201
|
Zhang X, Jiang D, Li S, Zhang X, Zheng W, Cheng B. A signature-based classification of lung adenocarcinoma that stratifies tumor immunity. Front Oncol 2023; 12:1023833. [PMID: 36713530 PMCID: PMC9878554 DOI: 10.3389/fonc.2022.1023833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Immune-related subgroup classification in immune checkpoint blockade (ICB) therapy is largely inconclusive in lung adenocarcinoma (LUAD). Materials and methods First, the single-sample Gene Set Enrichment Analysis (ssGSEA) and K-means algorithms were used to identify immune-based subtypes for the LUAD cohort based on the immunogenomic profiling of 29 immune signatures from The Cancer Genome Atlas (TCGA) database (n = 504). Second, we examined the prognostic and predictive value of immune-based subtypes using bioinformatics analysis. Survival analysis and additional COX proportional hazards regression analysis were conducted for LUAD. Then, the immune score, tumor-infiltrating immune cells (TIICs), and immune checkpoint expression of the three subtypes were analyzed. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the differentially expressed genes (DEGs) between three immune-based subtypes were subsequently analyzed for functional enrichment pathways. Result A total of three immune-based subtypes with distinct immune signatures have been identified for LUAD and designated as cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Patients in C3 had higher stromal, immune, and ESTIMATE scores, whereas those in C1 had the opposite. Patients in C1 had an enrichment of macrophages M0 and activation of dendritic cells, whereas tumors in C3 had an enrichment of CD8+ T cells, activation of CD4+ memory T cells, and macrophages M1. C3 had a higher immune cell infiltration and a better survival prognosis than other subtypes. Furthermore, patients in C3 had higher expression levels of immune checkpoint proteins such as PD-L1, PD1, CTLA4, LAG3, IDO1, and HAVCR2. No significant differences were found in cluster TMB scores. We also found that immune-related pathways were enriched in C3. Conclusion LUAD subtypes based on immune signatures may aid in the development of novel treatment strategies for LUAD.
Collapse
|
202
|
Levi J, Song H. The other immuno-PET: Metabolic tracers in evaluation of immune responses to immune checkpoint inhibitor therapy for solid tumors. Front Immunol 2023; 13:1113924. [PMID: 36700226 PMCID: PMC9868703 DOI: 10.3389/fimmu.2022.1113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Unique patterns of response to immune checkpoint inhibitor therapy, discernable in the earliest clinical trials, demanded a reconsideration of the standard methods of radiological treatment assessment. Immunomonitoring, that characterizes immune responses, offers several significant advantages over the tumor-centric approach currently used in the clinical practice: 1) better understanding of the drugs' mechanism of action and treatment resistance, 2) earlier assessment of response to therapy, 3) patient/therapy selection, 4) evaluation of toxicity and 5) more accurate end-point in clinical trials. PET imaging in combination with the right agent offers non-invasive tracking of immune processes on a whole-body level and thus represents a method uniquely well-suited for immunomonitoring. Small molecule metabolic tracers, largely neglected in the immuno-PET discourse, offer a way to monitor immune responses by assessing cellular metabolism known to be intricately linked with immune cell function. In this review, we highlight the use of small molecule metabolic tracers in imaging immune responses, provide a view of their value in the clinic and discuss the importance of image analysis in the context of tracking a moving target.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, United States,*Correspondence: Jelena Levi,
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
203
|
Sasaki M, Tanaka M, Kojima Y, Nishie H, Shimura T, Kubota E, Kataoka H. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody. Mol Ther Oncolytics 2023; 28:118-131. [PMID: 36726602 PMCID: PMC9867957 DOI: 10.1016/j.omto.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a relatively non-invasive anti-cancer therapy that employs a photosensitizer with a specific wavelength of light irradiation. PDT induces direct cell killing and enhancement effects on tumor immunity, but its underlying mechanism remains unknown. Here, we perform a basic analysis of the anti-tumor effect of talaporfin sodium (TS)-PDT as well as its synergism with the immune checkpoint inhibitor anti-programmed death 1 (anti-PD-1) antibody. We estimate the cell death mechanism induced by TS-PDT and the induction of damage-associated molecular patterns (DAMPs) by TS-PDT in vitro. We establish a syngeneic mouse model of bilateral flank tumors and verify the enhancement of the abscopal effect on the non-irradiated side. TS-PDT induced apoptosis, necrosis, and autophagy-associated cell death in vitro. TS-PDT induced the release and/or expression of DAMPs in vitro. Tumor growth was inhibited in the TS-PDT and anti-PD-1 antibody combination group compared with other single-treatment or non-treatment groups in vivo. In summary, TS-PDT induces the release and/or expression of DAMPs, indicating that it activates innate immunity. PD-1 blockage enhances the anti-tumor immunity induced by TS-PDT. Thus, our results demonstrate that the combination of TS-PDT and anti-PD-1 antibody can potentially be used for anti-tumor therapy.
Collapse
Affiliation(s)
- Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan,Corresponding author: Mamoru Tanaka, MD, PhD, Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
204
|
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
The tumor microenvironment (TME) is a very cunning system that enables tumor cells to escape death post-traditional antitumor treatments through the comprehensive effect of different factors, thereby leading to drug resistance. Deep insights into TME characteristics and tumor resistance encourage the construction of nanomedicines that can remodel the TME against drug resistance. Tremendous interest in combining TME-regulation measurement with traditional tumor treatment to fight multidrug-resistant tumors has been inspired by the increasing understanding of the role of TME reconstruction in improving the antitumor efficiency of drug-resistant tumor therapy. This review focuses on the underlying relationships between specific TME characteristics (such as hypoxia, acidity, immunity, microorganisms, and metabolism) and drug resistance in tumor treatments. The exciting antitumor activities strengthened by TME regulation are also discussed in-depth, providing solutions from the perspective of nanomedicine design. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Qinqin Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xinyue Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiye Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Manchun Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaolong Quan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiqiang Yu
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Yongxia Wang
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
205
|
Ma S, Barr T, Yu J. Recent Advances of RNA m 6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treat Res 2023; 190:49-94. [PMID: 38112999 DOI: 10.1007/978-3-031-45654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, 91010, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
206
|
Liu H, Li Z, Han X, Li Z, Zhao Y, Liu F, Zhu Z, Lv Y, Liu Z, Zhang N. The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181:103893. [PMID: 36481308 DOI: 10.1016/j.critrevonc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study reviewed the prognostic effect of tumor-infiltrating B lymphocytes (TIBLs) on solid malignancies, to determine the potential role of TIBLs in predicting cancer patient's prognosis and their response to immunotherapy. A total of 45 original papers involving 11,099 individual patients were included in this meta-analysis covering 7 kinds of cancer. The pooled results suggested that high levels of TIBLs were correlated with favorable OS in lung, esophageal, gastric, colorectal, liver, and breast cancer; improved RFS in lung cancer; and improved DFS in gastrointestinal neoplasms. Additionally, TIBLs were significantly correlated with negative lymphatic invasion in gastric cancer, small tumor size in hepatocellular carcinoma, and negative distant metastasis in colorectal cancer. Additionally, TIBLs were reported as a discriminative feature of patients treated with immunotherapy with improved survival. We concluded that TIBLs play a favorable prognostic role among the common solid malignancie, providing theoretical evidence for further prognosis prediction for solid tumors.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuan Han
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Fenghua Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
207
|
Cui X, Zhai L, Kang C. Editorial: Innovative theranostic approaches towards neuro-immunology in gliomas. Front Immunol 2023; 14:1122299. [PMID: 36895564 PMCID: PMC9989453 DOI: 10.3389/fimmu.2023.1122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijie Zhai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
208
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
209
|
Gene Therapy and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:235-254. [DOI: 10.1007/978-981-19-5642-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
210
|
Xia D, Wu R, Wang S, Chen G, Lu Y, Zhao L. Global Trends and Prospects Regarding Exosomes in Cancer Immunology Research Over the Past 10 Years. Technol Cancer Res Treat 2023; 22:15330338231199892. [PMID: 37990510 PMCID: PMC10666717 DOI: 10.1177/15330338231199892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/17/2023] [Accepted: 08/06/2023] [Indexed: 11/23/2023] Open
Abstract
Background: Exosomes and cancer immunology are both important areas of research for cancer treatment. As much effort has been made to explore the relationship between exosomes and cancer immunology, exosomes in cancer immunology have become a hotspot in medical research. Methods: We retrieved all relevant publications between 2011 and 2021 from the Web of Science and utilized Microsoft Excel 365, Citespace, Online Analysis Platform of Literature Metrology (http://bibliometric.com/) and software including VOS viewer to analyze and visualize the research result. Results: Of the 820 studies included, China published the most articles, followed by the USA. Cooperation between countries has progressed over the past decade. Shanghai Jiao Tong University and Oncotargets and Therapy were the institution and journal that published the most articles respectively. The most frequently cited article in this field, titled "Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver," was published in Nature Cell Biology. Keywords were divided into three: Mechanism research, treatment application research, and diagnosis and prognosis research of which the latter was the newest cluster. "Microenvironment," "PD-L1" and "M2 macrophage" were representative new keywords while "tumor suppressor" was the keyword cited most frequently. Conclusion: The publication trend shows that cooperation between different countries and institutions contributes to the development of this field. Researchers should continue to extend collaborations for further advances. The rising relative research interest indicated that this is a hot topic with great research potential. Macrophages polarization and PD-L1 application in tumor immunotherapy are worthy of further research. Hotspots will likely transfer from mechanistic research to clinical research, particularly for methods to increase the survival rate and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Pharmacy, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Wang
- Department of Emergency, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Gaoqi Chen
- Department of Pancreatic Hepatobiliary Surgery, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ye Lu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
211
|
Zhang J, Wu YJ, Hu XX, Wei W. New insights into the Lck-NF-κB signaling pathway. Front Cell Dev Biol 2023; 11:1120747. [PMID: 36910149 PMCID: PMC9999026 DOI: 10.3389/fcell.2023.1120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Lck is essential for the development, activity, and proliferation of T cells, which may contribute to pathological progression and development of human diseases, such as autoimmune disorders and cancers when functioning aberrantly. Nuclear factor-κB (NF-κB) was initially discovered as a factor bound to the κ light-chain immunoglobulin enhancer in the nuclei of activated B lymphocytes. Activation of the nuclear factor-κB pathway controls expression of several genes that are related to cell survival, apoptosis, and inflammation. Abnormal expression of Lck and nuclear factor-κB has been found in autoimmune diseases and malignancies, including rheumatoid arthritis, systemic lupus erythematosus, acute T cell lymphocytic leukemia, and human chronic lymphocytic leukemia, etc. Nuclear factor-κB inhibition is effective against autoimmune diseases and malignancies through blocking inflammatory responses, although it may lead to serious adverse reactions that are unexpected and unwanted. Further investigation of the biochemical and functional interactions between nuclear factor-κB and other signaling pathways may be helpful to prevent side-effects. This review aims to clarify the Lck-nuclear factor-κB signaling pathway, and provide a basis for identification of new targets and therapeutic approaches against autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu-Jing Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Xi Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
212
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
213
|
Jiménez-Reinoso A, Tirado N, Martinez-Moreno A, Díaz VM, García-Peydró M, Hangiu O, Díez-Alonso L, Albitre Á, Penela P, Toribio ML, Menéndez P, Álvarez-Vallina L, Sánchez Martínez D. Efficient preclinical treatment of cortical T cell acute lymphoblastic leukemia with T lymphocytes secreting anti-CD1a T cell engagers. J Immunother Cancer 2022; 10:jitc-2022-005333. [PMID: 36564128 PMCID: PMC9791403 DOI: 10.1136/jitc-2022-005333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.
Collapse
Affiliation(s)
- Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Néstor Tirado
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | | | | | | | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ángela Albitre
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Petronila Penela
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Maria L Toribio
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain,School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain
| | | |
Collapse
|
214
|
Liu C, Zhang W, Zhou X, Liu L. IMPDH1, a prognostic biomarker and immunotherapy target that correlates with tumor immune microenvironment in pan-cancer and hepatocellular carcinoma. Front Immunol 2022; 13:983490. [PMID: 36618420 PMCID: PMC9813230 DOI: 10.3389/fimmu.2022.983490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Backgrounds IMPDH1, a rate-limiting enzyme in de novos synthesis of guanine nucleotides, plays an essential role in the growth and progression of certain tumors. However, there is still a lack of study on IMPDH1 evaluating its role in the tumor immune microenvironment, the potential mechanisms, and its potential as a promising tumor therapeutic target. Methods The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), TIMER2.0, KM-Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, The Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were used to perform the systematic analysis of IMPDH1, including mRNA expression, protein expression, prognostic value, Enrichment analysis, DNA methylation, immune cell infiltration in pan-cancer, Then, we conducted qRT-PCR and immunohistochemistry to analyze the expression level of IMPDH1 in cancer tissues and non-cancer tissues of patients with primary hepatocellular carcinoma (HCC), and performed the same verification at cellular level. Results We discovered that IMPDH1 was highly expressed in a variety of tumors and was associated with poor prognosis. IMPDH1 not only had the potential as a tumor prognostic marker and therapeutic target, but also was closely related to immune cells, immune checkpoints and immune-related genes and pathways in the tumor immune microenvironment (TIME). Meanwhile, IMPDH1 expression influenced the efficacy and prognosis of tumor patients treated with immune checkpoint inhibitors. Conclusions IMPDH1 may be as a potential combined target of immunotherapy.
Collapse
Affiliation(s)
- Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanli Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Li Liu,
| |
Collapse
|
215
|
Tanaka K, Chamoto K, Saeki S, Hatae R, Ikematsu Y, Sakai K, Ando N, Sonomura K, Kojima S, Taketsuna M, Kim YH, Yoshida H, Ozasa H, Sakamori Y, Hirano T, Matsuda F, Hirai T, Nishio K, Sakagami T, Fukushima M, Nakanishi Y, Honjo T, Okamoto I. Combination bezafibrate and nivolumab treatment of patients with advanced non-small cell lung cancer. Sci Transl Med 2022; 14:eabq0021. [PMID: 36516270 DOI: 10.1126/scitranslmed.abq0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the success of cancer immunotherapies such as programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) inhibitors, patients often develop resistance. New combination therapies with PD-1/PD-L1 inhibitors are needed to overcome this issue. Bezafibrate, a ligand of peroxisome proliferator-activated receptor-γ coactivator 1α/peroxisome proliferator-activated receptor complexes, has shown a synergistic antitumor effect with PD-1 blockade in mice that is mediated by activation of mitochondria in T cells. We have therefore now performed a phase 1 trial (UMIN000017854) of bezafibrate with nivolumab in previously treated patients with advanced non-small cell lung cancer. The primary end point was the percentage of patients who experience dose-limiting toxicity, and this combination regimen was found to be well tolerated. Preplanned comprehensive analysis of plasma metabolites and gene expression in peripheral cytotoxic T cells indicated that bezafibrate promoted T cell function through up-regulation of mitochondrial metabolism including fatty acid oxidation and may thereby have prolonged the duration of response. This combination strategy targeting T cell metabolism thus has the potential to maintain antitumor activity of immune checkpoint inhibitors and warrants further validation.
Collapse
Affiliation(s)
- Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sho Saeki
- Department of Respiratory Medicine, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Ikematsu
- Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Omuta 837-0911, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan
| | - Nobuhisa Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Shinsuke Kojima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Masanori Taketsuna
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuichi Sakamori
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | | | - Yoichi Nakanishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Kitakyushu City Hospital Organization, Kitakyushu 802-0082, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
216
|
Bellato F, Feola S, Dalla Verde G, Bellio G, Pirazzini M, Salmaso S, Caliceti P, Cerullo V, Mastrotto F. Mannosylated Polycations Target CD206 + Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules 2022; 23:5148-5163. [PMID: 36394394 DOI: 10.1021/acs.biomac.2c00993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunotherapy is deemed one of the most powerful therapeutic approaches to treat cancer. However, limited response and tumor specificity are still major challenges to address. Herein, mannosylated polycations targeting mannose receptor- are developed as vectors for plasmid DNA (pDNA)-based vaccines to improve selective delivery of genetic material to antigen-presenting cells and enhance immune cell activation. Three diblock glycopolycations (M15A12, M29A25, and M58A45) and two triblock copolymers (M29A29B9 and M62A52B32) are generated by using mannose (M), agmatine (A), and butyl (B) derivatives to target CD206, complex nucleic acids, and favor the endosomal escape, respectively. All glycopolycations efficiently complex pDNA at N/P ratios <5, protecting the pDNA from degradation in a physiological milieu. M58A45 and M62A52B32 complexed with plasmid encoding for antigenic ovalbumin (pOVA) trigger the immune activation of cultured dendritic cells, which present the SIINFEKL antigenic peptide via specific major histocompatibility complex-I. Importantly, administration of M58A45/pOVA elicits SIINFEKL-specific T-cell response in C56BL/6 mice bearing the melanoma tumor model B16-OVA, well in line with a reduction in tumor growth. These results qualify mannosylation as an efficient strategy to target immune cells in cancer vaccination and emphasize the potential of these glycopolycations as effective delivery vehicles for nucleic acids.
Collapse
Affiliation(s)
- Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Sara Feola
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Gloria Dalla Verde
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Vincenzo Cerullo
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| |
Collapse
|
217
|
De Novo Design of AC-P19M, a Novel Anticancer Peptide with Apoptotic Effects on Lung Cancer Cells and Anti-Angiogenic Activity. Int J Mol Sci 2022; 23:ijms232415594. [PMID: 36555235 PMCID: PMC9779372 DOI: 10.3390/ijms232415594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the current developments in cancer therapeutics, efforts to excavate new anticancer agents continue rigorously due to obstacles, such as side effects and drug resistance. Anticancer peptides (ACPs) can be utilized to treat cancer because of their effectiveness on a variety of molecular targets, along with high selectivity and specificity for cancer cells. In the present study, a novel ACP was de novo designed using in silico methods, and its functionality and molecular mechanisms of action were explored. AC-P19M was discovered through functional prediction and sequence modification based on peptide sequences currently available in the database. The peptide exhibited anticancer activity against lung cancer cells, A549 and H460, by disrupting cellular membranes and inducing apoptosis while showing low toxicity towards normal and red blood cells. In addition, the peptide inhibited the migration and invasion of lung cancer cells and reversed epithelial-mesenchymal transition. Moreover, AC-P19M showed anti-angiogenic activity through the inhibition of vascular endothelial growth factor receptor 2 signaling. Our findings suggest that AC-P19M is a novel ACP that directly or indirectly targets cancer cells, demonstrating the potential development of an anticancer agent and providing insights into the discovery of functional substances based on an in silico approach.
Collapse
|
218
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
219
|
Sun C, Cheng Y, Liu X, Wang G, Min W, Wang X, Yuan K, Hou Y, Li J, Zhang H, Dong H, Wang L, Lou C, Sun Y, Yu X, Deng H, Xiao Y, Yang P. Novel phthalimides regulating PD-1/PD-L1 interaction as potential immunotherapy agents. Acta Pharm Sin B 2022; 12:4446-4457. [PMID: 36561991 PMCID: PMC9764071 DOI: 10.1016/j.apsb.2022.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/06/2022] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death 1(PD-1)/programmed cell death ligand 1(PD-L1) have emerged as one of the most promising immune checkpoint targets for cancer immunotherapy. Despite the inherent advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has fallen behind that of antibody drugs. Based on docking studies between small molecule inhibitor and PD-L1 protein, changing the chemical linker of inhibitor from a flexible chain to an aromatic ring may improve its binding capacity to PD-L1 protein, which was not reported before. A series of novel phthalimide derivatives from structure-based rational design was synthesized. P39 was identified as the best inhibitor with promising activity, which not only inhibited PD-1/PD-L1 interaction (IC50 = 8.9 nmol/L), but also enhanced killing efficacy of immune cells on cancer cells. Co-crystal data demonstrated that P39 induced the dimerization of PD-L1 proteins, thereby blocking the binding of PD-1/PD-L1. Moreover, P39 exhibited a favorable safety profile with a LD50 > 5000 mg/kg and showed significant in vivo antitumor activity through promoting CD8+ T cell activation. All these data suggest that P39 acts as a promising small chemical inhibitor against the PD-1/PD-L1 axis and has the potential to improve the immunotherapy efficacy of T-cells.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chenguang Lou
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China,Corresponding authors.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China,Corresponding authors.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China,Corresponding authors.
| |
Collapse
|
220
|
Stoitzner P, Romani N, Rademacher C, Probst HC, Mahnke K. Antigen targeting to dendritic cells: Still a place in future immunotherapy? Eur J Immunol 2022; 52:1909-1924. [PMID: 35598160 PMCID: PMC10084009 DOI: 10.1002/eji.202149515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Rademacher
- Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna, Austria.,Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.,Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
221
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
222
|
Banerjee S, Nahar U, Dahiya D, Mukherjee S, Dey P, Gupta R, Radotra B, Sachdeva N, Sood A, Bhadada SK, Bhansali A. Role of cytotoxic T cells and PD-1 immune checkpoint pathway in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:931647. [PMID: 36518249 PMCID: PMC9742369 DOI: 10.3389/fendo.2022.931647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lymphocytic thyroiditis (LT) is frequently seen in the tumor microenvironment (TME) of papillary thyroid carcinomas (PTCs). However, the characteristic of these tumor-infiltrating lymphocytes (TILs) is not well understood. Objective We aim to define the TME of PTC cases by characterizing the TILs. Design This is a cross-sectional observational study. Patients We enrolled 29 PTC (23 having concurrent LT), 14 LT, and 13 hyperplastic nodules with LT (HN) patients from January 2016 to December 2020. Measurements Immunohistochemical (IHC) expression of CD8, FoxP3, PD-1, and PD-L1 was studied in PTC with LT and compared with HN. PD-1 and PD-L1 expression was correlated at the mRNA level by quantitative real-time PCR. Immunophenotyping of TILs was done in FNAC samples of PTC and LT by flow cytometry. Results IHC revealed the presence of CD8+ cytotoxic T lymphocytes (CTLs) and FoxP3+ T regulatory cells (Tregs) in 83% and 52% of PTC with LT cases, respectively. Flow cytometric analysis of the PTC samples revealed a significant abundance of CTL compared with Treg and a higher CTL with lower Treg counts compared with LT. On IHC, PD-1 positivity was noted in 56.5% of PTC with LT cases, while intermediate PD-L1 positivity was found in 70% of the cases. There was a significant upregulation of PD-1 mRNA in PTC with LT. A significant correlation was noted with PD-L1 expression with lymph node metastasis and presence of Treg cells. Conclusions Increased expression of PD-1 and PD-L1 in the TME of PTC may provide a potential molecular mechanism for tumor survival despite the predominance of CTLs, possibly through their inactivation or exhaustion.
Collapse
Affiliation(s)
- Sohini Banerjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Soham Mukherjee
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rijuneeta Gupta
- Department of Otolaryngology (ENT), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
223
|
Chen X. From immune equilibrium to immunodynamics. Front Microbiol 2022; 13:1018817. [PMID: 36504800 PMCID: PMC9732466 DOI: 10.3389/fmicb.2022.1018817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The immunology field has long been short of a universally applicable theoretical model that can quantitatively describe the immune response, and the theory of immune equilibrium (balance) is usually limited to the interpretation of the philosophical significance of immune phenomena. Therefore, it is necessary to establish a new immunological theory, namely, immunodynamic theory, to reanalyze the immune response. Methods By quantifying the immune dynamic equilibrium as the ratio of positive and negative immune power, the immune dynamic equilibrium equation was established. Then, the area under the curve of the positive and negative immune power was assumed to be equal in the whole process of immune response (regardless of correct or not), and through thought experiments based on this key hypothesis, a series of new concepts and expressions were derived, to establish a series of immunodynamic equations. Results New concepts of immune force and immune braking force and their expression equations, namely, the theoretical equations of immunodynamics, were derived through thought experiments, and the theoretical curves of immunodynamics were obtained according to these equations. Via the equivalent transformation of the theoretical equations and practical calculation of functional data, and by the methods of curve comparison and fitting, some practical equations of immunodynamics were established, and these practical equations were used to solve theoretical and practical problems that are related to the immunotherapy of infectious diseases and cancers. Conclusion The traditional theory of immune equilibrium has been mathematized and transformed from a philosophical category into a new concrete scientific theory, namely the theory of immunodynamics, which solves the dilemma that the traditional theory cannot guide individualized medical practice for a long time. This new theory may develop into one of the core theories of immunology in the future.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
224
|
Andres MS, Ramalingam S, Rosen SD, Baksi J, Khattar R, Kirichenko Y, Young K, Yousaf N, Okines A, Huddart R, Harrington K, Furness AJS, Turajlic S, Pickering L, Popat S, Larkin J, Lyon AR. The spectrum of cardiovascular complications related to immune-checkpoint inhibitor treatment : Including myocarditis and the new entity of non inflammatory left ventricular dysfunction. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2022; 8:21. [PMID: 36424659 PMCID: PMC9685864 DOI: 10.1186/s40959-022-00147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The full range of cardiovascular complications related to the use of Immune checkpoint inhibitors (ICI) is not fully understood. We aim to describe the spectrum of cardiovascular adverse events (cvAEs) by presenting our real-world experience of the diagnosis and management of these complications. METHODS Two thousand six hundred and forty-seven (2647) patients were started on ICI treatment between 2014 and 2020. Data from 110 patients referred to the cardio-oncology service with a suspected cvAE was collected prospectively and analysed. RESULTS Eighty-nine patients (3.4%) were confirmed to have cvAEs while on ICI therapy. Myocarditis was the most frequent event (33/89), followed by tachyarrhythmia (27/89), non-inflammatory left ventricular dysfunction (NILVD) (15/89) and pericarditis (7/89). Results from myocarditis and non-inflammatory left ventricular dysfunction cohorts were compared. Myocarditis and NILVD showed significant differences in respect toof troponin elevation, cardiac magnetic resonance abnormalities and ventricular function. Dual ICI therapy and other immune related adverse events were more frequently associated with myocarditis than NILVD. There was a significant difference in the median time from starting ICI treatment to presentation with myocarditis versus NILVD (12 vs 26 weeks p = 0.049). Through early recognition of myocarditis, prompt treatment with steroids and interruption of ICI, there were no cardiovascular in-hospital deaths. NILVD did not require steroid treatment and ICI could be restarted safely. CONCLUSIONS The full spectrum of cardiovascular complications in patients with immune checkpoint inhibitors is much broader than initially described. Myocarditis remains the most frequent cvAE related to ICI treatment. A novel type of myocardial injury was observed and defined as Atrial tachyarrhythmias and NILVD were also frequent in this cohort. NILVD has a This differs fromdifferent presentation from ICI-related myocarditis, mainly usually presenting afterby the lack of inflammatory features on CMR and biomarkers and a later presentation in time.
Collapse
Affiliation(s)
- Maria Sol Andres
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK.
| | - Sivatharshini Ramalingam
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
| | - Stuart D Rosen
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Baksi
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
| | - Rajdeep Khattar
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
| | - Yulia Kirichenko
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
- Department of Hospital Therapy N°1, Sechenov University, Moscow, Russia
| | - Kate Young
- Royal Marsden Hospital Foundation Trust, London, UK
| | - Nadia Yousaf
- Royal Marsden Hospital Foundation Trust, London, UK
| | | | | | | | | | | | | | - Sanjay Popat
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Marsden Hospital Foundation Trust, London, UK
| | - James Larkin
- Royal Marsden Hospital Foundation Trust, London, UK
| | - Alexander R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, Sydney Street, SW3 6NP, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
225
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
226
|
Lanier OL, Pérez-Herrero E, Andrea APD, Bahrami K, Lee E, Ward DM, Ayala-Suárez N, Rodríguez-Méndez SM, Peppas NA. Immunotherapy approaches for hematological cancers. iScience 2022; 25:105326. [PMID: 36325064 PMCID: PMC9619355 DOI: 10.1016/j.isci.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematological cancers such as leukemia, lymphoma, and multiple myeloma have traditionally been treated with chemo and radiotherapy approaches. Introduction of immunotherapies for treatment of these diseases has led to patient remissions that would not have been possible with traditional approaches. In this critical review we identify main disease characteristics, symptoms, and current treatment options. Five common immunotherapies, namely checkpoint inhibitors, vaccines, cell-based therapies, antibodies, and oncolytic viruses, are described, and their applications in hematological cancers are critically discussed.
Collapse
Affiliation(s)
- Olivia L. Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Abielle P. D.’ Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Kiana Bahrami
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Elaine Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Deidra M. Ward
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nilaya Ayala-Suárez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Sheyla M. Rodríguez-Méndez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
227
|
Drouin M, Saenz J, Gauttier V, Evrard B, Teppaz G, Pengam S, Mary C, Desselle A, Thepenier V, Wilhelm E, Merieau E, Ligeron C, Girault I, Lopez MD, Fourgeux C, Sinha D, Baccelli I, Moreau A, Louvet C, Josien R, Poschmann J, Poirier N, Chiffoleau E. CLEC-1 is a death sensor that limits antigen cross-presentation by dendritic cells and represents a target for cancer immunotherapy. SCIENCE ADVANCES 2022; 8:eabo7621. [PMID: 36399563 PMCID: PMC9674301 DOI: 10.1126/sciadv.abo7621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tumors exploit numerous immune checkpoints, including those deployed by myeloid cells to curtail antitumor immunity. Here, we show that the C-type lectin receptor CLEC-1 expressed by myeloid cells senses dead cells killed by programmed necrosis. Moreover, we identified Tripartite Motif Containing 21 (TRIM21) as an endogenous ligand overexpressed in various cancers. We observed that the combination of CLEC-1 blockade with chemotherapy prolonged mouse survival in tumor models. Loss of CLEC-1 reduced the accumulation of immunosuppressive myeloid cells in tumors and invigorated the activation state of dendritic cells (DCs), thereby increasing T cell responses. Mechanistically, we found that the absence of CLEC-1 increased the cross-presentation of dead cell-associated antigens by conventional type-1 DCs. We identified antihuman CLEC-1 antagonist antibodies able to enhance antitumor immunity in CLEC-1 humanized mice. Together, our results demonstrate that CLEC-1 acts as an immune checkpoint in myeloid cells and support CLEC-1 as a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Marion Drouin
- OSE Immunotherapeutics, Nantes, France
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Javier Saenz
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Berangere Evrard
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | | | | | | | | | | | - Emmanuel Merieau
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Camille Ligeron
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Maria-Dolores Lopez
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Debajyoti Sinha
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Aurelie Moreau
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Cedric Louvet
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Regis Josien
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Elise Chiffoleau
- Nantes Université, INSERM, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- Corresponding author.
| |
Collapse
|
228
|
Re-purposing the pro-senescence properties of doxorubicin to introduce immunotherapy in breast cancer brain metastasis. Cell Rep Med 2022; 3:100821. [PMID: 36384097 PMCID: PMC9729880 DOI: 10.1016/j.xcrm.2022.100821] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.
Collapse
|
229
|
Saxe GN, Bickman L, Ma S, Aliferis C. Mental health progress requires causal diagnostic nosology and scalable causal discovery. Front Psychiatry 2022; 13:898789. [PMID: 36458123 PMCID: PMC9705733 DOI: 10.3389/fpsyt.2022.898789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Nine hundred and seventy million individuals across the globe are estimated to carry the burden of a mental disorder. Limited progress has been achieved in alleviating this burden over decades of effort, compared to progress achieved for many other medical disorders. Progress on outcome improvement for all medical disorders, including mental disorders, requires research capable of discovering causality at sufficient scale and speed, and a diagnostic nosology capable of encoding the causal knowledge that is discovered. Accordingly, the field's guiding paradigm limits progress by maintaining: (a) a diagnostic nosology (DSM-5) with a profound lack of causality; (b) a misalignment between mental health etiologic research and nosology; (c) an over-reliance on clinical trials beyond their capabilities; and (d) a limited adoption of newer methods capable of discovering the complex etiology of mental disorders. We detail feasible directions forward, to achieve greater levels of progress on improving outcomes for mental disorders, by: (a) the discovery of knowledge on the complex etiology of mental disorders with application of Causal Data Science methods; and (b) the encoding of the etiological knowledge that is discovered within a causal diagnostic system for mental disorders.
Collapse
Affiliation(s)
- Glenn N. Saxe
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Leonard Bickman
- Ontrak Health, Inc., Henderson, NV, United States
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Sisi Ma
- Program in Data Science, Department of Medicine, Clinical and Translational Science Institute, Institute for Health Informatics, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Constantin Aliferis
- Program in Data Science, Department of Medicine, Clinical and Translational Science Institute, Institute for Health Informatics, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
230
|
Feng L, Zhang AX, Shang RR, Wang XJ, Tan NH, Wang Z. Trichopsistides A and B: Two Highly Oxygenated Pentacyclic Polyketides with Promising Inhibitory Effects on the NF-κB Signaling Pathway from the Fungus Trichoderma koningiopsis WZ-196. J Org Chem 2022; 87:14058-14067. [PMID: 36162105 DOI: 10.1021/acs.joc.2c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two highly oxygenated pentacyclic polyketides with two new carbon skeletons, trichopsistide A (1) and trichopsistide B (2), were isolated from the plant endophyte Trichoderma koningiopsis WZ-196 derived from the leaf of Rubia podantha Diels. The structures of these polyketides with full configurations were determined by comprehensive spectroscopic analysis, computer-assisted structure elucidation software, computational calculation, and X-ray crystal diffraction. Among them, 1 represented the first example of an unprecedented 5/6/6/6/5 pentacyclic ketal-containing polyketide pyridine alkaloid, and 2 possessed a novel 6/6/6/6/5 pentacyclic ketal-containing polyketide scaffold fused with an α-pyrone. The plausible biosynthetic route for 1 and 2 was also proposed. Moreover, biological activity assays showed that 1 and 2 possessed inhibitory effects on the NF-κB signaling pathway with IC50 values of 14.77 and 8.58 μM, respectively. Furthermore, 1 and 2 could also inhibit the expression of IκBα and p65 phosphorylation, decrease the expression of MCP-1, E-selectin, and IL-8 at the mRNA level, and inhibit the TNF-α-induced nuclear translocation of p65.
Collapse
Affiliation(s)
- Li Feng
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - An-Xin Zhang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ran-Ran Shang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin-Jia Wang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
231
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
232
|
Hu Y, Paris S, Bertolet G, Barsoumian HB, Wang Q, Da Silva J, Patel NB, Nguyen N, Doss DJ, Huang A, Hsu E, Leyton CSK, Voss TA, Masrorpour F, Leuschner C, Pietz JT, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. NBTXR3 improves the efficacy of immunoradiotherapy combining nonfucosylated anti-CTLA4 in an anti-PD1 resistant lung cancer model. Front Immunol 2022; 13:1022011. [PMID: 36405757 PMCID: PMC9669748 DOI: 10.3389/fimmu.2022.1022011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 01/01/2024] Open
Abstract
The efficacy of immunoradiotherapy consisting of radiation therapy and immune checkpoint blockade relies on effectively promoting the systemic antitumor immune response's activation while simultaneously reducing local factors favoring immune suppression. We previously demonstrated that NBTXR3, a nanoparticle radioenhancer, significantly improved immune responses in a murine anti-PD1-resistant metastatic lung cancer model. We hypothesize that radioactivated-NBTXR3 addition to anti-PD1 and a second-generation anti-CTLA4 could improve treatment effectiveness. To test this hypothesis, we inoculated mice with 344SQR cells in the right and left legs to establish primary and secondary tumors. The primary tumors were intratumorally injected with NBTXR3 nanoparticles on day 7, followed by three fractions of 12 Gy radiation on days 8, 9, and 10. The secondary tumors received two fractions of 1Gy radiation on days 13 and 14. Multiple rounds of anti-PD1, anti-CTLA4 or nonfucosylated anti-CTLA4 were given to the mice. Immune profiling of the tumors revealed that the combination of NBTXR3 with immunoradiotherapy significantly upregulated the activities of a wide range of antitumor immune pathways and reduced the abundance of regulatory suppressor T cells. This combination effectively eradicated the primary and secondary tumors and increased animal survival to 75%. Remarkably, previously treated with NBTXR3-containing treatment, the survivor mice exhibited a long-lasting antitumor memory immune response. This data provides compelling evidence of the efficacy of NBTXR3 to synergize with the immunoradiotherapy approach when combined with an anti-PD1 and multiple checkpoints such as a second generation anti-CTLA4 and show the potential for clinical uses of antitumor immunomodulatory effects of NBTXR3.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Nalini B. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nguyen Nguyen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Denaha J. Doss
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Claudia S. Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tiffany A. Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jordan T. Pietz
- Department of Strategic Communication, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
233
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
234
|
Alkholifi FK, Alsaffar RM. Dostarlimab an Inhibitor of PD-1/PD-L1: A New Paradigm for the Treatment of Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1572. [PMID: 36363529 PMCID: PMC9694305 DOI: 10.3390/medicina58111572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/04/2024]
Abstract
Immunomodulation checkpoints usually adopted by healthy cells by tumors might cause an imbalance between host surveillance and tumor progression. Several tumors are incredibly resistant to standard treatment. The dynamic and long-lasting tumor regressions caused by antibodies targeting the PD-1/PD-L1 checkpoint have suggested a rebalancing of the host-tumor relationship. Checkpoint antibody inhibitors, like anti-PD-1/PD-L1, are unique inhibitors that reduce tumor growth by modulating the interaction between immune cells and tumor cells. These checkpoint inhibitors are swiftly emerging as a highly promising strategy for treating cancer because they produce impressive antitumor responses while having a limited number of adverse effects. Over the past several years, numerous checkpoint antibody inhibitors pointing to PD-1, PDL-1, and CTLA-4 have been available on the market. Despite its enormous success and usefulness, the anti-PD treatment response is restricted to certain kinds of cancer. This restriction can be attributed to the inadequate and diverse PD-1 expression in the tumor (MET) micro-environment. Dostarlimab (TSR-042), a drug that interferes with the PD-1/PD-L1 pathway, eliminates a crucial inhibitory response of an immune system and, as a result, has the potential to cause severe or deadly immune-mediated adverse effects. As cancer immunotherapy, dostarlimab enhances the antitumor immune response of the body.
Collapse
Affiliation(s)
- Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
235
|
Wang L, Jiang W, Su Y, Zhan M, Peng S, Liu H, Lu L. Self-Splittable Transcytosis Nanoraspberry for NIR-II Photo-Immunometabolic Cancer Therapy in Deep Tumor Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204067. [PMID: 36073839 PMCID: PMC9661837 DOI: 10.1002/advs.202204067] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Indexed: 05/17/2023]
Abstract
Cancer photo-immunotherapy (CPIT) as an ideal strategy can rapidly release hostile signals by appropriate dosage of focal laser irradiation to unmask primary tumor immunogenicity and can activate adaptive immunity to control distant metastases. However, many factors, including disordered immunometabolism, poor penetration of photothermal agents and immuno-regulators, inadequate laser penetration into the deep tumor region, restrict the therapeutic outcomes of CPIT. Here, a second near-infrared window (NIR-II) photo-immunometabolic cancer therapy (PICT) by a programmed raspberry-structured nanoadjuvant (PRNMT ) is presented that can potentiates efficient immunogenic cell death (ICD) in deep tumor tissue and alleviates immunometabolic disorder. The PRNMT is architected through self-assembly of indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor modified small-sized CuS nanoparticles (CuS5 ) and tumor microenvironment (TME) responsive cationized polymeric matrix. The TME can trigger the splitting and surface cationization of PRNMT into small cationized CuS5 that feature high transcytosis potential and TME immunometabolic regulation. Upon NIR-II irradiation, CuS5 induce homogeneous ICD and release immunometabolic regulator in deep tumor tissues, which ameliorates IDO-1 mediated immunometabolic disorder and further suppresses regulatory T cells infiltration. PRNMT mediated PICT effectively delays the primary murine mammary carcinoma 4T1 tumor growth and inhibits the lethal pulmonary metastasis in combination with programmed cell death protein 1 (PD1) blockade.
Collapse
Affiliation(s)
- Li Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Wei Jiang
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| | - Hang Liu
- Department of RadiologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University)ZhuhaiGuangdong519000P. R. China
| |
Collapse
|
236
|
Liu Y, Han J, Bo Y, Bhatta R, Wang H. Targeted delivery of liposomal chemoimmunotherapy for cancer treatment. Front Immunol 2022; 13:1010021. [PMID: 36341415 PMCID: PMC9626969 DOI: 10.3389/fimmu.2022.1010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2024] Open
Abstract
Chemoimmunotherapy that utilizes the immunomodulatory effect of chemotherapeutics has shown great promise for treating poorly immunogenic solid tumors. However, there remains a significant room for improving the synergy between chemotherapy and immunotherapy, including the efficient, concurrent delivery of chemotherapeutics and immunomodulators into tumors. Here, we report the use of metabolic glycan labeling to facilitate cancer-targeted delivery of liposomal chemoimmunotherapy. 4T1 triple-negative breast cancer cells can be metabolically labeled with azido groups for subsequently targeted conjugation of dibenzocycoloctyne (DBCO)-bearing liposomes loaded with doxorubicin and imiquimod (R837) adjuvant via efficient click chemistry. The encased doxorubicin can induce the immunogenic death of cancer cells and upregulate the expression of CD47 and calreticulin on the surface of cancer cells, while R837 can activate dendritic cells for enhanced processing and presentation of tumor antigens. Targeted delivery of liposomes encapsulating doxorubicin and R837 to 4T1 tumors, enabled by metabolic glycan labeling and click chemistry, showed the promise to reshape the immunosuppressive tumor microenvironment of solid tumors. This cancer-targetable liposomal chemoimmunotherapy could provide a new approach to improving conventional chemotherapy.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois (CCIL), Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
237
|
Lontos K, Wang Y, Colbert M, Kumar A, Joshi S, Philbin M, Wang Y, Frisch A, Lohmueller J, Rivadeneira DB, Delgoffe GM. Fully murine CD105-targeted CAR-T cells provide an immunocompetent model for CAR-T cell biology. Oncoimmunology 2022; 11:2131229. [PMID: 36275862 PMCID: PMC9586682 DOI: 10.1080/2162402x.2022.2131229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
The modeling of chimeric antigen receptor (CAR) T cell therapies has been mostly focused on immunodeficient models. However, there are many advantages in studying CAR-T cell biology in an immunocompetent setting. We generated a fully murine CAR targeting CD105 (endoglin), a component of the TGFβ receptor expressed on the surface of certain solid tumors and acute leukemias. CD105-targeted CAR-T cells can be grown from various murine backgrounds, tracked in vivo by congenic marks, and be activated by CD105 in isolation or expressed by tumor cells. CD105-targeted CAR-T cells were toxic at higher doses but proved safe in lower doses and modestly effective in treating wild-type B16 melanoma-bearing mice. CAR-T cells infiltrating the tumor expressed high levels of exhaustion markers and exhibited metabolic insufficiencies. We also generated a human CD105 CAR, which was efficacious in treating human melanoma and acute myeloid leukemia in vivo. Our work details a new murine model of CAR-T cell therapy that can be used from immunologists to further our understanding of CAR-T cell biology. We also set the foundation for further exploration of CD105 as a possible human CAR-T cell target.
Collapse
Affiliation(s)
- Konstantinos Lontos
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, UPMC, Pittsburgh, PA, USA
| | - Yiyang Wang
- School of Medicine, Tsinghua University, Beijing, Peking, China
| | - Mason Colbert
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Kumar
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Supriya Joshi
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Philbin
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Yupeng Wang
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, Peking, China
| | - Andrew Frisch
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jason Lohmueller
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dayana B. Rivadeneira
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M. Delgoffe
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
238
|
Jugniot N, Dahl JJ, Paulmurugan R. Immunotheranostic microbubbles (iMBs) - a modular platform for dendritic cell vaccine delivery applied to breast cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:299. [PMID: 36224614 PMCID: PMC9555090 DOI: 10.1186/s13046-022-02501-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Therapeutic strategies engaging the immune system against malignant cells have revolutionized the field of oncology. Proficiency of dendritic cells (DCs) for antigen presentation and immune response has spurred interest on DC-based vaccines for anti-cancer therapy. However, despite favorable safety profiles in patients, current DC-vaccines have not yet presented significant outcome due to technical barriers in active DC delivery, tumor progression, and immune dysfunction. To maximize the therapeutic response, we present here a unique cell-free DC-based vaccine capable of lymphoid organ targeting and eliciting T-cell-mediated anti-tumor effect. METHODS We developed this novel immunotheranostic platform using plasma membranes derived from activated DCs incorporated into ultrasound contrast microbubbles (MBs), thereby offering real-time visualization of MBs' trafficking and homing in vivo. Human PBMC-derived DCs were cultured ex vivo for controlled maturation and activation using cell membrane antigens from breast cancer cells. Following DC membrane isolation, immunotheranostic microbubbles, called DC-iMBs, were formed for triple negative breast cancer treatment in a mouse model harboring a human reconstituted immune system. RESULTS Our results demonstrated that DC-iMBs can accumulate in lymphoid organs and induce anti-tumor immune response, which significantly reduced tumor growth via apoptosis while increasing survival length of the treated animals. The phenotypic changes in immune cell populations upon DC-iMBs delivery further confirmed the T-cell-mediated anti-tumor effect. CONCLUSION These early findings strongly support the potential of DC-iMBs as a novel immunotherapeutic cell-free vaccine for anti-cancer therapy.
Collapse
Affiliation(s)
- Natacha Jugniot
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| | - Jeremy J. Dahl
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA
| | - Ramasamy Paulmurugan
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| |
Collapse
|
239
|
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022; 13:961805. [PMID: 36304470 PMCID: PMC9592930 DOI: 10.3389/fimmu.2022.961805] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
Collapse
Affiliation(s)
- Chenglong Liu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daizhou Zhang
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
240
|
A Risk-Assessing Signature Based on Hypoxia- and Immune-Related Genes for Prognosis of Lung Adenocarcinoma Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7165851. [PMID: 36213576 PMCID: PMC9534655 DOI: 10.1155/2022/7165851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Lung Adenocarcinoma (LUAD) drastically influences human health. Tumor hypoxia and immunity impact hugely on the immunotherapeutic effect of LUAD patients. This study is aimed at exploring the prognostic markers associated with hypoxia and immunity in LUAD patients and evaluates their reliability. The relationship between hypoxia and immune-related genes and prognoses of LUAD patients was investigated by the univariate regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods were used to reveal the enriched pathways and biological processes of prognosis-related genes. Univariate, LASSO, and multivariate Cox regression analyses were used to construct a prognostic signature and verify its independence. The reliability of the signature was evaluated by the Principal Component Analysis (PCA), the Kaplan-Meier (K-M) curve, and the receiver operating characteristic (ROC) curve. Gene set enrichment analysis (GSEA), tumor mutational burden (TMB), and single-sample GSEA (ssGSEA) further verified the performance of the signature. Finally, a prognostic signature for LUAD was constructed based on 7 hypoxia- and immune-related genes. According to riskScores acquired from the signature, the test set was divided into groups, where the prognosis of high-risk patients was poor. The feature genes had good reliability, and the riskScore could be used as an independent prognostic factor for LUAD patients. Meanwhile, high TMB scores and low immune scores were found in high-risk patients, and feature genes were enriched in signaling pathways such as cell cycle and p53 signaling pathway. In sum, a prognostic signature based on 7 hypoxia- and immune-related genes was constructed.
Collapse
|
241
|
Lee CW, Liu JF, Wei WC, Chiang MH, Chen TY, Liao SH, Chiang YC, Kuo WC, Chen KL, Peng KT, Liu YB, Chieh JJ. Synthesised Conductive/Magnetic Composite Particles for Magnetic Ablations of Tumours. MICROMACHINES 2022; 13:1605. [PMID: 36295958 PMCID: PMC9611394 DOI: 10.3390/mi13101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City 61363, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Wen-Chun Wei
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yuan Chen
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City 61363, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
| | - Wen-Cheng Kuo
- Department of Mechanical and Automation Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Kuen-Lin Chen
- Department of Physics, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City 61363, Taiwan
| | - Yen-Bin Liu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Jen-Jie Chieh
- Institute of Electro-Optical Engineering, Gongguan Campus, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
242
|
Ziegler S, Bereswill S, Heimesaat MM. Modulation of the intestinal microbiota impacts the efficacy of immunotherapy in cancer patients - A recent literature survey. Eur J Microbiol Immunol (Bp) 2022; 12:63-72. [PMID: 36149765 PMCID: PMC9530675 DOI: 10.1556/1886.2022.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
In line with the current development of individualized cancer treatments, targeted and specialized therapeutic regimens such as immunotherapy gain importance and factors improving its efficacy come into the focus of actual research. Given the orchestrated interaction of the intestinal microbiota with host immunity the modulation of the human gut microbiota represents a therapy-enhancing factor. We therefore performed an actual literature survey on the role of the gut microbiota composition and the effects of its modification during immunotherapy of cancer patients. The included 23 studies published in the past 10 years revealed that both, distinct bacterial species and genera including Faecalibacterium prausnitzii and Bifidobacterium, respectively, enhanced distinct immunotherapy responses following PD-1/PD-L1 and CTLA-4 blockage, for instance, resulting in a better clinical outcome of cancer patients. Conversely, a high intestinal abundance of Bacteroidetes and Fusobacterium species correlated with a less efficient immunotherapy resulting in shorter progress-free survival outcomes. In conclusion, modifications of the gut microbiota by fecal microbiota transplantation or application of probiotic compounds represent potential adjunct options for immunotherapy in cancer patients which needs to be further addressed in future trials to provide individually tailored and safe adjuvant therapeutic measures in the combat of cancer.
Collapse
Affiliation(s)
- Stella Ziegler
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
243
|
Exosome transportation-mediated immunosuppression relief through cascade amplification for enhanced apoptotic body vaccination. Acta Biomater 2022; 153:529-539. [PMID: 36113726 DOI: 10.1016/j.actbio.2022.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Cancer vaccines represent the most promising strategies in the battle against cancers. Eliciting a robust therapeutic effect with vaccines, however, remains a challenge owing to the weak immunogenicity of autologous tumor antigens and highly immunosuppressive microenvironment. In the present study, we constructed CpG oligodeoxyribonucleotide (CpG ODN)-loaded cancer cell apoptotic bodies (Abs) as cancer vaccines for enhanced immunotherapy through cascade amplification-mediated immunosuppression relief. Abs that contain an abundant source of tumor-specific neoantigens and other tumor-associated antigens (TAAs) can be regarded as vaccines with higher immunogenicity. The de novo synthesized Abs-CpG could target and polarize macrophages to improve the immunosuppressive microenvironment. More importantly, we found that the effect of immunosuppression relief was cascade amplified, which was mediated by M1 macrophage-derived exosome transportation. Our results showed that CpG ODN polarized macrophages to M1 type and produced a large amount of TNF-α, which then activated cell division control protein 42 (Cdc42). Interestingly, we found that exosomes from M1 macrophages delivered Cdc42 and CpG to adjacent macrophages and further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by Abs-CpG with macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved, which then enhanced the performance of cancer vaccine therapy. Thus, we propose that a strategy of combining the Abs-based vaccine platform with the immunomodulatory approach represents the next generation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: 1. We discovered a relieving strategy for tumor immunosuppressive microenvironment: Abs-CpG polarized macrophages to M1 type, and M1 macrophage-derived exosomes delivered Cdc42 and CpG to adjacent macrophages, which then further enhanced the phagocytosis of adjacent macrophages by positive feedback. Through cascade amplification induced by the transfer of macrophage exosomes, the immunogenicity and immunosuppressive microenvironment were greatly improved. 2. As a vaccine, Abs contained both tumor-specific neoantigens and other tumor-associated antigens with higher immunogenicity and high clinical transformability.
Collapse
|
244
|
Elsabbagh RA, Rady M, Watzl C, Abou-Aisha K, Gad MZ. Impact of N6-methyladenosine (m6A) modification on immunity. Cell Commun Signal 2022; 20:140. [PMID: 36085064 PMCID: PMC9461097 DOI: 10.1186/s12964-022-00939-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
N6-methyl-adenosine (m6A) is the most prevalent modification on mRNAs and long noncoding RNAs (lnRNAs) in higher eukaryotes. Modulation of m6A relies on m6A writers, erasers and readers. m6A modification contributes to diverse fundamental biological functions at the molecular, cellular, and physiological levels. The dysregulation of m6A modification has been implicated in various human diseases. Thus, m6A modification has now become a research hotspot for its potential therapeutic applications in the treatment of various cancers and diseases. The immune system is essential to provide defense against infections and cancers. This review summarizes the current knowledge about the roles of m6A in regulating immune cell functions and immune responses. Video abstract
Collapse
|
245
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
246
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
247
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
248
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
249
|
Hangiu O, Compte M, Dinesen A, Navarro R, Tapia-Galisteo A, Mandrup OA, Erce-Llamazares A, Lázaro-Gorines R, Nehme-Álvarez D, Domínguez-Alonso C, Harwood SL, Alfonso C, Blanco B, Rubio-Pérez L, Jiménez-Reinoso A, Díez-Alonso L, Blanco FJ, Sanz L, Howard KA, Álvarez-Vallina L. Tumor targeted 4-1BB agonist antibody-albumin fusions with high affinity to FcRn induce anti-tumor immunity without toxicity. iScience 2022; 25:104958. [PMID: 36072551 PMCID: PMC9441337 DOI: 10.1016/j.isci.2022.104958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Costimulation of tumor-infiltrating T lymphocytes by anti-4-1BB monoclonal antibodies (mAbs) has shown anti-tumor activity in human trials, but can be associated with significant off-tumor toxicities involving FcγR interactions. Here, we introduce albumin-fused mouse and human bispecific antibodies with clinically favorable pharmacokinetics designed to confine 4-1BB costimulation to the tumor microenvironment. These Fc-free 4-1BB agonists consist of an EGFR-specific VHH antibody, a 4-1BB-specific scFv, and a human albumin sequence engineered for high FcRn binding connected in tandem (LiTCo-Albu). We demonstrate in vitro cognate target engagement, EGFR-specific costimulatory activity, and FcRn-driven cellular recycling similar to non-fused FcRn high-binding albumin. The mouse LiTCo-Albu exhibited a prolonged circulatory half-life and in vivo tumor inhibition, with no indication of 4-1BB mAb-associated toxicity. Furthermore, we show a greater therapeutic effect when used in combination with PD-1-blocking mAbs. These findings demonstrate the feasibility of tumor-specific LiTCo-Albu antibodies for safe and effective costimulatory strategies in cancer immunotherapy. Tumor targeted 4-1BB agonist antibody-albumin fusions with high affinity to FcRn Potent EGFR-specific 4-1BB costimulation and FcRn-driven cellular recycling Prolonged circulatory half-life and in vivo tumor inhibition, without toxicity Combination with an anti-PD-1 blocking antibody further enhanced anti-tumor activity
Collapse
|
250
|
Foster JB, Griffin C, Rokita JL, Stern A, Brimley C, Rathi K, Lane MV, Buongervino SN, Smith T, Madsen PJ, Martinez D, Delaidelli A, Sorensen PH, Wechsler-Reya RJ, Karikó K, Storm PB, Barrett DM, Resnick AC, Maris JM, Bosse KR. Development of GPC2-directed chimeric antigen receptors using mRNA for pediatric brain tumors. J Immunother Cancer 2022; 10:e004450. [PMID: 36167467 PMCID: PMC9516314 DOI: 10.1136/jitc-2021-004450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pediatric brain tumors are the leading cause of cancer death in children with an urgent need for innovative therapies. Glypican 2 (GPC2) is a cell surface oncoprotein expressed in neuroblastoma for which targeted immunotherapies have been developed. This work aimed to characterize GPC2 expression in pediatric brain tumors and develop an mRNA CAR T cell approach against this target. METHODS We investigated GPC2 expression across a cohort of primary pediatric brain tumor samples and cell lines using RNA sequencing, immunohistochemistry, and flow cytometry. To target GPC2 in the brain with adoptive cellular therapies and mitigate potential inflammatory neurotoxicity, we used optimized mRNA to create transient chimeric antigen receptor (CAR) T cells. We developed four mRNA CAR T cell constructs using the highly GPC2-specific fully human D3 single chain variable fragment for preclinical testing. RESULTS We identified high GPC2 expression across multiple pediatric brain tumor types including medulloblastomas, embryonal tumors with multilayered rosettes, other central nervous system embryonal tumors, as well as definable subsets of highly malignant gliomas. We next validated and prioritized CAR configurations using in vitro cytotoxicity assays with GPC2-expressing neuroblastoma cells, where the light-to-heavy single chain variable fragment configurations proved to be superior. We expanded the testing of the two most potent GPC2-directed CAR constructs to GPC2-expressing medulloblastoma and high-grade glioma cell lines, showing significant GPC2-specific cell death in multiple models. Finally, biweekly locoregional delivery of 2-4 million GPC2-directed mRNA CAR T cells induced significant tumor regression in an orthotopic medulloblastoma model and significantly prolonged survival in an aggressive orthotopic thalamic diffuse midline glioma xenograft model. No GPC2-directed CAR T cell related neurologic or systemic toxicity was observed. CONCLUSION Taken together, these data show that GPC2 is a highly differentially expressed cell surface protein on multiple malignant pediatric brain tumors that can be targeted safely with local delivery of mRNA CAR T cells, laying the framework for the clinical translation of GPC2-directed immunotherapies for pediatric brain tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Crystal Griffin
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioinformatics and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allison Stern
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cameron Brimley
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Komal Rathi
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Bioinformatics and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maria V Lane
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha N Buongervino
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiffany Smith
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter J Madsen
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alberto Delaidelli
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H Sorensen
- Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John M Maris
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristopher R Bosse
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|