201
|
Novel immune engagers and cellular therapies for metastatic castration-resistant prostate cancer: do we take a BiTe or ride BiKEs, TriKEs, and CARs? Prostate Cancer Prostatic Dis 2021; 24:986-996. [PMID: 34035459 PMCID: PMC8613314 DOI: 10.1038/s41391-021-00381-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Checkpoint inhibitors and currently approved cellular products for metastatic castration-resistant prostate cancer have not resulted in revolutionary changes in outcomes compared to other solid tumors. Much of this lack of progress is attributed to the unique tumor microenvironment of prostate cancer that is often immunologically cold and immunosuppressive. These unique conditions emphasize the need for novel therapeutic options. In this review, we will discuss progress made in design of T- and NK cell immune engagers in addition to chimeric antigen receptor products specifically designed for prostate cancer that are currently under investigation in clinical trials. METHODS We searched peer-reviewed literature on the PubMed and the ClinicalTrials.gov databases for active clinical trials using the terms "bispecific T-cell engager," "bispecific killer engager," "trispecific killer engager," "chimeric antigen receptor," "metastatic castration-resistant prostate cancer," and "neuroendocrine prostate cancer." RESULTS Ten bispecific T-cell engager studies and nine chimeric antigen receptor-based products were found. Published data were compiled and presented based on therapeutic class. CONCLUSIONS Multiple immune engagers and cell therapies are in the development pipeline and demonstrate promise to address barriers to better outcomes for metastatic castration-resistant prostate cancer patients.
Collapse
|
202
|
Santamaria-Alza Y, Vasquez G. Are chimeric antigen receptor T cells (CAR-T cells) the future in immunotherapy for autoimmune diseases? Inflamm Res 2021; 70:651-663. [PMID: 34018005 DOI: 10.1007/s00011-021-01470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE CAR-T cell therapy has revolutionized the treatment of oncological diseases, and potential uses in autoimmune diseases have recently been described. The review aims to integrate the available data on treatment with CAR-T cells, emphasizing autoimmune diseases, to determine therapeutic advances and their possible future clinical applicability in autoimmunity. MATERIALS AND METHODS A search was performed in PubMed with the keywords "Chimeric Antigen Receptor" and "CART cell". The documents of interest were selected, and a critical review of the information was carried out. RESULTS In the treatment of autoimmune diseases, in preclinical models, three different cellular strategies have been used, which include Chimeric antigen receptor T cells, Chimeric autoantibody receptor T cells, and Chimeric antigen receptor in regulatory T lymphocytes. All three types of therapy have been effective. The potential adverse effects within them, cytokine release syndrome, cellular toxicity and neurotoxicity must always be kept in mind. CONCLUSIONS Although information in humans is not yet available, preclinical models of CAR-T cells in the treatment of autoimmune diseases show promising results, so that in the future, they may become a useful and effective therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- Yeison Santamaria-Alza
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia.
| | - Gloria Vasquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia
| |
Collapse
|
203
|
Miao L, Zhang Z, Ren Z, Tang F, Li Y. Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors. Front Immunol 2021; 12:687822. [PMID: 34093592 PMCID: PMC8170155 DOI: 10.3389/fimmu.2021.687822] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy refers to an adoptive immunotherapy that has rapidly developed in recent years. It is a novel type of treatment that enables T cells to express specific CARs on their surface, then returns these T cells to tumor patients to kill the corresponding tumor cells. Significant strides in CAR-T cell immunotherapy against hematologic malignancies have elicited research interest among scholars in the treatment of solid tumors. Nonetheless, in contrast with the efficacy of CAR-T cell immunotherapy in the treatment of hematologic malignancies, its general efficacy against solid tumors is insignificant. This has been attributed to the complex biological characteristics of solid tumors. CAR-T cells play a better role in solid tumors, for instance by addressing obstacles including the lack of specific targets, inhibition of tumor microenvironment (TME), homing barriers of CAR-T cells, differentiation and depletion of CAR-T cells, inhibition of immune checkpoints, trogocytosis of CAR-T cells, tumor antigen heterogeneity, etc. This paper reviews the obstacles influencing the efficacy of CAR-T cell immunotherapy in solid tumors, their mechanism, and coping strategies, as well as economic restriction of CAR-T cell immunotherapy and its solutions. It aims to provide some references for researchers to better overcome the obstacles that affect the efficacy of CAR-T cells in solid tumors.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
204
|
Self-driving armored CAR-T cells overcome a suppressive milieu and eradicate CD19 + Raji lymphoma in preclinical models. Mol Ther 2021; 29:2691-2706. [PMID: 33974997 DOI: 10.1016/j.ymthe.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/08/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells typically use a strong constitutive promoter to ensure maximal long-term CAR expression. However, recent evidence suggests that restricting the timing and magnitude of CAR expression is functionally beneficial, whereas constitutive CAR activation may lead to exhaustion and loss of function. We created a self-driving CD19-targeting CAR, which regulates its own function based on the presence of a CD19 antigen engaged by the CAR itself, by placing self-driving CAR19 constructs under transcriptional control of synthetic activator protein 1 (AP1)-nuclear factor κB (NF-κB) or signal transducer and activator of transcription (STAT)5 promoters. CD19 antigen-regulated expression was observed for self-driving AP1-NFκB-CAR19, with CAR19 upregulation within 18 h after exposure to target CD19, and corresponded to the level of tumor burden. Self-driving CAR-T cells showed enhanced tumor-dependent activation, expansion, and low exhaustion in vitro as compared to constitutively expressed EF1α and murine stem cell virus (MSCV) CARs and mediated tumor regression and survival in Raji-bearing NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Long-term CAR function correlated with upregulated CAR expression within 24 h of exposure to tumor antigen. The self-driving AP1-NFκB-CAR19 circuit was also used to inducibly express dominant-negative transforming growth factor β receptor II (TGFBRIIdn), which effectively countered the negative effects of TGF-β on CAR-T activation. Thus, a self-driving CAR approach may offer a new modality to express CAR and auxiliary proteins by enhancing CAR-T functional activity and limiting exhaustion.
Collapse
|
205
|
Julamanee J, Terakura S, Umemura K, Adachi Y, Miyao K, Okuno S, Takagi E, Sakai T, Koyama D, Goto T, Hanajiri R, Hudecek M, Steinberger P, Leitner J, Nishida T, Murata M, Kiyoi H. Composite CD79A/CD40 co-stimulatory endodomain enhances CD19CAR-T cell proliferation and survival. Mol Ther 2021; 29:2677-2690. [PMID: 33940156 DOI: 10.1016/j.ymthe.2021.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/11/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
Adoptively transferred CD19 chimeric antigen receptor (CAR) T cells have led to impressive clinical outcomes in B cell malignancies. Beyond induction of remission, the persistence of CAR-T cells is required to prevent relapse and provide long-term disease control. To improve CAR-T cell function and persistence, we developed a composite co-stimulatory domain of a B cell signaling moiety, CD79A/CD40, to induce a nuclear translocating signal, NF-κB, to synergize with other T cell signals and improve CAR-T cell function. CD79A/CD40 incorporating CD19CAR-T cells (CD19.79a.40z) exhibited higher NF-κB and p38 activity upon CD19 antigen exposure compared with the CD28 or 4-1BB incorporating CD19CAR-T cells (CD19.28z and CD19.BBz). Notably, we found that CD19.79a.40z CAR-T cells continued to suppress CD19+ target cells throughout the co-culture assay, whereas a tendency for tumor growth was observed with CD19.28z CAR-T cells. Moreover, CD19.79a.40z CAR-T cells exhibited robust T cell proliferation after culturing with CD19+ target cells, regardless of exogenous interleukin-2. In terms of in vivo efficiency, CD19.79a.40z demonstrated superior anti-tumor activity and in vivo CAR-T cell proliferation compared with CD19.28z and CD19.BBz CD19CAR-T cells in Raji-inoculated mice. Our data demonstrate that the CD79A/CD40 co-stimulatory domain endows CAR-T cells with enhanced proliferative capacity and improved anti-tumor efficacy in a murine model.
Collapse
Affiliation(s)
- Jakrawadee Julamanee
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan; Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan.
| | - Koji Umemura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kotaro Miyao
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Shingo Okuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Erina Takagi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Daisuke Koyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Tatsunori Goto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| |
Collapse
|
206
|
Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy holds great promise for preventing and treating deadly diseases such as cancer. However, it remains challenging to transfect and engineer primary immune cells for clinical cell manufacturing. Conventional tools using viral vectors and bulk electroporation suffer from low efficiency while posing risks like viral transgene integration and excessive biological perturbations. Emerging techniques using microfluidics, nanoparticles, and high-aspect-ratio nanostructures can overcome these challenges, and on top of that, provide universal and high-throughput cargo delivery. Herein, the strengths and limitations of traditional and emerging materials for immune cell transfection, and commercial development of these tools, are discussed. To enhance the characterization of transfection techniques and uptake by the clinical community, a list of in vitro and in vivo assays to perform, along with relevant protocols, is recommended. The overall aim, herein, is to motivate the development of novel materials to meet rising demand in transfection for clinical CAR-T cell manufacturing.
Collapse
Affiliation(s)
- Arun R K Kumar
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Krishaa L
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
207
|
Caulier B, Enserink JM, Wälchli S. Pharmacologic Control of CAR T Cells. Int J Mol Sci 2021; 22:ijms22094320. [PMID: 33919245 PMCID: PMC8122276 DOI: 10.3390/ijms22094320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) therapy is a promising modality for the treatment of advanced cancers that are otherwise incurable. During the last decade, different centers worldwide have tested the anti-CD19 CAR T cells and shown clinical benefits in the treatment of B cell tumors. However, despite these encouraging results, CAR treatment has also been found to lead to serious side effects and capricious response profiles in patients. In addition, the CD19 CAR success has been difficult to reproduce for other types of malignancy. The appearance of resistant tumor variants, the lack of antigen specificity, and the occurrence of severe adverse effects due to over-stimulation of the therapeutic cells have been identified as the major impediments. This has motivated a growing interest in developing strategies to overcome these hurdles through CAR control. Among them, the combination of small molecules and approved drugs with CAR T cells has been investigated. These have been exploited to induce a synergistic anti-cancer effect but also to control the presence of the CAR T cells or tune the therapeutic activity. In the present review, we discuss opportunistic and rational approaches involving drugs featuring anti-cancer efficacy and CAR-adjustable effect.
Collapse
Affiliation(s)
- Benjamin Caulier
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, 0379 Oslo, Norway;
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Jorrit M. Enserink
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0379 Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, 0379 Oslo, Norway;
- Correspondence:
| |
Collapse
|
208
|
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a powerful therapeutic modality for cancer. Following encouraging clinical results, autologous anti-CD19 CAR-T cells first secured regulatory approval from the U.S. Food and Drug Administration in 2017 for the treatment of pediatric B cell acute lymphoblastic leukemia and for diffuse large B cell lymphoma (DLBCL), followed recently by mantle cell lymphoma. While long-term immunosurveillance is among the most important requirements for durable remissions in leukemia and a major potential benefit of immunotherapy, the exact determinants of CAR-T cell persistence remain elusive. Furthermore, it is less clear that long-term persistence is required for durable remission in lymphoma. In this review, we aim to describe the factors governing CAR-T cell persistence as well as unique approaches to exert control over engineered lymphocyte populations post-infusion. Additionally, we explore potential risks and associated clinical considerations arising from prolonged surveillance by highly reactive cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Arjun Gupta
- Center for Cellular Immunotherapies, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Hematology and Oncology, Department of Medicine, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
209
|
Chaudhry K, Dowlati E, Bollard CM. Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Rev Clin Immunol 2021; 17:643-659. [PMID: 33821731 DOI: 10.1080/1744666x.2021.1911648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction:Widespread success of CD19 chimeric antigen receptor (CAR) T cells for the treatment of hematological malignancies have shifted the focus from conventional cancer treatments toward adoptive immunotherapy. There are major efforts to improve CAR constructs and to identify new target antigens. Even though the Food and Drug Administration has approved commercialization of some CD19 CART cell therapies, there are still some limitations that restrict their widespread clinical use. The manufacture of autologous products for individual patients is logistically cumbersome and expensive and allogeneic T cell products may pose an appreciable risk of graft-versus-host disease (GVHD).Areas covered:Natural killer (NK) cells are an attractive alternative for CART-based immunotherapies. They have the innate ability to detect and eliminate malignant cells and are safer in the 'off-the-shelf' setting. This review discusses the current progress within the CAR NK cell field, including the challenges, and future prospects. Gene engineered NK cells was used as the search term in PubMed and Google Scholar through to December 2020.Expert opinion:CAR NK cell therapies hold promise as an 'off-the-shelf' cell therapy for cancer. It is hoped that an enhanced understanding of their immunobiology and molecular mechanisms of action will improve their in vivo potency.
Collapse
Affiliation(s)
- Kajal Chaudhry
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA
| | - Ehsan Dowlati
- Department of Neurosurgery, Georgetown University Medical Center, Washington, WA, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, WA, USA.,GW Cancer Center, George Washington University, Washington, DC, WA, USA.,Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, WA, USA
| |
Collapse
|
210
|
Schettini F, Barbao P, Brasó-Maristany F, Galván P, Martínez D, Paré L, De Placido S, Prat A, Guedan S. Identification of cell surface targets for CAR-T cell therapies and antibody-drug conjugates in breast cancer. ESMO Open 2021; 6:100102. [PMID: 33838601 PMCID: PMC8038941 DOI: 10.1016/j.esmoop.2021.100102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Two promising therapeutic strategies in oncology are chimeric antigen receptor-T cell (CAR-T) therapies and antibody-drug conjugates (ADCs). To be effective and safe, these immunotherapies require surface antigens to be sufficiently expressed in tumors and less or not expressed in normal tissues. To identify new targets for ADCs and CAR-T specifically targeting breast cancer (BC) molecular and pathology-based subtypes, we propose a novel in silico strategy based on multiple publicly available datasets and provide a comprehensive explanation of the workflow for a further implementation. METHODS We carried out differential gene expression analyses on The Cancer Genome Atlas BC RNA-sequencing data to identify BC subtype-specific upregulated genes. To fully explain the proposed target-discovering methodology, as proof of concept, we selected the 200 most upregulated genes for each subtype and undertook a comprehensive analysis of their protein expression in BC and normal tissues through several publicly available databases to identify the potentially safest and viable targets. RESULTS We identified 36 potentially suitable and subtype-specific tumor surface antigens (TSAs), including fibroblast growth factor receptor-4 (FGFR4), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), GDNF family receptor alpha 1 (GFRA1), integrin beta-6 (ITGB6) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). We also identified 63 potential TSA pairs that might be appropriate for co-targeting strategies. Finally, we validated subtype specificity in a cohort of our patients, multiple BC cell lines and the METABRIC database. CONCLUSIONS Overall, our in silico analysis provides a framework to identify novel and specific TSAs for the development of new CAR-T and antibody-based therapies in BC.
Collapse
Affiliation(s)
- F Schettini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy; Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; SOLTI Breast Cancer Research Group, Barcelona, Spain.
| | - P Barbao
- Department of Hematology, Hospital Clinic, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - F Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - P Galván
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - D Martínez
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - L Paré
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - S De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Prat
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; SOLTI Breast Cancer Research Group, Barcelona, Spain; Department of Medical Oncology, Hospital Clinic, Barcelona, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - S Guedan
- Department of Hematology, Hospital Clinic, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
211
|
Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, Good Z, Belk JA, Daniel B, Klysz D, Malipatlolla M, Xu P, Bashti M, Heitzeneder S, Labanieh L, Vandris P, Majzner RG, Qi Y, Sandor K, Chen LC, Prabhu S, Gentles AJ, Wandless TJ, Satpathy AT, Chang HY, Mackall CL. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021; 372:eaba1786. [PMID: 33795428 PMCID: PMC8049103 DOI: 10.1126/science.aba1786] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/07/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)-T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.
Collapse
Affiliation(s)
- Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin R Parker
- Department of Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel C Lynn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hima Anbunathan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zinaida Good
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Louai Labanieh
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Panayiotis Vandris
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robbie G Majzner
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanyan Qi
- Department of Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ling-Chun Chen
- Department of Chemical and Systems Biology, Stanford University, CA 94305, USA
| | - Snehit Prabhu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Gentles
- Department of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas J Wandless
- Department of Chemical and Systems Biology, Stanford University, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Department of Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
212
|
Schwerdtfeger M, Benmebarek MR, Endres S, Subklewe M, Desiderio V, Kobold S. Chimeric Antigen Receptor-Modified T Cells and T Cell-Engaging Bispecific Antibodies: Different Tools for the Same Job. Curr Hematol Malig Rep 2021; 16:218-233. [PMID: 33939108 PMCID: PMC8154758 DOI: 10.1007/s11899-021-00628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antigens, Neoplasm/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/etiology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
213
|
Bozza M, De Roia A, Correia MP, Berger A, Tuch A, Schmidt A, Zörnig I, Jäger D, Schmidt P, Harbottle RP. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. SCIENCE ADVANCES 2021; 7:7/16/eabf1333. [PMID: 33853779 PMCID: PMC8046366 DOI: 10.1126/sciadv.abf1333] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/25/2021] [Indexed: 05/04/2023]
Abstract
The compelling need to provide adoptive cell therapy (ACT) to an increasing number of oncology patients within a meaningful therapeutic window makes the development of an efficient, fast, versatile, and safe genetic tool for creating recombinant T cells indispensable. In this study, we used nonintegrating minimally sized DNA vectors with an enhanced capability of generating genetically modified cells, and we demonstrate that they can be efficiently used to engineer human T lymphocytes. This vector platform contains no viral components and is capable of replicating extrachromosomally in the nucleus of dividing cells, providing persistent transgene expression in human T cells without affecting their behavior and molecular integrity. We use this technology to provide a manufacturing protocol to quickly generate chimeric antigen receptor (CAR)-T cells at clinical scale in a closed system and demonstrate their enhanced anti-tumor activity in vitro and in vivo in comparison to previously described integrating vectors.
Collapse
Affiliation(s)
- Matthias Bozza
- DNA Vector Laboratory, DKFZ Heidelberg, Im Neuenheimer Feld 242, Heidelberg, Germany
| | - Alice De Roia
- DNA Vector Laboratory, DKFZ Heidelberg, Im Neuenheimer Feld 242, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Margareta P Correia
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Aileen Berger
- Clinical Cooperation Unit Applied Tumorimmunity, DKFZ Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
- National Center for Tumor Diseases, Medical Oncology, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Alexandra Tuch
- Clinical Cooperation Unit Applied Tumorimmunity, DKFZ Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
- National Center for Tumor Diseases, Medical Oncology, Im Neuenheimer Feld 460, Heidelberg, Germany
| | | | - Inka Zörnig
- National Center for Tumor Diseases, Medical Oncology, Im Neuenheimer Feld 460, Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumorimmunity, DKFZ Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
- National Center for Tumor Diseases, Medical Oncology, Im Neuenheimer Feld 460, Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Patrick Schmidt
- National Center for Tumor Diseases, Medical Oncology, Im Neuenheimer Feld 460, Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
- GMP & T cell Therapy Unit, DKFZ Heidelberg, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Richard P Harbottle
- DNA Vector Laboratory, DKFZ Heidelberg, Im Neuenheimer Feld 242, Heidelberg, Germany.
| |
Collapse
|
214
|
Guo Z, Zhang Y, Fu M, Zhao L, Wang Z, Xu Z, Zhu H, Lan X, Shen G, He Y, Lei P. The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Front Immunol 2021; 12:652924. [PMID: 33854512 PMCID: PMC8039461 DOI: 10.3389/fimmu.2021.652924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
As many patients ultimately relapse after chimeric antigen receptor (CAR) T-cell therapy, identification of alternative targets is currently being evaluated. Substantial research efforts are underway to develop new targets. The transferrin receptor (TfR) is prevalently expressed on rapidly proliferating tumor cells and holds the potential to be the alternative target. In order to investigate the efficacy and challenges of TfR-targeting on the CAR-based therapy strategy, we generated a TfR-specific CAR and established the TfR-CAR–modified T cells. To take the advantage of TfR being widely shared by multiple tumors, TfR-CAR T cells were assessed against several TfR+ hematological malignant cell lines. Data showed that TfR-CAR T cells were powerfully potent in killing all these types of cells in vitro and in killing T-ALL cells in vivo. These findings suggest that TfR could be a universal target to broaden and improve the therapeutic efficacy of CAR T cells and warrant further efforts to use these cells as an alternative CAR T cell product for the therapy of hematological malignancies.
Collapse
Affiliation(s)
- Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
215
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
216
|
Moghanloo E, Mollanoori H, Talebi M, Pashangzadeh S, Faraji F, Hadjilooei F, Mahmoodzadeh H. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl Oncol 2021; 14:101070. [PMID: 33789222 PMCID: PMC8027274 DOI: 10.1016/j.tranon.2021.101070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based immunotherapies have been selected for the front-line cancer treatment approaches. Among them, CAR-T cells have shown extraordinary effects in hematologic diseases including chemotherapy-resistant acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). In this approach, autologous T cells isolated from the patient's body genetically engineered to express a tumor specific synthetic receptor against a tumor antigen, then these cells expanded ex vivo and re-infusion back to the patient body. Recently, significant clinical response and high rates of complete remission of CAR T cell therapy in B-cell malignancies led to the approval of Kymriah and Yescarta (CD19-directed CAR-T cells) were by FDA for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Despite promising therapeutic outcomes, CAR T cells also can elicit the immune-pathologic effects, such as Cytokine Release Syndrome (CRS), Tumor Lysis Syndrome (TLS), and on-target off-tumor toxicity, that hampered its application. Ineffective control of these highly potent synthetic cells causes discussed potentially life-threatening toxicities, so researchers have developed several mechanisms to remote control CAR T cells. In this paper, we briefly review the introduced toxicities of CAR-T cells, then describe currently existing control approaches and review their procedure, pros, and cons.
Collapse
Affiliation(s)
- Ehsan Moghanloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Farimah Hadjilooei
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
217
|
Abstract
ABSTRACT The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.
Collapse
|
218
|
Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv Drug Deliv Rev 2021; 170:281-293. [PMID: 33486005 DOI: 10.1016/j.addr.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022]
Abstract
A vast range of biomedical applications relies on the specificity of interactions between an antigen and its cognate receptor or antibody. This specificity can be highest when said antigen is a non-natural (synthetic) molecule introduced into a biological setting as a bio-orthogonal ligand. This review aims to present the development of this methodology from the early discovery of haptens a century ago to the recent clinical trials. We discuss such methodologies as antibody recruitment, artificial internalizing receptors and chemically induced dimerization, present the use of chimeric receptors and/or bispecific antibodies to achieve drug targeting and transcytosis, and illustrate how these platforms most impressively found use in the engineering of therapeutic cells such as the chimeric antigen receptor cells. This review aims to be of interest to a broad scientific audience and to spur the development of synthetic artificial ligands for biomedical applications.
Collapse
|
219
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
220
|
Liang R, Ma G, Jing W, Wang Y, Yang Y, Tao N, Wang S. Charge-Sensitive Optical Detection of Small Molecule Binding Kinetics in Normal Ionic Strength Buffer. ACS Sens 2021; 6:364-370. [PMID: 32842724 DOI: 10.1021/acssensors.0c01063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most label-free detection technologies detect the masses of molecules, and their sensitivities thus decrease with molecular weight, making it challenging to detect small molecules. To address this need, we have developed a charge-sensitive optical detection (CSOD) technique, which detects the charge rather than the mass of a molecule with an optical fiber. However, the effective charge of a molecule decreases with the buffer ionic strength. For this reason, the previous CSOD works with diluted buffers, which could affect the measured molecular binding kinetics. Here, we show a technique capable of detecting molecular binding kinetics in normal ionic strength buffers. An H-shaped sample well was developed to increase the current density at the sensing area to compensate the signal loss due to ionic screening at normal ionic strength buffer, while keeping the current density low at the electrodes to minimize the electrode reaction. In addition, agarose gels were used to cover the electrodes to prevent electrode reaction generated bubbles from entering the sensing area. With this new design, we have measured the binding kinetics between G-protein-coupled receptors (GPCRs) and their small molecule ligands in normal buffer. We found that the affinities measured in normal buffer are stronger than those measured in diluted buffer, likely due to the stronger electrostatic repulsion force between the same charged ligands and receptors in the diluted buffer.
Collapse
|
221
|
Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 2021; 184:881-898. [PMID: 33571426 PMCID: PMC7897318 DOI: 10.1016/j.cell.2021.01.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.
Collapse
Affiliation(s)
- Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Justin H Letendre
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
222
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
223
|
Watson EE, Angerani S, Sabale PM, Winssinger N. Biosupramolecular Systems: Integrating Cues into Responses. J Am Chem Soc 2021; 143:4467-4482. [DOI: 10.1021/jacs.0c12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emma E. Watson
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Simona Angerani
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M. Sabale
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
224
|
Jiang Y, Huang J, Xu C, Pu K. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat Commun 2021; 12:742. [PMID: 33531498 PMCID: PMC7854754 DOI: 10.1038/s41467-021-21047-0] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/07/2021] [Indexed: 01/16/2023] Open
Abstract
Nanomedicine in combination with immunotherapy offers opportunities to treat cancer in a safe and effective manner; however, remote control of immune response with spatiotemporal precision remains challenging. We herein report a photothermally activatable polymeric pro-nanoagonist (APNA) that is specifically regulated by deep-tissue-penetrating second near-infrared (NIR-II) light for combinational photothermal immunotherapy. APNA is constructed from covalent conjugation of an immunostimulant onto a NIR-II semiconducting transducer through a labile thermo-responsive linker. Upon NIR-II photoirradiation, APNA mediates photothermal effect, which not only triggers tumor ablation and immunogenic cell death but also initiates the cleavage of thermolabile linker to liberate caged agonist for in-situ immune activation in deep solid tumor (8 mm). Such controlled immune regulation potentiates systemic antitumor immunity, leading to promoted cytotoxic T lymphocytes and helper T cell infiltration in distal tumor, lung and liver to inhibit cancer metastasis. Thereby, the present work illustrates a generic strategy to prepare pro-immunostimulants for spatiotemporal regulation of cancer nano-immunotherapy. Precise control of immune response remains challenging for cancer immunotherapy. Here, the authors report on photothermally activatable semiconducting polymeric pro-agonist in response to second near-infrared window light for regulated photothermal immunotherapy.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
225
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
226
|
Greenshpan Y, Sharabi O, Ottolenghi A, Cahana A, Kundu K, M Yegodayev K, Elkabets M, Gazit R, Porgador A. Synthetic promoters to induce immune-effectors into the tumor microenvironment. Commun Biol 2021; 4:143. [PMID: 33514819 PMCID: PMC7846768 DOI: 10.1038/s42003-021-01664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Harnessing the immune-system to eradicate cancer is becoming a reality in recent years. Engineered immune cells, such as chimeric antigen receptor (CAR) T cells, are facing the danger of an overt life-threatening immune response due to the ON-target OFF-tumor cytotoxicity and Cytokine Release Syndrome. We therefore developed synthetic promoters for regulation of gene expression under the control of inflammation and Hypoxia-induced signals that are associated with the tumor microenvironment (TME). We termed this methodology as chimeric-antigen-receptor-tumor-induced-vector (CARTIV). For proof of concept, we studied synthetic promoters based on promoter-responsive elements (PREs) of IFNγ, TNFα and hypoxia; triple PRE-based CARTIV promoter manifested a synergistic activity in cell-lines and potent activation in human primary T-cells. CARTIV platform can improve safety of CAR T-cells or other engineered immune-cells, providing TME-focused activity and opening a therapeutic window for many tumor-associated antigens that are also expressed by non-tumor healthy tissues.
Collapse
Affiliation(s)
- Yariv Greenshpan
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Sharabi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishag Cahana
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kiran Kundu
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ksenia M Yegodayev
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Elkabets
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roi Gazit
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
227
|
Park S, Pascua E, Lindquist KC, Kimberlin C, Deng X, Mak YSL, Melton Z, Johnson TO, Lin R, Boldajipour B, Abraham RT, Pons J, Sasu BJ, Van Blarcom TJ, Chaparro-Riggers J. Direct control of CAR T cells through small molecule-regulated antibodies. Nat Commun 2021; 12:710. [PMID: 33514714 PMCID: PMC7846603 DOI: 10.1038/s41467-020-20671-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Antibody-based therapeutics have experienced a rapid growth in recent years and are now utilized in various modalities spanning from conventional antibodies, antibody-drug conjugates, bispecific antibodies to chimeric antigen receptor (CAR) T cells. Many next generation antibody therapeutics achieve enhanced potency but often increase the risk of adverse events. Antibody scaffolds capable of exhibiting inducible affinities could reduce the risk of adverse events by enabling a transient suspension of antibody activity. To demonstrate this, we develop conditionally activated, single-module CARs, in which tumor antigen recognition is directly modulated by an FDA-approved small molecule drug. The resulting CAR T cells demonstrate specific cytotoxicity of tumor cells comparable to that of traditional CARs, but the cytotoxicity is reversibly attenuated by the addition of the small molecule. The exogenous control of conditional CAR T cell activity allows continual modulation of therapeutic activity to improve the safety profile of CAR T cells across all disease indications.
Collapse
Affiliation(s)
- Spencer Park
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Edward Pascua
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA
| | | | - Christopher Kimberlin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Asher Bio, South San Francisco, CA USA
| | - Xiaodi Deng
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Dren Bio, San Carlos, CA USA
| | - Yvonne S. L. Mak
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Zea Melton
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | | - Regina Lin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Bijan Boldajipour
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Robert T. Abraham
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Jaume Pons
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: ALX Oncology, Burlingame, CA USA
| | - Barbra Johnson Sasu
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Thomas J. Van Blarcom
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | |
Collapse
|
228
|
Li H, Yang C, Cheng H, Huang S, Zheng Y. CAR-T cells for Colorectal Cancer: Target-selection and strategies for improved activity and safety. J Cancer 2021; 12:1804-1814. [PMID: 33613769 PMCID: PMC7890323 DOI: 10.7150/jca.50509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell immunotherapy is a novel method that is genetically engineered to recruit T cells against malignant disease. Administration of CAR-T cells has led to progress in hematological malignancies, and it has been proposed for solid tumors like colorectal cancer (CRC) for years. However, this method was not living up to expectations for the intrinsic challenges posed to CAR-T cells by solid tumors, which mainly due to the lacking of tumor-restricted antigens and adverse effects following treatment. New approaches are proposed to overcome the multiple challenges to alleviate the difficult situation of CAR-T cells in CRC, including engineering T cells with immune-activating molecules, regional administration of T cell, bispecific T cell engager, and combinatorial target-antigen recognition. In this review, we sum up the current stage of knowledge about target-selection, adverse events like on/off-tumor toxicity, the preclinical and clinical studies of CAR-T therapy, and the characteristics of strategies applied in CRC.
Collapse
Affiliation(s)
- Huali Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chao Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huangrong Cheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuoyang Huang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
229
|
Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA, Gasser JA, Słabicki M, Bouffard AA, Castano AP, Kann MC, Cabral ML, Tepper A, Grinshpun DE, Sperling AS, Kyung T, Sievers QL, Birnbaum ME, Maus MV, Ebert BL. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 2021; 13:eabb6295. [PMID: 33408186 PMCID: PMC8045771 DOI: 10.1126/scitranslmed.abb6295] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/19/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous "living drugs," these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify "super-degron" tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.
Collapse
Affiliation(s)
- Max Jan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Walker
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A Guirguis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jessica A Gasser
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mikołaj Słabicki
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ana P Castano
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maria L Cabral
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Tepper
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel E Grinshpun
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam S Sperling
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marcela V Maus
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin L Ebert
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
230
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
231
|
Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ. Nanomaterials for T-cell cancer immunotherapy. NATURE NANOTECHNOLOGY 2021; 16:25-36. [PMID: 33437036 DOI: 10.1038/s41565-020-00822-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
T-cell-based immunotherapies hold promise for the treatment of many types of cancer, with three approved products for B-cell malignancies and a large pipeline of treatments in clinical trials. However, there are several challenges to their broad implementation. These include insufficient expansion of adoptively transferred T cells, inefficient trafficking of T cells into solid tumours, decreased T-cell activity due to a hostile tumour microenvironment and the loss of target antigen expression. Together, these factors restrict the number of therapeutically active T cells engaging with tumours. Nanomaterials are uniquely suited to overcome these challenges, as they can be rationally designed to enhance T-cell expansion, navigate complex physical barriers and modulate tumour microenvironments. Here, we present an overview of nanomaterials that have been used to overcome clinical barriers to T-cell-based immunotherapies and provide our outlook of this emerging field at the interface of cancer immunotherapy and nanomaterial design.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
232
|
Peng S, Huang H, Wei P, Xie Z. Synthetic gene circuits moving into the clinic. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
233
|
Gheorghiu M. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis. J Biomed Res 2020; 35:255-263. [PMID: 33888671 PMCID: PMC8383170 DOI: 10.7555/jbr.34.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms. The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells, and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox. These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity, dynamic range, and stability suitable for high analytic/medical relevance. They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications. The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Biosensors Department, International Centre of Biodynamics, Bucharest 060101, Romania
| |
Collapse
|
234
|
Abstract
Multiple myeloma remains an incurable disease despite great advances in its therapeutic landscape. Increasing evidence supports the belief that immune dysfunction plays an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts have focused on harnessing the immune system to exert anti-myeloma effects with encouraging outcomes. First-in-class anti-CD38 monoclonal antibody, daratumumab, now forms part of standard treatment regimens in relapsed and refractory settings and is shifting to front-line treatments. However, a non-negligible number of patients will progress and be triple refractory from the first line of treatment. Antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptors (CAR) are being developed in a heavily pretreated setting with outstanding results. Belantamab mafodotin-blmf has already received approval and other anti-B-cell maturation antigen (BCMA) therapies (CARs and bispecific antibodies are expected to be integrated in therapeutic options against myeloma soon. Nonetheless, immunotherapy faces different challenges in terms of efficacy and safety, and manufacturing and economic drawbacks associated with such a line of therapy pose additional obstacles to broadening its use. In this review, we described the most important clinical data on immunotherapeutic agents, delineated the limitations that lie in immunotherapy, and provided potential insights to overcome such issues.
Collapse
|
235
|
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of adoptive cellular immunotherapy targeting CD19 in its most advanced form. Up to 30% of infused patients achieve long-term survival, meaning that 70% of patients still fail to respond or relapse after therapy. This review will address the unresolved issues relating to responders' characterization, relapse prediction, and prevention, CAR T-cell construct optimization, rational combination with other therapies and treatment toxicity, focusing on the management of relapsed/refractory lymphoma patients. RECENT FINDINGS Many new antigenic targets are currently investigated and raise the hope of broader successes. However, literature data report that treatment failure is not only related to CAR T construct and infusion but is also due to hostile tumor microenvironment and poor interaction with the host effector cells. Further research should not only target CAR T structure, toxicity and associated therapies, but also tumor-related and host-related microenvironment interactions that lead to treatment failure in relapsed/refractory lymphoma patients. SUMMARY Poor persistence of CAR T and loss of CD19 antigen are well established mechanisms of relapse in Acute Lymphoblastic Leukemia (ALL). A fourth generation of CAR T construct is currently investigated to overcome this issue. In non-Hodgkin lymphoma, mechanisms of treatment failure remain poorly understood but tumor and host microenvironment are undoubtedly involved and should be further investigated. A deeper understanding of CAR T-cell therapy failure in individuals will help personalize CAR T-cell therapy in the future.
Collapse
|
236
|
Huang Z, Li Z, Zhang X, Kang S, Dong R, Sun L, Fu X, Vaisar D, Watanabe K, Gu L. Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity. ACS Synth Biol 2020; 9:3322-3333. [PMID: 33179507 DOI: 10.1021/acssynbio.0c00397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
Collapse
Affiliation(s)
- Zhimin Huang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Zengpeng Li
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, PR China
| | - Xiao Zhang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Shoukai Kang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Runze Dong
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Li Sun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Xiaonan Fu
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Vaisar
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Kurumi Watanabe
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Liangcai Gu
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
237
|
Carbonneau S, Sharma S, Peng L, Rajan V, Hainzl D, Henault M, Yang C, Hale J, Shulok J, Tallarico J, Porter J, Brogdon JL, Dranoff G, Bradner JE, Hild M, Guimaraes CP. An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor expression and activity. Cell Chem Biol 2020; 28:802-812.e6. [PMID: 33333026 DOI: 10.1016/j.chembiol.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
The recent development of successful CAR (chimeric antigen receptor) T cell therapies has been accompanied by a need to better control potentially fatal toxicities that can arise from adverse immune reactions. Here we present a ligand-controlled CAR system, based on the IKZF3 ZF2 β-hairpin IMiD-inducible degron, which allows for the reversible control of expression levels of type I membrane proteins, including CARs. Testing this system in an established mouse xenotransplantation model for acute lymphoblastic leukemia, we validate the ability of the CAR19-degron to target and kill CD19-positive cells displaying complete control/clearance of the tumor. We also demonstrate that the activity of CAR19-degron can be regulated in vivo when dosing a US Food and Drug Administration-approved drug, lenalidomide.
Collapse
Affiliation(s)
- Seth Carbonneau
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sujata Sharma
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Liaomin Peng
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Vaisakh Rajan
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Dominik Hainzl
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Chian Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jacob Hale
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Janine Shulok
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - John Tallarico
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jeff Porter
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Glenn Dranoff
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - James E Bradner
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | | |
Collapse
|
238
|
Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells. FEBS J 2020; 288:5265-5288. [PMID: 33289352 DOI: 10.1111/febs.15652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Synthetic biology aims to harness natural and synthetic biological parts and engineering them in new combinations and systems, producing novel therapies, diagnostics, bioproduction systems, and providing information on the mechanism of function of biological systems. Engineering cell function requires the rewiring or de novo construction of cell information processing networks. Using natural and synthetic signal processing elements, researchers have demonstrated a wide array of signal sensing, processing and propagation modules, using transcription, translation, or post-translational modification to program new function. The toolbox for synthetic network design is ever-advancing and has still ample room to grow. Here, we review the diversity of synthetic gene networks, types of building modules, techniques of regulation, and their applications.
Collapse
Affiliation(s)
- Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
239
|
Meng X, Wu X, Zheng Y, Shang K, Jing R, Jiao P, Zhou C, Zhou J, Sun J. Exploiting Ca 2+ signaling in T cells to advance cancer immunotherapy. Semin Immunol 2020; 49:101434. [PMID: 33272900 DOI: 10.1016/j.smim.2020.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Decades of basic research has established the importance of Ca2+ to various T cell functions, such as cytotoxicity, proliferation, differentiation and cytokine secretion. We now have a good understanding of how proximal TCR signaling initiates Ca2+ influx and how this influx subsequently changes transcriptional activities in T cells. As chimeric antigen receptor (CAR)-T therapy has achieved great clinical success, is it possible to harness Ca2+ signaling to further advance CAR-T research? How is CAR signaling different from TCR signaling? How can functional CARs be identified in a high-throughput way? Quantification of various Ca2+ signals downstream of CAR/TCR activation might help answer these questions. Here we first summarized recent studies that used Ca2+ dye, genetically-encoded Ca2+ indicators (GECI) or transcriptional activity reporters to understand CAR activation in vitro and in vivo. We next reviewed several proof-of-concept reports that manipulate Ca2+ signaling by light or ultrasound to achieve precise spatiotemporal control of T cell functions. These efforts, though preliminary, opened up new avenues to solve the on-target/off-tumor problem of therapeutic T cells. Other modalities to regulate Ca2+ signaling, such as radio wave and electrical pulse, were also discussed. Thus, monitoring or manipulating Ca2+ signaling in T cells provides us many opportunities to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoyan Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuyuan Zheng
- School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Ruirui Jing
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Peng Jiao
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Chun Zhou
- School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
240
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
241
|
Andrea AE, Chiron A, Bessoles S, Hacein-Bey-Abina S. Engineering Next-Generation CAR-T Cells for Better Toxicity Management. Int J Mol Sci 2020; 21:E8620. [PMID: 33207607 PMCID: PMC7696189 DOI: 10.3390/ijms21228620] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy-notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| |
Collapse
|
242
|
Guo F, Cui J. CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sci 2020; 260:118300. [DOI: 10.1016/j.lfs.2020.118300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
243
|
Zhang B, Napoleon JV, Liu X, Luo Q, Srinivasarao M, Low PS. Sensitive manipulation of CAR T cell activity using a chimeric endocytosing receptor. J Immunother Cancer 2020; 8:jitc-2020-000756. [PMID: 33127654 PMCID: PMC7604868 DOI: 10.1136/jitc-2020-000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background Most adoptive cell therapies (ACTs) suffer from an inability to control the therapeutic cell’s behavior following its transplantation into a patient. Thus, efforts to inhibit, activate, differentiate or terminate an ACT after patient reinfusion can be futile, because the required drug adversely affects other cells in the patient. Methods We describe here a two domain fusion receptor composed of a ligand-binding domain linked to a recycling domain that allows constitutive internalization and trafficking of the fusion receptor back to the cell surface. Because the ligand-binding domain is designed to bind a ligand not normally present in humans, any drug conjugated to this ligand will bind and endocytose selectively into the ACT. Results In two embodiments of our strategy, we fuse the chronically endocytosing domain of human folate receptor alpha to either a murine scFv that binds fluorescein or human FK506 binding protein that binds FK506, thereby creating a fusion receptor composed of largely human components. We then create the ligand-targeted drug by conjugating any desired drug to either fluorescein or FK506, thereby generating a ligand-drug conjugate with ~10-9 M affinity for its fusion receptor. Using these tools, we demonstrate that CAR T cell activities can be sensitively tuned down or turned off in vitro as well as tightly controlled following their reinfusion into tumor-bearing mice. Conclusions We suggest this ‘chimeric endocytosing receptor’ can be exploited to manipulate not only CAR T cells but other ACTs following their reinfusion into patients. With efforts to develop ACTs to treat diseases including diabetes, heart failure, osteoarthritis, cancer and sickle cell anemia accelerating, we argue an ability to manipulate ACT activities postinfusion will be important.
Collapse
Affiliation(s)
- Boning Zhang
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | | | - Xin Liu
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | - Qian Luo
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| | | | - Philip S Low
- Chemistry, Purdue University System, West Lafayette, Indiana, USA
| |
Collapse
|
244
|
Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, Chen F. CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Lett 2020; 491:121-131. [PMID: 32795486 DOI: 10.1016/j.canlet.2020.07.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most complex and challenging breast cancer subtype to treat, and chemotherapy remains the standard of care. Clinically, TNBC has a relatively high rate of recurrence and poor prognosis, which leads to a significant effort to discover novel strategies to treat patients with these tumors. Currently, chimeric antigen receptor (CAR) T cell-based immunotherapy redirects the patient's immune system directly to recognize and eradicate tumor-associated antigens (TAAs) expressing tumor cells being explored as a treatment for TNBC. A steadily increasing research in CAR T-cell therapy targeting different TAAs in TNBC has reported. In this review, we introduce the CAR technology and summarize the potential TAAs, available CARs, the antitumor activity, and the related toxicity of CARs currently under investigation for TNBC. We also highlight the potential strategies to prevent/reduce potential "on target, off tumor" toxicity induced by CAR T-cell therapy. This review will help to explore proper targets to expand further the CAR T-cell therapy for TNBCs in the clinic.
Collapse
Affiliation(s)
- Yuetao Xie
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Yi Hu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Nawu Zhou
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Cuicui Yao
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Lixin Wu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Lin Liu
- Everest Medical Care, 2010 West Chester Pike, Havertown, PA, 19083, USA
| | - Fang Chen
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China.
| |
Collapse
|
245
|
Zhuang X, Maione F, Robinson J, Bentley M, Kaul B, Whitworth K, Jumbu N, Jinks E, Bystrom J, Gabriele P, Garibaldi E, Delmastro E, Nagy Z, Gilham D, Giraudo E, Bicknell R, Lee SP. CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight 2020; 5:138808. [PMID: 33004686 PMCID: PMC7566713 DOI: 10.1172/jci.insight.138808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/20/2020] [Indexed: 01/11/2023] Open
Abstract
Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer. T cells expressing a chimeric antigen receptor specific for the tumor vascular marker CLEC14A inhibited tumor growth in three mouse cancer models.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Federica Maione
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy, and Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Joseph Robinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Michael Bentley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Baksho Kaul
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Katharine Whitworth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Neeraj Jumbu
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jonas Bystrom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pietro Gabriele
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elisabetta Garibaldi
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Elena Delmastro
- Radiation Therapy Laboratory, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Zsuzsanna Nagy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David Gilham
- Clinical and Experimental Immunotherapy Group, University of Manchester, Manchester, United Kingdom
| | - Enrico Giraudo
- Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy, and Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Roy Bicknell
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Steven P Lee
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
246
|
All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Curr Opin Biotechnol 2020; 65:75-87. [DOI: 10.1016/j.copbio.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/26/2020] [Indexed: 01/21/2023]
|
247
|
Fleischer LC, Becker SA, Ryan RE, Fedanov A, Doering CB, Spencer HT. Non-signaling Chimeric Antigen Receptors Enhance Antigen-Directed Killing by γδ T Cells in Contrast to αβ T Cells. Mol Ther Oncolytics 2020; 18:149-160. [PMID: 32671190 PMCID: PMC7341062 DOI: 10.1016/j.omto.2020.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells have demonstrated efficacy against B cell leukemias/lymphomas. However, redirecting CAR T cells to malignant T cells is more challenging due to product-specific cis- and trans-activation causing fratricide. Other challenges include the potential for product contamination and T cell aplasia. We expressed non-signaling CARs (NSCARs) in γδ T cells since donor-derived γδ T cells can be used to prevent product contamination, and NSCARs lack signaling/activation domains, but retain antigen-specific tumor cell-targeting capability. As a result, NSCAR targeting requires an alternative cytotoxic mechanism, which can be achieved through utilization of γδ T cells that possess major histocompatibility complex (MHC)-independent cytotoxicity. We designed two distinct NSCARs and demonstrated that they do not enhance tumor-killing by αβ T cells, as predicted. However, both CD5-NSCAR- and CD19-NSCAR-modified γδ T cells enhanced cytotoxicity against T and B cell acute lymphoblastic leukemia (T-ALL and B-ALL) cell lines, respectively. CD5-NSCAR expression in γδ T cells resulted in a 60% increase in cytotoxicity of CD5-expressing T-ALL cell lines. CD19-NSCAR-modified γδ T cells exhibited a 350% increase in cytotoxicity against a CD19-expressing B-ALL cell line compared to the cytotoxicity of naive cells. NSCARs may provide a mechanism to enhance antigen-directed anti-tumor cytotoxicity of γδ T cells through the introduction of a high-affinity interaction while avoiding self-activation.
Collapse
Affiliation(s)
- Lauren C. Fleischer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott A. Becker
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca E. Ryan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew Fedanov
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher B. Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - H. Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Program in Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
248
|
Yang P, Wang Y, Yao Z, Gao X, Liu C, Wang X, Wu H, Ding X, Hu J, Lin B, Li Q, Li M, Li X, Chen X, Qi W, Li W, Xue J, Xu H. Enhanced Safety and Antitumor Efficacy of Switchable Dual Chimeric Antigen Receptor-Engineered T Cells against Solid Tumors through a Synthetic Bifunctional PD-L1-Blocking Peptide. J Am Chem Soc 2020; 142:18874-18885. [DOI: 10.1021/jacs.0c08538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zheng Yao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinmei Gao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Liu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinmin Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Heming Wu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xu Ding
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bingjing Lin
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengwei Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xin Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiangying Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weiyan Qi
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weiguang Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianpeng Xue
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
249
|
Schepisi G, Conteduca V, Casadei C, Gurioli G, Rossi L, Gallà V, Cursano MC, Brighi N, Lolli C, Menna C, Farolfi A, Burgio SL, Altavilla A, Martinelli G, De Giorgi U. Potential Application of Chimeric Antigen Receptor (CAR)-T Cell Therapy in Renal Cell Tumors. Front Oncol 2020; 10:565857. [PMID: 33072597 PMCID: PMC7538692 DOI: 10.3389/fonc.2020.565857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, renal cell carcinoma is characterized by encouraging benefits from immunotherapy that have led to significant results in treatment outcome. The approval of nivolumab primarily as second-line monotherapy and, more recently, the approval of new combination therapies as first-line treatment have confirmed the importance of immunotherapy in this type of tumor. In this context, the chimeric antigen receptor (CAR)-T represents a further step forward in the field of immunotherapy. Initially tested on hematological malignancies, this new therapeutic approach is also becoming a topic of great interest for solid tumors. Although the treatment has several advantages over previous T-cell receptor-dependent immunotherapy, it is facing some obstacles in solid tumors such as a hostile tumor microenvironment and on-tumor/off-tumor toxicities. Several strategies are under investigation to overcome these problems, but the approval of CAR-T cell therapy is still some way off. In renal cancer, the significant advantages obtained from immune checkpoint inhibitors represent a good starting point, but the potential nephrological toxicity of CAR-T cell therapy represents an important risk. In this review, we provide the rationale and preliminary results of CAR-T cell therapy in renal cell malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Valentina Gallà
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | | | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy
| |
Collapse
|
250
|
Chen R, Jing J, Siwko S, Huang Y, Zhou Y. Intelligent cell-based therapies for cancer and autoimmune disorders. Curr Opin Biotechnol 2020; 66:207-216. [PMID: 32956902 DOI: 10.1016/j.copbio.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Synthetic biology, when combined with immunoengineering (designated synthetic immunology), has enabled the invention of an arsenal of genetically encoded synthetic devices and systems to reprogram cells for therapeutic purposes. The engineered intelligent cells can serve as 'living' drugs to treat a wide range of human diseases including cancer, disorders of the immune system, and infectious diseases. As the most successful example, cells of the immune system engineered with chimeric antigen receptors (CARs) have shown curative potentials for the treatment of hematological malignancies. We present herein emerging approaches of designing smart CARs to improve their safety, specificity and efficacy in cellular immunotherapy, and describe latest advances in applying CAR-engineered immune cells to target cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|