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Street 50/A, Budapest, H-1085, Hungary.,Present address: RC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK
| | - Attila Jády
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Street 50/A, Budapest, H-1085, Hungary
| | - Sándor Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Street 50/A, Budapest, H-1085, Hungary
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Street 50/A, Budapest, H-1085, Hungary. .,Institute of Medical Microbiology, Semmelweis University, Nagyvárad square 4, Budapest, H-1089, Hungary.
| |
Collapse
|
208
|
|
209
|
Shirani S, Hellweger FL. Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems. MICROBIAL ECOLOGY 2017; 74:416-426. [PMID: 28303312 DOI: 10.1007/s00248-017-0963-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.
Collapse
Affiliation(s)
- Sahar Shirani
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Ferdi L Hellweger
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
210
|
Royo-Llonch M, Ferrera I, Cornejo-Castillo FM, Sánchez P, Salazar G, Stepanauskas R, González JM, Sieracki ME, Speich S, Stemmann L, Pedrós-Alió C, Acinas SG. Exploring Microdiversity in Novel Kordia sp. (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes. Front Microbiol 2017; 8:1317. [PMID: 28790980 PMCID: PMC5525439 DOI: 10.3389/fmicb.2017.01317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/29/2017] [Indexed: 12/03/2022] Open
Abstract
Marine Bacteroidetes constitute a very abundant bacterioplankton group in the oceans that plays a key role in recycling particulate organic matter and includes several photoheterotrophic members containing proteorhodopsin. Relatively few marine Bacteroidetes species have been described and, moreover, they correspond to cultured isolates, which in most cases do not represent the actual abundant or ecologically relevant microorganisms in the natural environment. In this study, we explored the microdiversity of 98 Single Amplified Genomes (SAGs) retrieved from the surface waters of the underexplored North Indian Ocean, whose most closely related isolate is Kordia algicida OT-1. Using Multi Locus Sequencing Analysis (MLSA) we found no microdiversity in the tested conserved phylogenetic markers (16S rRNA and 23S rRNA genes), the fast-evolving Internal Transcribed Spacer and the functional markers proteorhodopsin and the beta-subunit of RNA polymerase. Furthermore, we carried out a Fragment Recruitment Analysis (FRA) with marine metagenomes to learn about the distribution and dynamics of this microorganism in different locations, depths and size fractions. This analysis indicated that this taxon belongs to the rare biosphere, showing its highest abundance after upwelling-induced phytoplankton blooms and sinking to the deep ocean with large organic matter particles. This uncultured Kordia lineage likely represents a novel Kordia species (Kordia sp. CFSAG39SUR) that contains the proteorhodopsin gene and has a widespread spatial and vertical distribution. The combination of SAGs and MLSA makes a valuable approach to infer putative ecological roles of uncultured abundant microorganisms.
Collapse
Affiliation(s)
- Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Isabel Ferrera
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | | | - José M González
- Department of Microbiology, University of La LagunaLa Laguna, Spain
| | | | - Sabrina Speich
- École Normale Supérieure, Département de Géosciences, Laboratoire de Météorologie Dynamique, UMR 8539 ENS-CNRS- École PolytechniqueParis, France
| | - Lars Stemmann
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV) UMR7093, Observatoire OcéanologiqueVillefranche-sur-Mer, France
| | - Carlos Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain.,Departament de Genética i de Microbiologia, Facultat de Biociències, Universitat Autònoma de BarcelonaBellaterra, Spain
| |
Collapse
|
211
|
Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 2017; 8:84. [PMID: 28729688 PMCID: PMC5519541 DOI: 10.1038/s41467-017-00128-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms. Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.
Collapse
|
212
|
Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife 2017; 6. [PMID: 28678007 PMCID: PMC5498146 DOI: 10.7554/elife.26580] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022] Open
Abstract
Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell.
Collapse
Affiliation(s)
- Feiqiao Brian Yu
- Department of Electrical Engineering, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Paul C Blainey
- MIT Department of Biological Engineering and Broad Institute of Harvard and MIT, Cambridge, United States
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Mark A Horowitz
- Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States.,Department of Applied Physics, Stanford University, Stanford, United States
| |
Collapse
|
213
|
Abstract
Whether prokaryotes (Bacteria and Archaea) are naturally organized into phenotypically and genetically cohesive units comparable to animal or plant species remains contested, frustrating attempts to estimate how many such units there might be, or to identify the ecological roles they play. Analyses of gene sequences in various closely related prokaryotic groups reveal that sequence diversity is typically organized into distinct clusters, and processes such as periodic selection and extensive recombination are understood to be drivers of cluster formation ("speciation"). However, observed patterns are rarely compared with those obtainable with simple null models of diversification under stochastic lineage birth and death and random genetic drift. Via a combination of simulations and analyses of core and phylogenetic marker genes, we show that patterns of diversity for the genera Escherichia, Neisseria, and Borrelia are generally indistinguishable from patterns arising under a null model. We suggest that caution should thus be taken in interpreting observed clustering as a result of selective evolutionary forces. Unknown forces do, however, appear to play a role in Helicobacter pylori, and some individual genes in all groups fail to conform to the null model. Taken together, we recommend the presented birth-death model as a null hypothesis in prokaryotic speciation studies. It is only when the real data are statistically different from the expectations under the null model that some speciation process should be invoked.
Collapse
Affiliation(s)
- Timothy J Straub
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755;
- Department of Computer Science, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
214
|
Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ, Martínez JM, Anton J, Gasol JM, Rosselli R, Rodriguez-Valera F, Sullivan MB, Acinas SG, Martinez-Garcia M. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 2017; 8:15892. [PMID: 28643787 PMCID: PMC5490008 DOI: 10.1038/ncomms15892] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and that microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies.
Collapse
Affiliation(s)
- Francisco Martinez-Hernandez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante 03690, Spain
| | - Oscar Fornas
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Carrer del Doctor Aiguader, 88, PRBB Building, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Doctor Aiguader, 88, PRBB Building, Barcelona 08003, Spain
| | - Monica Lluesma Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante 03690, Spain
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue Columbus, Ohio 43210, USA
| | - Maria Jose de la Cruz Peña
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante 03690, Spain
| | - Joaquín Martínez Martínez
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, PO Box 380, East Boothbay, Maine 04544, USA
| | - Josefa Anton
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante 03690, Spain
| | - Josep M. Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim, 47, Barcelona 08003, Spain
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, Alicante 03550, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, Alicante 03550, Spain
| | - Matthew B. Sullivan
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue Columbus, Ohio 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue Columbus, Ohio 43210, USA
| | - Silvia G. Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim, 47, Barcelona 08003, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante 03690, Spain
| |
Collapse
|
215
|
Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado AB, Ghai R, Picazo A, Camacho A, Rodriguez-Valera F. Novel Synechococcus Genomes Reconstructed from Freshwater Reservoirs. Front Microbiol 2017; 8:1151. [PMID: 28680419 PMCID: PMC5478717 DOI: 10.3389/fmicb.2017.01151] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022] Open
Abstract
Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at similar altitudes and temperate latitudes. These new genomes have the smallest estimated size (2.2 Mb) and average intergenic spacer length (20 bp) of any previously sequenced freshwater Synechococcus, which may contribute to their success in oligotrophic freshwater systems. Fluorescent in situ hybridization confirmed that Synechococcus sp. Tous comprises small cells (0.987 ± 0.139 μm length, 0.723 ± 0.119 μm width) that amount to 90% of the picocyanobacteria in Tous. They appear together in a phylogenomic tree with Synechococcus sp. RCC307 strain, the main representative of sub-cluster 5.3 that has itself one of the smallest marine Synechococcus genomes. We detected a type II phycobilisome (PBS) gene cluster in both genomes, which suggests that they belong to a phycoerythrin-rich pink low-light ecotype. The decrease of acidic proteins and the higher content of basic transporters and membrane proteins in the novel Synechococcus genomes, compared to marine representatives, support their freshwater specialization. A sulfate Cys transporter which is absent in marine but has been identified in many freshwater cyanobacteria was also detected in Synechococcus sp. Tous. The RuBisCo subunits from this microbe are phylogenetically close to the freshwater amoeba Paulinella chromatophora symbiont, hinting to a freshwater origin of the carboxysome operon of this protist. The novel genomes enlarge the known diversity of freshwater Synechococcus and improve the overall knowledge of the relationships among members of this genus at large.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech RepublicČeské Budějovice, Czechia
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of ValenciaValencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| |
Collapse
|
216
|
Excess of non-conservative amino acid changes in marine bacterioplankton lineages with reduced genomes. Nat Microbiol 2017; 2:17091. [PMID: 28604700 DOI: 10.1038/nmicrobiol.2017.91] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
Surface ocean waters are dominated by planktonic bacterial lineages with highly reduced genomes. The best examples are the cyanobacterial genus Prochlorococcus, the alphaproteobacterial clade SAR11 and the gammaproteobacterial clade SAR86, which together represent over 50% of the cells in surface oceans. Several studies have identified signatures of selection on these lineages in today's ocean and have postulated selection as the primary force throughout their evolutionary history. However, massive loss of genomic DNA in these lineages often occurred in the distant past, and the selective pressures underlying these ancient events have not been assessed. Here, we probe ancient selective pressures by computing %GC-corrected rates of conservative and radical nonsynonymous nucleotide substitutions. Surprisingly, we found an excess of radical changes in several of these lineages in comparison to their relatives with larger genomes. Furthermore, analyses of allelic genome sequences of several populations within these lineages consistently supported that radical replacements are more likely to be deleterious than conservative changes. Our results suggest coincidence of massive genomic DNA losses and increased power of genetic drift, but we also suggest that additional evidence independent of the nucleotide substitution analyses is needed to support a primary role of genetic drift driving ancient genome reduction of marine bacterioplankton lineages.
Collapse
|
217
|
Marine Bacterioplankton Seasonal Succession Dynamics. Trends Microbiol 2017; 25:494-505. [DOI: 10.1016/j.tim.2016.12.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
|
218
|
Bobay LM, Ochman H. The Evolution of Bacterial Genome Architecture. Front Genet 2017; 8:72. [PMID: 28611826 PMCID: PMC5447742 DOI: 10.3389/fgene.2017.00072] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/12/2017] [Indexed: 11/15/2022] Open
Abstract
The genome architecture of bacteria and eukaryotes evolves in opposite directions when subject to genetic drift, a difference that can be ascribed to the fact that bacteria exhibit a mutational bias that deletes superfluous sequences, whereas eukaryotes are biased toward large insertions. Expansion of eukaryotic genomes occurs through the addition of non-functional sequences, such as repetitive sequences and transposable elements, whereas variation in bacterial genome size is largely due to the acquisition and loss of functional accessory genes. These properties create the situation in which eukaryotes with very similar numbers of genes can have vastly different genome sizes, while in bacteria, gene number scales linearly with genome size. Some bacterial genomes, however, particularly those of species that undergo bottlenecks due to recent association with hosts, accumulate pseudogenes and mobile elements, conferring them a low gene content relative to their genome size. These non-functional sequences are gradually eroded and eliminated after long-term association with hosts, with the result that obligate symbionts have the smallest genomes of any cellular organism. The architecture of bacterial genomes is shaped by complex and diverse processes, but for most bacterial species, genome size is governed by a non-adaptive process, i.e., genetic drift coupled with a mutational bias toward deletions. Thus, bacteria with small effective population sizes typically have the smallest genomes. Some marine bacteria counter this near-universal trend: despite having immense population sizes, selection, not drift, acts to reduce genome size in response to metabolic constraints in their nutrient-limited environment.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas, AustinTX, United States
| | - Howard Ochman
- Department of Integrative Biology, University of Texas, AustinTX, United States
| |
Collapse
|
219
|
Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME JOURNAL 2017; 11:1997-2011. [PMID: 28524867 DOI: 10.1038/ismej.2017.64] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 01/09/2023]
Abstract
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
Collapse
|
220
|
Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME JOURNAL 2017; 11:1836-1851. [PMID: 28440802 PMCID: PMC5520035 DOI: 10.1038/ismej.2017.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023]
Abstract
Phages and hosts coexist in nature with a high degree of population diversity. This is often explained through coevolutionary models, such as the arms race or density-dependent fluctuating selection, which differ in assumptions regarding the emergence of phage mutants that overcome host resistance. Previously, resistance in the abundant marine cyanobacterium, Prochlorococcus, was found to occur frequently. However, little is known about the ability of phages to overcome this resistance. Here we report that, in some cases, T7-like cyanophage mutants emerge to infect resistant Prochlorococcus strains. These resistance-breaking phages retained the ability to infect the wild-type host. However, fitness of the mutant phages differed on the two hosts. Furthermore, in one case, resistance-breaking was accompanied by costs of decreased fitness on the wild-type host and decreased adsorption specificity, relative to the wild-type phage. In two other cases, fitness on the wild-type host increased. Whole-genome sequencing revealed mutations in probable tail-related genes. These were highly diverse in isolates and natural populations of T7-like cyanophages, suggesting that antagonistic coevolution enhances phage genome diversity. Intriguingly, most interactions did not yield resistance-breaking phages. Thus, resistance mutations raise genetic barriers to continuous arms race cycles and are indicative of an inherent asymmetry in coevolutionary capacity, with hosts having the advantage. Nevertheless, phages coexist with hosts, which we propose relies on combined, parallel action of a limited arms race, fluctuating selection and passive host-switching within diverse communities. Together, these processes generate a constantly changing network of interactions, enabling stable coexistence between hosts and phages in nature.
Collapse
|
221
|
Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME JOURNAL 2017; 11:1614-1629. [PMID: 28398348 DOI: 10.1038/ismej.2017.29] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Numerous ecological processes, such as bacteriophage infection and phytoplankton-bacterial interactions, often occur via strain-specific mechanisms. Therefore, studying the causes of microbial dynamics should benefit from highly resolving taxonomic characterizations. We sampled daily to weekly over 5 months following a phytoplankton bloom off Southern California and examined the extent of microdiversity, that is, significant variation within 99% sequence similarity clusters, operational taxonomic units (OTUs), of bacteria, archaea, phytoplankton chloroplasts (all via 16S or intergenic spacer (ITS) sequences) and T4-like-myoviruses (via g23 major capsid protein gene sequence). The extent of microdiversity varied between genes (ITS most, g23 least) and only temporally common taxa were highly microdiverse. Overall, 60% of taxa exhibited microdiversity; 59% of these had subtypes that changed significantly as a proportion of the parent taxon, indicating ecologically distinct taxa. Pairwise correlations between prokaryotes and myoviruses or phytoplankton (for example, highly microdiverse Chrysochromulina sp.) improved when using single-base variants. Correlations between myoviruses and SAR11 increased in number (172 vs 9, Spearman>0.65) and became stronger (0.61 vs 0.58, t-test: P<0.001) when using SAR11 ITS single-base variants vs OTUs. Whole-community correlation between SAR11 and myoviruses was much improved when using ITS single-base variants vs OTUs, with Mantel rho=0.49 vs 0.27; these results are consistent with strain-specific interactions. Mantel correlations suggested >1 μm (attached/large) prokaryotes are a major myovirus source. Consideration of microdiversity improved observation of apparent host and virus networks, and provided insights into the ecological and evolutionary factors influencing the success of lineages, with important implications to ecosystem resilience and microbial function.
Collapse
Affiliation(s)
- David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohan Sachdeva
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
222
|
Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci U S A 2017; 114:E3091-E3100. [PMID: 28348231 PMCID: PMC5393222 DOI: 10.1073/pnas.1619573114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankter Prochlorococcus To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase in Prochlorococcus' metabolic rate and excretion of organic carbon. We derived a mathematical framework that suggests these adaptations lower the minimal subsistence nutrient concentration of cells, which results in a drawdown of nutrients in oceanic surface waters. This, in turn, increases total ecosystem biomass and promotes the coevolution of all cells in the ecosystem. Additional reconstructions suggest that Prochlorococcus and the dominant cooccurring heterotrophic bacterium SAR11 form a coevolved mutualism that maximizes their collective metabolic rate by recycling organic carbon through complementary excretion and uptake pathways. Moreover, the metabolic codependencies of Prochlorococcus and SAR11 are highly similar to those of chloroplasts and mitochondria within plant cells. These observations lead us to propose a general theory relating metabolic evolution to the self-amplification and self-organization of the biosphere. We discuss the implications of this framework for the evolution of Earth's biogeochemical cycles and the rise of atmospheric oxygen.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
223
|
Affiliation(s)
- Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| |
Collapse
|
224
|
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824-834. [PMID: 28298430 PMCID: PMC5411777 DOI: 10.1101/gr.213959.116] [Citation(s) in RCA: 2466] [Impact Index Per Article: 308.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023]
Abstract
While metagenomics has emerged as a technology of choice for analyzing bacterial populations, the assembly of metagenomic data remains challenging, thus stifling biological discoveries. Moreover, recent studies revealed that complex bacterial populations may be composed from dozens of related strains, thus further amplifying the challenge of metagenomic assembly. metaSPAdes addresses various challenges of metagenomic assembly by capitalizing on computational ideas that proved to be useful in assemblies of single cells and highly polymorphic diploid genomes. We benchmark metaSPAdes against other state-of-the-art metagenome assemblers and demonstrate that it results in high-quality assemblies across diverse data sets.
Collapse
Affiliation(s)
- Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Dmitry Meleshko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004.,Department of Statistical Modelling, St. Petersburg State University, St. Petersburg, Russia 198515
| | - Pavel A Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia 199004.,Department of Computer Science and Engineering, University of California, San Diego, California 92093-0404, USA
| |
Collapse
|
225
|
Ecosystem Structure and Dynamics in the North Pacific Subtropical Gyre: New Views of an Old Ocean. Ecosystems 2017. [DOI: 10.1007/s10021-017-0117-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
226
|
Abstract
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Collapse
|
227
|
Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME JOURNAL 2017; 11:1412-1422. [PMID: 28234350 DOI: 10.1038/ismej.2017.4] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 01/16/2023]
Abstract
Marine microbes exhibit seasonal cycles in community composition, yet the key drivers of these patterns and microbial population fidelity to specific environmental conditions remain to be determined. To begin addressing these questions, we characterized microbial dynamics weekly for 3 years at a temperate, coastal site with dramatic environmental seasonality. This high-resolution time series reveals that changes in microbial community composition are not continuous; over the duration of the time series, the community instead resolves into distinct summer and winter profiles with rapid spring and fall transitions between these states. Here, we show that these community shifts involve switching between closely related strains that exhibit either summer or winter preferences. Moreover, taxa repeat this process annually in both this and another temperate coastal time series, suggesting that this phenomenon may be widespread in marine ecosystems. To address potential biogeochemical impacts of these community changes, PICRUSt-based metagenomes predict seasonality in transporters, photosynthetic proteins, peptidases and carbohydrate metabolic pathways in spite of closely related summer- and winter-associated taxa. Thus, even small temperature shifts, such as those predicted by climate change models, could affect both the structure and function of marine ecosystems.
Collapse
|
228
|
Bobay LM, Ochman H. Biological species are universal across Life's domains. Genome Biol Evol 2017; 9:2982379. [PMID: 28186559 PMCID: PMC5381558 DOI: 10.1093/gbe/evx026] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Delineation of species is fundamental to organizing and understanding biological diversity. The most widely applied criterion for distinguishing species is the Biological Species Concept (BSC), which defines species as groups of interbreeding individuals that remain reproductively isolated from other such groups. The BSC has broad appeal; however, many organisms, most notably asexual lineages, cannot be classified according to the BSC. Despite their exclusively asexual mode of reproduction, Bacteria and Archaea can transfer and exchange genes though homologous recombination. Here we show that barriers to homologous gene exchange define biological species in prokaryotes with the same efficacy as in sexual eukaryotes. By analyzing the impact of recombination on the polymorphisms in thousands of genome sequences, we find that over half of named bacterial species undergo continuous recombination among sequenced constituents, indicative of true biological species. However, nearly a quarter of named bacterial species show sharp discontinuities and comprise multiple biological species. These interruptions of gene flow are not a simple function of genome identity, indicating that bacterial speciation does not uniformly proceed by the gradual divergence of genome sequences. The same genomic approach based on recombinant polymorphisms retrieves known species boundaries in sexually reproducing eukaryotes. Thus, a single biological species definition based on gene flow, once thought to be limited only to sexually reproducing organisms, is applicable to all cellular lifeforms.
Collapse
Affiliation(s)
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin
| |
Collapse
|
229
|
75 years since Monod: It is time to increase the complexity of our predictive ecosystem models (opinion). Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
230
|
Mangot JF, Logares R, Sánchez P, Latorre F, Seeleuthner Y, Mondy S, Sieracki ME, Jaillon O, Wincker P, Vargas CD, Massana R. Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Sci Rep 2017; 7:41498. [PMID: 28128359 PMCID: PMC5269757 DOI: 10.1038/srep41498] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Pico-sized eukaryotes play key roles in the functioning of marine ecosystems, but we still have a limited knowledge on their ecology and evolution. The MAST-4 lineage is of particular interest, since it is widespread in surface oceans, presents ecotypic differentiation and has defied culturing efforts so far. Single cell genomics (SCG) are promising tools to retrieve genomic information from these uncultured organisms. However, SCG are based on whole genome amplification, which normally introduces amplification biases that limit the amount of genomic data retrieved from a single cell. Here, we increase the recovery of genomic information from two MAST-4 lineages by co-assembling short reads from multiple Single Amplified Genomes (SAGs) belonging to evolutionary closely related cells. We found that complementary genomic information is retrieved from different SAGs, generating co-assembly that features >74% of genome recovery, against about 20% when assembled individually. Even though this approach is not aimed at generating high-quality draft genomes, it allows accessing to the genomic information of microbes that would otherwise remain unreachable. Since most of the picoeukaryotes still remain uncultured, our work serves as a proof-of-concept that can be applied to other taxa in order to extract genomic data and address new ecological and evolutionary questions.
Collapse
Affiliation(s)
- Jean-François Mangot
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Fran Latorre
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| | - Yoann Seeleuthner
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Samuel Mondy
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Michael E. Sieracki
- National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - Olivier Jaillon
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Patrick Wincker
- CEA, Institut de Génomique, Génoscope, 2 Rue Gaston Crémieux, Evry F-91000, France
- CNRS, UMR 8030, CP5706, Evry, F-91000, France
- Université d’Evry, UMR 8030, CP5706, Evry, F-91000, France
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, F-29680, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)–CSIC, Pg. Marítim de la Barceloneta, 37-49, Barcelona E-08003, Spain
| |
Collapse
|
231
|
Stuart RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B. Copper toxicity response influences mesotrophicSynechococcuscommunity structure. Environ Microbiol 2017; 19:756-769. [DOI: 10.1111/1462-2920.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Rhona K. Stuart
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Randelle Bundy
- University of California at San Diego; La Jolla 92093 CA USA
| | - Kristen Buck
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | | | - Kathy Barbeau
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California at San Diego; La Jolla CA USA
| |
Collapse
|
232
|
Microdiversification of a Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a Partially Interspecific Gene Pool. Appl Environ Microbiol 2017; 83:AEM.02266-16. [PMID: 27836842 DOI: 10.1128/aem.02266-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Microdiversification of a planktonic freshwater bacterium was studied by comparing 37 Polynucleobacter asymbioticus strains obtained from three geographically separated sites in the Austrian Alps. Genome comparison of nine strains revealed a core genome of 1.8 Mb, representing 81% of the average genome size. Seventy-five percent of the remaining flexible genome is clustered in genomic islands (GIs). Twenty-four genomic positions could be identified where GIs are potentially located. These positions are occupied strain specifically from a set of 28 GI variants, classified according to similarities in their gene content. One variant, present in 62% of the isolates, encodes a pathway for the degradation of aromatic compounds, and another, found in 78% of the strains, contains an operon for nitrate assimilation. Both variants were shown in ecophysiological tests to be functional, thus providing the potential for microniche partitioning. In addition, detected interspecific horizontal exchange of GIs indicates a large gene pool accessible to Polynucleobacter species. In contrast to core genes, GIs are spread more successfully across spatially separated freshwater habitats. The mobility and functional diversity of GIs allow for rapid evolution, which may be a key aspect for the ubiquitous occurrence of Polynucleobacter bacteria. IMPORTANCE Assessing the ecological relevance of bacterial diversity is a key challenge for current microbial ecology. The polyphasic approach which was applied in this study, including targeted isolation of strains, genome analysis, and ecophysiological tests, is crucial for the linkage of genetic and ecological knowledge. Particularly great importance is attached to the high number of closely related strains which were investigated, represented by genome-wide average nucleotide identities (ANI) larger than 97%. The extent of functional diversification found on this narrow phylogenetic scale is compelling. Moreover, the transfer of metabolically relevant genomic islands between more distant members of the Polynucleobacter community provides important insights toward a better understanding of the evolution of these globally abundant freshwater bacteria.
Collapse
|
233
|
Nayfach S, Pollard KS. Toward Accurate and Quantitative Comparative Metagenomics. Cell 2016; 166:1103-1116. [PMID: 27565341 DOI: 10.1016/j.cell.2016.08.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
Abstract
Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized.
Collapse
Affiliation(s)
- Stephen Nayfach
- Integrative Program in Quantitative Biology, University of California, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Division of Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
234
|
Affiliation(s)
- Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research and University of Utrecht, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901, USA
| | - Carlos Pedrós-Alió
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Catherine Legrand
- Department of Biology and Environmental Science, Center of Ecology and Evolution in Microbial model Systems (EEMiS), Linnæeus University, 39182 Kalmar, Sweden
| |
Collapse
|
235
|
Single-cell mass spectrometry reveals the importance of genetic diversity and plasticity for phenotypic variation in nitrogen-limited Chlamydomonas. ISME JOURNAL 2016; 11:988-998. [PMID: 27935588 DOI: 10.1038/ismej.2016.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/20/2023]
Abstract
Phenotypic variation is vital for microbial populations to survive environmental perturbations. Both genetic and non-genetic factors contribute to an organism's phenotypic variation and therefore its fitness. To investigate the correlation between genetic diversity and phenotypic variation, we applied our recently developed mass spectrometry method that allows for the simultaneous measurement of more than 25 different lipids and pigments with high throughput in the unicellular microalga Chlamydomonas reinhardtii. We monitored the impact of nitrogen limitation on a genetically diverse wild-type strain CC-1690 and two isoclonal isolates from CC-1690 named ANC3 and ANC5. Measuring molecular composition of thousands of single cells at different time points of the experiment allowed us to capture a dynamic picture of the phenotypic composition and adaptation of the populations over time. Although the genetically diverse population maintained phenotypic variation over the whole time course of the experiment, the isoclonal cultures showed higher synchronicity in their phenotypic response. Furthermore, the genetically diverse population showed equal or greater phenotypic variation over the whole time range in multidimensional trait space compared with isoclonal populations. However, along individual trait axes non-genetic variance was higher in isoclonal populations.
Collapse
|
236
|
Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, Flater J, Tiedje JM, Hofmockel KS, Gelder B, Howe A. Strategies to improve reference databases for soil microbiomes. ISME JOURNAL 2016; 11:829-834. [PMID: 27935589 PMCID: PMC5364351 DOI: 10.1038/ismej.2016.168] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Fan Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | | | - Erick Cardenas
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Aaron Garoutte
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Ryan Williams
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Jared Flater
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Kirsten S Hofmockel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Brian Gelder
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
237
|
Morando M, Capone DG. Intraclade Heterogeneity in Nitrogen Utilization by Marine Prokaryotes Revealed Using Stable Isotope Probing Coupled with Tag Sequencing (Tag-SIP). Front Microbiol 2016; 7:1932. [PMID: 27994576 PMCID: PMC5133248 DOI: 10.3389/fmicb.2016.01932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Nitrogen can greatly influence the structure and productivity of microbial communities through its relative availability and form. However, the roles of specific organisms in the uptake of different nitrogen species remain poorly characterized. Most studies seeking to identify agents of assimilation have been correlative, indirectly linking activity measurements (e.g., nitrate uptake) with the presence or absence of biological markers, particularly functional genes and their transcripts. Evidence is accumulating of previously underappreciated functional diversity in major microbial subpopulations, which may confer physiological advantages under certain environmental conditions leading to ecotype divergence. This microdiversity further complicates our view of genetic variation in environmental samples requiring the development of more targeted approaches. Here, next-generation tag sequencing was successfully coupled with stable isotope probing (Tag-SIP) to assess the ability of individual phylotypes to assimilate a specific N source. Our results provide the first direct evidence of nitrate utilization by organisms thought to lack the genes required for this process including the heterotrophic clades SAR11 and the Archaeal Marine Group II. Alternatively, this may suggest the existence of tightly coupled metabolisms with primary assimilators, e.g., symbiosis, or the rapid and efficient scavenging of recently released products by highly active individuals. These results may be connected with global dominance often seen with these clades, likely conferring an advantage over other clades unable to access these resources. We also provide new direct evidence of in situ nitrate utilization by the cyanobacterium Prochlorococcus in support of recent findings. Furthermore, these results revealed widespread functional heterogeneity, i.e., different levels of nitrogen assimilation within clades, likely reflecting niche partitioning by ecotypes.
Collapse
Affiliation(s)
- Michael Morando
- Marine and Environmental Biology, University of Southern California Los Angeles, CA, USA
| | - Douglas G Capone
- Marine and Environmental Biology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
238
|
Vannier T, Leconte J, Seeleuthner Y, Mondy S, Pelletier E, Aury JM, de Vargas C, Sieracki M, Iudicone D, Vaulot D, Wincker P, Jaillon O. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci Rep 2016; 6:37900. [PMID: 27901108 PMCID: PMC5128809 DOI: 10.1038/srep37900] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/03/2016] [Indexed: 01/23/2023] Open
Abstract
Bathycoccus is a cosmopolitan green micro-alga belonging to the Mamiellophyceae, a class of picophytoplankton that contains important contributors to oceanic primary production. A single species of Bathycoccus has been described while the existence of two ecotypes has been proposed based on metagenomic data. A genome is available for one strain corresponding to the described phenotype. We report a second genome assembly obtained by a single cell genomics approach corresponding to the second ecotype. The two Bathycoccus genomes are divergent enough to be unambiguously distinguishable in whole DNA metagenomic data although they possess identical sequence of the 18S rRNA gene including in the V9 region. Analysis of 122 global ocean whole DNA metagenome samples from the Tara-Oceans expedition reveals that populations of Bathycoccus that were previously identified by 18S rRNA V9 metabarcodes are only composed of these two genomes. Bathycoccus is relatively abundant and widely distributed in nutrient rich waters. The two genomes rarely co-occur and occupy distinct oceanic niches in particular with respect to depth. Metatranscriptomic data provide evidence for gain or loss of highly expressed genes in some samples, suggesting that the gene repertoire is modulated by environmental conditions.
Collapse
Affiliation(s)
- Thomas Vannier
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Jade Leconte
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Yoann Seeleuthner
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Samuel Mondy
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Eric Pelletier
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Jean-Marc Aury
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Michael Sieracki
- National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel Vaulot
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Patrick Wincker
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| | - Olivier Jaillon
- CEA - Institut de Génomique, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706 Evry, France.,Université d'Evry, UMR 8030, CP5706 Evry, France
| |
Collapse
|
239
|
Gérikas Ribeiro C, Lopes Dos Santos A, Marie D, Helena Pellizari V, Pereira Brandini F, Vaulot D. Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight. PeerJ 2016; 4:e2587. [PMID: 27867760 PMCID: PMC5111892 DOI: 10.7717/peerj.2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1). Synechococcus(up to 81 × 103 cells mL−1), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels.
Collapse
Affiliation(s)
- Catherine Gérikas Ribeiro
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo , São Paulo , Brazil
| | - Adriana Lopes Dos Santos
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 , Station Biologique de Roscoff , France
| | - Dominique Marie
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 , Station Biologique de Roscoff , France
| | - Vivian Helena Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo , São Paulo , Brazil
| | - Frederico Pereira Brandini
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo , São Paulo , Brazil
| | - Daniel Vaulot
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7144 , Station Biologique de Roscoff , France
| |
Collapse
|
240
|
Bao YJ, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci Rep 2016; 6:36644. [PMID: 27821851 PMCID: PMC5099688 DOI: 10.1038/srep36644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023] Open
Abstract
Genomic recombination plays an important role in driving adaptive evolution and population differentiation in bacteria. However, controversy exists as to the effects of recombination on population diversity and differentiation, i.e., recombination is frequent enough to sweep through the population at selected gene loci (gene-specific sweeps), or the recombination rate is low without interfering genome-wide selective sweeps. Observations supporting either view are sparse. Pathogenic bacteria causing infectious diseases are promising candidates to provide observations of recombination. However, phenotype-associated differentiations are usually vague among them due to diverse disease manifestations. Here we report a population genomic study of the group A Streptococcus pyogenes (GAS), a human pathogen with highly recombining genomes. By employing a genome-wide association study on single nucleotide polymorphisms (SNPs), we demonstrate a phenotypic differentiation of GAS, represented by separate clustering of two sublineages associated with niche-specific infections, i.e., skin infection and pharyngitis-induced acute rheumatic fever. By quantifying SNPs associated with the differentiation in a statistical and phylogenetic context, we propose that the phenotype-associated differentiation arose through recombination-driven gene-specific sweeps, rather than genome-wide sweeps. Our work provides a novel paradigm of phenotype-associated differentiation induced by gene-specific sweeps in a human pathogen and has implications for understanding of driving forces of bacterial evolution.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
241
|
Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 939:117-137. [PMID: 27807746 DOI: 10.1007/978-981-10-1503-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbes are ubiquitous on our planet, and it is well known that the total number of microbial cells on earth is huge. These organisms usually live in communities, and each of these communities has a different taxonomical structure. As such, microbial communities would serve as the largest reservoir of genes and genetic functions for a vast number of applications in "bio"-related disciplines, especially in biomedicine. Human microbiome is the area in which the relationships between ourselves as hosts and our microbiomes have been examined.In this chapter, we have first reviewed the researches in microbes on community, population and single-cell levels in general. Then we have focused on the effects of recent metagenomics and single-cell advances on human microbiome research, as well as their effects on translational biomedical research. We have also foreseen that with the advancement of big-data analysis techniques, deeper understanding of human microbiome, as well as its broader applications, could be realized.
Collapse
|
242
|
Real-Time Chiral Metabolic Monitoring of Single Cell Using Microchip Electrophoresis Coupled with Electrospray Ionization Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201600748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
243
|
Pitt FD, Millard A, Ostrowski M, Dervish S, Mazard S, Paulsen IT, Zubkov MV, Scanlan DJ. A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus. Front Microbiol 2016; 7:1592. [PMID: 27790194 PMCID: PMC5063861 DOI: 10.3389/fmicb.2016.01592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/22/2016] [Indexed: 12/02/2022] Open
Abstract
Recent studies using whole community metagenomic and metatranscriptomic approaches are revealing important new insights into the functional potential and activity of natural marine microbial communities. Here, we complement these approaches by describing a complete ocean sample-to-sequence protocol, specifically designed to target a single bacterial genus for purposes of both DNA and RNA profiling using fluorescence activated cell sorting (FACS). The importance of defining and understanding the effects of a sampling protocol are critical if we are to gain meaningful data from environmental surveys. Rigorous pipeline trials with a cultured isolate, Synechococcus sp. BL107 demonstrate that water filtration has a well-defined but limited impact on the transcriptomic profile of this organism, whilst sample storage and multiple rounds of cell sorting have almost no effect on the resulting RNA sequence profile. Attractively, the means to replicate the sampling strategy is within the budget and expertise of most researchers.
Collapse
Affiliation(s)
- Frances D Pitt
- School of Life Sciences, University of Warwick Coventry, UK
| | - Andrew Millard
- Warwick Medical School, University of Warwick Coventry, UK
| | - Martin Ostrowski
- Department of Biochemistry and Biomolecular Science, Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
| | - Suat Dervish
- Sydney Cytometry, Centenary Institute, University of Sydney Sydney, NSW, Australia
| | - Sophie Mazard
- Department of Biochemistry and Biomolecular Science, Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Biochemistry and Biomolecular Science, Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
| | | | | |
Collapse
|
244
|
Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res 2016; 26:1612-1625. [PMID: 27803195 PMCID: PMC5088602 DOI: 10.1101/gr.201863.115] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/08/2016] [Indexed: 01/19/2023]
Abstract
We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution.
Collapse
Affiliation(s)
- Stephen Nayfach
- Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, California 94158, USA.,Gladstone Institutes, San Francisco, California 94158, USA
| | | | - Nandita Garud
- Gladstone Institutes, San Francisco, California 94158, USA
| | - Katherine S Pollard
- Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, California 94158, USA.,Gladstone Institutes, San Francisco, California 94158, USA.,Institute for Human Genetics, Institute for Computational Health Sciences, and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
245
|
Ellegaard KM, Engel P. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Front Microbiol 2016; 7:1475. [PMID: 27708630 PMCID: PMC5030217 DOI: 10.3389/fmicb.2016.01475] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
246
|
|
247
|
Abreu NA, Taga ME. Decoding molecular interactions in microbial communities. FEMS Microbiol Rev 2016; 40:648-63. [PMID: 27417261 DOI: 10.1093/femsre/fuw019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 12/21/2022] Open
Abstract
Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia.
Collapse
Affiliation(s)
- Nicole A Abreu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
248
|
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci U S A 2016; 113:E4069-78. [PMID: 27357680 DOI: 10.1073/pnas.1603757113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.
Collapse
|
249
|
Troell K, Hallström B, Divne AM, Alsmark C, Arrighi R, Huss M, Beser J, Bertilsson S. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes. BMC Genomics 2016; 17:471. [PMID: 27338614 PMCID: PMC4917956 DOI: 10.1186/s12864-016-2815-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Results Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. Conclusions As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2815-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Björn Hallström
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, Department of Cell and Molecular Biology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Alsmark
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.,Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Romanico Arrighi
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Mikael Huss
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
250
|
Abstract
We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|