201
|
Portugal-Nunes DJ, Pawar SS, Lidén G, Gorwa-Grauslund MF. Effect of nitrogen availability on the poly-3-D-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae. AMB Express 2017; 7:35. [PMID: 28176283 PMCID: PMC5296263 DOI: 10.1186/s13568-017-0335-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/04/2022] Open
Abstract
Poly-3-d-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.
Collapse
|
202
|
Ji S, Thulstrup PW, Mu H, Hansen SH, van de Weert M, Rantanen J, Yang M. Investigation of factors affecting the stability of lysozyme spray dried from ethanol-water solutions. Int J Pharm 2017; 534:263-271. [DOI: 10.1016/j.ijpharm.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022]
|
203
|
Bakarić D, Petrov D, Mouvenchery YK, Heiβler S, Oostenbrink C, Schaumann GE. Ion-induced modification of the sucrose network and its impact on melting of freeze-dried liposomes. DSC and molecular dynamics study. Chem Phys Lipids 2017; 210:38-46. [PMID: 29179944 DOI: 10.1016/j.chemphyslip.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023]
Abstract
Disaccharides play an important role in survival of anhydrobiotic organisms during extreme environmental conditions. A key protection feature is their capability to form the hydrogen bond (HB) network in a similar fashion as the one made by water. Since various ions also affect the HB network in completely hydrated systems, it is of a great interest to understand how they impact preservation when incorporated in a disaccharide network. To address this, we employ a combination of experimental and modeling techniques to study behavior of multilamellar 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes freeze-dried with sucrose in presence of NaCl or NaH2PO4·H2O at various concentrations (0.01-1M). Differential scanning calorimetry (DSC) was employed in order to determine the cooperative unit size (CUS), the number of lipid molecules that constitute a domain of cooperative motion in the liposome, and the melting temperature (Tm). In the absence of salt CUS was estimated to be 122±12, whereas in the presence of NaCl CUS increases more (347±34 for c=1M) than for NaH2PO4·H2O (193±26 for 1M). When it comes to Tm, the situation is reversed; NaCl induces increase by about 1K, while NaH2PO4·H2O by about 10K. These findings clearly demonstrate how different interaction forces-hydrogen bonding, charge pairing, and van der Waals interactions between acyl chains-affect CUS and Tm. Their interplay and contribution of particular interaction was further analyzed with molecular dynamics (MD) simulations. This analysis demonstrated that the HB network of DMPC and sucrose is partially disrupted in the presence of NaCl ions, and even to a greater extent in the case of NaH2PO4·H2O ions. Notably, H2PO4- ions outcompete and replace the sucrose molecules at the DMPC surface, which in turn alters the nature of the DMPC-surrounding interactions, from a weaker HB-dominated to a stronger CP-dominated interaction network.
Collapse
Affiliation(s)
- Danijela Bakarić
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.
| | - Dražen Petrov
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Yamuna Kunhi Mouvenchery
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany
| | - Stefan Heiβler
- Institute for Functional Interfaces, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Gabriele E Schaumann
- University of Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.
| |
Collapse
|
204
|
Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, Obsil T. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci U S A 2017; 114:E9811-E9820. [PMID: 29087344 PMCID: PMC5699087 DOI: 10.1073/pnas.1714491114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The 14-3-3 proteins, a family of highly conserved scaffolding proteins ubiquitously expressed in all eukaryotic cells, interact with and regulate the function of several hundreds of partner proteins. Yeast neutral trehalases (Nth), enzymes responsible for the hydrolysis of trehalose to glucose, compared with trehalases from other organisms, possess distinct structure and regulation involving phosphorylation at multiple sites followed by binding to the 14-3-3 protein. Here we report the crystal structures of yeast Nth1 and its complex with Bmh1 (yeast 14-3-3 isoform), which, together with mutational and fluorescence studies, indicate that the binding of Nth1 by 14-3-3 triggers Nth1's activity by enabling the proper 3D configuration of Nth1's catalytic and calcium-binding domains relative to each other, thus stabilizing the flexible part of the active site required for catalysis. The presented structure of the Bmh1:Nth1 complex highlights the ability of 14-3-3 to modulate the structure of a multidomain binding partner and to function as an allosteric effector. Furthermore, comparison of the Bmh1:Nth1 complex structure with those of 14-3-3:serotonin N-acetyltransferase and 14-3-3:heat shock protein beta-6 complexes revealed similarities in the 3D structures of bound partner proteins, suggesting the highly conserved nature of 14-3-3 affects the structures of many client proteins.
Collapse
Affiliation(s)
- Miroslava Alblova
- Department of Structural Biology of Signaling Proteins, Division Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Institute of Physiology, The Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Aneta Smidova
- Department of Structural Biology of Signaling Proteins, Division Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Institute of Physiology, The Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Vojtech Docekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Jan Vesely
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Institute of Physiology, The Czech Academy of Sciences, Prague 14220, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Institute of Physiology, The Czech Academy of Sciences, Prague 14220, Czech Republic;
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| |
Collapse
|
205
|
Bobek J, Šmídová K, Čihák M. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces. Front Microbiol 2017; 8:2205. [PMID: 29180988 PMCID: PMC5693915 DOI: 10.3389/fmicb.2017.02205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Chemistry Department, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Klára Šmídová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
206
|
Lerbret A, Affouard F. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration. J Phys Chem B 2017; 121:9437-9451. [PMID: 28920435 DOI: 10.1021/acs.jpcb.7b07082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, Tg, of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.
Collapse
Affiliation(s)
- Adrien Lerbret
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, UMR A 02.102, PAM, Procédés Alimentaires et Microbiologiques, F-21000 Dijon, France
| | - Frédéric Affouard
- Univ. Lille, CNRS, UMR 8207, UMET, Unité Matériaux Et Transformations, F-59000 Lille, France
| |
Collapse
|
207
|
Agudelo J, Cano A, González-Martínez C, Chiralt A. Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
208
|
Boothby TC, Pielak GJ. Intrinsically Disordered Proteins and Desiccation Tolerance: Elucidating Functional and Mechanistic Underpinnings of Anhydrobiosis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700119] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas C. Boothby
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
209
|
Li AB, Kluge JA, Zhi M, Cicerone MT, Omenetto FG, Kaplan DL. Enhanced Stabilization in Dried Silk Fibroin Matrices. Biomacromolecules 2017; 18:2900-2905. [PMID: 28777562 DOI: 10.1021/acs.biomac.7b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Preliminary studies have shown that silk fibroin can protect biomacromolecules from thermal degradation, but a deeper understanding of underlying mechanisms needed to fully leverage the stabilizing potential of this matrix has not been realized. In this study, we investigate stabilization of plasma C-reactive protein (CRP), a diagnostic indicator of infection or inflammation, to gain insight into stabilizing mechanisms of silk. We observed that the addition of antiplasticizing excipients that suppress β-relaxation amplitudes in silk matrices resulted in enhanced stability of plasma CRP. These observations are consistent with those made in sugar-glass-based protein-stabilizing matrices and suggest fundamental insight into mechanisms as well as practical strategies to employ with silk protein matrices for enhanced stabilization utility.
Collapse
Affiliation(s)
| | | | - Miaochan Zhi
- Materials Measurement Lab, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Marcus T Cicerone
- Materials Measurement Lab, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | | | | |
Collapse
|
210
|
Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. mBio 2017; 8:mBio.00643-17. [PMID: 28743811 PMCID: PMC5527307 DOI: 10.1128/mbio.00643-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes. Invasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in mammals, and thus, the two enzymes that carry out trehalose biosynthesis, namely, trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2), are prominent targets for antifungal intervention. Here, we report the first eukaryotic Tps1 structures from the pathogenic fungi Candida albicans and Aspergillus fumigatus in complex with substrates, substrate analogues, and inhibitors. These structures reveal key protein-substrate interactions, providing atomic-level scaffolds for structure-guided drug design of novel antifungals that target Tps1.
Collapse
|
211
|
Krumkacheva O, Bagryanskaya E. EPR-based distance measurements at ambient temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:117-126. [PMID: 28579097 DOI: 10.1016/j.jmr.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Collapse
Affiliation(s)
- Olesya Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; International Tomography Center SB RAS, Institutskaya 3A, Novosibirsk 630090, Russian Federation.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
212
|
Liu J, Chen C, Li W. Protective mechanisms of α,α-trehalose revealed by molecular dynamics simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1342126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jing Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Weizhong Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| |
Collapse
|
213
|
Yu T, Zhao L, Wang Q, Cao Z. Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
214
|
Chen Q, Li D, Wang F, Zhang R, Ling Y. Trehalose metabolism genes of Aphelenchoides besseyi (Nematoda: Aphelenchoididae) in hypertonic osmotic pressure survival. Biol Open 2017; 6:664-672. [PMID: 28396490 PMCID: PMC5450318 DOI: 10.1242/bio.023267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some organisms can survive extreme desiccation caused by hypertonic osmotic pressure by entering a state of suspended animation known as osmobiosis. The free-living mycophagous nematode Aphelenchoides besseyi can be induced to enter osmobiosis by soaking in osmolytes. It is assumed that sugars (in particular trehalose) are instrumental for survival under environmental stress. In A. besseyi, two putative trehalose-6-phosphate synthase genes (TPS) encoding enzymes catalyzing trehalose synthesis, and a putative trehalase gene (TRE) encoding enzymes that catalyze hydrolysis of trehalose were identified and then characterized based on their transcriptome. RT-qPCR analyses showed that each of these genes is expressed as mRNA when A. besseyi is entering in, during and recovering from osmobiosis, but only for certain periods. The changes of TRE activity were consistent with the transcript level changes of the TRE gene, and the trehalose level declined at certain periods when the nematodes were in, as well as recovering from, osmobiosis; this suggested that the hydrolysis of threhalose is essential. The feeding method of RNA interference (RNAi) was used to temporarily knock down the expression of each of the TPS and TRE genes. No obviously different phenotype was observed from any of the genes silenced individually or simultaneously, but the survival under hypertonic osmotic pressure reduced significantly and the recovery was delayed. These results indicated that trehalose metabolism genes should play a role in osmobiosis regulation and function within a restricted time frame. Summary: Trehalose metabolism genes should play a role in osmobiosis regulation and also function within a restricted time frame. Silence of any of these genes will cut down the nematode survival under hypertonic osmotic condition.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Danlei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Feng Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ruizhi Zhang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yaming Ling
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
215
|
|
216
|
Patrick J, Comizzoli P, Elliott G. Dry Preservation of Spermatozoa: Considerations for Different Species. Biopreserv Biobank 2017; 15:158-168. [PMID: 28398834 PMCID: PMC5397208 DOI: 10.1089/bio.2016.0087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species.
Collapse
Affiliation(s)
- Jennifer Patrick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Gloria Elliott
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
217
|
Komatsu H, Barriga A, Medrano L, Omori K, Kandeel F, Mullen Y. Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets. Biochem Biophys Res Commun 2017; 486:817-823. [PMID: 28351620 DOI: 10.1016/j.bbrc.2017.03.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND/AIMS Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. METHODS Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. RESULTS Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism and better function among the conditions examined. CONCLUSION Oxygenated thawing/rewarming alleviated islet volume loss, with the help of oxygenated culture.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| | - Alyssa Barriga
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Leonard Medrano
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Keiko Omori
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Fouad Kandeel
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yoko Mullen
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
218
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
219
|
Perfect JR, Tenor JL, Miao Y, Brennan RG. Trehalose pathway as an antifungal target. Virulence 2017; 8:143-149. [PMID: 27248439 PMCID: PMC5383216 DOI: 10.1080/21505594.2016.1195529] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/23/2023] Open
Abstract
With an increasing immunocompromised population which is linked to invasive fungal infections, it is clear that our present 3 classes of antifungal agents may not be sufficient to provide optimal management to these fragile patients. Furthermore, with widespread use of antifungal agents, drug-resistant fungal infections are on the rise. Therefore, there is some urgency to develop the antifungal pipeline with the goal of new antifungal agent discovery. In this review, a simple metabolic pathway, which forms the disaccharide, trehalose, will be characterized and its potential as a focus for antifungal target(s) explained. It possesses several important features for development of antifungal agents. First, it appears to have fungicidal characteristics and second, it is broad spectrum with importance across both ascomycete and basidiomycete species. Finally, this pathway is not found in mammals so theoretically specific inhibitors of the trehalose pathway and its enzymes in fungi should be relatively non-toxic for mammals. The trehalose pathway and its critical enzymes are now in a position to have directed antifungal discovery initiated in order to find a new class of antifungal drugs.
Collapse
Affiliation(s)
- John R. Perfect
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L. Tenor
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Yi Miao
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Richard G. Brennan
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
220
|
Reichert D, Gröger S, Hackel C. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration. Biopolymers 2017; 107:39-45. [PMID: 27677543 DOI: 10.1002/bip.22990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Abstract
To gain new insights into the interaction of proteins and disaccharides, we investigated the hydrodynamic radii, RhProt, of lysozyme molecules in solution and in a ternary protein-sugar-water system by PFG-NMR. Our approach is based on the assumption that the anhydrobiotic properties of disaccharides like trehalose are based on aggregation of sugar molecules to the proteins, i.e., accumulation of sugar molecules close to the protein, and that this process can be investigated by the experimentally detectable RhProt value of the protein. The Rh values are calculated from the experimentally determined diffusion coefficients and the application of a viscosity correction using the inert molecule dioxane as an internal viscosity reference. The experiments were performed as a function of sugar concentration, the overall particle concentration and the pH value. We investigated the disaccharides trehalose and sucrose, mainly for the reason that trehalose has well know cryptobiotic properties while sucrose, which is similar in size and structure, lacks these properties. The results show the formation of a protective sugar shell around the proteins over a wider range of concentrations and pH values in the case of trehalose.
Collapse
Affiliation(s)
- Detlef Reichert
- Department of Physics, University of Halle, Halle, 06120, Germany
| | - Stefan Gröger
- Department of Physics, University of Halle, Halle, 06120, Germany
| | | |
Collapse
|
221
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem 2017; 128:274-286. [PMID: 28192710 DOI: 10.1016/j.ejmech.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (Ki) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The Ki of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
222
|
Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
223
|
Shamustakimova AO, Leonova ТG, Taranov VV, de Boer AH, Babakov AV. Cold stress increases salt tolerance of the extremophytes Eutrema salsugineum (Thellungiella salsuginea) and Eutrema (Thellungiella) botschantzevii. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:128-138. [PMID: 27940414 DOI: 10.1016/j.jplph.2016.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
A comparative study was performed to analyze the effect of cold acclimation on improving the resistance of Arabidopsis thaliana, Eutrema salsugineum and Eutrema botschantzevii plants to salt stress. Shoot FW, sodium and potassium accumulation, metabolite content, expression of proton pump genes VAB1, VAB2,VAB3, VP2, HA3 and genes encoding ion transporters SOS1, HKT1, NHX1, NHX2, NHX5 located in the plasma membrane or tonoplast were determined just after the cold treatment and the onset of the salt stress. In the same cold-acclimated E. botschantzevii plants, the Na+ concentration after salt treatment was around 80% lower than in non-acclimated plants, whereas the K+ concentration was higher. As a result of cold acclimation, the expression of, VAB3, NHX2, NHX5 genes and of SOS1, VP2, HA3 genes was strongly enhanced in E. botschantzevii and in E. salsugineum plants correspondently. None of the 10 genes analyzed showed any expression change in A. thaliana plants after cold acclimation. Altogether, the results indicate that cold-induced adaptation to subsequent salt stress exists in the extremophytes E. botschantzevii and to a lesser extend in E. salsugineum and is absent in Arabidopsis. This phenomenon may be attributed to the increased expression of ion transporter genes during cold acclimation in the Eutrema species.
Collapse
Affiliation(s)
- A O Shamustakimova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - Т G Leonova
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - V V Taranov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - A V Babakov
- All_Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya st., 42, Moscow 127550 Russia.
| |
Collapse
|
224
|
Divate NR, Chen GH, Divate RD, Ou BR, Chung YC. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioengineered 2016; 8:524-535. [PMID: 27937123 DOI: 10.1080/21655979.2016.1257449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lignocellulosic biomass is an attractive low-cost feedstock for bioethanol production. During bioethanol production, Saccharomyces cerevisiae, the common used starter, faces several environmental stresses such as aldehydes, glucose, ethanol, high temperature, acid, alkaline and osmotic pressure. The aim of this study was to construct a genetic recombinant S. cerevisiae starter with high tolerance against various environmental stresses. Trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1) were co-overexpressed in nth1 (coded for neutral trehalase gene, trehalose degrading enzyme) deleted S. cerevisiae. The engineered strain exhibited ethanol tolerance up to 14% of ethanol, while the growth of wild strain was inhibited by 6% of ethanol. Compared with the wild strain, the engineered strain showed greater ethanol yield under high stress condition induced by combining 30% glucose, 30 mM furfural and 30 mM 5-hydroxymethylfurfural (HMF).
Collapse
Affiliation(s)
- Nileema R Divate
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| | - Gen-Hung Chen
- b Department of Cosmetic Science , Providence University , Taichung , Republic of China (Taiwan)
| | - Rupesh D Divate
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| | - Bor-Rung Ou
- c Department of Animal Science and Biotechnology , Tunghai University , Taichung , Republic of China (Taiwan)
| | - Yun-Chin Chung
- a Department of Food and Nutrition , Providence University , Taichung , Republic of China (Taiwan)
| |
Collapse
|
225
|
Magalhães RSS, De Lima KC, de Almeida DSG, De Mesquita JF, Eleutherio ECA. Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species. Appl Biochem Biotechnol 2016; 181:914-924. [PMID: 27796871 DOI: 10.1007/s12010-016-2258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
In some pathogens, trehalose biosynthesis is induced in response to stress as a protection mechanism. This pathway is an attractive target for antimicrobials as neither the enzymes, Tps1, and Tps2, nor is trehalose present in humans. Accumulation of T6P in Candida albicans, achieved by deletion of TPS2, resulted in strong reduction of fungal virulence. In this work, the effect of T6P on Tps1 activity was evaluated. Saccharomyces cerevisiae, C. albicans, and Candida tropicalis were used as experimental models. As expected, a heat stress induced both trehalose accumulation and increased Tps1 activity. However, the addition of 125 μM T6P to extracts obtained from stressed cells totally abolished or reduced in 50 and 60 % the induction of Tps1 activity in S. cerevisiae, C. tropicalis, and C. albicans, respectively. According to our results, T6P is an uncompetitive inhibitor of S. cerevisiae Tps1. This kind of inhibitor is able to decrease the rate of reaction to zero at increased concentrations. Based on the similarities found in sequence and function between Tps1 of S. cerevisiae and some pathogens and on the inhibitory effect of T6P on Tps1 activity observed in vitro, novel drugs can be developed for the treatment of infectious diseases caused by organisms whose infectivity and survival on the host depend on trehalose.
Collapse
Affiliation(s)
- Rayne S S Magalhães
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Karina C De Lima
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego S G de Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Joelma F De Mesquita
- Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Elis C A Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
226
|
Angel S, von Briesen H, Oh YJ, Baller MK, Zimmermann H, Germann A. Toward Optimal Cryopreservation and Storage for Achievement of High Cell Recovery and Maintenance of Cell Viability and T Cell Functionality. Biopreserv Biobank 2016; 14:539-547. [PMID: 27792414 PMCID: PMC5180082 DOI: 10.1089/bio.2016.0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cryopreservation of biological materials such as cells, tissues, and organs is a prevailing topic of high importance. It is employed not only in many research fields but also in the clinical area. Cryopreservation is of great importance for reproductive medicine and clinical studies, as well as for the development of vaccines. Peripheral blood mononuclear cells (PBMCs) are commonly used in vaccine research where comparable and reliable results between different research institutions and laboratories are of high importance. Whereas freezing and thawing processes are well studied, controlled, and standardized, storage conditions are often disregarded. To close this gap, we investigated the influence of suboptimal storage conditions during low-temperature storage on PBMC viability, recovery, and T cell functionality. For this purpose, PBMCs were isolated and exposed with help of a robotic system in a low-temperature environment from 0 up to 350 temperature fluctuation cycles in steps of 50 cycles to simulate storage conditions in large biorepositories with sample storage, removal, and sorting functions. After the simulation, the viability, recovery, and T cell functionality were analyzed to determine the number of temperature rises, which ultimately lead to significant cell damage. All studied parameters decreased with increasing number of temperature cycles. Sometimes after as little as only 50 temperature cycles, a significant effect was observed. These results are very important for all fields in which cell cryopreservation is employed, particularly for clinical and multicenter studies wherein the comparability and reproducibility of results play a crucial role. To obtain reliable results and to maintain the quality of the cells, not only the freezing and thawing processes but also the storage conditions should be controlled and standardized, and any deviations should be documented.
Collapse
Affiliation(s)
- Stephanie Angel
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Hagen von Briesen
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Young-Joo Oh
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Marko K Baller
- 2 University of Applied Sciences Kaiserslautern , Amerikastraße, Zweibruecken, Germany
| | - Heiko Zimmermann
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany .,3 Department of Molecular and Cellular Biotechnology, Saarland University , Saarbruecken, Germany
| | - Anja Germann
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| |
Collapse
|
227
|
Cold tolerance and silencing of three cold-tolerance genes of overwintering Chinese white pine larvae. Sci Rep 2016; 6:34698. [PMID: 27703270 PMCID: PMC5050449 DOI: 10.1038/srep34698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/19/2016] [Indexed: 01/30/2023] Open
Abstract
The values of physiological indices and the enzymes activities involved in the overwintering stage were studied in D. armandi larvae in each month from October 2014 to March 2015. The sorbitol, trehalose and glycerol values initially tended to increase as the ambient temperature decreased, before declining until the end of the winter. The activities of four enzymes (SOD, CAT, LDH and AchE) decreased, whereas POD, PK and MDH showed opposite trends in activity. Other enzyme activities (those of TPS, SDH and GLK) were low during the overwintering period and later increased and stabilized during spring. In this study, a polymerase chain reaction (PCR) genes of SDH, TPS and GLK was utilized to identify DarmSDH, DarmTPS and DarmGLK in D. armandi. They were found to be abundantly expressed during the overwintering stage by quantitative real-time PCR (qRT-PCR) analyses; by contrast, these three genes showed higher expression levels in December 2014 than in May 2015. The qRT-PCR results demonstrated that the reduction of mRNA expression levels was significant in DarmSDH-, DarmTPS- and DarmGLK-dsRNA-treated D. armandi compared with water-injected and non-injected controls. The mortality responses at low temperature were also increased in the dsRNA-treated D. armandi compared with the controls.
Collapse
|
228
|
Cryopreservation of lipid bilayers by LEA proteins from Artemia franciscana and trehalose. Cryobiology 2016; 73:240-7. [DOI: 10.1016/j.cryobiol.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022]
|
229
|
Alexandrino AV, Goto LS, Novo-Mansur MTM. treA Codifies for a Trehalase with Involvement in Xanthomonas citri subsp. citri Pathogenicity. PLoS One 2016; 11:e0162886. [PMID: 27611974 PMCID: PMC5017680 DOI: 10.1371/journal.pone.0162886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022] Open
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (Xcc), is a severe disease of citrus. Xcc presents broad spectrum of citrus hosts including economically important species whereas X. fuscans subsp. aurantifolii-type C (XauC) causes a milder disease and only infects Citrus aurantifolia. Trehalase catalyzes hydrolysis of the disaccharide trehalose, a sugar that has been reported to be related to Xcc pathogenicity. We expressed the recombinant gene product and assessed Xcc trehalase structural and kinetics data. The recombinant protein presented 42.7% of secondary structures in α-helix and 13% in β-sheets, no quaternary structure in solution, and Michaelis-Menten constant (KM) of 0.077 mM and Vmax 55.308 μMol glucose.min-1.mg protein-1 for trehalose. A Xcc mutant strain (XccΔtreA) was produced by gene deletion from Xcc genome. Enzymatic activity of trehalase was determined in Xcc, XauC and XccΔtreA cellular lysates, showing the highest values for XauC in in vitro infective condition and no activity for XccΔtreA. Finally, leaves of Citrus aurantifolia infected with XccΔtreA showed much more drenching and necrosis than those infected by wild type Xcc. We concluded that trehalase contributes to alleviate bacterial virulence and that inability for trehalose hydrolysis may promote higher Xcc infectivity.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada – LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Leandro Seiji Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada – LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada – LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
230
|
A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties. Food Chem 2016; 217:560-567. [PMID: 27664672 DOI: 10.1016/j.foodchem.2016.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/16/2016] [Accepted: 09/03/2016] [Indexed: 11/21/2022]
Abstract
In this study, the natural deep eutectic solvents (NADESs) based on trehalose and choline chloride have been prepared to enhance the protein thermostability. The results of fourier transform infrared spectroscopy and (1)H nuclear magnetic resonance spectroscopy suggested that there were intensive hydrogen-bonding interactions between trehalose and choline chloride in TCCL3-DES and TCCL3-DES75. The physicochemical properties of TCCL3-DES and TCCL3-DES75 were investigated in the temperature range of 293.15-363.15K. Our results revealed that the thermostability of lysozyme, a model protein used in this study was dramatically increased in TCCL3-DES75, as evidenced by the disappearance of the denaturing peak from their Differential Scanning Calorimetry (DSC) traces. The results of circular dichroism (CD) experiments further demonstrated that the lysozyme in TCCL3-DES75 unfolded partially at 90°C and recovered to the initial structure at 20°C. The study suggests that TCCL3-DES75 might be a potential solvent for stabilizing proteins.
Collapse
|
231
|
Ha SJ, Kim BG, Lee YA, Kim YH, Kim BJ, Jung SE, Pang MG, Ryu BY. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells. PLoS One 2016; 11:e0161372. [PMID: 27548381 PMCID: PMC4993461 DOI: 10.1371/journal.pone.0161372] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 12/25/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male’s lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.
Collapse
Affiliation(s)
- Seung-Jung Ha
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Byung-Gak Kim
- Bio Environment Technology Research Institute, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Yong-An Lee
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Bang-Jin Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Myeong-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
232
|
Li N, Wang H, Li L, Cheng H, Liu D, Cheng H, Deng Z. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6179-6187. [PMID: 27472444 DOI: 10.1021/acs.jafc.6b02175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.
Collapse
Affiliation(s)
| | - Hengwei Wang
- Innovation & Application Institute (IAI), Zhejiang Ocean University , Zhoushan 316022, China
| | | | | | | | | | | |
Collapse
|
233
|
Rani A, Venkatesu P. A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain. J Phys Chem B 2016; 120:8863-72. [DOI: 10.1021/acs.jpcb.6b05766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
234
|
Khan A, Sovero V, Gemenet D. Genome-assisted Breeding For Drought Resistance. Curr Genomics 2016; 17:330-42. [PMID: 27499682 PMCID: PMC4955035 DOI: 10.2174/1389202917999160211101417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 11/30/2022] Open
Abstract
Drought stress caused by unpredictable precipitation poses a major threat to food production worldwide, and its impact is only expected to increase with the further onset of climate change. Understanding the effect of drought stress on crops and plants' response is critical for developing improved varieties with stable high yield to fill a growing food gap from an increasing population depending on decreasing land and water resources. When a plant encounters drought stress, it may use multiple response types, depending on environmental conditions, drought stress intensity and duration, and the physiological stage of the plant. Drought stress responses can be divided into four broad types: drought escape, drought avoidance, drought tolerance, and drought recovery, each characterized by interacting mechanisms, which may together be referred to as drought resistance mechanisms. The complex nature of drought resistance requires a multi-pronged approach to breed new varieties with stable and enhanced yield under drought stress conditions. High throughput genomics and phenomics allow marker-assisted selection (MAS) and genomic selection (GS), which offer rapid and targeted improvement of populations and identification of parents for rapid genetic gains and improved drought-resistant varieties. Using these approaches together with appropriate genetic diversity, databases, analytical tools, and well-characterized drought stress scenarios, weather and soil data, new varieties with improved drought resistance corresponding to grower preferences can be introduced into target regions rapidly.
Collapse
Affiliation(s)
- Awais Khan
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| | - Valpuri Sovero
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| | - Dorcus Gemenet
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| |
Collapse
|
235
|
Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:10-8. [DOI: 10.1016/j.cbpb.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
|
236
|
Xiong KC, Wang J, Li JH, Deng YQ, Pu P, Fan H, Liu YH. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:84-92. [PMID: 27405007 DOI: 10.1016/j.jinsphys.2016.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest.
Collapse
Affiliation(s)
- Ke-Cai Xiong
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jia Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jia-Hao Li
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yu-Qing Deng
- National Citrus Virus Exclusion Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Po Pu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Huan Fan
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ying-Hong Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
237
|
Biochemical properties of Glu-SH3 as a family 13 glycoside hydrolase with remarkable substrate specificity for trehalose: Implications to sequence-based classification of CAZymes. Arch Biochem Biophys 2016; 603:1-9. [PMID: 27177969 DOI: 10.1016/j.abb.2016.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
Abstract
A novel glycoside hydrolase from Exiguobacterium sp. SH3 was characterized. The enzyme, designated as Glu-SH3, was predicted by in silico analysis to have structural similarity with members of oligo-1,6-glucosidase and trehalose-6-phosphate hydrolase subfamilies in the GH-13 family of glycoside hydrolases. The gene was expressed in Escherichia coli and the recombinant enzyme was purified as a His-tagged protein of about 60 kDa. The enzyme was shown to have remarkable substrate specificity for trehalose. The characteristic ability of Glu-SH3 to hydrolyze trehalose was ascertained by zymography, thin layer chromatography, and NMR spectroscopy. The maximum activity of Glu-SH3 was obtained at 35 °C and pH 7, but it was able to exhibit more than 90% of the activity within the pH range of 5-8. The Vmax and Km values were estimated to be 170 U and 4.5 mg ml(-1), respectively. By comparison with trehalases, Glu-SH3 with Kcat and Kcat/Km values of 1552 s(-1) and 119.4 mM(-1) s(-1) can be recognized as a very efficient trehalose-hydrolyzing glycosidase. Given the phylogeny and the substrate specificity of Glu-SH3, it may be assumed that the enzyme shares a common ancestor with oligo-1,6-glucosidases but have evolved distinctly to serve a physiological function in trehalose metabolism.
Collapse
|
238
|
Sandhove J, Spann N, Ristau K. The Anhydrobiotic Potential of the Terrestrial NematodesPlectus parietinusandPlectus velox. ACTA ACUST UNITED AC 2016; 325:434-40. [DOI: 10.1002/jez.2028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Julian Sandhove
- Department of Animal Ecology; Bielefeld University; Bielefeld Germany
| | - Nicole Spann
- Department of Animal Ecology; Bielefeld University; Bielefeld Germany
| | - Kai Ristau
- Department of Animal Ecology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
239
|
Kuzhelev AA, Shevelev GY, Krumkacheva OA, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG. Saccharides as Prospective Immobilizers of Nucleic Acids for Room-Temperature Structural EPR Studies. J Phys Chem Lett 2016; 7:2544-8. [PMID: 27320083 PMCID: PMC5453311 DOI: 10.1021/acs.jpclett.6b01024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for structural studies of biomolecules and their complexes. This method, whose applicability has been recently extended to room temperatures, requires immobilization of the studied biosystem to prevent averaging of dipolar couplings; at the same time, the modification of native conformations by immobilization must be avoided. In this work, we provide first demonstration of room-temperature EPR distance measurements in nucleic acids using saccharides trehalose, sucrose, and glucose as immobilizing media. We propose an approach that keeps structural conformation and unity of immobilized double-stranded DNA. Remarkably, room-temperature electron spin dephasing time of triarylmethyl-labeled DNA in trehalose is noticeably longer compared to previously used immobilizers, thus providing a broader range of available distances. Therefore, saccharides, and especially trehalose, can be efficiently used as immobilizers of nucleic acids, mimicking native conditions and allowing wide range of structural EPR studies at room temperatures.
Collapse
Affiliation(s)
- Andrey A. Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Georgiy Yu. Shevelev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M. Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
240
|
Comez L, Paolantoni M, Sassi P, Corezzi S, Morresi A, Fioretto D. Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. SOFT MATTER 2016; 12:5501-5514. [PMID: 27280176 DOI: 10.1039/c5sm03119b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When a solute is dissolved in water, their mutual interactions determine the molecular properties of the solute on one hand, and the structure and dynamics of the surrounding water particles (the so-called hydration water) on the other. The very existence of soft matter and its peculiar properties are largely due to the wide variety of possible water-solute interactions. In this context, water is not an inert medium but rather an active component, and hydration water plays a crucial role in determining the structure, stability, dynamics, and function of matter. This review focuses on the collective dynamics of hydration water in terms of retardation with respect to the bulk, and of the number of molecules whose dynamics is perturbed. Since water environments are in a dynamic equilibrium, with molecules continuously exchanging from around the solute towards the bulk and vice versa, we examine the ability of different techniques to measure the water dynamics on the basis of the explored time scales and exchange rates. Special emphasis is given to the collective dynamics probed by extended depolarized light scattering and we discuss whether and to what extent the results obtained in aqueous solutions of small molecules can be extrapolated to the case of large biomacromolecules. In fact, recent experiments performed on solutions of increasing complexity clearly indicate that a reductionist approach is not adequate to describe their collective dynamics. We conclude this review by presenting current ideas that are being developed to describe the dynamics of water interacting with macromolecules.
Collapse
Affiliation(s)
- L Comez
- IOM-CNR c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, I-06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
241
|
Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc Natl Acad Sci U S A 2016; 113:7148-53. [PMID: 27307435 DOI: 10.1073/pnas.1601774113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.
Collapse
|
242
|
A functional difference between native and horizontally acquired genes in bdelloid rotifers. Gene 2016; 590:186-91. [PMID: 27312952 DOI: 10.1016/j.gene.2016.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.
Collapse
|
243
|
Cebrián G, Mañas P, Condón S. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Front Microbiol 2016; 7:734. [PMID: 27242749 PMCID: PMC4873515 DOI: 10.3389/fmicb.2016.00734] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be exploited in order to design combined processes. Further work would be required in order to fully elucidate the mechanisms of action of these technologies and to exhaustively characterize the influence of all the factors acting before, during, and after treatment. This would be very useful in the areas of process optimization and combined process design.
Collapse
Affiliation(s)
| | | | - Santiago Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón – IA2 – (Universidad de Zaragoza-CITA), ZaragozaSpain
| |
Collapse
|
244
|
Barbosa HS, Silveira EDA, Miranda M, Ernandes JR. Efficient very-high-gravity fermentation of sugarcane molasses by industrial yeast strains. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heloisy Suzes Barbosa
- Instituto de Química, UNESP - Univ Estadual Paulista; PO Box 335, 14801-970 Araraquara SP Brazil
| | - Erick de Abreu Silveira
- Instituto de Química, UNESP - Univ Estadual Paulista; PO Box 335, 14801-970 Araraquara SP Brazil
| | - Messias Miranda
- Instituto de Química, UNESP - Univ Estadual Paulista; PO Box 335, 14801-970 Araraquara SP Brazil
| | - José Roberto Ernandes
- Instituto de Química, UNESP - Univ Estadual Paulista; PO Box 335, 14801-970 Araraquara SP Brazil
| |
Collapse
|
245
|
Higuchi T, Nishikawa J, Inoue H. Sucrose induces vesicle accumulation and autophagy. J Cell Biochem 2016; 116:609-17. [PMID: 25389129 DOI: 10.1002/jcb.25012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/06/2014] [Indexed: 11/12/2022]
Abstract
It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Electrical, Engineering and Bioscience, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, 162-8480, Japan
| | | | | |
Collapse
|
246
|
Sun M, Jiang M, Cui J, Liu W, Yin L, Xu C, Wei Q, Yan X, Chen F. A novel approach for the cryodesiccated preservation of tissue-engineered skin substitutes with trehalose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:60-66. [DOI: 10.1016/j.msec.2015.10.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
247
|
Święciło A. Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon. Cell Stress Chaperones 2016; 21:187-200. [PMID: 26825800 PMCID: PMC4786536 DOI: 10.1007/s12192-016-0667-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Acquired stress resistance is the result of mild stress causing the acquisition of resistance to severe stress of the same or a different type. The mechanism of "same-stress" resistance (resistance to a second, strong stress after mild primary stress of the same type) probably depends on the activation of defense and repair mechanisms specific for a particular type of stress, while cross-stress resistance (i.e., resistance to a second, strong stress after a different type of mild primary stress) is the effect of activation of both a specific and general stress response program, which in Saccharomyces cerevisiae yeast is known as the environmental stress response (ESR). Advancements in research techniques have made it possible to study the mechanism of cross-stress resistance at various levels of cellular organization: stress signal transduction pathways, regulation of gene expression, and transcription or translation processes. As a result of this type of research, views on the cross-stress protection mechanism have been reconsidered. It was originally thought that cross-stress resistance, irrespective of the nature of the two stresses, was determined by universal mechanisms, i.e., the same mechanisms within the general stress response. They are now believed to be more specific and strictly dependent on the features of the first stress.
Collapse
Affiliation(s)
- Agata Święciło
- Faculty of Agrobioengineering, Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczynskiego 7, 20-069, Lublin, Poland.
| |
Collapse
|
248
|
Yu X, Xu H, Hu M, Luan X, Wang K, Fu Y, Zhang D, Li J. Ginsenoside Rg3 bile salt-phosphatidylcholine-based mixed micelles: design, characterization, and evaluation. Chem Pharm Bull (Tokyo) 2016; 63:361-8. [PMID: 25948329 DOI: 10.1248/cpb.c15-00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
20(R)-Ginsenoside Rg3 (G-Rg3) has good inhibition of tumor angiogenesis and anti-tumor effect. However, its poor aqueous solubility and liposolubility are not ideal for clinical applications. In this study, a G-Rg3 bile salt-phosphatidylcholine-based mixed micelle system (BS-PC-MMS) was prepared. The optimization of G-Rg3 BS-PC-MMS was carried out using response surface methodology based on a central composite design. The encapsulation efficiency (EE) and light transmission (LT) of the optimized formulation were 90.69±2.54% and 99.10±3.12%, respectively. The average particle size of micelles was 20 nm. To increase the stability of G-Rg3 BS-PC-MMS, the lyophilized formulation of micelles was prepared. The G-Rg3 BS-PC-MMS did not produce hemolysis of erythrocytes within a certain concentration range and exhibited a good inhibition of tumor cells. The chick embryo chorioallantoic membrane assay results showed that the G-Rg3 BS-PC-MMS significantly inhibited angiogenesis. The G-Rg3 BS-PC-MMS is thus shown to be a safe, stable, and promising drug delivery system.
Collapse
Affiliation(s)
- Xiu Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Kuehn KA. Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
250
|
Cheng Q, Gao H, Hu N. A trehalase from Zunongwangia sp.: characterization and improving catalytic efficiency by directed evolution. BMC Biotechnol 2016; 16:9. [PMID: 26822136 PMCID: PMC4731906 DOI: 10.1186/s12896-016-0239-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trehalases have potential applications in several fields, including food additives, insecticide development, and transgenic plant. In the present study, we focused on a trehalase from the marine bacterium Zunongwangia sp., which hydrolyzes trehalose to glucose. RESULTS A novel gene, treZ (1590 bp) encoding an α, α-trehalase of 529 amino acids was cloned from Zunongwangia sp., and TreZ was found to have an optimal activity at 50 °C and pH 6. The activity of TreZ was increased by the presence of NaCl, showing the highest activity (136 %) at 1 M NaCl. A variant C4 with improved catalytic activity was obtained by error-prone PCR and followed by a 96-well plate high-throughput screening. The variant C4 with two altered sites (Y227H, and R442G) displayed a 3.3 fold increase in catalytic efficiency (k cat/K m, 1143.40 mmol(-1) s(-1)) compared with the wild type enzyme (265.91 mmol(-1) s(-1)). In order to explore the contribution of the mutations found in variant C4 to the increased catalytic activity, two mutants Y227H and R442G were constructed by site-directed mutagenesis. The results showed that the catalytic efficiencies of Y227H and R442G were 416.78 mmol(-1) s(-1) and 740.97 mmol(-1) s(-1), respectively, indicating that both mutations contributed to the increased catalytic efficiency of variant C4. The structure modeling and substrate docking revealed that the substitution Y227H enlarged the shape of the binding pocket, to improve the binding of the substrate and the release of the products; while the substitution R442G reduced the size of the side chain and decreased the steric hindrance, which contributed to channel the substrate into the active cavity easier and promote the release of the product. CONCLUSION In this study, a novel trehalase was cloned, purified, characterized, and engineered. A variant C4 with dramatically improved catalytic activity was obtained by directed evolution, and the mutation sites Y227H and R442G were found to play a significant role in the catalytic efficiency. The overall results provide useful information about the structure and function of trehalase.
Collapse
Affiliation(s)
- Qipeng Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China. .,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| |
Collapse
|