201
|
Rajaei E, Jalali MT, Shahrabi S, Asnafi AA, Pezeshki SMS. HLAs in Autoimmune Diseases: Dependable Diagnostic Biomarkers? Curr Rheumatol Rev 2020; 15:269-276. [PMID: 30644346 DOI: 10.2174/1573397115666190115143226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/08/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The process of antigen presentation to immune cells is an undeniable contributor to the pathogenesis of autoimmune diseases. Different studies have indicated several factors that are related to autoimmunity. Human Leukocyte Antigens (HLAs) are among such factors, which have a key role in autoimmunity because of their involvement in antigen presentation process. METHODS Relevant English language literature was searched and retrieved from Google Scholar search engine and PubMed database (1996-2018). The following keywords were used: "Human leukocyte antigen", "Behcet's syndrome", "Rheumatoid arthritis", "Systemic lupus erythematosus", "Type 1 diabetes", "Celiac Disease" and "Autoimmunity". RESULTS There is a strong association between HLA alleles and autoimmune diseases. For instance, HLA-B alleles and Behcet's syndrome are strongly correlated, and systemic lupus erythematosus and Type 1 diabetes are related to HLA-DQA1 and HLA-DQB1, respectively. CONCLUSION Association between numerous HLA alleles and autoimmune diseases may justify and rationalize their use as biomarkers as well as possible diagnostic laboratory parameters.
Collapse
Affiliation(s)
- Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Hyperlipidemia Research Center, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Amin Asnafi
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
202
|
The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nat Immunol 2020; 21:455-463. [PMID: 32152506 PMCID: PMC7117798 DOI: 10.1038/s41590-020-0623-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The nature of autoantigens that trigger autoimmune diseases has been much discussed, but direct biochemical identification is lacking for most. Addressing this question demands unbiased examination of the self-peptides displayed by a defined autoimmune major histocompatibility complex class II (MHCII) molecule. Here we examined the immunopeptidome of the pancreatic islets in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes based on the I-Ag7 variant of MHCII. The relevant peptides that induced pathogenic CD4+ T cells at the initiation of diabetes derived from proinsulin. These peptides were also found in the MHCII peptidome of the pancreatic lymph nodes and spleen. The proinsulin-derived peptides followed a trajectory from their generation and exocytosis in β cells, to uptake and presentation in islets and peripheral sites. Such a pathway generated conventional epitopes but also resulted in the presentation of post-translationally modified peptides, including deamidated sequences. These analyses reveal the key features of a restricted component in the self-MHCII peptidome that caused autoreactivity.
Collapse
|
203
|
Liu B, Hood JD, Kolawole EM, Woodruff DM, Vignali DA, Bettini M, Evavold BD. A Hybrid Insulin Epitope Maintains High 2D Affinity for Diabetogenic T Cells in the Periphery. Diabetes 2020; 69:381-391. [PMID: 31806623 PMCID: PMC7034185 DOI: 10.2337/db19-0399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
β-Cell antigen recognition by autoreactive T cells is essential in type 1 diabetes (T1D) pathogenesis. Recently, insulin hybrid peptides (HIPs) were identified as strong agonists for CD4 diabetogenic T cells. Here, using BDC2.5 transgenic and NOD mice, we investigated T-cell recognition of the HIP2.5 epitope, which is a fusion of insulin C-peptide and chromogranin A (ChgA) fragments, and compared it with the WE14 and ChgA29 -42 epitopes. We measured in situ two-dimensional affinity on individual live T cells from thymus, spleen, pancreatic lymph nodes, and islets before and after diabetes. Although preselection BDC2.5 thymocytes possess higher affinity than splenic BDC2.5 T cells for all three epitopes, peripheral splenic T cells maintained high affinity only to the HIP2.5 epitope. In polyclonal NOD mice, a high frequency (∼40%) of HIP2.5-specific islet T cells were identified at both prediabetic and diabetic stages comprising two distinct high- and low-affinity populations that differed in affinity by 100-fold. This high frequency of high- and low-affinity HIP2.5 T cells in the islets potentially represents a major risk factor in diabetes pathogenesis.
Collapse
Affiliation(s)
- Baoyu Liu
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Jennifer D Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, GA
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - Dario A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Maria Bettini
- Department of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
204
|
Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci 2020; 21:E1598. [PMID: 32111075 PMCID: PMC7084272 DOI: 10.3390/ijms21051598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Lnköping university, SE 58185 Linköping, Sweden
| |
Collapse
|
205
|
Dedrick S, Sundaresh B, Huang Q, Brady C, Yoo T, Cronin C, Rudnicki C, Flood M, Momeni B, Ludvigsson J, Altindis E. The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:78. [PMID: 32174888 PMCID: PMC7057241 DOI: 10.3389/fendo.2020.00078] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 Diabetes (T1D) is regarded as an autoimmune disease characterized by insulin deficiency resulting from destruction of pancreatic β-cells. The incidence rates of T1D have increased worldwide. Over the past decades, progress has been made in understanding the complexity of the immune response and its role in T1D pathogenesis, however, the trigger of T1D autoimmunity remains unclear. The increasing incidence rates, immigrant studies, and twin studies suggest that environmental factors play an important role and the trigger cannot simply be explained by genetic predisposition. Several research initiatives have identified environmental factors that potentially contribute to the onset of T1D autoimmunity and the progression of disease in children/young adults. More recently, the interplay between gut microbiota and the immune system has been implicated as an important factor in T1D pathogenesis. Although results often vary between studies, broad compositional and diversity patterns have emerged from both longitudinal and cross-sectional human studies. T1D patients have a less diverse gut microbiota, an increased prevalence of Bacteriodetes taxa and an aberrant metabolomic profile compared to healthy controls. In this comprehensive review, we present the data obtained from both animal and human studies focusing on the large longitudinal human studies. These studies are particularly valuable in elucidating the environmental factors that lead to aberrant gut microbiota composition and potentially contribute to T1D. We also discuss how environmental factors, such as birth mode, diet, and antibiotic use modulate gut microbiota and how this potentially contributes to T1D. In the final section, we focus on existing recent literature on microbiota-produced metabolites, proteins, and gut virome function as potential protectants or triggers of T1D onset. Overall, current results indicate that higher levels of diversity along with the presence of beneficial microbes and the resulting microbial-produced metabolites can act as protectors against T1D onset. However, the specifics of the interplay between host and microbes are yet to be discovered.
Collapse
Affiliation(s)
- Sandra Dedrick
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Qian Huang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Claudia Brady
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tessa Yoo
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Catherine Cronin
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Caitlin Rudnicki
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Michael Flood
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Babak Momeni
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emrah Altindis
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
206
|
Matsumoto M, Tsuneyama K, Morimoto J, Hosomichi K, Matsumoto M, Nishijima H. Tissue-specific autoimmunity controlled by Aire in thymic and peripheral tolerance mechanisms. Int Immunol 2020; 32:117-131. [PMID: 31586207 PMCID: PMC7005526 DOI: 10.1093/intimm/dxz066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023] Open
Abstract
Tissue-specific autoimmune diseases are assumed to arise through malfunction of two checkpoints for immune tolerance: defective elimination of autoreactive T cells in the thymus and activation of these T cells by corresponding autoantigens in the periphery. However, evidence for this model and the outcome of such alterations in each or both of the tolerance mechanisms have not been sufficiently investigated. We studied these issues by expressing human AIRE (huAIRE) as a modifier of tolerance function in NOD mice wherein the defects of thymic and peripheral tolerance together cause type I diabetes (T1D). Additive huAIRE expression in the thymic stroma had no major impact on the production of diabetogenic T cells in the thymus. In contrast, huAIRE expression in peripheral antigen-presenting cells (APCs) rendered the mice resistant to T1D, while maintaining other tissue-specific autoimmune responses and antibody production against an exogenous protein antigen, because of the loss of Xcr1+ dendritic cells, an essential component for activating diabetogenic T cells in the periphery. These results contrast with our recent demonstration that huAIRE expression in both the thymic stroma and peripheral APCs resulted in the paradoxical development of muscle-specific autoimmunity. Our results reveal that tissue-specific autoimmunity is differentially controlled by a combination of thymic function and peripheral tolerance, which can be manipulated by expression of huAIRE/Aire in each or both of the tolerance mechanisms.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
207
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
208
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
209
|
Cabello-Kindelan C, Mackey S, Sands A, Rodriguez J, Vazquez C, Pugliese A, Bayer AL. Immunomodulation Followed by Antigen-Specific T reg Infusion Controls Islet Autoimmunity. Diabetes 2020; 69:215-227. [PMID: 31712320 PMCID: PMC6971488 DOI: 10.2337/db19-0061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Optimal immune-based therapies for type 1 diabetes (T1D) should restore self-tolerance without inducing chronic immunosuppression. CD4+Foxp3+ regulatory T cells (Tregs) are a key cell population capable of facilitating durable immune tolerance. However, clinical trials with expanded Tregs in T1D and solid-organ transplant recipients are limited by poor Treg engraftment without host manipulation. We showed that Treg engraftment and therapeutic benefit in nonautoimmune models required ablative host conditioning. Here, we evaluated Treg engraftment and therapeutic efficacy in the nonobese diabetic (NOD) mouse model of autoimmune diabetes using nonablative, combinatorial regimens involving the anti-CD3 (αCD3), cyclophosphamide (CyP), and IAC (IL-2/JES6-1) antibody complex. We demonstrate that αCD3 alone induced substantial T-cell depletion, impacting both conventional T cells (Tconv) and Tregs, subsequently followed by more rapid rebound of Tregs Despite robust depletion of host Tconv and host Tregs, donor Tregs failed to engraft even with interleukin-2 (IL-2) support. A single dose of CyP after αCD3 depleted rebounding host Tregs and resulted in a 43-fold increase in donor Treg engraftment, yet polyclonal donor Tregs failed to reverse diabetes. However, infusion of autoantigen-specific Tregs after αCD3 alone resulted in robust Treg engraftment within the islets and induced remission in all mice. This novel combinatorial therapy promotes engraftment of autoantigen-specific donor Tregs and controls islet autoimmunity without long-term immunosuppression.
Collapse
Affiliation(s)
| | - Shane Mackey
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alexander Sands
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Jennifer Rodriguez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Claudia Vazquez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
210
|
Xian Y, Xu H, Gao Y, Yan J, Lv J, Ren W, Huang Q, Jiang Z, Xu F, Yao B, Weng J. A pilot study of preproinsulin peptides reactivity in Chinese patients with type 1 diabetes. Diabetes Metab Res Rev 2020; 36:e3228. [PMID: 31655017 PMCID: PMC7027544 DOI: 10.1002/dmrr.3228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/28/2019] [Accepted: 10/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of our study is to investigate whether preproinsulin (PPI) could trigger a proinflammatory CD4+ T cell response in Chinese patients with type 1 diabetes (T1D). METHODS Peripheral blood mononuclear cells were stimulated by a pool of 13 PPI peptides. Additional five PPI peptides previously proved to be antigenic in other cohorts of patients with T1D were also used. PPI reactive T cell responses were measured by interferon (IFN)-γ ELISPOT assay. RESULTS Fifty-one Chinese patients with T1D were enrolled in this study and 72.34% of them were positive for at least one islet autoantibody. The stimulation index (SI) value of IFN-γ response to PPI peptide pool or peptides with dominant epitopes was below 3 in patients when SI≥3 was used as the positive cut-off value. Two peptides (B9-23 and C19-A3) restricted to DQ8 or DR4 molecule failed to induce positive IFN-γ response in patients with high-risk HLA-DQ8 or HLA-DR4/DR9 alleles. RNA-seq analysis of PPI specific CD4+ T cell lines further showed that most of the IFN-γ associated genes remained unchanged. CONCLUSIONS This is the first report of CD4+ T cell epitope mapping of PPI in Chinese T1D. The lack of positive IFN-γ response to PPI peptides indicates that PPI might not be the principal antigenic candidate for autoreactive CD4+ T cells in Chinese T1D. Therefore, the efficacy of PPI-based immunotherapies in attenuating proinflammatory CD4+ T cell response requires further investigation.
Collapse
Affiliation(s)
- Yingxin Xian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Haixia Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yifang Gao
- Organ Transplant Center, Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jing Lv
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wenqian Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Qianwen Huang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Ziyu Jiang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Fen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Bin Yao
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Endocrinology of the First Affiliated HospitalDivision of Life Sciences and Medicine of Science and Technology of ChinaHefeiChina
| |
Collapse
|
211
|
Turk Wensveen T, Fučkar Čupić D, Jurišić Eržen D, Polić B, Wensveen FM. Severe Lipoatrophy in a Patient With Type 2 Diabetes in Response to Human Insulin Analogs Glargine and Degludec: Possible Involvement of CD4 T Cell-Mediated Tissue Remodeling. Diabetes Care 2020; 43:494-496. [PMID: 31806651 DOI: 10.2337/dc19-1888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Tamara Turk Wensveen
- Department of Endocrinology, Diabetes, and Metabolic Diseases, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Dora Fučkar Čupić
- Department of Pathology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dubravka Jurišić Eržen
- Department of Endocrinology, Diabetes, and Metabolic Diseases, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
212
|
Vojdani A, Gushgari LR, Vojdani E. Interaction between food antigens and the immune system: Association with autoimmune disorders. Autoimmun Rev 2020; 19:102459. [PMID: 31917265 DOI: 10.1016/j.autrev.2020.102459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
It has been shown that environmental factors such as infections, chemicals, and diet play a major role in autoimmune diseases; however, relatively little attention has been given to food components as the most prevalent modifiers of these afflictions. This review summarizes the current body of knowledge related to different mechanisms and associations between food proteins/peptides and autoimmune disorders. The primary factor controlling food-related immune reactions is the oral tolerance mechanism. The failure of oral tolerance triggers immune reactivity against dietary antigens, which may initiate or exacerbate autoimmune disease when the food antigen shares homology with human tissue antigens. Because the conformational fit between food antigens and a host's self-determinants has been determined for only a few food proteins, we examined evidence related to the reaction of affinity-purified disease-specific antibody with different food antigens. We also studied the reaction of monoclonal or polyclonal tissue-specific antibodies with various food antigens and the reaction of food-specific antibodies with human tissue antigens. Examining the assembled information, we postulated that chemical modification of food proteins by different toxicants in food may result in immune reaction against modified food proteins that cross-react with tissue antigens, resulting in autoimmune reactivity. Because we are what our microbiome eats, food can change the gut commensals, and toxins can breach the gut barrier, penetrating into different organs where they can initiate autoimmune response. Conversely, there are also foods and supplements that help maintain oral tolerance and microbiome homeostasis. Understanding the potential link between specific food consumption and autoimmunity in humans may lay the foundation for further research about the proper diet in the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., 822 S. Robertson Blvd, Ste. 312, Los Angeles, CA 90035, USA; Department of Preventive Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lydia R Gushgari
- Cyrex Laboratories, LLC. 2602 South 24(th) St., Phoenix, AZ 85034, USA.
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA.
| |
Collapse
|
213
|
Warshauer JT, Bluestone JA, Anderson MS. New Frontiers in the Treatment of Type 1 Diabetes. Cell Metab 2020; 31:46-61. [PMID: 31839487 PMCID: PMC6986815 DOI: 10.1016/j.cmet.2019.11.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β cells that results in lifelong absolute insulin deficiency. For nearly a century, insulin replacement has been the only therapy for most people living with this disease. Recent advances in technology and our understanding of β cell development, glucose metabolism, and the underlying immune pathogenesis of the disease have led to innovative therapeutic and preventative approaches. A paradigm shift in immunotherapy development toward the targeting of islet-specific immune pathways involved in tolerance has driven the development of therapies that may allow for the prevention or reversal of this disease while avoiding toxicities associated with historical approaches that were broadly immunosuppressive. In this review, we discuss successes, failures, and emerging pharmacological therapies for type 1 diabetes that are changing how we approach this disease, from improving glycemic control to developing the "holy grail" of disease prevention.
Collapse
Affiliation(s)
- Jeremy T Warshauer
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Mark S Anderson
- Endocrine Division, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
214
|
Butalia S, Kaplan GG, Khokhar B, Haubrich S, Rabi DM. The Challenges of Identifying Environmental Determinants of Type 1 Diabetes: In Search of the Holy Grail. Diabetes Metab Syndr Obes 2020; 13:4885-4895. [PMID: 33328748 PMCID: PMC7734044 DOI: 10.2147/dmso.s275080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes is the result of autoimmune-mediated destruction and inflammation of the insulin-producing β-cells of the pancreas. The excess morbidity and mortality from its complications coupled with its increasing incidence emphasize the importance to better understand the etiology of this condition. It has a strong genetic component, but a genetic predisposition is not the sole contributor to disease development as only 30% to 50% of identical twins both develop the disease. In addition, there are multiple lines of evidence to support that environmental factors contribute to the pathogenesis of type 1 diabetes. Environmental risk factors that have been proposed include infections, dietary factors, air pollution, vaccines, location of residence, childhood obesity, family environment and stress. Researchers have conducted many observational studies to identify and characterize these potential environmental factors, but findings have been inconsistent or inconclusive. Many studies have had inherent methodological issues in recruitment, participation, defining cases and exposures, and/or data analysis which may limit the interpretability of findings. Identifying and addressing these limitations may allow for greatly needed advances in our understanding of type 1 diabetes. As such, the purpose of this article is to review and discuss the limitations of observational studies that aim to determine environmental risk factors for type 1 diabetes and propose recommendations to overcome them.
Collapse
Affiliation(s)
- Sonia Butalia
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Correspondence: Sonia ButaliaDivision of Endocrinology and Metabolism, Richmond Road Diagnostic and Treatment Centre, 1820 Richmond Road SW, Calgary, AlbertaT2T 5C7, CanadaTel +1 403-955-8327Fax +1 403-955-8249 Email
| | - Gilaad G Kaplan
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bushra Khokhar
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sydney Haubrich
- Ward of the 21st Century, University of Calgary, Calgary, Alberta, Canada
| | - Doreen M Rabi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
215
|
Sun L, Xi S, He G, Li Z, Gang X, Sun C, Guo W, Wang G. Two to Tango: Dialogue between Adaptive and Innate Immunity in Type 1 Diabetes. J Diabetes Res 2020; 2020:4106518. [PMID: 32802890 PMCID: PMC7415089 DOI: 10.1155/2020/4106518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a long-term and chronic autoimmune disorder, in which the immune system attacks the pancreatic β-cells. Both adaptive and innate immune systems are involved in T1DM development. Both B-cells and T-cells, including CD4 + and CD8 + T-cells, as well as other T-cell subsets, could affect onset of autoimmunity. Furthermore, cells involved in innate immunity, including the macrophages, dendritic cells, and natural killer (NK) cells, could also accelerate or decelerate T1DM development. In this review, the crosstalk and function of immune cells in the pathogenesis of T1DM, as well as the corresponding therapeutic interventions, are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Shugang Xi
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
216
|
Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:624590. [PMID: 33679609 PMCID: PMC7930070 DOI: 10.3389/fendo.2020.624590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their secretory function, β cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in β cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous β cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of β cell proteins. This article summarizes emerging knowledge about stress-induced changes in β cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and β cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Collapse
Affiliation(s)
- Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark J. Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
- *Correspondence: Eddie A. James,
| |
Collapse
|
217
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
218
|
Replacing murine insulin 1 with human insulin protects NOD mice from diabetes. PLoS One 2019; 14:e0225021. [PMID: 31821343 PMCID: PMC6903741 DOI: 10.1371/journal.pone.0225021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Type 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (Ins) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15–20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.
Collapse
|
219
|
Howlett DR, Clarke IJ, Newton RP, Hart JE. Epitope mapping of an uncertain endogenous antigen implies secretogranin II peptide splicing. F1000Res 2019; 8:1732. [PMID: 32399184 PMCID: PMC7194351 DOI: 10.12688/f1000research.20633.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The search for a tissue-mass reducing reproductive hormone involved a bioassay-guided physicochemical fractionation of sheep blood plasma. This brought forth a candidate protein whose apparent mass on gels and in mass spectrometry (MS) was 7-8 kDa, implying a polypeptide of ~70 residues. Four purification runs gave Edman N-terminal sequences relating to 1MKPLTGKVKEFNNI 14. This is bioinformatically obscure and has been resistant to molecular biological investigation. The sequence was synthesized as the peptide EPL001, against which was raised a goat polyclonal antiserum, G530. Used in an antigen capture campaign, G530 pointed to the existence of a novel derivative of secretogranin II (SgII), the neuroendocrine secretory vesicle helper protein and prohormone. The proposed SgII derivative was dubbed SgII-70, yet the sequence commonality between SgII and EPL001 is essentially NNI. Methods: Immunohistochemical (IHC) labelling with G530 is reported within rat, mouse and human cerebrovasculature and in glandular elements of the mouse intestine. Epitope mapping involved IHC peptide preabsorption, allied to deductive bioinformatics and molecular modelling in silico. Results: G530 is deemed monoepitopic in regard to both its synthetic antigen (EPL001) and its putative endogenous antigen (SgII related). The epitope within EPL001 of the anti-EPL001 antibody is inferred to be the contiguous C-terminal 9KEFNNI 14. This is so because the G530 blockade data are consistent with the epitope in the mammalian endogenous antigen being part contiguous, part non-contiguous KE·F·NNI, ex hypothesi. The observed immunostaining is deduced to be due to pre-SgII-70, which has a non-C-terminal NNI, and SgII-70, which has an N-terminal MLKTGEKPV/N and a C-terminal NNI (these two motifs being in the reverse order in the SgII parent protein). Conclusion: The present data are consistent with the hypothesis that the anti-EPL001 antibody binds to an SgII-related epitope. SgII is apparently subject to peptide splicing, as has been reported for the related chromogranin A.
Collapse
Affiliation(s)
- David R. Howlett
- Wolfson Centre for Age Related Disease, Kings College London, London, SE1 1UL, UK,
| | - Iain J. Clarke
- School of Agriculture and Veterinary Science, Melbourne University, Parkville, Victoria, VIC 3010, Australia
| | - Russell P. Newton
- Biochemistry Group, Institute of Life Sciences, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - John E. Hart
- Endocrine Pharmaceuticals Ltd, Tadley, Hampshire, RG26 3TA, UK
| |
Collapse
|
220
|
Paes W, Leonov G, Partridge T, Chikata T, Murakoshi H, Frangou A, Brackenridge S, Nicastri A, Smith AG, Learn GH, Li Y, Parker R, Oka S, Pellegrino P, Williams I, Haynes BF, McMichael AJ, Shaw GM, Hahn BH, Takiguchi M, Ternette N, Borrow P. Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8 + T cells in HIV-1 infection. Proc Natl Acad Sci U S A 2019; 116:24748-24759. [PMID: 31748275 PMCID: PMC6900506 DOI: 10.1073/pnas.1911622116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - German Leonov
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Takayuki Chikata
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna Frangou
- Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Andrew G Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert Parker
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Shinichi Oka
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
- AIDS Clinical Centre, National Centre for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| |
Collapse
|
221
|
Huan X, Zhuo Z, Xiao Z, Ren EC. Crystal structure of suboptimal viral fragments of Epstein Barr Virus Rta peptide-HLA complex that stimulate CD8 T cell response. Sci Rep 2019; 9:16660. [PMID: 31723204 PMCID: PMC6853878 DOI: 10.1038/s41598-019-53201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Peptides presented by Human leukocyte antigen (HLA) class-I molecules are generally 8-10 amino acids in length. However, the predominant pool of peptide fragments generated by proteasomes is less than 8 amino acids in length. Using the Epstein - Barr virus (EBV) Rta-epitope (ATIGTAMYK, residues 134-142) restricted by HLA-A*11:01 which generates a strong immunodominant response, we investigated the minimum length of a viral peptide that can constitute a viral epitope recognition by CD8 T cells. The results showed that Peripheral blood mononuclear cells (PBMCs) from healthy donors can be stimulated by a viral peptide fragment as short as 4-mer (AMYK), together with a 5-mer (ATIGT) to recapitulate the full length EBV Rta epitope. This was confirmed by generating crystals of the tetra-complex (2 peptides, HLA and β2-microglobulin). The solved crystal structure of HLA-A*11:01 in complex with these two short peptides revealed that they can bind in the same orientation similar to parental peptide (9-mer) and the free ends of two short peptides acquires a bulged conformation that is directed towards the T cell receptor. Our data shows that suboptimal length of 4-mer and 5-mer peptides can complement each other to form a stable peptide-MHC (pMHC) complex.
Collapse
Affiliation(s)
- Xuelu Huan
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziyi Zhuo
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ziwei Xiao
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 119260, Singapore.
| |
Collapse
|
222
|
Itoh A, Ortiz L, Kachapati K, Wu Y, Adams D, Bednar K, Mukherjee S, Chougnet C, Mittler RS, Chen YG, Dolan L, Ridgway WM. Soluble CD137 Ameliorates Acute Type 1 Diabetes by Inducing T Cell Anergy. Front Immunol 2019; 10:2566. [PMID: 31787971 PMCID: PMC6853870 DOI: 10.3389/fimmu.2019.02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
We show here that soluble CD137 (sCD137), the alternately spliced gene product of Tnfsfr9, effectively treats acute type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. sCD137 significantly delayed development of end-stage disease, preserved insulin+ islet beta cells, and prevented progression to end-stage T1D in some mice. We demonstrate that sCD137 induces CD4+ T cell anergy, suppressing antigen-specific T cell proliferation and IL-2/IFN-γ secretion. Exogenous IL-2 reversed the sCD137 anergy effect. sCD137 greatly reduces inflammatory cytokine production by CD8 effector memory T cells, critical mediators of beta cell damage. We demonstrate that human T1D patients have decreased serum sCD137 compared to age-matched controls (as do NOD mice compared to NOD congenic mice expressing a protective Tnfsfr9 allele), that human sCD137 is secreted by regulatory T cells (Tregs; as in mice), and that human sCD137 induces T cell suppression in human T cells. These findings provide a rationale for further investigation of sCD137 as a treatment for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lorenzo Ortiz
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kyle Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Claire Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert S Mittler
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Atlanta, GA, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Laurence Dolan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
223
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
224
|
Holohan DR, Van Gool F, Bluestone JA. Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS One 2019; 14:e0217728. [PMID: 31647813 PMCID: PMC6812862 DOI: 10.1371/journal.pone.0217728] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive population that are identified based on the stable expression of the fate-determining transcription factor forkhead box P3 (Foxp3). Tregs can be divided into distinct subsets based on whether they developed in the thymus (tTregs) or in the periphery (pTregs). Whether there are unique functional roles that distinguish pTregs and tTregs remains largely unclear. To elucidate these functions, efforts have been made to specifically identify and modify individual Treg subsets. Deletion of the conserved non-coding sequence (CNS)1 in the Foxp3 locus leads to selective impairment of pTreg generation without disrupting tTreg generation in the C57BL/6J background. Using CRISPR-Cas9 genome editing technology, we removed the Foxp3 CNS1 region in the non-obese diabetic (NOD) mouse model of spontaneous type 1 diabetes mellitus (T1D) to determine if pTregs contribute to autoimmune regulation. Deletion of CNS1 impaired in vitro induction of Foxp3 in naïve NOD CD4+ T cells, but it did not alter Tregs in most lymphoid and non-lymphoid tissues analyzed except for the large intestine lamina propria, where a small but significant decrease in RORγt+ Tregs and corresponding increase in Helios+ Tregs was observed in NOD CNS1-/- mice. CNS1 deletion also did not alter the development of T1D or glucose tolerance despite increased pancreatic insulitis in pre-diabetic female NOD CNS1-/- mice. Furthermore, the proportions of autoreactive Tregs and conventional T cells (Tconvs) within pancreatic islets were unchanged. These results suggest that pTregs dependent on the Foxp3 CNS1 region are not the dominant regulatory population controlling T1D in the NOD mouse model.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Daniel R. Holohan
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jeffrey A. Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
225
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
226
|
Kallionpää H, Somani J, Tuomela S, Ullah U, de Albuquerque R, Lönnberg T, Komsi E, Siljander H, Honkanen J, Härkönen T, Peet A, Tillmann V, Chandra V, Anagandula MK, Frisk G, Otonkoski T, Rasool O, Lund R, Lähdesmäki H, Knip M, Lahesmaa R. Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes 2019; 68:2024-2034. [PMID: 31311800 DOI: 10.2337/db19-0287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022]
Abstract
The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive β-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed β-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and β-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juhi Somani
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Soile Tuomela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ubaid Ullah
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael de Albuquerque
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elina Komsi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jarno Honkanen
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu, Tartu University Hospital, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu, Tartu University Hospital, Tartu, Estonia
| | - Vikash Chandra
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Timo Otonkoski
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
227
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
228
|
Baker RL, Rihanek M, Hohenstein AC, Nakayama M, Michels A, Gottlieb PA, Haskins K, Delong T. Hybrid Insulin Peptides Are Autoantigens in Type 1 Diabetes. Diabetes 2019; 68:1830-1840. [PMID: 31175101 PMCID: PMC6702640 DOI: 10.2337/db19-0128] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
We recently established that hybrid insulin peptides (HIPs) are present in human islets and that T cells reactive to HIPs are found in the residual islets of organ donors with type 1 diabetes (T1D). Here, we investigate whether HIP-reactive T cells are indicative of ongoing autoimmunity in patients with T1D. We used interferon-γ enzyme-linked immune absorbent spot analyses on peripheral blood mononuclear cells (PBMCs) to determine whether patients with new-onset T1D or control subjects displayed T-cell reactivity to a panel of 16 HIPs. We observed that nearly one-half of the patients responded to one or more HIPs. Responses to four HIPs were significantly elevated in patients with T1D but not in control subjects. To characterize the T cells reactive to HIPs, we used a carboxyfluorescein succinimidyl ester-based assay to clone T cells from PBMCs. We isolated six nonredundant, antigen-specific T-cell clones, most of which reacting to their target HIPs in the low nanomolar range. One T-cell clone was isolated from the same patient on two different blood draws, indicating persistence of this T-cell clone in the peripheral blood. This work suggests that HIPs are important target antigens in human subjects with T1D and may play a critical role in disease.
Collapse
Affiliation(s)
- Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Anita C Hohenstein
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| |
Collapse
|
229
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
230
|
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome. Mol Immunol 2019; 113:93-102. [DOI: 10.1016/j.molimm.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
|
231
|
Ternette N, Purcell AW. Immunopeptidomics Special Issue. Proteomics 2019; 18:e1800145. [PMID: 29949244 DOI: 10.1002/pmic.201800145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, OX3, 7FZ, UK
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
232
|
Tashiro R, Niizuma K, Khor SS, Tokunaga K, Fujimura M, Sakata H, Endo H, Inoko H, Ogasawara K, Tominaga T. Identification of HLA-DRB1*04:10 allele as risk allele for Japanese moyamoya disease and its association with autoimmune thyroid disease: A case-control study. PLoS One 2019; 14:e0220858. [PMID: 31412073 PMCID: PMC6693760 DOI: 10.1371/journal.pone.0220858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/24/2019] [Indexed: 11/28/2022] Open
Abstract
Background and purpose Moyamoya disease (MMD) is a progressive cerebrovascular disease with unknown etiology. Growing evidence suggest its involvement of autoimmune and genetic mechanisms in the pathogenesis of MMD. This study aims to clarify the association between HLA allele and MMD. Methods Case-control study: the DNA of 136 MMD patients in Japan was extracted and the genotype of human leukocyte antigen (HLA) from this DNA was determined by super-high-resolution single-molecule sequence-based typing using next-generation sequencing. Next, the frequency of each HLA allele (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1) was compared with those in the Japanese control database. In addition, haplotype estimation was performed using the expectation maximization algorithm. Results The frequencies of the HLA-DRB1*04:10 allele (4.77% vs. 1.47% in the control group; P = 1.7 × 10−3; odds ratio [OR] = 3.35) and of the HLA-DRB1*04:10–HLA-DQB1*04:02 haplotype (haplotype frequency 4.41% vs. 1.35% in the control group; P = 2.0 × 10−3; OR = 3.37) significantly increased. The frequency of thyroid diseases, such as Graves’ disease and Hashimoto thyroiditis, increased in HLA-DRB1*04:10-positive MMD patients compared with that in HLA-DRB1*04:10-negative MMD patients. Conclusions HLA-DRB1*04:10 is a risk allele and HLA-DRB1*04:10–HLA-DQB1*04:02 a risk haplotype for MMD. In addition, HLA-DRB1*04:10 is associated with thyroid disease in MMD patients.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Immunobiology, Tohoku University Institute of Development, Aging and Cancer, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Seik-Soon Khor
- Department of Human Genetics, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Hiroyuki Sakata
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Koetsu Ogasawara
- Department of Immunobiology, Tohoku University Institute of Development, Aging and Cancer, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
233
|
Shao W, Pedrioli PGA, Wolski W, Scurtescu C, Schmid E, Vizcaíno JA, Courcelles M, Schuster H, Kowalewski D, Marino F, Arlehamn CSL, Vaughan K, Peters B, Sette A, Ottenhoff THM, Meijgaarden KE, Nieuwenhuizen N, Kaufmann SHE, Schlapbach R, Castle JC, Nesvizhskii AI, Nielsen M, Deutsch EW, Campbell DS, Moritz RL, Zubarev RA, Ytterberg AJ, Purcell AW, Marcilla M, Paradela A, Wang Q, Costello CE, Ternette N, van Veelen PA, van Els CACM, Heck AJR, de Souza GA, Sollid LM, Admon A, Stevanovic S, Rammensee HG, Thibault P, Perreault C, Bassani-Sternberg M, Aebersold R, Caron E. The SysteMHC Atlas project. Nucleic Acids Res 2019; 46:D1237-D1247. [PMID: 28985418 PMCID: PMC5753376 DOI: 10.1093/nar/gkx664] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.
Collapse
Affiliation(s)
- Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | | | - Emanuel Schmid
- Scientific IT Services (SIS), ETH Zurich, Zurich 8093, Switzerland
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Heiko Schuster
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Fabio Marino
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | | | - Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Krista E Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Natalie Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - John C Castle
- Vaccine Research and Translational Medicine, Agenus Switzerland Inc., 4157 Basel, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, 1650, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anders Jimmy Ytterberg
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Miguel Marcilla
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Alberto Paradela
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Qi Wang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | - Gustavo A de Souza
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, 59056-450, Natal-RN, Brazil
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway
| | - Arie Admon
- Department of Biology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland.,Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | - Etienne Caron
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
234
|
Unanue ER, Wan X. The Immunoreactive Platform of the Pancreatic Islets Influences the Development of Autoreactivity. Diabetes 2019; 68:1544-1551. [PMID: 31331989 PMCID: PMC6692819 DOI: 10.2337/dbi18-0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023]
Abstract
Tissue homeostasis is maintained through a finely tuned balance between the immune system and the organ-resident cells. Disruption of this process not only results in organ dysfunction but also may trigger detrimental autoimmune responses. The islet of Langerhans consists of the insulin-producing β-cells essential for proper control of body metabolism, but less appreciated is that these cells naturally interact with the immune system, forming a platform by which the β-cell products are sensed, processed, and responded to by the local immune cells, particularly the islet-resident macrophages. Although its physiological outcomes are not completely understood, this immunoreactive platform is crucial for precipitating islet autoreactivity in individuals carrying genetic risks, leading to the development of type 1 diabetes. In this Perspective, we summarize recent studies that examine the cross talk between the β-cells and various immune components, with a primary focus on discussing how antigenic information generated during normal β-cell catabolism can be delivered to the resident macrophage and further recognized by the adaptive CD4 T-cell system, a critical step to initiate autoimmune diabetes. The core nature of the islet immune platform can be extrapolated to other endocrine tissues and may represent a common mechanism underlying the development of autoimmune syndromes influencing multiple endocrine organs.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
235
|
Baker RL, Jamison BL, Haskins K. Hybrid insulin peptides are neo-epitopes for CD4 T cells in autoimmune diabetes. Curr Opin Endocrinol Diabetes Obes 2019; 26:195-200. [PMID: 31166225 PMCID: PMC6830731 DOI: 10.1097/med.0000000000000490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The current review covers recent advances in our knowledge of the newest autoantigen neo-epitopes in type 1 diabetes (T1D): hybrid insulin peptides or HIPs. These ligands for autoreactive T cells are formed by peptide fusion, a novel posttranslational modification process that we first reported in 2016. RECENT FINDINGS Two major HIPs in the nonobese diabetic mouse model, ligands for diabetogenic CD4 T-cell clones, have been incorporated into tetramers and used to track HIP-reactive T cells during progression of disease. HIPs have also been used in strategies for induction of antigen-specific tolerance and show promise for delaying or reversing disease in the nonobese diabetic mouse. Importantly, CD4 T cells reactive to various HIPs have been detected in the islets and peripheral blood mononuclear cell of T1D patients and newly developed human T-cell clones are being employed to gather more data on the phenotype and function of HIP-reactive T cells in patients. SUMMARY These new hybrid insulin peptide epitopes may provide the basis for establishing autoreactive T cells as biomarkers of disease and as potential tolerogens for treatment of T1D.
Collapse
|
236
|
Abstract
PURPOSE OF REVIEW Theories about the pathogenesis of type 1 diabetes (T1D) refer to the potential of primary islet inflammatory signaling as a trigger for the loss of self-tolerance leading to disease onset. Emerging evidence suggests that extracellular vesicles (EV) may represent the missing link between inflammation and autoimmunity. Here, we review the evidence for a role of EV in the pathogenesis of T1D, as well as discuss their potential value in the clinical sphere, as biomarkers and therapeutic agents. RECENT FINDINGS EV derived from β cells are enriched in diabetogenic autoantigens and miRNAs that are selectively sorted and packaged. These EV play a pivotal role in antigen presentation and cell to cell communication leading to activation of autoimmune responses. Furthermore, recent evidence suggests the potential of EV as novel tools in clinical diagnostics and therapeutic interventions. In-depth analysis of EV cargo using modern multi-parametric technologies may be useful in enhancing our understanding of EV-mediated immune mechanisms and in identifying robust biomarkers and therapeutic strategies for T1D.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
237
|
Wilson DS, Damo M, Hirosue S, Raczy MM, Brünggel K, Diaceri G, Quaglia-Thermes X, Hubbell JA. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat Biomed Eng 2019; 3:817-829. [DOI: 10.1038/s41551-019-0424-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
|
238
|
Leon MA, Firdessa-Fite R, Ruffalo JK, Pickens CJ, Sestak JO, Creusot RJ, Berkland C. Soluble Antigen Arrays Displaying Mimotopes Direct the Response of Diabetogenic T Cells. ACS Chem Biol 2019; 14:1436-1448. [PMID: 31260253 DOI: 10.1021/acschembio.9b00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder which develops when insulin-producing, pancreatic beta cells are destroyed by an aberrant immune response. Current therapies for T1D either treat symptoms or cause global immunosuppression, which leave patients at risk of developing long-term complications or vulnerable to foreign pathogens. Antigen-specific immunotherapies have emerged as a selective approach for autoimmune diseases by inducing tolerance while mitigating global immunosuppression. We previously reported SAgAs with multiple copies of a multiple sclerosis (MS) autoantigen grafted onto hyaluronic acid (HA) as an efficacious therapy in experimental autoimmune encephalomyelitis. While the immune response of MS is distinct from that of T1D, the mechanism of SAgAs was hypothesized to be similar and via induction of immune tolerance to diabetes antigens. We synthesized SAgAs composed of HA polymer backbone conjugated with multiple copies of the T1D autoantigen mimotope p79 using aminooxy chemistry (SAgAp79) or using copper-catalyzed alkyne-azide cycloaddition (cSAgAp79) chemistry. SAgAs constructed using the hydrolyzable aminooxy linkage, thus capable of releasing p79, exhibited physicochemical properties similar to the triazole linkage. Both SAgAp79 versions showed high specificity and efficacy in stimulating epitope-specific T cells. SAgAs can be taken up by most immune cell populations but do not induce their maturation, and conventional dendritic cells are responsible for the brunt of antigen presentation within splenocytes. cSAgAp79 was more stimulatory than SAgAp79 both in vitro and in vivo, an effect that was ascribed to the peptide modification rather than the type of linkage. In summary, we provide here the first proof-of-principle that SAgA therapy could also be applicable to T1D.
Collapse
Affiliation(s)
- Martin A. Leon
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Rebuma Firdessa-Fite
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, 650 West 168th Street, New York, New York 10032, United States
| | - Justin K. Ruffalo
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Chad J. Pickens
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Joshua O. Sestak
- Orion BioScience Inc., 986099 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Remi J. Creusot
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, 650 West 168th Street, New York, New York 10032, United States
| | - Cory Berkland
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
- Bioengineering Graduate Program, University of Kansas, 1520 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
239
|
Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides. J Autoimmun 2019; 105:102304. [PMID: 31327552 DOI: 10.1016/j.jaut.2019.102304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
It is still an enigma why T cell autoreactivity in type 1 diabetes targets few beta cell antigens only. Among these, one primary autoantigen is pro(insulin). Autoimmune T cells preferentially recognise three epitopes on the proinsulin molecule, of which the peptide region B:11-23 is the dominant one. Interestingly, the three regions superimpose with binding sites of the chaperone hsp70, the region B:11-23 being the strongest binding one. Absence of an intact core region B:15-17 prevents autoimmune diabetes in NOD as well as binding of hsp70. A role of hsp70 in selecting autoimmune epitopes is supported by the ability of this and other chaperones to deliver bound peptides to MHC class I and II molecules for efficient antigen presentation. Binding of hsp70 to receptors on antigen presenting cells such as TLR4 results in costimulatory signals for T cell activation. Strongest effects are seen for the mixture of hsp70 with the peptide B:11-23. Thus, hsp70 may assist in proinsulin epitope selection and efficient presentation to autoreactive T cells. The concept of chaperone guided immune reactivity may also apply to other autoimmune diseases.
Collapse
|
240
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
241
|
Kaestner KH, Powers AC, Naji A, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes 2019; 68:1394-1402. [PMID: 31127054 PMCID: PMC6609987 DOI: 10.2337/db19-0058] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of β-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of β-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of β-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
242
|
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11:40. [PMID: 31221199 PMCID: PMC6587285 DOI: 10.1186/s13073-019-0653-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of antigens that are recognized by self-reactive T cells is essential for immune-mediated tumor rejection by immune checkpoint blockade (ICB) therapy. Growing evidence suggests that mutation-associated neoantigens drive ICB responses in tumors with high mutational burden. In most patients, only a few of the mutations in the cancer exome that are predicted to be immunogenic are recognized by T cells. One factor that limits this recognition is the level of expression of the mutated gene product in cancer cells. Substantial preclinical data show that radiation can convert the irradiated tumor into a site for priming of tumor-specific T cells, that is, an in situ vaccine, and can induce responses in otherwise ICB-resistant tumors. Critical for radiation-elicited T-cell activation is the induction of viral mimicry, which is mediated by the accumulation of cytosolic DNA in the irradiated cells, with consequent activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon (IFN) genes (STING) pathway and downstream production of type I IFN and other pro-inflammatory cytokines. Recent data suggest that radiation can also enhance cancer cell antigenicity by upregulating the expression of a large number of genes that are involved in the response to DNA damage and cellular stress, thus potentially exposing immunogenic mutations to the immune system. Here, we discuss how the principles of antigen presentation favor the presentation of peptides that are derived from newly synthesized proteins in irradiated cells. These concepts support a model that incorporates the presence of immunogenic mutations in genes that are upregulated by radiation to predict which patients might benefit from treatment with combinations of radiotherapy and ICB.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
243
|
Rational Design of Hybrid Peptides: A Novel Drug Design Approach. Curr Med Sci 2019; 39:349-355. [PMID: 31209802 DOI: 10.1007/s11596-019-2042-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Peptides play crucial roles in various physiological and pathological processes. Consequently, the investigation of peptide-based drugs is a highlight in the research and development of new drugs. However, natural peptides are not always ideal choices for clinical application due to their limited number and sometimes cytotoxicity to normal cells. Aiming to gain stronger or specific or novel biological effects and overcome the disadvantages of natural peptides, artificial hybrid peptides have been designed by combining the sequence of two or more different peptides with varied biological functions. Compared to natural peptides, hybrid peptides have shown better therapeutic potentials against bacteria, tumors, and metabolic diseases. In this review, design strategies, structure features and recent development of hybrid peptides are summarized; future directions for the research and development of hybrid peptide drugs are also discussed.
Collapse
|
244
|
Abstract
Mounting evidence implicates hybrid insulin peptides (HIPs) as important autoantigens in the development of type 1 diabetes (T1D). These fusion peptides formed between insulin and other pancreatic beta cell-derived peptides contain non-genomically encoded amino acid sequences, making them plausible targets for autoreactive T cells in T1D. HIPs are detectable by mass spectrometry in human and murine islets and are targeted by diabetes-inducing T cells in non-obese diabetic mice as well as by T cells isolated from the residual pancreatic islets of human organ donors with T1D. The discovery of HIPs comes with numerous new challenges, as well as opportunities to study the pathogenesis of T1D. Here we review the original discovery of HIPs and describe recent studies investigating the role of HIP-reactive T cells in the development of diabetes. We also discuss potential mechanisms that may be responsible for the generation of HIPs in beta cells and describe challenges that need to be addressed in the field of mass spectrometry to enable the discovery of new HIPs. The identification of these potentially disease-driving antigens in T1D is of key interest to the field as it may provide new tools to predict, prevent and potentially reverse the disease.
Collapse
Affiliation(s)
- T A Wiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - T Delong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
245
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
246
|
Jin X, Zhang C, Gong L, Li H, Wang Y, Li Q, Li H. Altered expression of CD39 on memory regulatory T cells in type 1 diabetes patients. J Diabetes 2019; 11:440-448. [PMID: 30318734 DOI: 10.1111/1753-0407.12870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease resulting from an attack by autoreactive T lymphocytes against pancreatic islet β- cells. In recent studies, regulatory T cells (Tregs) have been implicated in the process of T1D. Furthermore, cluster of differentiation 39 (CD39), which is involved in the suppression of inflammation, has been shown to be expressed on Tregs. However, the pathological importance of CD39 to the memory Treg population remains unclear. METHODS This study investigated Treg subsets, focusing on resting, effector, and memory Tregs, and determined CD39 expression on Tregs. In addition, changes in Treg subsets and Treg-associated cytokine secretion after CD3/CD28 stimulation of peripheral blood mononuclear cells were evaluated in diabetic patients and healthy controls. The suppressive function of Tregs was measured using the mixed lymphocyte reaction (MLR) test. RESULTS There was a higher percentage of memory Tregs in T1D patients than healthy controls. However, Tregs in T1D patients showed impaired suppression, with low forkhead box P3 (Foxp3) expression and low serum interleukin (IL)-10 levels. Furthermore, CD39 expression on Tregs, and on memory Tregs in particular, was lower in T1D patients than healthy controls. After stimulation, the percentage of resting Tregs was decreased and that of effector/memory Tregs was increased in both healthy controls and T1D patients, but CD39 expression on effector/memory Tregs was still lower and there was no increase in IL-10 secretion in T1D patients. CONCLUSIONS The defective suppressive function of Tregs in T1D patients is due to lower expression of CD39 on memory Tregs.
Collapse
MESH Headings
- Adult
- Apyrase/metabolism
- Biomarkers/analysis
- Blood Glucose/analysis
- Case-Control Studies
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Follow-Up Studies
- Forkhead Transcription Factors/metabolism
- Glycated Hemoglobin/analysis
- Humans
- Immunologic Memory/immunology
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Male
- Middle Aged
- Prognosis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenghui Zhang
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Lina Gong
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Li
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Qin Li
- Cellular Biology Laboratory, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
247
|
Gershteyn IM, Ferreira LMR. Immunodietica: A data-driven approach to investigate interactions between diet and autoimmune disorders. J Transl Autoimmun 2019; 1:100003. [PMID: 32743493 PMCID: PMC7388395 DOI: 10.1016/j.jtauto.2019.100003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Autoimmunity is on the rise around the globe. Diet has been proposed as a risk factor for autoimmunity and shown to modulate the severity of several autoimmune disorders. Yet, the interaction between diet and autoimmunity in humans remains largely unstudied. Here, we systematically interrogated commonly consumed animals and plants for peptide epitopes previously implicated in human autoimmune disease. A total of fourteen species investigated could be divided into three broad categories regarding their content in human autoimmune epitopes, which we represented using a new metric, the Gershteyn-Ferreira index (GF index). Strikingly, pig contains a disproportionately high number of unique autoimmune epitopes compared to all other species analyzed. This work uncovers a potential new link between pork consumption and autoimmunity in humans and lays the foundation for future studies on the impact of diet on the pathogenesis and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Iosif M Gershteyn
- Ajax Biomedical Foundation, Newton, MA, United States.,ImmuVia LLC, Waltham, MA, United States
| | - Leonardo M R Ferreira
- Ajax Biomedical Foundation, Newton, MA, United States.,Department of Surgery, Transplantation Research Laboratory, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, Sean N. Parker Autoimmunity Research Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
248
|
Jamison BL, Neef T, Goodspeed A, Bradley B, Baker RL, Miller SD, Haskins K. Nanoparticles Containing an Insulin-ChgA Hybrid Peptide Protect from Transfer of Autoimmune Diabetes by Shifting the Balance between Effector T Cells and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:48-57. [PMID: 31109955 DOI: 10.4049/jimmunol.1900127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
Abstract
CD4 T cells play a critical role in promoting the development of autoimmunity in type 1 diabetes. The diabetogenic CD4 T cell clone BDC-2.5, originally isolated from a NOD mouse, has been widely used to study the contribution of autoreactive CD4 T cells and relevant Ags to autoimmune diabetes. Recent work from our laboratory has shown that the Ag for BDC-2.5 T cells is a hybrid insulin peptide (2.5HIP) consisting of an insulin C-peptide fragment fused to a peptide from chromogranin A (ChgA) and that endogenous 2.5HIP-reactive T cells are major contributors to autoimmune pathology in NOD mice. The objective of this study was to determine if poly(lactide-co-glycolide) (PLG) nanoparticles (NPs) loaded with the 2.5HIP Ag (2.5HIP-coupled PLG NPs) can tolerize BDC-2.5 T cells. Infusion of 2.5HIP-coupled PLG NPs was found to prevent diabetes in an adoptive transfer model by impairing the ability of BDC-2.5 T cells to produce proinflammatory cytokines through induction of anergy, leading to an increase in the ratio of Foxp3+ regulatory T cells to IFN-γ+ effector T cells. To our knowledge, this work is the first to use a hybrid insulin peptide, or any neoepitope, to re-educate diabetogenic T cells and may have significant implications for the development of an Ag-specific therapy for type 1 diabetes patients.
Collapse
Affiliation(s)
- Braxton L Jamison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tobias Neef
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045; and.,University of Colorado Comprehensive Cancer Center, University of Colorado School of Medicine, Aurora, CO 80045
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
249
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
250
|
Vaitaitis GM, Rihanek M, Alkanani AK, Waid DM, Gottlieb PA, Wagner DH. Biomarker discovery in pre-Type 1 Diabetes; Th40 cells as a predictive risk factor. J Clin Endocrinol Metab 2019; 104:4127-4142. [PMID: 31063181 PMCID: PMC6685715 DOI: 10.1210/jc.2019-00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/01/2019] [Indexed: 01/31/2023]
Abstract
CONTEXT The incidence of Type 1 Diabetes (T1D) is increasing worldwide. The quest to understand T1D etiology as well as how to predict diabetes is ongoing and, in many ways, those goals intertwine. While genetic components associate with T1D, not all T1D individuals have those components and not all subjects with those components develop disease. OBJECTIVE More robust methods for prediction of T1D are needed. Can high CD4+CD40+ T cell (Th40) levels be used as a biomarker in addition to other markers? METHODS Th40 levels were assessed along with other parameters in blood collected from prediabetic TrialNet subjects. RESULTS Pre-diabetic subjects, stratified according to their Th40 cell levels, demonstrate patterns that parallel those seen between control and T1D subjects. Cytokine patterns are significantly different between Th40-high and -low subjects and a CD4/CD8 double-positive population is more represented in Th40-high groups. Subjects experiencing impaired glucose tolerance present a significantly higher Th40 level than control subjects do. HLA DR4/DR4 and DQ8/DQ8, HLAs associated with T1D, are more likely found among Th40-high subjects. Interestingly, HLA DR4/DR4 subjects were significantly older compared with all other subjects, suggesting that this haplotype together with a high Th40 level may represent someone who will onset after age 30, which is reported for 42% of T1D cases. CONCLUSION Considering the differences found in relation to prediabetic Th40 cell level, it may be possible to devise methods that more accurately predicts who will proceed toward diabetes and, possibly, at what stage of prediabetes a subject is.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dan M Waid
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Correspondence and Reprint Requests: David H. Wagner, Jr., PhD, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045. E-mail:
| | | |
Collapse
|