201
|
Nemoto TK, Ohara-Nemoto Y, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Takagi T. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. FEBS J 2008; 275:573-87. [PMID: 18199287 DOI: 10.1111/j.1742-4658.2007.06224.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Recombinant protein expression has become a standard laboratory tool, and a wide variety of systems and techniques are now in use. Because there are so many systems to choose from, the investigator has to be careful to use the combination that will give the best results for the protein being studied. This overview unit discusses expression and production choices, including post-translational modifications (e.g., glycosylation, acylation, sulfation, and removal of N-terminal methionine), in vivo and in vitro folding, and influence of downstream elements on expression.
Collapse
Affiliation(s)
- D Gray
- Chiron Corporation, Emeryville, California, USA
| | | |
Collapse
|
203
|
Abstract
Heat stroke is a life-threatening illness that affects all segments of society, including the young, aged, sick, and healthy. The recent high death toll in France (Dorozynski, 2003) and the death of high-profile athletes has increased public awareness of the adverse effects of heat injury. However, the etiology of the long-term consequences of this syndrome remains poorly understood such that preventive/treatment strategies are needed to mitigate its debilitating effects. Cytokines are important modulators of the acute phase response (APR) to stress, infection, and inflammation. Current data implicating cytokines in heat stroke responses are mainly from correlation studies showing elevated plasma levels in heat stroke patients and experimental animal models. Correlation data fall far short of revealing the mechanisms of cytokine actions such that additional research to determine the role of these endogenous substances in the heat stroke syndrome is required. Furthermore, cytokine determinations have occurred mainly at end-stage heat stroke, such that the role of these substances in progression and long-term recovery is poorly understood. Despite several studies implicating cytokines in heat stroke pathophysiology, few studies have examined the protective effect(s) of cytokine antagonism on the morbidity and mortality of heat stroke. This is particularly surprising since heat stroke responses resemble those observed in the endotoxemic syndrome, for which a role for endogenous cytokines has been strongly implicated. The implication of cytokines as mediators of endotoxemia and the presence of circulating endotoxin in heat stroke patients suggests that much knowledge can be gained from applying our current understanding of endotoxemic pathophysiology to the study of heat stroke. Heat shock proteins (HSPs) are highly conserved proteins that function as molecular chaperones for denatured proteins and reciprocally modulate cytokine production in response to stressful stimuli. HSPs have been shown repeatedly to confer protection in heat stroke and injury models. Interactions between HSPs and cytokines have received considerable attention in the literature within the last decade such that a complex pathway of interactions between cytokines, HSPs, and endotoxin is thought to be occurring in vivo in the orchestration of the APR to heat injury. These data suggest that much of the pathophysiologic changes observed with heat stroke are not a consequence of heat exposure, per se, but are representative of interactions among these three (and presumably additional) components of the innate immune response. This chapter will provide an overview of current knowledge regarding cytokine, HSP, and endotoxin interactions in heat stroke pathophysiology. Insight is provided into the potential therapeutic benefit of cytokine neutralization for mitigation of heat stroke morbidity and mortality based on our current understanding of their role in this syndrome.
Collapse
Affiliation(s)
- Lisa R Leon
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA 01760-5007, USA.
| |
Collapse
|
204
|
Choi YK, Jo PG, Choi CY. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:286-92. [PMID: 18234560 DOI: 10.1016/j.cbpc.2007.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is a widespread nonessential heavy metal that enters the aquatic environment as a result of natural processes and human activities such as wastewater production, agriculture, and mining. To determine the effects of Cd on organisms, we investigated its time- and dose-related effects on mRNA levels of heat shock protein 90 (HSP90) and metallothionein (MT) in the gill and digestive gland and changes enzyme levels in the hemolymph of the Pacific oyster Crassostrea gigas. Full-length HSP90 cDNA was isolated from C. gigas by rapid amplification of cDNA end (RACE) techniques and found to contain 2154 nucleotides, including an open reading frame, and was predicted to encode a protein of 717 amino acids. BLAST analysis indicated that the HSP90 gene of C. gigas shared high homology with known HSP90 genes of other mollusks. The expression of HSP90 mRNA increased significantly with exposure to 0.01 ppm Cd for 11 days or 0.05 or 0.1 ppm Cd for 7 days. The expression of MT mRNA increased significantly with exposure to 0.01, 0.05, or 0.1 ppm Cd for 11 days. Glutamate oxaloacetate and glutamate pyruvate levels increased significantly with exposure to 0.05 or 0.1 ppm Cd for 7 days. These results indicate that HSP90 and MT play important roles in the physiological changes related to metabolism and cell protection that occur in Pacific oysters exposed to Cd.
Collapse
Affiliation(s)
- Yong Ki Choi
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan, 606-791, South Korea
| | | | | |
Collapse
|
205
|
Bigotti MG, Clarke AR. Chaperonins: The hunt for the Group II mechanism. Arch Biochem Biophys 2008; 474:331-9. [PMID: 18395510 DOI: 10.1016/j.abb.2008.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 11/27/2022]
Abstract
Chaperonins are multi-subunit complexes that enhance the efficiency of protein-folding reactions by capturing protein substrates in their central cavities. They occur in all prokaryotic and eukaryotic cell types and, alone amongst molecular chaperones, chaperonin knockouts are always lethal. Chaperonins come in two forms; the Group I are found in bacteria, mitochondria and plastids [W.A. Fenton, A.L. Horwich, Q. Rev. Biophys. 36 (2003) 229-256, [1]] and the Group II in the eukaryotic cytoplasm and in archaea [N.J. Cowan, S.A. Lewis, Adv. Protein Chem. 59 (2001) 73-104, [2]]. Both use energy derived from ATP binding and hydrolysis to drive a series of structural rearrangements that enable them to capture, engulf and then release polypeptide chains that have either not yet acquired the native, biologically active state or have been denatured in the cell.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol B58 1TD, UK.
| | | |
Collapse
|
206
|
Fujita Y, Nakanishi T, Miyamoto Y, Hiramatsu M, Mabuchi H, Miyamoto A, Shimizu A, Takubo T, Tanigawa N. Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma. Cancer Lett 2008; 263:280-90. [PMID: 18334280 DOI: 10.1016/j.canlet.2008.01.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/25/2007] [Accepted: 01/03/2008] [Indexed: 02/06/2023]
Abstract
Detection of novel tumor-related antigens and autoantibodies in cancer patients is expected to facilitate the diagnosis of early-stage malignant tumor and establish effective new immunotherapies. The purpose of this study was to identify novel tumor antigens in an esophageal squamous cell carcinoma (ESCC) cell line (TE-2) and related autoantibodies in sera from patients with ESCC using a proteomics-based approach. TE-2 proteins were separated by two-dimensional polyacrylamide gel electrophoresis, followed by Western blot analysis in which sera from patients with ESCC, healthy controls and patients with other cancers were tested for primary antibodies. Positive spots were excised from silver-stained gels and analyzed by matrix-assisted laser disorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Sera from patients with ESCC yielded multiple spots, one of which was identified as heat shock protein 70 (Hsp70) by MALDI-TOF/TOF-MS. Concentrations of serum Hsp70 autoantibody were significantly higher for patients with ESCC (mean, 0.412+/-0.096 mg/ml) than for patients with gastric (0.236+/-0.112 mg/ml, P<0.001) or colon cancer (0.231+/-0.120 mg/ml, P<0.001) or healthy individuals (0.207+/-0.055 mg/ml, P<0.001) by enzyme-linked immunosorbent assay. We have identified an autoantibody against Hsp70 in ESCC patients. The proteomic approach implemented herein offers a powerful tool for identifying novel serum markers that may display clinical utility against cancer.
Collapse
Affiliation(s)
- Yoshihisa Fujita
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka 569-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Locke M. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy. Acta Physiol (Oxf) 2008; 192:403-11. [PMID: 17973955 DOI: 10.1111/j.1748-1716.2007.01764.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To assess the stress/heat shock protein (HSP) and heat shock factor activation response in overloaded (hypertrophied) plantaris muscles. METHODS Male Sprague-Dawley rats (n = 5 per time point) underwent unilateral removal of the left gastrocnemius muscle. After 1, 2, 3, 5, 7, 14 and 28 days, plantaris muscles were removed, weighted rapidly frozen in liquid nitrogen. Total protein content was determined and HSP 25 and HSP 72 contents were assessed by Western blotting. Heat shock transcription factor (HSF) activation was assessed by electrophoretic mobility shift assay (EMSA). RESULTS While plantaris muscle mass was significantly increased 3 days after the imposition of overload and remained elevated thereafter confirming muscle hypertrophy, muscle protein content was not increased until 7 days after the imposition of overload. HSP 72 content was significantly increased at 3 days, while HSP 25 content was not significantly increased until 7 days after synergistic muscle removal. HSF activation was detected at 1, 2 and 3 days of overload but undetectable thereafter. The addition of HSF1- and HSF2-specific antibodies to extracts prior to EMSA failed to supershift the HSF-heat shock element complex. CONCLUSION The temporal pattern of both HSF activation and HSP expression in skeletal muscle undergoing hypertrophy suggests the increased level of the observed HSPs may be both a consequence of both the immediate stress of overload and the hypertrophic process. The inability of HSF1- and HSF2-specific antibodies to cause supershifts suggests the HSF detected during overload may not be HSF1 or HSF2.
Collapse
Affiliation(s)
- M Locke
- Faculty of Physical Education and Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
208
|
Sandström ME, Siegler JC, Lovell RJ, Madden LA, McNaughton L. The effect of 15 consecutive days of heat-exercise acclimation on heat shock protein 70. Cell Stress Chaperones 2008; 13:169-75. [PMID: 18759002 PMCID: PMC2673895 DOI: 10.1007/s12192-008-0022-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022] Open
Abstract
The purpose of this study was to investigate the alterations in serum heat shock protein (Hsp) 70 levels during a 15-consecutive-day intermittent heat-exercise protocol in a 29-year-old male ultra marathon runner. Heat acclimation, for the purpose of physical activities in elevated ambient temperatures, has numerous physiological benefits including mechanisms such as improved cardiac output, increased plasma volume and a decreased core temperature (T (c)). In addition to the central adaptations, the role of Hsp during heat acclimation has received an increasing amount of attention. The acclimation protocol applied was designed to correspond with the athlete's tapering period for the 2007 Marathon Des Sables. The subject (VO(2)max = 50.7 ml.kg(-1).min(-1), peak power output [PPO] = 376 W) cycled daily for 90 min at a workload corresponding to 50% of VO(2)max in a temperature-controlled room (average WBGT = 31.9 +/- 0.9 degrees C). Venous blood was sampled before and after each session for measurement of serum osmolality and serum Hsp70. In addition, T (c), heart rate (HR) and power output (PO) was measured throughout the 90 min to ensure that heat acclimation was achieved during the 15-day period. The results show that the subject was successfully heat acclimated as seen by the lowered HR at rest and during exercise, decreased resting and exercising T (c) and an increased PO. The heat exercise resulted in an initial increase in Hsp70 concentrations, known as thermotolerance, and the increase in Hsp70 after exercise was inversely correlated to the resting values of Hsp70 (Spearman's rank correlation = -0.81, p < 0.01). Furthermore, the 15-day heat-exercise protocol also increased the basal levels of Hsp70, a response different from that of thermotolerance. This is, as far as we are aware, the first report showing Hsp70 levels during consecutive days of intermittent heat exposure giving rise to heat acclimation. In conclusion, a relatively longer heat acclimation protocol is suggested to obtain maximum benefit of heat acclimation inclusive of both cellular and systemic adaptations.
Collapse
Affiliation(s)
- Marie E Sandström
- Department of Sport, Health and Exercise Science, University of Hull, Cottingham Road, Hull, UK.
| | | | | | | | | |
Collapse
|
209
|
Affiliation(s)
- Michel Morange
- Centre Cavaillés, Ecole normale supérieure, 29 rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
210
|
Kamiguchi K, Torigoe T, Fujiwara O, Ohshima S, Hirohashi Y, Sahara H, Hirai I, Kohgo Y, Sato N. Disruption of the association of 73 kDa heat shock cognate protein with transporters associated with antigen processing (TAP) decreases TAP-dependent translocation of antigenic peptides into the endoplasmic reticulum. Microbiol Immunol 2008; 52:94-106. [DOI: 10.1111/j.1348-0421.2008.00017.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
211
|
Brown-Peterson NJ, Manning CS, Patel V, Denslow ND, Brouwer M. Effects of cyclic hypoxia on gene expression and reproduction in a grass shrimp, Palaemonetes pugio. THE BIOLOGICAL BULLETIN 2008; 214:6-16. [PMID: 18258771 DOI: 10.2307/25066655] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cyclic changes in dissolved oxygen occur naturally in shallow estuarine systems, yet little is known about the adaptations and responses of estuarine organisms to cyclic hypoxia. Here we examine the responses of Palaemonetes pugio, a species of grass shrimp, to cyclic hypoxia (1.5-8 mg/l dissolved oxygen; 4.20-22.42 kPa) at both the molecular and organismal levels. We measured alterations in gene expression in hepatopancreas tissue of female grass shrimp using custom cDNA macroarrays. After short-term (3-d) exposure to cyclic hypoxia, mitochondrial manganese superoxide dismutase (MnSOD) was upregulated and 70-kd heat shock proteins (HSP70) were downregulated. After 7-d exposure, nuclear genes encoding mitochondrial proteins (ribosomal protein S2, ATP synthase, very-long-chain specific acyl-CoA dehydrogenase [VLCAD]) were downregulated, whereas mitochondrial phosphoenol pyruvate carboxykinase (PEP Cbk) was upregulated. After 14 d, vitellogenin and apolipoprotein A1 were upregulated. Taken together, these changes suggest a shift in metabolism toward gluconeogenesis and lipid export. Long-term (77-d) exposure to hypoxia showed that profiles of gene expression returned to pre-exposure levels. These molecular responses differ markedly from those induced by chronic hypoxia. At the organismal level, cyclic hypoxia reduces the number of broods and eggs a female can produce. Demographic analysis showed a lower estimated rate of population growth in grass shrimp exposed to both continuous and short-term cyclic hypoxia, suggesting population-level impacts on grass shrimp.
Collapse
Affiliation(s)
- Nancy J Brown-Peterson
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Dr., Ocean Springs, Mississippi 39564, USA
| | | | | | | | | |
Collapse
|
212
|
Koul S, Huang M, Bhat S, Maroni P, Meacham RB, Koul HK. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity. ACTA ACUST UNITED AC 2008; 36:1-10. [PMID: 18172632 DOI: 10.1007/s00240-007-0130-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/09/2007] [Indexed: 01/22/2023]
Abstract
We investigated the effects of oxalate on immediate early genes (IEGs) and stress protein HSP 70, commonly induced genes in response to a variety of stresses. LLC-PK1 cells were exposed to oxalate. Gene transcription and translation were monitored by Northern and Western blot analysis. RNA and DNA synthesis were assessed by [(3)H]-uridine and [(3)H]-thymidine incorporation, respectively. Oxalate exposure selectively increased the levels of mRNA encoding IEGs c-myc and c-jun as well as stress protein HSP 70. While expression of c-myc and c-jun was rapid (within 15 min to 2 h) and transient, HSP 70 expression was delayed (approximately 8 h) and stable. Furthermore, oxalate exposure resulted in delayed induction of generalized transcription by 18 h and reinitiation of the DNA synthesis by 24 h of oxalate exposure. Moreover, we show that prior induction of HSP 70 by mild hypertonic exposure protected the cells from oxalate toxicity. To the best of our knowledge this is the first study to demonstrate rapid IEG response and delayed heat-shock response to oxalate toxicity and protective role of HSP 70 against oxalate toxicity to renal epithelial cells. Oxalate, a metabolic end product, induces IEGs c-myc and c-jun and a delayed HSP 70 expression; While IEG expression may regulate additional genetic responses to oxalate, increased HSP 70 expression would serve an early protective role during oxalate stress.
Collapse
Affiliation(s)
- Sweaty Koul
- Signal Transduction and Molecular Urology Laboratory, Program in Urosciences, Division of Urology, Department of Surgery, University of Colorado, School of Medicine, 4200 East Ninth Avenue, C-319, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
213
|
Saradha B, Vaithinathan S, Mathur P. Lindane alters the levels of HSP70 and clusterin in adult rat testis. Toxicology 2008; 243:116-23. [DOI: 10.1016/j.tox.2007.09.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
214
|
Choi CY, An KW. Cloning and expression of Na+/K+-ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:91-100. [PMID: 17900954 DOI: 10.1016/j.cbpb.2007.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
Abstract
We cloned complementary DNA (cDNA) encoding the Na(+)/K(+)-ATPase (NKA) and the osmotic stress transcription factor 1 (OSTF1) from the kidney and gill, respectively, of the black porgy, Acanthopagrus schlegeli. Black porgy NKA full-length cDNA consists of 3078 base pairs (bp) and encodes a protein of 1025 amino acids; OSTF1 partial cDNA consists of 201 bp. To investigate the osmoregulatory ability of black porgy when black porgy were transferred to freshwater (FW), we examined the expression of NKA and OSTF1 mRNA in osmoregulatory organs, i.e., gill, kidney and intestine, using quantitative polymerase chain reaction (QPCR). To determine the hypoosmotic stressor specificity of the induction of NKA and OSTF1, black porgy were exposed to 30 degrees C water temperature for 24 h. In the gill, NKA mRNA was 4.2 times higher in FW, its expression in the kidney was 5.7 times higher in 10 per thousand seawater (10 per thousand SW) than in SW. In contrast, OSTF1 mRNA in the gill was 3.7 times higher in FW than in SW. The expression of heat shock protein 90 (HSP90) mRNA occurred not only during transfer to FW, but also in high-temperature water in all tested tissues, although the mRNA levels were not significantly different. Plasma osmolality level was decreased and cortisol level was increased when the fish were transferred from SW to FW. These results suggest that NKA and OSTF1 genes play important roles in hormonal regulation in osmoregulatory organs and that these genes are specific to hypoosmotic stress, improving the hyperosmoregulatory ability of black porgy in hypoosmotic environments.
Collapse
Affiliation(s)
- Cheol Young Choi
- Division of Marine Environment & Bioscience, Korea Maritime University, Busan 606-791 Korea.
| | | |
Collapse
|
215
|
Sakrak O, Kerem M, Bedirli A, Pasaoglu H, Akyurek N, Ofluoglu E, Gültekin FA. Ergothioneine Modulates Proinflammatory Cytokines and Heat Shock Protein 70 in Mesenteric Ischemia and Reperfusion Injury. J Surg Res 2008; 144:36-42. [PMID: 17603080 DOI: 10.1016/j.jss.2007.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 04/02/2007] [Accepted: 04/08/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Ergothioneine (EGT) is a natural compound that is synthesized by soil bacteria in fungal substrates and exhibits antioxidant functions in many cell models. The purpose of this study was to investigate the effect of EGT on mesenteric ischemia and reperfusion injury. MATERIALS AND METHODS Rats were supplemented with or without l-ergothioneine (10 mg/kg/d) for 15 days prior to intestinal ischemia. Animals were subjected to ischemia induced by clamping the superior mesenteric artery for 60 min followed by reperfusion. Serum tumor necrosis factor (TNF)-alpha and interleukin-1beta (IL-1beta) levels, tissue malondialdehide (MDA), myleoperoxidase (MPO), and heat shock protein (HSP) 70 levels, as well as histological findings, were evaluated after 1, 2, and 4 h of reperfusion. RESULTS Serum TNF-alpha and IL-1beta levels, and tissue MDA and MPO activities at 1, 2 and 4 h after reperfusion in the EGT group, were significantly lower than the control group (P < 0.05). Tissue HSP-70 levels of the study group were significantly greater than the control group at any time point of reperfusion. No significant differences in tissue damage including morphological changes ranging from villous denudation to focal necrosis, ulceration, hemorrhage, and architectural disintegration at 1 and 2 h after reperfusion exist between the two groups; however, after 4 h of reperfusion, the tissue damage based on histopathologic scores by Chiu was considerably lower in the study group (P < 0.05). After 4 h of reperfusion, focal epithelial lifting and occasional areas of denuded villi could be seen in the samples of the treated animals, thus preserving villous height and mucosal architecture. CONCLUSION EGT attenuates mesenteric ischemia reperfusion injury in rat intestine by increasing tissue HSP-70 and decreasing TNF-alpha, IL-1beta, MDA, and MPO levels. EGT also improves morphological alterations, which occurred after IR injury after prolonged periods of reperfusion.
Collapse
Affiliation(s)
- Omer Sakrak
- Department of General Surgery, Gazi University, School of Medicine, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
216
|
Hatin I, Fabret C, Namy O, Decatur WA, Rousset JP. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Genetics 2007; 177:1527-37. [PMID: 17483428 PMCID: PMC2147991 DOI: 10.1534/genetics.107.070771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/27/2007] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, release factors 1 and 3 (eRF1 and eRF3) are recruited to promote translation termination when a stop codon on the mRNA enters at the ribosomal A-site. However, their overexpression increases termination efficiency only moderately, suggesting that other factors might be involved in the termination process. To determine such unknown components, we performed a genetic screen in Saccharomyces cerevisiae that identified genes increasing termination efficiency when overexpressed. For this purpose, we constructed a dedicated reporter strain in which a leaky stop codon is inserted into the chromosomal copy of the ade2 gene. Twenty-five antisuppressor candidates were identified and characterized for their impact on readthrough. Among them, SSB1 and snR18, two factors close to the exit tunnel of the ribosome, directed the strongest antisuppression effects when overexpressed, showing that they may be involved in fine-tuning of the translation termination level.
Collapse
MESH Headings
- Base Sequence
- Carboxy-Lyases/genetics
- Codon, Terminator
- DNA, Fungal/genetics
- Gene Expression
- Genes, Fungal
- Genes, Reporter
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Macromolecular Substances
- Models, Molecular
- Mutagenesis
- Peptide Chain Termination, Translational
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Hatin
- IGM, Université Paris-Sud, UMR 8621, F91405 Orsay, France.
| | | | | | | | | |
Collapse
|
217
|
Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 2007; 12:245-54. [PMID: 17915557 PMCID: PMC1971240 DOI: 10.1379/csc-265.1] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heat shock protein (Hsp) 70 has been reported to protect various cells and tissues from ischemic damage. However, the molecular mechanisms of the protection are incompletely understood. Ischemia induces significant alterations in cellular redox status that plays a critical role in cell survival/death pathways. We investigated the effects of Hsp70 overexpression on cellular redox status in Madin-Darby canine kidney (MDCK) cells under both hypoxic and ischemic conditions with 3 different approaches: reactive oxygen species (ROS) measurement by a fluorescence probe, redox environment evaluation by a hydroxylamine spin probe, and redox status assessment by the glutathione/glutathione disulfide (GSH/GSSG) ratio. Results from each of these approaches showed that the redox status in Hsp70 cells was more reducing than that in control cells under either hypoxic or oxygen and glucose deprivation (OGD) conditions. In order to determine the mechanisms that mediated the alterations in redox state in Hsp70 cells, we measured the activities of glutathione peroxidase (GPx) and glutathione reductase (GR), two GSH-related antioxidant enzymes. We found that OGD exposure increased GPx and GR activities 47% and 55% from their basal levels (no stress) in Hsp70 cells, compared to only 18% and 0% increase in control cells, respectively. These data, for the first time, indicate that Hsp70 modulates the activities of GPx and GR that regulate cellular redox status in response to ischemic stress, which may be important in Hsp70's cytoprotective effects.
Collapse
Affiliation(s)
- Shuhong Guo
- Center of Biomedical Research Excellence and College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
218
|
Michod D, Widmann C. DNA-damage sensitizers: Potential new therapeutical tools to improve chemotherapy. Crit Rev Oncol Hematol 2007; 63:160-71. [PMID: 17544289 DOI: 10.1016/j.critrevonc.2007.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 04/12/2007] [Accepted: 04/24/2007] [Indexed: 01/01/2023] Open
Abstract
Agents that induce DNA damage in cells--the so-called genotoxins--have successfully been used for decades to treat patients with tumors. Genotoxins alter the DNA of cells, which is detected by DNA damage sensors and which leads to the activation of p53. Activation of p53 can lead to the death of cancer cells. The efficacy of genotoxins in humans is however limited by their toxicity to normal tissues. Specific sensitization of tumor cells to the action of genotoxins would reduce the efficacious doses of genotoxins to be used in patients, diminishing the detrimental side-effects of the drugs on normal tissues. A series of compounds able to sensitize cancer cells to DNA-damaging drugs have recently been identified that have the potential to increase the efficacy of currently used anti-cancer treatments.
Collapse
Affiliation(s)
- David Michod
- Department of Physiology and Department of Cell Biology and Morphology, Biology and Medicine Faculty, Lausanne University, Switzerland
| | | |
Collapse
|
219
|
Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T, Yoshioka H. Association between heat stress protein 70 induction and decreased pulmonary fibrosis in an animal model of acute lung injury. Lung 2007; 185:287-293. [PMID: 17629797 DOI: 10.1007/s00408-007-9018-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
The hyperthermia-induced activation of the stress protein response allows cells to withstand metabolic insults that would otherwise be lethal. This phenomenon is referred to as thermotolerance. Heat shock protein 70 (HSP70) has been shown to play an important role in this hyperthermia-related cell protection. HSP70 confers protection against cellular and tissue injury. Our objective was to determine the effect of heat stress on the histopathology of pulmonary fibrosis caused by the administration of lipopolysaccharide (LPS) in Wistar rats. The rats were randomly divided into three groups. In the control group, rats were heated to 42 degrees C for 15 min. In the LPS group, rats were given LPS in 0.9% NaCl solution (10 mg/kg body weight). In the WH (whole-body hyperthermia) +LPS group, rats were heated to 42 degrees C for 15 min, and 48 h later they were injected with LPS dissolved in a 0.9% NaCl solution (10 mg/kg body weight). We investigated lung histopathology and performed a Northern blot analysis daily. Hyperthermia was shown to reduce tissue injury caused by the administration of LPS. Pulmonary tissue HSP70 mRNA was found to be elevated at 3 h after heating. HSP70 protein levels in the serum increased after whole-body hyperthermia. However, neither the expression of HSP47 mRNA nor the expression of type I or type III collagen mRNA was induced by the administration of LPS after whole-body hyperthermia. These data indicate that thermal pretreatment is associated with the induction of HSP70 protein synthesis, which subsequently attenuates tissue damage in experimental lung fibrosis.
Collapse
Affiliation(s)
- Satoshi Hagiwara
- Department of Brain and Nerve Science, Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City, Oita, 879-5593, Japan.
| | - Hideo Iwasaka
- Department of Brain and Nerve Science, Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City, Oita, 879-5593, Japan
| | - Shigekiyo Matsumoto
- Department of Brain and Nerve Science, Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City, Oita, 879-5593, Japan
| | - Takayuki Noguchi
- Department of Brain and Nerve Science, Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City, Oita, 879-5593, Japan
| | - Hidekatsu Yoshioka
- Department of Anatomy, Biology and Medicine, Biochemistry, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City, Oita, 879-5593, Japan
| |
Collapse
|
220
|
Cooper B, Neelam A, Campbell KB, Lee J, Liu G, Garrett WM, Scheffler B, Tucker ML. Protein accumulation in the germinating Uromyces appendiculatus uredospore. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:857-66. [PMID: 17601172 DOI: 10.1094/mpmi-20-7-0857] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Uromyces appendiculatus is a rust fungus that causes disease on beans. To understand more about the biology of U. appendiculatus, we have used multidimensional protein identification technology to survey proteins in germinating asexual uredospores and have compared this data with proteins discovered in an inactive spore. The relative concentrations of proteins were estimated by counting the numbers of tandem mass spectra assigned to peptides for each detected protein. After germination, there were few changes in amounts of accumulated proteins involved in glycolysis, acetyl Co-A metabolism, citric acid cycle, ATP-coupled proton transport, or gluconeogenesis. Moreover, the total amount of translation elongation factors remained high, supporting a prior model that suggests that germlings acquire protein translation machinery from uredospores. However, germlings contained a higher amount of proteins involved in mitochondrial ADP:ATP translocation, which is indicative of increased energy production. Also, there were more accumulating histone proteins, pointing to the reorganization of the nuclei that occurs after germination prior to appressorium formation. Generally, these changes are indicative of metabolic transition from dormancy to germination and are supported by cytological and developmental models of germling growth.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, 10300 Baltimore Ave., Bldg. 006 Rm 213, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Aktepe F, Sahin O, Dilek H, Yilmaz D, Kahveci O, Derekoy S. Immunohistochemical assesment of heat shock protein 70 in adenoid tissue. Int J Pediatr Otorhinolaryngol 2007; 71:857-61. [PMID: 17386947 DOI: 10.1016/j.ijporl.2007.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/17/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the expression of heat shock protein 70 (HSP70) and its relation to histopathologic parameters in adenoid hypertrophy and hyperplasia. In addition, HSP70 expression in adenoid tissue was compared with in adult and childhood. METHODS Paraffin-embedded adenoid tissue sections were obtained from 19 childhood and 15 adult patients. Expression of HSP70 was evaluated by immunohistochemical staining using anti-HSP70 monoclonal antibody and correlated with histopathologic parameters. RESULTS Positive HSP70 expression was observed mainly in the mucosal epithelium, lymphocytes in germinal centers, interfollicular lymphocytes, subepithelial plasma cells and vascular endothelium. HSP70 immunoreactivity in the mucosal epithelium with severe intraepithelial lymphocytic infiltration in childhood patients was higher than in adult patients. Although, the immunoreactivity of HSP70 was detected strongly in whole layer of metaplastic squamous epithelium, it was stained only in basal layers in respiratuary epithelium, Lymphocytes stained with HSP70 in germinal center and interfollicular areas of adenoid tissues was higher in childhood patients than in adults. CONCLUSIONS These data suggest that HSP70 expression may have an important role in pathogenesis of adenoid hyperplasia, especially, in childhood.
Collapse
Affiliation(s)
- Fatma Aktepe
- Department of Pathology, Afyon Kocatepe University School of Medicine, Afyonkarahisar, Turkey.
| | | | | | | | | | | |
Collapse
|
222
|
Rajamani R, Muthuvel A, Manikandan S, Srikumar R, Sheeladevi R. Efficacy of dl-α-lipoic acid on methanol induced free radical changes, protein oxidative damages and hsp70 expression in folate deficient rat nervous tissue. Chem Biol Interact 2007; 167:161-7. [PMID: 17399694 DOI: 10.1016/j.cbi.2007.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/20/2007] [Accepted: 01/24/2007] [Indexed: 11/30/2022]
Abstract
DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.
Collapse
Affiliation(s)
- Rathinam Rajamani
- Department of Physiology, Dr. ALM. PG. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamilnadu, India
| | | | | | | | | |
Collapse
|
223
|
Tetzlaff J, Tanzer L, Jones KJ. Exogenous androgen treatment delays the stress response following hamster facial nerve injury. J Neuroendocrinol 2007; 19:383-9. [PMID: 17425613 DOI: 10.1111/j.1365-2826.2007.01538.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following injury or stress of any type, cells undergo a stress response, involving the cessation of general protein synthesis and the up-regulation of heat shock proteins (HSP), which have been implicated in promoting cell survival and repair. In a variety of neuronal injury models, including the hamster facial motoneurone (FMN) model, steroid hormones augment regeneration and are neuroprotective. We have previously shown that facial nerve axotomy induces expression of HSP70 (HSP70) and/or up-regulates constitutively expressed HSP70 (HSC70) mRNA in axotomised hamster FMN and that testosterone propionate (TP) treatment reduces this response. These previous studies were unable to differentiate between HSC70 mRNA and HSP70 mRNA. Therefore, an objective of the present study was to determine which HSP (HSC70 or HSP70) was being up-regulated by axotomy and reduced by TP. Axotomy increased HSC70 protein in axotomised and non-axotomised FMN, relative to untreated baseline hamsters. Interestingly, TP transiently delayed the stress-induced up-regulation of HSC70 protein in axotomised FMN compared to axotomised FMN from non-TP treated controls. A potential explanation for this delay may involve the TP-induced liberation of HSP from the androgen receptor, which would provide the injured cell with an immediately available pool of protective HSP. An hypothesis is presented suggesting that this TP-induced delay of stress-induced HSC70 up-regulation might allow for the diversion of cellular energy away from HSP synthesis and towards the synthesis of proteins required for regeneration and survival.
Collapse
Affiliation(s)
- J Tetzlaff
- Neuroscience Graduate Program, Loyola University Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
224
|
Mao Y, Deng A, Qu N, Wu X. ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity. BIOCHEMISTRY (MOSCOW) 2007; 71:1222-9. [PMID: 17140383 DOI: 10.1134/s0006297906110071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperone activity of Hsp70 in protein folding and its conformational switching are regulated through the hydrolysis of ATP and the ATP-ADP exchange cycle. It was reported that, in the presence of physiological concentrations of ATP (approximately 5 mM) and ADP (approximately 0.5 mM), Hsp70 catalyzes ATP-ADP exchange through transfer of gamma-phosphate between ATP and ADP, via an autophosphorylated intermediate, whereas it only catalyzes the hydrolysis of ATP in the absence of ADP. To clarify the functional domain of the ATP-ADP exchange activity of Hsp70, we isolated the 44-kD ATPase domain of Hsp70 after limited proteolysis with alpha-chymotrypsin (EC 3.4.21.1). The possibility of ATP-ADP exchange activity of a contaminating nucleoside diphosphate kinase (EC 2.7.4.6) was monitored throughout the experiments. The purified 44-kD ATPase domain exhibited intrinsic ATP-ADP exchange by catalyzing the transfer of gamma-phosphate between ATP and ADP with acid-stable autophosphorylation at Thr204.
Collapse
Affiliation(s)
- Yubin Mao
- Medical College, Xiamen University-National University of Singapore Laboratory of Biomedical Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|
225
|
Vittorini S, Storti S, Andreani G, Giusti L, Murzi B, Furfori P, Baroni A, De Lucia V, Luisi VS, Clerico A. Heat shock protein 70-1 gene expression in pediatric heart surgery using blood cardioplegia. Clin Chem Lab Med 2007; 45:244-8. [PMID: 17311516 DOI: 10.1515/cclm.2007.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In response to many stress stimuli, cardiomyocytes produce a common set of heat shock proteins (HSP). Up-regulation of HSP70-1 (the inducible isoform) is known to reduce the risk of myocardial cell damage during open-heart surgery and seems to be protective against ischemia. We assessed hsp70-1 gene expression during blood cardioplegic arrest in children undergoing surgical correction of congenital heart defects. METHODS In tissue samples taken from the right atrium of 59 pediatric patients, we examined hsp70-1 gene expression using a real-time quantitative reverse transcription PCR, with 18S rRNA as internal standard. RESULTS On average, hsp70-1 gene expression was higher than the baseline level by a factor of 1.44+/- 0.17 (mean+/-SEM). A significant relationship between hsp70-1 mRNA levels and aortic cross-clamp time was observed (R(2)=0.069, p=0.044). Conversely, no significant correlation was observed between hsp70-1 mRNA levels and temperature. CONCLUSIONS These data suggest that blood cardioplegia can induce an increment in the expression of hsp70-1, confirming its protective role in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Simona Vittorini
- Molecular Cardiology and Genetics Laboratory, National Research Council, Institute of Clinical Physiology, G. Pasquinucci Hospital, Massa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Wang J, Wei Y, Li X, Cao H, Xu M, Dai J. The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:350-62. [PMID: 17368997 DOI: 10.1016/j.cbpc.2007.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/07/2007] [Accepted: 01/11/2007] [Indexed: 11/21/2022]
Abstract
The enhanced expression of heat shock proteins (HSPs) can be detected in response to high temperatures, as well as to many kinds of stressors, including pollutants. Partial cDNA sequences encoding HSP30, HSP70, HSP90 beta, and heat shock cognate (HSC) 70, and full-length cDNA sequences encoding HSP27, HSP47 and HSP60 were cloned from goldfish (Carassius auratus). The expression of these genes was investigated in goldfish inhabiting Gaobeidian Lake in Beijing, China. The water of this lake is moderately polluted and has a higher temperature due to the water being used as a coolant in the nearby thermal power plant. All HSP sequences tested were highly conserved compared with their corresponding genes in other species. A significant up-regulation in HSP30 and HSP70 transcripts was exhibited in goldfish collected in winter in Gaobeidian Lake. The up-regulation in HSP27 and HSP90 beta transcript, as well as HSP30, was observed on the day of collection in summer. The up-regulation of these HSPs suggested that fish under these specific environmental conditions were experiencing a complex stress process. The expression of HSP30 was found to be more prominent among the fishes in Gaobeidian Lake than at the cleaner reference site (Huairou Reservoir). In the latter case, the HSP30 expression was almost non-detectable, suggesting the possibility of using it as a biomarker for complex environmental pollution.
Collapse
Affiliation(s)
- Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu, Beijing 100080, PR China
| | | | | | | | | | | |
Collapse
|
227
|
Association of heat shock protein 70 induction and the amelioration of experimental autoimmune uveoretinitis in mice. Immunobiology 2007; 212:11-8. [DOI: 10.1016/j.imbio.2006.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 11/22/2022]
|
228
|
Doulias PT, Kotoglou P, Tenopoulou M, Keramisanou D, Tzavaras T, Brunk U, Galaris D, Angelidis C. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radic Biol Med 2007; 42:567-77. [PMID: 17275689 DOI: 10.1016/j.freeradbiomed.2006.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/17/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Heat shock protein-70 (Hsp70) is the main heat-inducible member of the 70-kDa family of chaperones that assist cells in maintaining proteins functional under stressful conditions. In the present investigation, the role of Hsp70 in the molecular mechanism of hydrogen peroxide-induced DNA damage to HeLa cells in culture was examined. Stably transfected HeLa cell lines, overexpressing or lacking Hsp70, were created by utilizing constitutive expression of plasmids containing the functional hsp70 gene or hsp70-siRNA, respectively. Compared to control cells, the Hsp70-overexpressing ones were significantly resistant to hydrogen peroxide-induced DNA damage, while Hsp70-depleted cells showed an enhanced sensitivity. In addition, the "intracellular calcein-chelatable iron pool" was determined in the presence or absence of Hsp70 and found to be related to the sensitivity of nuclear DNA to H(2)O(2). It seems likely that the main action of Hsp70, at least in this system, is exerted at the lysosomal level, by protecting the membranes of these organelles against oxidative stress-induced destabilization. Apart from shedding additional light on the mechanistic details behind the action of Hsp70 during oxidative stress, our results indicate that modulation of cellular Hsp70 may represent a way to make cancer cells more sensitive to normal host defense mechanisms or chemotherapeutic drug treatment.
Collapse
Affiliation(s)
- Paschalis-Thomas Doulias
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 451 10 Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1:53-60. [PMID: 19164900 DOI: 10.4161/pri.1.1.4059] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.
Collapse
|
230
|
|
231
|
Kang HJ, Hong MK, Jung SK, Kim LS. The Role of Heat Shock Proteins 70/90 as Potential Molecular Therapeutic Targets in Breast Cancer. J Breast Cancer 2007. [DOI: 10.4048/jbc.2007.10.4.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hee Joon Kang
- Department of Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Mi-Kyoung Hong
- Department of Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Sung Ku Jung
- Department of Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Lee Su Kim
- Department of Surgery, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
232
|
Buccellato MA, Carsillo T, Traylor Z, Oglesbee M. Heat shock protein expression in brain: a protective role spanning intrinsic thermal resistance and defense against neurotropic viruses. PROGRESS IN BRAIN RESEARCH 2007; 162:395-415. [PMID: 17645929 DOI: 10.1016/s0079-6123(06)62019-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heat shock proteins (HSPs) play an important role in the maintenance of cellular homeostasis, particularly in response to stressful conditions that adversely affect normal cellular structure and function, such as hyperthermia. A remarkable intrinsic resistance of brain to hyperthermia reflects protection mediated by constitutive and induced expression of HSPs in both neurons and glia. Induced expression underlies the phenomenon of hyperthermic pre-reconditioning, where transient, low-intensity heating induces HSPs that protect brain from subsequent insult, reflecting the prolonged half-life of HSPs. The expression and activity of HSPs that is characteristic of nervous tissue plays a role not just in the maintenance and defense of cellular viability, but also in the preservation of neuron-specific luxury functions, particularly those that support synaptic activity. In response to hyperthermia, HSPs mediate preservation or rapid recovery of synaptic function up to the point where damage in other organ systems becomes evident and life threatening. Given the ability of HSPs to enhance gene expression by neurotropic viruses, the constitutive and inducible HSP expression profiles would seem to place nervous tissues at risk. However, we present evidence that the virus-HSP relationship can promote viral clearance in animals capable of mounting effective virus-specific cell-mediated immune responses, potentially reflecting HSP-dependent increases in viral antigenic burden, immune adjuvant effects and cross-presentation of viral antigen. Thus, the protective functions of HSPs span the well-characterized intracellular roles as chaperones to those that may directly or indirectly promote immune function.
Collapse
Affiliation(s)
- Matthew A Buccellato
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
233
|
|
234
|
Lui JCK, Kong SK. Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett 2006; 581:109-17. [PMID: 17182042 DOI: 10.1016/j.febslet.2006.11.082] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 11/30/2006] [Indexed: 11/24/2022]
Abstract
Loss of mitochondrial membrane potential (DeltaPsi(m)) and release of AIF (apoptosis-inducing factor) from mitochondria are key steps in apoptosis. In TF-1 model, DeltaPsi(m) was depolarized with AIF release during erythroid development. Yet, no DNA fragmentation was observed. When DeltaPsi(m) depolarization had been blocked, erythropoiesis was suppressed. Interestingly, heat shock protein 70 (Hsp70) was found transiently upregulated during depolarization and it retained AIF in the cytosol to avoid DNA damages. When Hsp inhibitor was added, DNA fragmentation occurred. We show this mechanism for the first time in erythropoiesis how cells with DeltaPsi(m) depolarization and AIF release escape apoptosis.
Collapse
Affiliation(s)
- Julian Chun-Kin Lui
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | |
Collapse
|
235
|
Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez-Pinilla F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 2006; 24:1265-76. [PMID: 16987214 DOI: 10.1111/j.1460-9568.2006.05026.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies were conducted to evaluate the effect of a brief voluntary exercise period on the expression pattern and post-translational modification of multiple protein classes in the rat hippocampus using proteomics. An analysis of 80 protein spots of relative high abundance on two-dimensional gels revealed that approximately 90% of the proteins identified were associated with energy metabolism and synaptic plasticity. Exercise up-regulated proteins involved in four aspects of energy metabolism, i.e. glycolysis, ATP synthesis, ATP transduction and glutamate turnover. Specifically, we found increases in fructose-bisphosphate aldolase C, phosphoglycerate kinase 1, mitochondrial ATP synthase, ubiquitous mitochondrial creatine kinase and glutamate dehydrogenase 1. Exercise also up-regulated specific synaptic-plasticity-related proteins, the cytoskeletal protein alpha-internexin and molecular chaperones (chaperonin-containing TCP-1, neuronal protein 22, heat shock 60-kDa protein 1 and heat shock protein 8). Western blot was used to confirm the direction and magnitude of change in ubiquitous mitochondrial creatine kinase, an enzyme essential for transducing mitochondrial-derived ATP to sites of high-energy demand such as the synapse. Protein phosphorylation visualized by Pro-Q Diamond fluorescent staining showed that neurofilament light polypeptide, glial fibrillary acidic protein, heat shock protein 8 and transcriptional activator protein pur-alpha were more intensely phosphorylated with exercise as compared with sedentary control levels. Our results, together with the fact that most of the proteins that we found to be up-regulated have been implicated in cognitive function, support a mechanism by which exercise uses processes of energy metabolism and synaptic plasticity to promote brain health.
Collapse
Affiliation(s)
- Qinxue Ding
- Department of Neurosurgery, Brain Injury Research Centre, UCLA, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
236
|
Zlacka D, Sedlacek P, Prucha M, Hromadnikova I. Antibodies to 60, 65 and 70 kDa heat shock proteins in pediatric allogeneic stem cell transplant recipients. Pediatr Transplant 2006; 10:794-804. [PMID: 17032425 DOI: 10.1111/j.1399-3046.2006.00566.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Allogeneic SCT remains the only means of cure for many patients with various malignant disorders as well as non-malignant diseases. Infection together with severe aGvHD may result in a significant incidence of transplant-related morbidity and mortality. Current evidence suggests that hSPS represent major immunodominant antigens in many pathogens and therefore might play an important role in the pathogenesis of GvHD. We investigated the levels of total Ig, IgG and IgM isotype antibodies to rh-hsp60, recombinant Mycobacterium bovis hsp65 and stress-inducible rh-hsp70 in sera of pediatric patients undergoing SCT by using ELISA. We studied whether humoral immune responses to hSPS follow transplant-related complications, bacterial and fungal infection. Anti-hsp antibodies were detected in patients' sera before conditioning, over the course of conditioning and all the time post-transplant. We found no correlation between anti-hsp antibodies and the occurrence and severity of GvHD and/or other transplant-related complications like graft failure, hemorrhagic cystitis and capillary leakage syndrome. However, elevated anti-hsp antibodies involving IgM and IgG isotypes were found to be associated with bacterial and fungal infection depending on etiological agents. We demonstrated de novo humoral response to hSPS in a cohort of patients with actual infection caused by Klebsiella pneumoniae (anti-hsp60, anti-hsp65 and anti-hsp70), Pseudomonas aeruginosa (anti-hsp60, anti-hsp70) and Aspergillus fumigatus (anti-hsp65). We conclude that anti-hsp antibodies might be produced after SCT in relation to infection depending on etiological agents; however, transplant-related complications by themselves had a little impact.
Collapse
Affiliation(s)
- Denisa Zlacka
- Cell Biology Laboratory, Department of Paediatrics, University Hospital Motol, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
237
|
Lánská V, Chmelíková E, Sedmíková M, Petr J, Rajmon R, Jeseta M, Rozinek J. Expression of heat shock protein70 in pig oocytes: Heat shock response during oocyte growth. Anim Reprod Sci 2006; 96:154-64. [PMID: 16414213 DOI: 10.1016/j.anireprosci.2005.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/16/2005] [Accepted: 12/16/2005] [Indexed: 11/25/2022]
Abstract
The heat shock response of growing and fully-grown pig oocytes was analyzed in vitro by determining heat shock protein70 (HSP70) synthesis under both normal conditions (39 degrees C; 0 and 6h) and after heat shock (43 degrees C; 1, 4 and 6h). The expression of HSP70 in oocytes was detected by immunoblotting analysis. Growing oocytes measuring 80-99 microm synthesized a high number of HSP70 without heat shock effect, and these were capable of increasing the synthesis of HSP70 after heat shock to a maximum after 1h. Growing oocytes measuring 100-115 microm also synthesized HSP70 without heat shock and after it, but the HSP70 synthesis was not statistically changed by increasing duration of heat shock. In fully-grown oocytes, great amounts of HSP70 were found without heat shock treatment, and the contents of HSP70 significantly decreased after heat shock. These results indicate that growing oocytes are able to synthesize HSP70 after heat shock. This ability declines at the end of the growth period, and fully-grown oocytes are unable to induce HSP70 synthesis after heat shock. HSP70 is synthesized and stored during oocyte growth. The high HSP70 synthesis in non-heat-treated growing oocytes and a great amount of HSP70 in fully-grown oocytes support the hypothesis that HSP70 is important for oocyte growth and maturation.
Collapse
Affiliation(s)
- Vilma Lánská
- Czech University of Agriculture in Prague, Department of Veterinary Sciences, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
238
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
239
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
240
|
Lovell R, Madden L, Carroll S, McNaughton L. The time-profile of the PBMC HSP70 response to in vitro heat shock appears temperature-dependent. Amino Acids 2006; 33:137-44. [PMID: 16988908 DOI: 10.1007/s00726-006-0400-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Heat shock proteins (HSPs) are synthesised by cells subsequent to a stress exposure and are known to confer protection to the cell in response to a second challenge. HSP induction and decay are correlated to thermotolerance and may therefore be used as a biomarker of thermal history. The current study tested the temperature-dependent nature of the heat shock response and characterised its time profile of induction. Whole blood from 6 healthy males (Age: 26 +/- (SD) 2 yrs; Body mass 74.2 +/- 3.8 kgs; VO(2max): 49.1 +/- 4.0 ml.kg(-1).min(-1)) were isolated and exposed to in vitro heat shock (HS) at 37, 38, 39, 40, and 41 degrees C for a period of 90 min. After HS the temperature was returned to 37 degrees C and intracellular HSP70 was quantified from the leukocytes at 0, 2, 4, and 6 h after heat treatment. The concentration of HSP70 was not different between temperatures (P > 0.05), but the time-profile of HSP70 synthesis appeared temperature-dependent. At control (37 degrees C) and lower temperatures (38-39 degrees C) the mean HSP70 concentration increased up to 4 h post HS (P < 0.05) and then returned towards baseline values by 6 h post HS. With in vitro hyperthermic conditions (40-41 degrees C), the time-profile was characterised by a sharp rise in HSP70 levels immediately after treatment (P < 0.05 for 40 degrees C at 0 h), followed by a progressive decline over time. The results suggest a temperature-dependent time-profile of HSP70 synthesis. In addition, the temperature at which HSP70 is inducted might be lower than 37 degrees C.
Collapse
Affiliation(s)
- R Lovell
- Department of Sport, Health and Exercise Science, University of Hull, Hull, UK.
| | | | | | | |
Collapse
|
241
|
Hu G, Tang J, Zhang B, Lin Y, Hanai JI, Galloway J, Bedell V, Bahary N, Han Z, Ramchandran R, Thisse B, Thisse C, Zon LI, Sukhatme VP. A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J Cell Sci 2006; 119:4117-26. [PMID: 16968741 DOI: 10.1242/jcs.03179] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A zebrafish transcript dubbed GA2692 was initially identified via a whole-mount in situ hybridization screen for vessel specific transcripts. Its mRNA expression during embryonic development was detected in ventral hematopoietic and vasculogenic mesoderm and later throughout the vasculature up to 48 hours post fertilization. Morpholino-mediated knockdown of GA2692 in embryos resulted in multiple defects in vasculature, particularly, at sites undergoing active capillary sprouting: the intersegmental vessels, sub-intestinal vessels and the capillary sprouts of the pectoral fin vessel. During the course of these studies, a homology search indicated that GA2692 is the zebrafish orthologue of mammalian HspA12B, a distant member of the heat shock protein 70 (Hsp70) family. By a combination of northern blot and real-time PCR analysis, we showed that HspA12B is highly expressed in human endothelial cells in vitro. Knockdown of HspA12B by small interfering RNAs (siRNAs) in human umbilical vein endothelial cells blocked wound healing, migration and tube formation, whereas overexpression of HspA12B enhanced migration and accelerated wound healing - data that are consistent with the in vivo fish phenotype obtained in the morpholino-knockdown studies. Phosphorylation of Akt was consistently reduced by siRNAs against HspA12B. Overexpression of a constitutively active form of Akt rescued the inhibitory effects of knockdown of HspA12B on migration of human umbilical vein endothelial cells. Collectively, our data suggests that HspA12B is a highly endothelial-cell-specific distant member of the Hsp70 family and plays a significant role in endothelial cells during development and angiogenesis in vitro, partially attributable to modulation of Akt phosphorylation.
Collapse
Affiliation(s)
- Guang Hu
- Renal Division, Center for Study of the Tumor Microenvironment and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zlacka D, Vavrincova P, Hien Nguyen TT, Hromadnikova I. Frequency of anti-hsp60, -65 and -70 antibodies in sera of patients with juvenile idiopathic arthritis. J Autoimmun 2006; 27:81-8. [PMID: 16934956 DOI: 10.1016/j.jaut.2006.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/14/2006] [Accepted: 06/27/2006] [Indexed: 11/17/2022]
Abstract
Cross-reactivity between microbial and human heat shock proteins (hsps) led to the concept that hsp might be involved in the etiopathogenesis of autoimmune diseases. We investigated antibodies to recombinant human hsp60, recombinant Mycobacterium bovis hsp65 and to stress-inducible recombinant human hsp70 using enzyme-linked immunosorbent assay (ELISA) in sera of 209 juvenile idiopathic arthritis (JIA) patients and 50 healthy controls. Anti-hsp60 antibodies did not exceed the control level in any JIA patient. The numbers of JIA patients (16/209, 7.6%) who raised anti-hsp65 antibodies was equal to healthy controls (4/50, 8%). Elevated levels of antibodies against hsp70 were found in a cohort of patients with JIA (36.8%) when compared with age-matched healthy individuals (2%). These antibodies were predominantly of IgG isotype in systemic disease and IgM isotype in oligoarthritis. In polyarthritis both IgG and IgM antibodies frequently occurred. Significantly higher anti-hsp70 antibody levels were found in RF-positive JIA patients. The levels of anti-hsp70 antibodies correlated with the severity of disease evaluated on the basis of Steinbrocker's functional classification and rtg staging system. No association between anti-hsp70 antibody levels and ANA, HLA B27 and disease duration (less than 2 years x more than 2 years) was observed except IgM anti-hsp70 antibody where significantly higher levels were also detected in HLA B27-positive patients. The prevalence of anti-hsp70 antibodies is much higher in JIA patients when compared with healthy controls, suggesting their possible role in pathological mechanism of the disease.
Collapse
Affiliation(s)
- Denisa Zlacka
- Cell Biology Laboratory, Department of Paediatrics, University Hospital Motol, 2nd Medical Faculty, Charles University, V Uvalu 84, 15006 Prague 5, Czech Republic.
| | | | | | | |
Collapse
|
243
|
Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 2006; 20:1776-89. [PMID: 16818608 PMCID: PMC1522074 DOI: 10.1101/gad.1428206] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The heat-shock response (HSR), a universal cellular response to heat, is crucial for cellular adaptation. In Escherichia coli, the HSR is mediated by the alternative sigma factor, sigma32. To determine its role, we used genome-wide expression analysis and promoter validation to identify genes directly regulated by sigma32 and screened ORF overexpression libraries to identify sigma32 inducers. We triple the number of genes validated to be transcribed by sigma32 and provide new insights into the cellular role of this response. Our work indicates that the response is propagated as the regulon encodes numerous global transcriptional regulators, reveals that sigma70 holoenzyme initiates from 12% of sigma32 promoters, which has important implications for global transcriptional wiring, and identifies a new role for the response in protein homeostasis, that of protecting complex proteins. Finally, this study suggests that the response protects the cell membrane and responds to its status: Fully 25% of sigma32 regulon members reside in the membrane and alter its functionality; moreover, a disproportionate fraction of overexpressed proteins that induce the response are membrane localized. The intimate connection of the response to the membrane rationalizes why a major regulator of the response resides in that cellular compartment.
Collapse
Affiliation(s)
- Gen Nonaka
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
244
|
Shim JK, Jung DO, Park JW, Kim DW, Ha DM, Lee KY. Molecular cloning of the heat-shock cognate 70 (Hsc70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:288-95. [PMID: 16996286 DOI: 10.1016/j.cbpb.2006.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/30/2006] [Accepted: 07/05/2006] [Indexed: 11/28/2022]
Abstract
We isolated a heat shock cognate 70 (hsc70) gene from the two-spotted spider mite, Tetranychus urticae, a serious agricultural pest. The hsc70 cDNA is 2275 bp and contains a 1962 bp open reading frame. The translated amino acid sequence consists of 654 residues with a calculated molecular mass of 71,275 Da and an isoelectronic point (pI) of 5.52. It also contains the highly conserved functional motifs of the Hsp70 family. A comparison of the deduced amino acid sequence shows a high identity (81-84%) with Hsp70s/Hsc70s of insects but the highest identity is with mussel Hsc71 (86%). Northern blot hybridization indicates that the hsc70 transcript level of female adults is higher than that of male adults. We evaluated the response of hsc70 gene to stresses from temperature and starvation. The level of hsc70 mRNA was not significantly changed by heat and cold shocks nor by recovery after the shocks. However, the hsc70 mRNA level was decreased by food restriction of female mites. Analysis of nucleotide and deduced amino acid sequences of hsc70 gene from T. urticae suggests that it is a member of heat shock cognate 70 gene in the highly conserved Hsp70 family but that its expression is influenced by food restriction rather than thermal stress. This is the first molecular analysis of a heat shock protein gene in an acarid.
Collapse
Affiliation(s)
- Jae-Kyoung Shim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
245
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
246
|
Cooper B, Garrett WM, Campbell KB. Shotgun identification of proteins from uredospores of the bean rust Uromyces appendiculatus. Proteomics 2006; 6:2477-84. [PMID: 16518873 DOI: 10.1002/pmic.200500630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are interested in learning more about the proteome of Uromyces appendiculatus, the fungus that causes common bean rust. Knowledge of the proteins that differentiate life-cycle stages and distinguish infectious bodies such as uredospores, germlings, appressoria, and haustoria may be used to define host-pathogen interactions or serve as targets for chemical inhibition of the fungus. We have used 2-D nanoflowLC-MS/MS to identify more than 400 proteins from asexual uredospores. A majority of the proteins appear to have roles in protein folding or protein catabolism. We present a model by which an abundance of heat shock proteins and translation elongation factors may enhance a spore's ability to survive environmental stresses and rapidly initiate protein production upon germination.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
247
|
Schmitt E, Maingret L, Puig PE, Rerole AL, Ghiringhelli F, Hammann A, Solary E, Kroemer G, Garrido C. Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 2006; 66:4191-7. [PMID: 16618741 DOI: 10.1158/0008-5472.can-05-3778] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When overexpressed, the stress protein heat shock protein 70 (HSP70) increases the oncogenic potential of cancer cells in rodent models. HSP70 also prevents apoptosis, thereby increasing the survival of cells exposed to a wide range of otherwise lethal stimuli. These protective functions of HSP70 involve its interaction with and neutralization of the adaptor molecule apoptotic protease activation factor-1, implicated in caspase activation, and the flavoprotein apoptosis-inducing factor (AIF), involved in caspase-independent cell death. We have shown previously that a peptide containing the AIF sequence involved in its interaction with HSP70 (ADD70, amino acids 150-228) binds to and neutralizes HSP70 in the cytosol, thereby sensitizing cancer cells to apoptosis induced by a variety of death stimuli. Here, we show that expression of ADD70 in tumor cells decreases their tumorigenicity in syngeneic animals without affecting their growth in immunodeficient animals. ADD70 antitumorigenic effects are associated with an increase in tumor-infiltrating cytotoxic CD8+ T cells. In addition, ADD70 sensitizes rat colon cancer cells (PROb) and mouse melanoma cells (B16F10) to the chemotherapeutic agent cisplatin. ADD70 also shows an additive effect with HSP90 inhibition by 17-allylamino-17-demethoxygeldanamycin in vitro. Altogether, these data indicate the potential interest of targeting the HSP70 interaction with AIF for cancer therapy.
Collapse
MESH Headings
- Animals
- Apoptosis Inducing Factor/biosynthesis
- Apoptosis Inducing Factor/genetics
- Benzoquinones
- CD8-Positive T-Lymphocytes/immunology
- Cisplatin/pharmacology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/therapy
- Combined Modality Therapy
- Disease Models, Animal
- Drug Synergism
- HSP70 Heat-Shock Proteins/antagonists & inhibitors
- HSP70 Heat-Shock Proteins/metabolism
- Humans
- Lactams, Macrocyclic
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Rats
- Rats, Nude
- Rifabutin/analogs & derivatives
- Rifabutin/pharmacology
- Transfection
Collapse
Affiliation(s)
- Elise Schmitt
- Institut National de la Sante et de la Recherche Medicale, Faculty of Medicine, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2006; 10:86-103. [PMID: 16038406 PMCID: PMC1176476 DOI: 10.1379/csc-99r.1] [Citation(s) in RCA: 1013] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (Hsps) are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion, metastasis, death, and recognition by the immune system. We review the current status of the role of Hsp expression in cancer with special emphasis on the clinical setting. Although Hsp levels are not informative at the diagnostic level, they are useful biomarkers for carcinogenesis in some tissues and signal the degree of differentiation and the aggressiveness of some cancers. In addition, the circulating levels of Hsp and anti-Hsp antibodies in cancer patients may be useful in tumor diagnosis. Furthermore, several Hsp are implicated with the prognosis of specific cancers, most notably Hsp27, whose expression is associated with poor prognosis in gastric, liver, and prostate carcinoma, and osteosarcomas, and Hsp70, which is correlated with poor prognosis in breast, endometrial, uterine cervical, and bladder carcinomas. Increased Hsp expression may also predict the response to some anticancer treatments. For example, Hsp27 and Hsp70 are implicated in resistance to chemotherapy in breast cancer, Hsp27 predicts a poor response to chemotherapy in leukemia patients, whereas Hsp70 expression predicts a better response to chemotherapy in osteosarcomas. Implication of Hsp in tumor progression and response to therapy has led to its successful targeting in therapy by 2 main strategies, including: (1) pharmacological modification of Hsp expression or molecular chaperone activity and (2) use of Hsps in anticancer vaccines, exploiting their ability to act as immunological adjuvants. In conclusion, the present times are of importance for the field of Hsps in cancer, with great contributions to both basic and clinical cancer research.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (CRICYT-CONICET), Mendoza, Argentina
| | | |
Collapse
|
249
|
Heidemann SM, Glibetic M. Heat stress protects against lung injury in the neutropenic, endotoxemic rat. Inflammation 2006; 29:47-53. [PMID: 16502346 DOI: 10.1007/s10753-006-8969-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study is to determine if heat stress prior to endotoxemia diminishes cardiopulmonary dysfunction by attenuating the cytokine inflammatory response. Rats were assigned to either: 1) neutropenia; 2) heat; 3) neutropenia, LPS; or 4) heat, neutropenia, LPS. Heart rate, blood gases, and blood, lung lavage, and lung mRNA for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and macrophage inflammatory protein (MIP)-2 were measured. Heat given before LPS resulted in a similar A-a O(2) gradient as the heat-alone and neutropenic groups (8 +/- 8 versus 8 +/- 7 versus 4 +/- 3 mm Hg) and a lower A-a O(2) gradient when compared to the neutropenic, LPS rats (8 +/- 8 versus 22 +/- 8 mm Hg, p < 0.003). Blood, lung lavage, and lung mRNA for TNF-alpha, IL-1beta, and MIP-2 were similar in the LPS rats regardless of heat. Heart rate was similar in both LPS groups but higher than non-LPS groups. Heat pretreatment attenuates lung injury in the neutropenic, endotoxemic rat but not by decreasing TNF-alpha, IL-1beta, or MIP-2 in the lung. Heat prior to LPS did not prevent cardiac dysfunction in neutropenic rats.
Collapse
Affiliation(s)
- Sabrina M Heidemann
- Departments of Pediatric Critical Care Medicine and Clinical Pharmacology, Children's Hospital of Michigan, Wayne State University, 3901 Beaubien Blvd., Detroit, Michigan, 48201-2196, USA.
| | | |
Collapse
|
250
|
Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C. Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 2006:171-98. [PMID: 16610360 DOI: 10.1007/3-540-29717-0_8] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly conserved heat shock proteins (Hsps) accumulate in cells exposed to heat and a variety of other stressful stimuli. Hsps, that function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and Hsps induced in response to stress appear to function at key regulatory points in the control of apoptosis. Hsps include anti-apoptotic and pro-apoptotic proteins that interact with a variety of cellular proteins involved in apoptosis. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory Hsps, in particular Hsp27 and Hsp70, may participate in carcinogenesis. This review summarizes the apoptosis-regulatory function of Hsps.
Collapse
Affiliation(s)
- C Didelot
- Faculty of Medicine and Pharmacy, INSERM U-517, Dijon, France
| | | | | | | | | | | |
Collapse
|