201
|
Villa GR, Chiocca EA. The Role of Long Noncoding Ribonucleic Acids in Glioblastoma: What the Neurosurgeon Should Know. Neurosurgery 2023; 92:1104-1111. [PMID: 36880757 DOI: 10.1227/neu.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of the human transcriptome, long noncoding RNAs (lncRNAs) play pivotal roles in several aspects of glioblastoma (GBM) pathophysiology including proliferation, invasion, radiation and temozolomide resistance, and immune modulation. The majority of lncRNAs exhibit tissue- and tumor-specific expression, lending them to be attractive targets for therapeutic translation. In recent years, unprecedented progress has been made toward our understanding of lncRNA in GBM. In this review, we discuss the function of lncRNAs, including specific lncRNAs that have critical roles in key aspects of GBM pathophysiology, and potential clinical relevance of lncRNAs for patients with GBM.
Collapse
Affiliation(s)
- Genaro Rodriguez Villa
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | | |
Collapse
|
202
|
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, Adameyko I. A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology. Nat Commun 2023; 14:3092. [PMID: 37248239 PMCID: PMC10226981 DOI: 10.1038/s41467-023-38663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
Collapse
Affiliation(s)
- Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany.
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Ruba Mahmoud
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Evgeny E Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65, Stockholm, Sweden
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - David Pajuelo Reguera
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Grabowski
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Miriam E Buhl
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Håkan Axelson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - David Lindgren
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Máté
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Till Koehne
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Peter Boor
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Jan Rozman
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, 4367, Belvaux, Luxembourg
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
203
|
Lee Q, Song R, Phan DAV, Pinello N, Tieng J, Su A, Halstead JM, Wong ACH, van Geldermalsen M, Lee BSL, Rong B, Cook KM, Larance M, Liu R, Lan F, Tiffen JC, Wong JJL. Overexpression of VIRMA confers vulnerability to breast cancers via the m 6A-dependent regulation of unfolded protein response. Cell Mol Life Sci 2023; 80:157. [PMID: 37208522 DOI: 10.1007/s00018-023-04799-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Virilizer-like m6A methyltransferase-associated protein (VIRMA) maintains the stability of the m6A writer complex. Although VIRMA is critical for RNA m6A deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers. Of the two known VIRMA isoforms, the nuclear-enriched full-length but not the cytoplasmic-localised N-terminal VIRMA promotes m6A-dependent breast tumourigenesis in vitro and in vivo. Mechanistically, we reveal that VIRMA overexpression upregulates the m6A-modified long non-coding RNA, NEAT1, which contributes to breast cancer cell growth. We also show that VIRMA overexpression enriches m6A on transcripts that regulate the unfolded protein response (UPR) pathway but does not promote their translation to activate the UPR under optimal growth conditions. Under stressful conditions that are often present in tumour microenvironments, VIRMA-overexpressing cells display enhanced UPR and increased susceptibility to death. Our study identifies oncogenic VIRMA overexpression as a vulnerability that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Dang Anh Vu Phan
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jessica Tieng
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anni Su
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - James M Halstead
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alex C H Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michelle van Geldermalsen
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bob S-L Lee
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kristina M Cook
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jessamy C Tiffen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Melanoma Epigenetics Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- , Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
204
|
Zhang HH, Xiang J, Yin BC, Ye BC. Overcoming Multidrug Resistance by Base-Editing-Induced Codon Mutation. ACS Pharmacol Transl Sci 2023; 6:812-819. [PMID: 37200813 PMCID: PMC10186359 DOI: 10.1021/acsptsci.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 05/20/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP binding cassette (ABC) transporters on the MDR cell membrane can transport a wide range of antitumor drugs out of cells, which is one of the main causes of MDR. Therefore, disturbing ABC transporters becomes the key to reversing MDR. In this study, we implement a cytosine base editor (CBE) system to knock out the gene encoding ABC transporters by base editing. When the CBE system works in MDR cells, the MDR cells are manipulated, and the genes encoding ABC transporters can be inactivated by precisely changing single in-frame nucleotides to induce stop (iSTOP) codons. In this way, the expression of ABC efflux transporters is reduced and intracellular drug retention is significantly increased in MDR cells. Ultimately, the drug shows considerable cytotoxicity to the MDR cancer cells. Moreover, the substantial downregulation of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) implies the successful application of the CBE system in the knockout of different ABC efflux transporters. The recovery of chemosensitivity of MDR cancer cells to the chemotherapeutic drugs revealed that the system has a satisfactory universality and applicability. We believe that the CBE system will provide valuable clues for the use of CRISPR technology to defeat the MDR of cancer cells.
Collapse
Affiliation(s)
- He-Hua Zhang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Xiang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832000, Xinjiang, China
| |
Collapse
|
205
|
Yan G, Yang J, Li W, Guo A, Guan J, Liu Y. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat Cell Biol 2023; 25:754-764. [PMID: 37037994 DOI: 10.1038/s41556-023-01123-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential hub that integrates nutrient signals and coordinates metabolism to control cell growth. Amino acid signals are detected by sensor proteins and relayed to the GATOR2 and GATOR1 complexes to control mTORC1 activity. Here we perform genome-wide CRISPR/Cas9 screens, coupled with an assay for mTORC1 activity based on fluorescence-activated cell sorting analysis of pS6, to identify potential regulators of mTORC1-dependent amino acid sensing. We then focus on interleukin enhancer binding factor 3 (ILF3), one of the candidate genes from the screen. ILF3 tethers the GATOR complexes to lysosomes to control mTORC1. Adding a lysosome-targeting sequence to the GATOR2 component WDR24 bypasses the requirement for ILF3 to modulate amino-acid-dependent mTORC1 signalling. ILF3 plays an evolutionarily conserved role in human and mouse cells, and in worms to regulate the mTORC1 pathway, control autophagy activity and modulate the ageing process.
Collapse
Affiliation(s)
- Guokai Yan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinxin Yang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ao Guo
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jialiang Guan
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
206
|
Pereira C, Stalder D, Anderson GS, Shun-Shion AS, Houghton J, Antrobus R, Chapman MA, Fazakerley DJ, Gershlick DC. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J Cell Biol 2023; 222:e202205137. [PMID: 36920342 PMCID: PMC10041652 DOI: 10.1083/jcb.202205137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Secreted proteins fulfill a vast array of functions, including immunity, signaling, and extracellular matrix remodeling. In the trans-Golgi network, proteins destined for constitutive secretion are sorted into post-Golgi carriers which fuse with the plasma membrane. The molecular machinery involved is poorly understood. Here, we have used kinetic trafficking assays and transient CRISPR-KO to study biosynthetic sorting from the Golgi to the plasma membrane. Depletion of all canonical exocyst subunits causes cargo accumulation in post-Golgi carriers. Exocyst subunits are recruited to and co-localize with carriers. Exocyst abrogation followed by kinetic trafficking assays of soluble cargoes results in intracellular cargo accumulation. Unbiased secretomics reveals impairment of soluble protein secretion after exocyst subunit knockout. Importantly, in specialized cell types, the loss of exocyst prevents constitutive secretion of antibodies in lymphocytes and of leptin in adipocytes. These data identify exocyst as the functional tether of secretory post-Golgi carriers at the plasma membrane and an essential component of the mammalian constitutive secretory pathway.
Collapse
Affiliation(s)
- Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Amber S. Shun-Shion
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
207
|
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol 2023; 15:a041257. [PMID: 36123033 PMCID: PMC10071438 DOI: 10.1101/cshperspect.a041257] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Endoplasmic Reticulum (ER) is an endomembrane system that plays a multiplicity of roles in cell physiology and populates even the most distal cell compartments, including dendritic tips and axon terminals of neurons. Some of its functions are achieved by a cross talk with other intracellular membranous organelles and with the plasma membrane at membrane contacts sites (MCSs). As the ER synthesizes most membrane lipids, lipid exchanges mediated by lipid transfer proteins at MCSs are a particularly important aspect of this cross talk, which synergizes with the cross talk mediated by vesicular transport. Several mutations of genes that encode proteins localized at ER MCSs result in familial neurodegenerative diseases, emphasizing the importance of the normal lipid traffic within cells for a healthy brain. Here, we provide an overview of such diseases, with a specific focus on proteins that directly or indirectly impact lipid transport.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
208
|
Vanderkruk B, Maeshima N, Pasula DJ, An M, McDonald CL, Suresh P, Luciani DS, Lynn FC, Hoffman BG. Methylation of histone H3 lysine 4 is required for maintenance of beta cell function in adult mice. Diabetologia 2023; 66:1097-1115. [PMID: 36912927 PMCID: PMC10163146 DOI: 10.1007/s00125-023-05896-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS Beta cells control glucose homeostasis via regulated production and secretion of insulin. This function arises from a highly specialised gene expression programme that is established during development and then sustained, with limited flexibility, in terminally differentiated cells. Dysregulation of this programme is seen in type 2 diabetes but mechanisms that preserve gene expression or underlie its dysregulation in mature cells are not well resolved. This study investigated whether methylation of histone H3 lysine 4 (H3K4), a marker of gene promoters with unresolved functional importance, is necessary for the maintenance of mature beta cell function. METHODS Beta cell function, gene expression and chromatin modifications were analysed in conditional Dpy30 knockout mice, in which H3K4 methyltransferase activity is impaired, and in a mouse model of diabetes. RESULTS H3K4 methylation maintains expression of genes that are important for insulin biosynthesis and glucose responsiveness. Deficient methylation of H3K4 leads to a less active and more repressed epigenome profile that locally correlates with gene expression deficits but does not globally reduce gene expression. Instead, developmentally regulated genes and genes in weakly active or suppressed states particularly rely on H3K4 methylation. We further show that H3K4 trimethylation (H3K4me3) is reorganised in islets from the Leprdb/db mouse model of diabetes in favour of weakly active and disallowed genes at the expense of terminal beta cell markers with broad H3K4me3 peaks. CONCLUSIONS/INTERPRETATION Sustained methylation of H3K4 is critical for the maintenance of beta cell function. Redistribution of H3K4me3 is linked to gene expression changes that are implicated in diabetes pathology.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Nina Maeshima
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Pasula
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Cassandra L McDonald
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Priya Suresh
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Dan S Luciani
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
209
|
Tsuchiya M, Tachibana N, Nagao K, Tamura T, Hamachi I. Organelle-selective click labeling coupled with flow cytometry allows pooled CRISPR screening of genes involved in phosphatidylcholine metabolism. Cell Metab 2023:S1550-4131(23)00050-5. [PMID: 36917984 DOI: 10.1016/j.cmet.2023.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Cellular lipid synthesis and transport are governed by intricate protein networks. Although genetic screening should contribute to deciphering the regulatory networks of lipid metabolism, technical challenges remain-especially for high-throughput readouts of lipid phenotypes. Here, we coupled organelle-selective click labeling of phosphatidylcholine (PC) with flow cytometry-based CRISPR screening technologies to convert organellar PC phenotypes into a simple fluorescence readout for genome-wide screening. This technique, named O-ClickFC, was successfully applied in genome-scale CRISPR-knockout screens to identify previously reported genes associated with PC synthesis (PCYT1A, ACACA), vesicular membrane trafficking (SEC23B, RAB5C), and non-vesicular transport (PITPNB, STARD7). Moreover, we revealed previously uncharacterized roles of FLVCR1 as a choline uptake facilitator, CHEK1 as a post-translational regulator of the PC-synthetic pathway, and CDC50A as responsible for the translocation of PC to the outside of the plasma membrane bilayer. These findings demonstrate the versatility of O-ClickFC as an unprecedented platform for genetic dissection of cellular lipid metabolism.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Nobuhiko Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; PRESTO (Precursory Research for Embryonic Science and Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; ERATO (Exploratory Research for Advanced Technology), JST, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan.
| |
Collapse
|
210
|
Weiss-Sadan T, Ge M, Hayashi M, Gohar M, Yao CH, de Groot A, Harry S, Carlin A, Fischer H, Shi L, Wei TY, Adelmann CH, Wolf K, Vornbäumen T, Dürr BR, Takahashi M, Richter M, Zhang J, Yang TY, Vijay V, Fisher DE, Hata AN, Haigis MC, Mostoslavsky R, Bardeesy N, Papagiannakopoulos T, Bar-Peled L. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab 2023; 35:487-503.e7. [PMID: 36841242 PMCID: PMC9998367 DOI: 10.1016/j.cmet.2023.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 01/26/2023] [Indexed: 02/27/2023]
Abstract
Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.
Collapse
Affiliation(s)
- Tommy Weiss-Sadan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maolin Ge
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Laura and Isaac Pelmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Magdy Gohar
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Adriaan de Groot
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stefan Harry
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander Carlin
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Fischer
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ting-Yu Wei
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charles H Adelmann
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Konstantin Wolf
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tristan Vornbäumen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benedikt R Dürr
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mariko Takahashi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marianne Richter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tzu-Yi Yang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vindhya Vijay
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David E Fisher
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute Harvard Medical School, Boston, MA 02115, USA
| | - Raul Mostoslavsky
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA; Laura and Isaac Pelmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
211
|
Guo L, Dou Y, Xiang Y, Luo L, Xu X, Wang Q, Zhang Y, Liang T. Systematic analysis of cancer-specific synthetic lethal interactions provides insight into personalized anticancer therapy. FEBS J 2023; 290:1531-1548. [PMID: 36181326 DOI: 10.1111/febs.16643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
The concept of synthetic lethality has great potential for anticancer therapy as a new strategy to specifically kill cancer cells while sparing normal cells. To further understand the potential molecular interactions and gene characteristics involved in synthetic lethality, we performed a comprehensive analysis of predicted cancer-specific genetic interactions. Many genes were identified as cancer-associated genes that contributed to multiple biological processes and pathways, and the gene features were not random, indicating their potential roles in human carcinogenesis. Some relevant genes detected in multiple cancers were prone to be enriched in specific biological progresses and pathways, especially processes associated with DNA damage, chromosome-related functions and cancer pathways. These findings strongly implicated potential roles for these genes in cancer pathophysiology and functional relationships, as well as applications for future anticancer drug discovery. Further experimental validation indicated that the synthetic lethal interaction of APC and GFER may provide a potential anticancer strategy for patients with APC-mutant colon cancer. These results will contribute to further exploration of synthetic lethal interactions and broader application of the concept of synthetic lethality in anticancer therapeutics.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, China
| | - Yuyang Dou
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, China
| | - Yangyang Xiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, China
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, China
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, China
| | - Qiushi Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, China
| | - Yuting Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, China
| |
Collapse
|
212
|
A Virus-Packageable CRISPR System Identifies Host Dependency Factors Co-Opted by Multiple HIV-1 Strains. mBio 2023; 14:e0000923. [PMID: 36744886 PMCID: PMC9973025 DOI: 10.1128/mbio.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At each stage of the HIV life cycle, host cellular proteins are hijacked by the virus to establish and enhance infection. We adapted the virus packageable HIV-CRISPR screening technology at a genome-wide scale to comprehensively identify host factors that affect HIV replication in a human T cell line. Using a smaller, targeted HIV Dependency Factor (HIVDEP) sublibrary, we then performed screens across HIV strains representing different clades and with different biological properties to define which T cell host factors are important across multiple HIV strains. Nearly 90% of the genes selected across various host pathways validated in subsequent assays as bona fide host dependency factors, including numerous proteins not previously reported to play roles in HIV biology, such as UBE2M, MBNL1, FBXW7, PELP1, SLC39A7, and others. Our ranked list of screen hits across diverse HIV-1 strains form a resource of HIV dependency factors for future investigation of host proteins involved in HIV biology. IMPORTANCE With a small genome of ~9.2 kb that encodes 14 major proteins, HIV must hijack host cellular machinery to successfully establish infection. These host proteins necessary for HIV replication are called "dependency factors." Whole-genome, and then targeted screens were done to try to comprehensively identify all dependency factors acting throughout the HIV replication cycle. Many host processes were identified and validated as critical for HIV replication across multiple HIV strains.
Collapse
|
213
|
Yang J, Guo F, Chin HS, Chen GB, Ang CH, Lin Q, Hong W, Fu NY. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep 2023; 42:112065. [PMID: 36724073 DOI: 10.1016/j.celrep.2023.112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Tetraspanins, a superfamily of membrane proteins, mediate diverse biological processes through tetraspanin-enriched microdomains in the plasma membrane. However, how their cell-surface presentation is controlled remains unclear. To identify the regulators of tetraspanin trafficking, we conduct sequential genome-wide loss-of-function CRISPR-Cas9 screens based on cell-surface expression of a tetraspanin member, TSPAN8. Several genes potentially involved in endoplasmic reticulum (ER) targeting, different biological processes in the Golgi apparatus, and protein trafficking are identified and functionally validated. Importantly, we find that biantennary N-glycans generated by MGAT1/2, but not more complex glycan structures, are important for cell-surface tetraspanin expression. Moreover, we unravel that SPPL3, a Golgi intramembrane-cleaving protease reported previously to act as a sheddase of multiple glycan-modifying enzymes, controls cell-surface tetraspanin expression through a mechanism associated with lacto-series glycolipid biosynthesis. Our study provides critical insights into the molecular regulation of cell-surface presentation of tetraspanins with implications for strategies to manipulate their functions, including cancer cell invasion.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hui San Chin
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gao Bin Chen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chow Hiang Ang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Physiology, National University of Singapore, Singapore 117593, Singapore; Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
214
|
Dede M, Hart T. Recovering false negatives in CRISPR fitness screens with JLOE. Nucleic Acids Res 2023; 51:1637-1651. [PMID: 36727483 PMCID: PMC9976895 DOI: 10.1093/nar/gkad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
It is widely accepted that pooled library CRISPR knockout screens offer greater sensitivity and specificity than prior technologies in detecting genes whose disruption leads to fitness defects, a critical step in identifying candidate cancer targets. However, the assumption that CRISPR screens are saturating has been largely untested. Through integrated analysis of screen data in cancer cell lines generated by the Cancer Dependency Map, we show that a typical CRISPR screen has a ∼20% false negative rate, in addition to library-specific false negatives. Replicability falls sharply as gene expression decreases, while cancer subtype-specific genes within a tissue show distinct profiles compared to false negatives. Cumulative analyses across tissues improves our understanding of core essential genes and suggest only a small number of lineage-specific essential genes, enriched for transcription factors that define pathways of tissue differentiation. To recover false negatives, we introduce a method, Joint Log Odds of Essentiality (JLOE), which builds on our prior work with BAGEL to selectively rescue the false negatives without an increased false discovery rate.
Collapse
Affiliation(s)
- Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
215
|
García-Caballero D, Hart JR, Vogt PK. The MYC-regulated lncRNA LNROP (ENSG00000254887) enables MYC-driven cell proliferation by controlling the expression of OCT2. Cell Death Dis 2023; 14:168. [PMID: 36849510 PMCID: PMC9971199 DOI: 10.1038/s41419-023-05683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
MYC controls most of the non-coding genome. Several long noncoding transcripts were originally identified in the human B cell line P496-3 and then shown to be required for MYC-driven proliferation of Burkitt lymphoma-derived RAMOS cells. In this study, we used RAMOS cells exclusively as a representative of the human B cell lineage. One of the MYC-controlled lncRNAs required for RAMOS cell proliferation is ENSG00000254887 which we will term LNROP (long non-coding regulator of POU2F2). In the genome, LNROP is located in close proximity of POU2F2, the gene encoding OCT2. OCT2 is a transcription factor with important roles in sustaining the proliferation of human B cells. Here we show that LNROP is a nuclear RNA and a direct target of MYC. Downregulation of LNROP attenuates the expression of OCT2. This effect of LNROP on the expression of OCT2 is unidirectional as downregulation of OCT2 does not alter the expression of LNROP. Our data suggest that LNROP is a cis-acting regulator of OCT2. To illustrate the downstream reach of LNROP, we chose a prominent target of OCT2, the tyrosine phosphatase SHP-1. Downregulation of OCT2 elevates the expression of SHP-1. Our data suggest the following path of interactions: LNROP enables the proliferation of B cells by positively and unidirectionally regulating the growth-stimulatory transcription factor OCT2. In actively proliferating B cells, OCT2 attenuates the expression and anti-proliferative activity of SHP-1.
Collapse
Affiliation(s)
- Daniel García-Caballero
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Jonathan R Hart
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter K Vogt
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
216
|
Park BS, Jeon H, Chi SG, Kim T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol 2023; 21:45. [PMID: 36829149 PMCID: PMC9960226 DOI: 10.1186/s12915-023-01536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.
Collapse
Affiliation(s)
- Byung-Sun Park
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Heeju Jeon
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Sung-Gil Chi
- grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Tackhoon Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea. .,Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea. .,Division of Bio-Medical Science and Technology, Korea University of Science and Technology, 217 GajeongRo YuseongGu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
217
|
Zheng R, Dunlap M, Lyu J, Gonzalez-Figueroa C, Bobkov G, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Vuong A, Flynn RA, Chang HY, Xiao X, Cheng C. LINE-associated cryptic splicing induces dsRNA-mediated interferon response and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529804. [PMID: 36865202 PMCID: PMC9980139 DOI: 10.1101/2023.02.23.529804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.
Collapse
|
218
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
219
|
Cheng X, Li Z, Shan R, Li Z, Wang S, Zhao W, Zhang H, Chao L, Peng J, Fei T, Li W. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches. Nat Commun 2023; 14:752. [PMID: 36765063 PMCID: PMC9912244 DOI: 10.1038/s41467-023-36316-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
A major challenge in the application of the CRISPR-Cas13d system is to accurately predict its guide-dependent on-target and off-target effect. Here, we perform CRISPR-Cas13d proliferation screens and design a deep learning model, named DeepCas13, to predict the on-target activity from guide sequences and secondary structures. DeepCas13 outperforms existing methods to predict the efficiency of guides targeting both protein-coding and non-coding RNAs. Guides targeting non-essential genes display off-target viability effects, which are closely related to their on-target efficiencies. Choosing proper negative control guides during normalization mitigates the associated false positives in proliferation screens. We apply DeepCas13 to the guides targeting lncRNAs, and identify lncRNAs that affect cell viability and proliferation in multiple cell lines. The higher prediction accuracy of DeepCas13 over existing methods is extensively confirmed via a secondary CRISPR-Cas13d screen and quantitative RT-PCR experiments. DeepCas13 is freely accessible via http://deepcas13.weililab.org .
Collapse
Affiliation(s)
- Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20010, USA
| | - Zexu Li
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Ruocheng Shan
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
- Department of Computer Science, George Washington University, Washington, DC, 20052, USA
| | - Zihan Li
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Shengnan Wang
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Wenchang Zhao
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Han Zhang
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Lumen Chao
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20010, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Teng Fei
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China.
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20010, USA.
| |
Collapse
|
220
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
221
|
Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, Tan H, Wang Q, Jiang Z, Yang K, Garcia JGN, Chambers SK, Chapman E, Ooi A, Yang-Hartwich Y, Stockwell BR, Zhang DD. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. SCIENCE ADVANCES 2023; 9:eade9585. [PMID: 36724221 PMCID: PMC9891695 DOI: 10.1126/sciadv.ade9585] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/05/2023] [Indexed: 05/26/2023]
Abstract
Enhancing the intracellular labile iron pool (LIP) represents a powerful, yet untapped strategy for driving ferroptotic death of cancer cells. Here, we show that NRF2 maintains iron homeostasis by controlling HERC2 (E3 ubiquitin ligase for NCOA4 and FBXL5) and VAMP8 (mediates autophagosome-lysosome fusion). NFE2L2/NRF2 knockout cells have low HERC2 expression, leading to a simultaneous increase in ferritin and NCOA4 and recruitment of apoferritin into the autophagosome. NFE2L2/NRF2 knockout cells also have low VAMP8 expression, which leads to ferritinophagy blockage. Therefore, deletion of NFE2L2/NRF2 results in apoferritin accumulation in the autophagosome, an elevated LIP, and enhanced sensitivity to ferroptosis. Concordantly, NRF2 levels correlate with HERC2 and VAMP8 in human ovarian cancer tissues, as well as ferroptosis resistance in a panel of ovarian cancer cell lines. Last, the feasibility of inhibiting NRF2 to increase the LIP and kill cancer cells via ferroptosis was demonstrated in preclinical models, signifying the impact of NRF2 inhibition in cancer treatment.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Yongyi Wei
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kevin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joe GN Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Setsuko K. Chambers
- Obstetrics and Gynecology, University of Arizona, Tucson, AZ 85724, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, New Haven, CT 06510, USA
| | - Brent R. Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
222
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
223
|
Pihlajamaa P, Kauko O, Sahu B, Kivioja T, Taipale J. A competitive precision CRISPR method to identify the fitness effects of transcription factor binding sites. Nat Biotechnol 2023; 41:197-203. [PMID: 36163549 PMCID: PMC9931575 DOI: 10.1038/s41587-022-01444-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/20/2022] [Indexed: 12/26/2022]
Abstract
Here we describe a competitive genome editing method that measures the effect of mutations on molecular functions, based on precision CRISPR editing using template libraries with either the original or altered sequence, and a sequence tag, enabling direct comparison between original and mutated cells. Using the example of the MYC oncogene, we identify important transcriptional targets and show that E-box mutations at MYC target gene promoters reduce cellular fitness.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Otto Kauko
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
224
|
Petiwala S, Modi A, Anton T, Murphy E, Kadri S, Hu H, Lu C, Flister MJ, Verduzco D. Optimization of Genomewide CRISPR Screens Using AsCas12a and Multi-Guide Arrays. CRISPR J 2023; 6:75-82. [PMID: 36787117 DOI: 10.1089/crispr.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genomewide loss-of-function (LOF) screening using clustered regularly interspaced short palindromic repeats (CRISPR) has facilitated the discovery of novel gene functions across diverse physiological and pathophysiological systems. A challenge with conventional genomewide CRISPR-Cas9 libraries is the unwieldy size (60,000-120,000 constructs), which is resource intensive and prohibitive in some experimental contexts. One solution to streamlining CRISPR screening is by multiplexing two or more guides per gene on a single construct, which enables functional redundancy to compensate for suboptimal gene knockout by individual guides. In this regard, AsCas12a (Cpf1) and its derivatives, for example, enhanced AsCas12a (enAsCas12a), have enabled multiplexed guide arrays to be specifically and efficiently processed for genome editing. Prior studies have established that multiplexed CRISPR-Cas12a libraries perform comparably to the larger equivalent CRISPR-Cas9 libraries, yet the most efficient CRISPR-Cas12a library design remains unresolved. In this study, we demonstrate that CRISPR-Cas12a genomewide LOF screening performed optimally with three guides arrayed per gene construct and could be adapted to robotic cell culture without noticeable differences in screen performance. Thus, the conclusions from this study provide novel insight to streamlining genomewide LOF screening using CRISPR-Cas12a and robotic cell culture.
Collapse
Affiliation(s)
| | - Apexa Modi
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Tifani Anton
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Erin Murphy
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Sabah Kadri
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Hengcheng Hu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Charles Lu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | | | | |
Collapse
|
225
|
Wang X, Xie Q, Ji Y, Yang J, Shen J, Peng F, Zhang Y, Jiang F, Kong X, Ma W, Liu D, Zheng L, Qing C, Lang JY. Targeting KRAS-mutant stomach/colorectal tumors by disrupting the ERK2-p53 complex. Cell Rep 2023; 42:111972. [PMID: 36641751 DOI: 10.1016/j.celrep.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/22/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
KRAS is widely mutated in human cancers, resulting in unchecked tumor proliferation and metastasis, which makes identifying KRAS-targeting therapies a priority. Herein, we observe that mutant KRAS specifically promotes the formation of the ERK2-p53 complex in stomach/colorectal tumor cells. Disruption of this complex by applying MEK1/2 and ERK2 inhibitors elicits strong apoptotic responses in a p53-dependent manner, validated by genome-wide knockout screening. Mechanistically, p53 physically associates with phosphorylated ERK2 through a hydrophobic interaction in the presence of mutant KRAS, which suppresses p53 activation by preventing the recruitment of p300/CBP; trametinib disrupts the ERK2-p53 complex by reducing ERK2 phosphorylation, allowing the acetylation of p53 protein by recruiting p300/CBP; acetylated p53 activates PUMA transcription and thereby kills KRAS-mutant tumors. Our study shows an important role for the ERK2-p53 complex and provides a potential therapeutic strategy for treating KRAS-mutant cancer.
Collapse
Affiliation(s)
- Xiang Wang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Qing Xie
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yan Ji
- Bioinformatics Core, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Jiaxin Yang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Jiayan Shen
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Fangfei Peng
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yongfeng Zhang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Feng Jiang
- Department of Radiation Oncology, The Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, P.R. China
| | - Xiangyin Kong
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Dandan Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P.R. China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P.R. China
| | - Jing-Yu Lang
- The CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
226
|
Cre/ lox-Mediated CRISPRi Library Reveals Core Genome of a Type I Methanotroph Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2023; 89:e0188322. [PMID: 36622175 PMCID: PMC9888281 DOI: 10.1128/aem.01883-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methanotrophs play key roles in global methane cycling and are promising platforms for methane bioconversion. However, major gaps existing in fundamental knowledge undermines understanding of these methane-consuming microorganisms. To associate genes with a phenotype at the genome-wide level, we developed a Cre/lox-mediated method for constructing a large-scale CRISPRi library in a model methanotroph Methylotuvimicrobium buryatense 5GB1C. The efficiency of this Cre mediated integration method was up to a level of 105 CFU/μg DNA. Targeting 4,100 predicted protein-coding genes, our CRISPRi pooled screening uncovered 788 core genes for the growth of strain 5GB1C using methane. The core genes are highly consistent with the gene knockout results, indicating the reliability of the CRISPRi screen. Insights from the core genes include that annotated isozymes generally exist in metabolic pathways and many core genes are hypothetical genes. This work not only provides functional genomic data for both fundamental research and metabolic engineering of methanotrophs, but also offers a method for CRISPRi library construction. IMPORTANCE Due to their key role in methane cycling and their industrial potential, methanotrophs have drawn increasing attention. Genome-wide experimental approaches for gene-phenotype mapping accelerate our understanding and engineering of a bacterium. However, these approaches are still unavailable in methanotrophs. This work has two significant implications. First, the core genes identified here provide functional genetic basics for complete reconstruction of the metabolic network and afford more clues for knowledge gaps. Second, the Cre-mediated knock-in method developed in this work enables large-scale DNA library construction in methanotrophs; the CRISPRi library can be used to screen the genes associated with special culture conditions.
Collapse
|
227
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
228
|
Vinceti A, De Lucia RR, Cremaschi P, Perron U, Karakoc E, Mauri L, Fernandez C, Kluczynski KH, Anderson DS, Iorio F. An interactive web application for processing, correcting, and visualizing genome-wide pooled CRISPR-Cas9 screens. CELL REPORTS METHODS 2023; 3:100373. [PMID: 36814834 PMCID: PMC9939378 DOI: 10.1016/j.crmeth.2022.100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 01/24/2023]
Abstract
A limitation of pooled CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes arising from copy-number-amplified genomics regions. To solve this issue, we previously developed CRISPRcleanR: a computational method implemented as R/python package and in a dockerized version. CRISPRcleanR detects and corrects biased responses to CRISPR-Cas9 targeting in an unsupervised fashion, accurately reducing false-positive signals while maintaining sensitivity in identifying relevant genetic dependencies. Here, we present CRISPRcleanR WebApp , a web application enabling access to CRISPRcleanR through an intuitive interface. CRISPRcleanR WebApp removes the complexity of R/python language user interactions; provides user-friendly access to a complete analytical pipeline, not requiring any data pre-processing and generating gene-level summaries of essentiality with associated statistical scores; and offers a range of interactively explorable plots while supporting a more comprehensive range of CRISPR guide RNAs' libraries than the original package. CRISPRcleanR WebApp is available at https://crisprcleanr-webapp.fht.org/.
Collapse
Affiliation(s)
- Alessandro Vinceti
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Riccardo Roberto De Lucia
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Paolo Cremaschi
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Umberto Perron
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Emre Karakoc
- Cancer Dependency Map Analytics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Luca Mauri
- ICT and Digitalisation, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Carlos Fernandez
- ICT and Digitalisation, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | | | - Daniel Stephen Anderson
- ICT and Digitalisation, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
| | - Francesco Iorio
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milano, Italy
- Cancer Dependency Map Analytics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
229
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Exploiting allele-specific transcriptional effects of subclonal copy number alterations for genotype-phenotype mapping in cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523464. [PMID: 36711951 PMCID: PMC9882029 DOI: 10.1101/2023.01.10.523464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J. Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C. Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
230
|
Reyes Gaido OE, Schole KL, Anderson ME, Luczak ED. Genome-wide CRISPR screen reveals genetic modifiers of Ca 2+ -mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523980. [PMID: 36712017 PMCID: PMC9882248 DOI: 10.1101/2023.01.13.523980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ca 2+ is a fundamental determinant of survival in living cells. Excessive intracellular Ca 2+ causes cellular toxicity and death but the genetic pathways contributing to Ca 2+ induced cell death are incompletely understood. Here, we performed genome-wide CRISPR knock-out screening in human cells challenged with the Ca 2+ ionophore ionomycin and identified genes and pathways essential for cell death after Ca 2+ overload. We discovered 115 protective gene knockouts, 82 of which are non-essential genes and 21 of which belong to the druggable genome. Notably, members of store operated Ca 2+ entry (SOCE), very long-chain fatty acid synthesis, and SWItch/Sucrose Non-Fermentable (SWI/SNF) pathways provided marked protection against Ca 2+ toxicity. These results reveal pathways previously unknown to mediate Ca 2+ -induced cell death and provide a resource for the development of pharmacotherapies against the sequelae of Ca 2+ overload in disease.
Collapse
|
231
|
Genome-wide siRNA screens identify RBBP9 function as a potential target in Fanconi anaemia-deficient head-and-neck squamous cell carcinoma. Commun Biol 2023; 6:37. [PMID: 36639418 PMCID: PMC9839743 DOI: 10.1038/s42003-022-04389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Fanconi anaemia (FA) is a rare chromosomal-instability syndrome caused by mutations of any of the 22 known FA DNA-repair genes. FA individuals have an increased risk of head-and-neck squamous-cell-carcinomas (HNSCC), often fatal. Systemic intolerance to standard cisplatin-based protocols due to somatic-cell hypersensitivity underscores the urgent need to develop novel therapies. Here, we performed unbiased siRNA screens to unveil genetic interactions synthetic-lethal with FA-pathway deficiency in FA-patient HNSCC cell lines. We identified based on differential-lethality scores between FA-deficient and FA-proficient cells, next to common-essential genes such as PSMC1, PSMB2, and LAMTOR2, the otherwise non-essential RBBP9 gene. Accordingly, low dose of the FDA-approved RBBP9-targeting drug Emetine kills FA-HNSCC. Importantly both RBBP9-silencing as well as Emetine spared non-tumour FA cells. This study provides a minable genome-wide analyses of vulnerabilities to address treatment challenges in FA-HNSCC. Our investigation divulges a DNA-cross-link-repair independent lead, RBBP9, for targeted treatment of FA-HNSCCs without systemic toxicity.
Collapse
|
232
|
Draetta EL, Lazarević D, Provero P, Cittaro D. The frequency of somatic mutations in cancer predicts the phenotypic relevance of germline mutations. Front Genet 2023; 13:1045301. [PMID: 36699457 PMCID: PMC9868957 DOI: 10.3389/fgene.2022.1045301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Genomic sequence mutations can be pathogenic in both germline and somatic cells. Several authors have observed that often the same genes are involved in cancer when mutated in somatic cells and in genetic diseases when mutated in the germline. Recent advances in high-throughput sequencing techniques have provided us with large databases of both types of mutations, allowing us to investigate this issue in a systematic way. Hence, we applied a machine learning based framework to this problem, comparing multiple models. The models achieved significant predictive power as shown by both cross-validation and their application to recently discovered gene/phenotype associations not used for training. We found that genes characterized by high frequency of somatic mutations in the most common cancers and ancient evolutionary age are most likely to be involved in abnormal phenotypes and diseases. These results suggest that the combination of tolerance for mutations at the cell viability level (measured by the frequency of somatic mutations in cancer) and functional relevance (demonstrated by evolutionary conservation) are the main predictors of disease genes. Our results thus confirm the deep relationship between pathogenic mutations in somatic and germline cells, provide new insight into the common origin of cancer and genetic diseases, and can be used to improve the identification of new disease genes.
Collapse
Affiliation(s)
- Edoardo Luigi Draetta
- University of Milan, Milan, Italy,Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarević
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy,Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy,*Correspondence: Davide Cittaro ,
| |
Collapse
|
233
|
Krentzel D, Shorte SL, Zimmer C. Deep learning in image-based phenotypic drug discovery. Trends Cell Biol 2023:S0962-8924(22)00262-8. [PMID: 36623998 DOI: 10.1016/j.tcb.2022.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/08/2023]
Abstract
Modern drug discovery approaches often use high-content imaging to systematically study the effect on cells of large libraries of chemical compounds. By automatically screening thousands or millions of images to identify specific drug-induced cellular phenotypes, for example, altered cellular morphology, these approaches can reveal 'hit' compounds offering therapeutic promise. In the past few years, artificial intelligence (AI) methods based on deep learning (DL) [a family of machine learning (ML) techniques] have disrupted virtually all image analysis tasks, from image classification to segmentation. These powerful methods also promise to impact drug discovery by accelerating the identification of effective drugs and their modes of action. In this review, we highlight applications and adaptations of ML, especially DL methods for cell-based phenotypic drug discovery (PDD).
Collapse
Affiliation(s)
- Daniel Krentzel
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015 Paris, France; Institut Pasteur, Joint International Unit Artificial Intelligence for Image-based Drug Discovery & Development (PIU-Ai3D), F-75015 Paris, France.
| | - Spencer L Shorte
- Institut Pasteur, Joint International Unit Artificial Intelligence for Image-based Drug Discovery & Development (PIU-Ai3D), F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), F-75015 Paris, France
| | - Christophe Zimmer
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015 Paris, France; Institut Pasteur, Joint International Unit Artificial Intelligence for Image-based Drug Discovery & Development (PIU-Ai3D), F-75015 Paris, France.
| |
Collapse
|
234
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
235
|
Maranda V, Zhang Y, Vizeacoumar FS, Freywald A, Vizeacoumar FJ. A CRISPR Platform for Targeted In Vivo Screens. Methods Mol Biol 2023; 2614:397-409. [PMID: 36587138 DOI: 10.1007/978-1-0716-2914-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.
Collapse
Affiliation(s)
- Vincent Maranda
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Yue Zhang
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, Canada.
| |
Collapse
|
236
|
Liu H, Lv Z, Zhang G, Wang X, Wang Y, Wang K. Knowledge mapping and current trends of global research on CRISPR in the field of cancer. Front Cell Dev Biol 2023; 11:1178221. [PMID: 37200626 PMCID: PMC10185797 DOI: 10.3389/fcell.2023.1178221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Gene editing tools using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related systems have revolutionized our understanding of cancer. The purpose of this study was to determine the distribution, collaboration, and direction of cancer research using CRISPR. Methods: Data from the Web of Science (WoS) Core Collection database were collected from 4,408 cancer publications related to CRISPR from 1 January 2013to 31 December 2022. The obtained data were analyzed using VOSviewer software for citation, co-citation, co-authorship, and co-occurrence analysis. Results: The number of annual publications has grown steadily over the past decade worldwide. The United States was shown, by far, to be the leading source of cancer publications, citations, and collaborations involving CRISPR than any other country, followed by China. Li Wei (Jilin University, China), and Harvard Medical School (Boston, MA, United States) were the author and institution with the most publications and active collaborations, respectively. The journal with the most contributions was Nature Communications (n = 147) and the journal with the most citations was Nature (n = 12,111). The research direction of oncogenic molecules, mechanisms, and cancer-related gene editing was indicated based on keyword analysis. Conclusion: The current study has provided a comprehensive overview of cancer research highlights and future trends of CRISPR, combined with a review of CRISPR applications in cancer to summarize and predict research directions and provide guidance to researchers.
Collapse
Affiliation(s)
- Han Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Kefeng Wang, ; Yuan Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Kefeng Wang, ; Yuan Wang,
| |
Collapse
|
237
|
Chatterjee K, Hopper AK. In Vivo Cross-Linking and Co-Immunoprecipitation Procedure to Analyze Nuclear tRNA Export Complexes in Yeast Cells. Methods Mol Biol 2023; 2666:115-136. [PMID: 37166661 PMCID: PMC10370246 DOI: 10.1007/978-1-0716-3191-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
tRNAs are small noncoding RNAs that are predominantly known for their roles in protein synthesis and also participate in numerous other functions ranging from retroviral replication to apoptosis. In eukaryotic cells, all tRNAs move bidirectionally, shuttling between the nucleus and the cytoplasm. Bidirectional nuclear-cytoplasmic tRNA trafficking requires a complex set of conserved proteins. Here, we describe an in vivo biochemical methodology in Saccharomyces cerevisiae to assess the ability of proteins implicated in tRNA nuclear export to form nuclear export complexes with tRNAs. This method employs tagged putative tRNA nuclear exporter proteins and co-immunoprecipitation of tRNA-exporter complexes using antibody-conjugated magnetic beads. Because the interaction between nuclear exporters and tRNAs may be transient, this methodology employs strategies to effectively trap tRNA-protein complexes in vivo. This pull-down method can be used to verify and characterize candidate proteins and their potential interactors implicated in tRNA nuclear-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Kunal Chatterjee
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Department of Biology, Wittenberg University, Springfield, OH, USA.
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
238
|
Blanco-Fernandez J, Jourdain AA. Dead-Seq: Discovering Synthetic Lethal Interactions from Dead Cells Genomics. Methods Mol Biol 2023; 2661:329-342. [PMID: 37166646 DOI: 10.1007/978-1-0716-3171-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pooled genetic screens have revolutionized the field of functional genomics, yet perturbations that decrease fitness, such as those leading to synthetic lethality, have remained difficult to quantify at the genomic level. We and colleagues previously developed "death screening," a protocol based on the purification of dead cells in genetic screens, and used it to identify a set of genes necessary for mitochondrial gene expression, translation, and oxidative phosphorylation (OXPHOS), thus offering new possibilities for the diagnosis of mitochondrial disorders. Here, we describe Dead-Seq, a refined protocol for death screening that is compatible with most pooled screening protocols, including genome-wide CRISPR/Cas9 screening. Dead-Seq converts negative-selection screens into positive-selection screens and generates high-quality data directly from dead cells, at limited sequencing costs.
Collapse
Affiliation(s)
| | - Alexis A Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
239
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
240
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
241
|
Uversky VN. MLOstasis: liquid–liquid phase separation and biomolecular condensates in cell competition, fitness, and aging. DROPLETS OF LIFE 2023:485-504. [DOI: 10.1016/b978-0-12-823967-4.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
242
|
Manzo M, Giordano M, Maddalena L, Guarracino MR, Granata I. Novel Data Science Methodologies for Essential Genes Identification Based on Network Analysis. STUDIES IN COMPUTATIONAL INTELLIGENCE 2023:117-145. [DOI: 10.1007/978-3-031-24453-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
243
|
Mantwill K, Nawroth R. Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in Urothelial Carcinoma. Methods Mol Biol 2023; 2684:155-165. [PMID: 37410233 DOI: 10.1007/978-1-0716-3291-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The application of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technology with pooled guide RNA libraries enables genome-wide screening, which has some advantages over other screening methods using chemical DNA mutagens for inducing genetic changes, RNA interference, or arrayed screens. Here we describe the use of genome-wide knockout and transcriptional activation screening enabling the CRISPR-Cas9 system to discover resistance mechanisms to CDK4/6 inhibition in bladder cancer along with next-generation sequencing (NGS) analysis. We will describe the approach for transcriptional activation in the bladder cancer cell line T24 and provide guidance on critical points during the experimental workflow.
Collapse
Affiliation(s)
- Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany.
- German Study Group of Bladder Cancer (DFBK e.V.), Munich, Germany.
| |
Collapse
|
244
|
Matía A, Lorenzo MM, Romero-Estremera YC, Sánchez-Puig JM, Zaballos A, Blasco R. Identification of β2 microglobulin, the product of B2M gene, as a Host Factor for Vaccinia Virus Infection by Genome-Wide CRISPR genetic screens. PLoS Pathog 2022; 18:e1010800. [PMID: 36574441 PMCID: PMC9829182 DOI: 10.1371/journal.ppat.1010800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/09/2023] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Genome-wide genetic screens are powerful tools to identify genes that act as host factors of viruses. We have applied this technique to analyze the infection of HeLa cells by Vaccinia virus, in an attempt to find genes necessary for infection. Infection of cell populations harboring single gene inactivations resulted in no surviving cells, suggesting that no single gene knock-out was able to provide complete resistance to Vaccinia virus and thus allow cells to survive infection. In the absence of an absolute infection blockage, we explored if some gene inactivations could provide partial protection leading to a reduced probability of infection. Multiple experiments using modified screening procedures involving replication restricted viruses led to the identification of multiple genes whose inactivation potentially increase resistance to infection and therefore cell survival. As expected, significant gene hits were related to proteins known to act in virus entry, such as ITGB1 and AXL as well as genes belonging to their downstream related pathways. Additionally, we consistently found β2-microglobulin, encoded by the B2M gene, among the screening top hits, a novel finding that was further explored. Inactivation of B2M resulted in 54% and 91% reduced VV infection efficiency in HeLa and HAP1 cell lines respectively. In the absence of B2M, while virus binding to the cells was unaffected, virus internalization and early gene expression were significantly diminished. These results point to β2-microglobulin as a relevant factor in the Vaccinia virus entry process.
Collapse
Affiliation(s)
- Alejandro Matía
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Maria M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Yolimar C. Romero-Estremera
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología-ISCIII, Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
245
|
Context-Dependent Function of Long Noncoding RNA PURPL in Transcriptome Regulation during p53 Activation. Mol Cell Biol 2022; 42:e0028922. [PMID: 36342127 PMCID: PMC9753727 DOI: 10.1128/mcb.00289-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.
Collapse
|
246
|
Keys HR, Knouse KA. Genome-scale CRISPR screening in a single mouse liver. CELL GENOMICS 2022; 2:100217. [PMID: 36643909 PMCID: PMC9835819 DOI: 10.1016/j.xgen.2022.100217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
A complete understanding of the genetic determinants underlying mammalian physiology and disease is limited by the capacity for high-throughput genetic dissection in the living organism. Genome-wide CRISPR screening is a powerful method for uncovering the genetic regulation of cellular processes, but the need to stably deliver single guide RNAs to millions of cells has largely restricted its implementation to ex vivo systems. There thus remains a need for accessible high-throughput functional genomics in vivo. Here, we establish genome-wide screening in the liver of a single mouse and use this approach to uncover regulation of hepatocyte fitness. We uncover pathways not identified in cell culture screens, underscoring the power of genetic dissection in the organism. The approach we developed is accessible, scalable, and adaptable to diverse phenotypes and applications. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling comprehensive investigation of physiology and disease.
Collapse
Affiliation(s)
- Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kristin A. Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
247
|
Kerschbamer E, Arnoldi M, Tripathi T, Pellegrini M, Maturi S, Erdin S, Salviato E, Di Leva F, Sebestyén E, Dassi E, Zarantonello G, Benelli M, Campos E, Basson M, Gusella J, Gustincich S, Piazza S, Demichelis F, Talkowski M, Ferrari F, Biagioli M. CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing. Nucleic Acids Res 2022; 50:12809-12828. [PMID: 36537238 PMCID: PMC9825192 DOI: 10.1093/nar/gkac1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.
Collapse
Affiliation(s)
- Emanuela Kerschbamer
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Michele Arnoldi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Samuele Maturi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisa Salviato
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Di Leva
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Endre Sebestyén
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, (CIBIO), University of Trento, Trento, Italy
| | - Giulia Zarantonello
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - Eric Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Silvano Piazza
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology (CIBIO) University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- CNR Institute of Molecular Genetics ‘Luigi Luca Cavalli-Sforza’, Pavia, Italy
| | - Marta Biagioli
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| |
Collapse
|
248
|
Ruffing AM, Davis RW, Lane TW. Advances in engineering algae for biofuel production. Curr Opin Biotechnol 2022; 78:102830. [PMID: 36332347 DOI: 10.1016/j.copbio.2022.102830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
While algae demonstrate potential as a sustainable fuel source, low productivities limit the economic realization of algal biofuels. High-throughput strain engineering, omics-informed genome-scale modeling, and microbiome engineering are key technologies for enabling algal biofuels. High-throughput strain engineering efforts generate improved traits, including high biomass productivity and lipid content, in diverse algal species. Genome-scale models, constructed with the aid of omics data, provide insight into metabolic limitations and guide rational algal strain engineering efforts. As outdoor cultivation systems introduce exogenous organisms, microbiome engineering seeks to eliminate harmful organisms and introduce beneficial species. Optimizing algal biomass production and lipid content using these technologies may overcome the productivity barrier for the commercialization of algal biofuels.
Collapse
Affiliation(s)
- Anne M Ruffing
- Sandia National Laboratories, Molecular and Microbiology, P.O. Box 5800, MS 1413, Albuquerque, NM 87185, USA.
| | - Ryan W Davis
- Sandia National Laboratories, Bioresource and Environmental Security, P.O. Box 969, MS 9292, Livermore, CA 94551, USA
| | - Todd W Lane
- Sandia National Laboratories, Bioresource and Environmental Security, P.O. Box 969, MS 9292, Livermore, CA 94551, USA
| |
Collapse
|
249
|
Kretzmer C, Narasimhan RL, Lal RD, Balassi V, Ravellette J, Kotekar Manjunath AK, Koshy JJ, Viano M, Torre S, Zanda VM, Kumravat M, Saldanha KMR, Chandranpillai H, Nihad I, Zhong F, Sun Y, Gustin J, Borgschulte T, Liu J, Razafsky D. De novo assembly and annotation of the CHOZN® GS -/- genome supports high-throughput genome-scale screening. Biotechnol Bioeng 2022; 119:3632-3646. [PMID: 36073082 PMCID: PMC9825924 DOI: 10.1002/bit.28226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/20/2022] [Accepted: 08/28/2022] [Indexed: 01/11/2023]
Abstract
Chinese hamster ovary (CHO) cells have been used as the industry standard for the production of therapeutic monoclonal antibodies for several decades. Despite significant improvements in commercial-scale production processes and media, the CHO cell has remained largely unchanged. Due to the cost and complexity of whole-genome sequencing and gene-editing it has been difficult to obtain the tools necessary to improve the CHO cell line. With the advent of next-generation sequencing and the discovery of the CRISPR/Cas9 system it has become more cost effective to sequence and manipulate the CHO genome. Here, we provide a comprehensive de novo assembly and annotation of the CHO-K1 based CHOZN® GS-/- genome. Using this platform, we designed, built, and confirmed the functionality of a whole genome CRISPR guide RNA library that will allow the bioprocessing community to design a more robust CHO cell line leading to the production of life saving medications in a more cost-effective manner.
Collapse
Affiliation(s)
- Corey Kretzmer
- Upstream Research and Development, MilliporeSigmaSt. LouisMissouriUSA
| | - Rajagopalan Lakshmi Narasimhan
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Rahul Deva Lal
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Vincent Balassi
- Upstream Research and Development, MilliporeSigmaSt. LouisMissouriUSA
| | - James Ravellette
- Upstream Research and Development, MilliporeSigmaSt. LouisMissouriUSA
| | - Ajaya Kumar Kotekar Manjunath
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Jesvin Joy Koshy
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Marta Viano
- Istituto di Ricerche Biomediche “A. Marxer” RBM S.p.A.IvreaItaly
| | - Serena Torre
- Istituto di Ricerche Biomediche “A. Marxer” RBM S.p.A.IvreaItaly
| | - Valeria M. Zanda
- Istituto di Ricerche Biomediche “A. Marxer” RBM S.p.A.IvreaItaly
| | - Mausam Kumravat
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Keith Metelo Raul Saldanha
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Harikrishnan Chandranpillai
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Ifra Nihad
- Bioinformatics, IT R&D Applications, Merck (Sigma‐Aldrich Chemicals Pvt. Ltd., A subsidiary of Merck KGaA, Darmstadt, Germany)BangaloreIndia
| | - Fei Zhong
- Life Science Bioinformatics, IT, MilliporeSigmaSt. LouisMissouriUSA
| | - Yi Sun
- Bioinformatics, IT R&D Applications, MilliporeSigmaSt. LouisMissouriUSA
| | - Jason Gustin
- Upstream Research and Development, MilliporeSigmaSt. LouisMissouriUSA
| | | | - Jiajian Liu
- Life Science Bioinformatics, IT, MilliporeSigmaSt. LouisMissouriUSA
| | - David Razafsky
- Upstream Research and Development, MilliporeSigmaSt. LouisMissouriUSA
| |
Collapse
|
250
|
Lacroix M, Beauchemin H, Möröy T. DDX3: a relevant therapeutic target for lymphoma? Expert Opin Ther Targets 2022; 26:1037-1040. [PMID: 36620925 DOI: 10.1080/14728222.2022.2166830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marion Lacroix
- Hematopoiesis & Cancer Research Unit, Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Hematopoiesis & Cancer Research Unit, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Tarik Möröy
- Hematopoiesis & Cancer Research Unit, Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|