201
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
202
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
203
|
KUBA JAKUB, MITCHELS JOHN, HOVORKA MILOŠ, ERDMANN PHILIPP, BERKA LUKÁŠ, KIRMSE ROBERT, KÖNIG JULIA, DE BOCK JAN, GOETZE BERNHARD, RIGORT ALEXANDER. Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out. J Microsc 2020; 281:112-124. [DOI: 10.1111/jmi.12939] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023]
Affiliation(s)
- JAKUB KUBA
- Thermo Fisher Scientific Brno s.r.o. Brno Czech Republic
| | - JOHN MITCHELS
- Thermo Fisher Scientific Brno s.r.o. Brno Czech Republic
| | - MILOŠ HOVORKA
- Thermo Fisher Scientific Brno s.r.o. Brno Czech Republic
| | - PHILIPP ERDMANN
- Department of Molecular Structural Biology Max Planck Institute of Biochemistry Martinsried Germany
| | - LUKÁŠ BERKA
- Thermo Fisher Scientific Brno s.r.o. Brno Czech Republic
| | | | | | - JAN DE BOCK
- Leica Microsystems CMS GmbH Mannheim Germany
| | - BERNHARD GOETZE
- Thermo Fisher Scientific FEI Deutschland GmbH Planegg Germany
| | - ALEXANDER RIGORT
- Department of Molecular Structural Biology Max Planck Institute of Biochemistry Martinsried Germany
- Thermo Fisher Scientific FEI Deutschland GmbH Planegg Germany
| |
Collapse
|
204
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
205
|
Chakraborty S, Mahamid J, Baumeister W. Cryoelectron Tomography Reveals Nanoscale Organization of the Cytoskeleton and Its Relation to Microtubule Curvature Inside Cells. Structure 2020; 28:991-1003.e4. [PMID: 32579947 DOI: 10.1016/j.str.2020.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
Microtubules (MTs) are the most rigid elements of the cytoskeleton with in vitro persistence lengths (Lp) in the range of 1-6 mm. In cellular environments, however, MTs often appear strongly curved. This has been attributed to the forces acting upon them in situ where they are embedded in composite networks of different cytoskeletal elements. Hitherto, the nanoscale organization of these networks has remained largely uncharacterized. Cryo-electron tomography (cryo-ET) allowed to visualize and analyze the in situ structure of cytoskeletal networks in pristinely preserved cellular environments and at high resolution. Here, we studied the molecular organization of MTs and their interactions with the composite cytoskeleton in frozen-hydrated HeLa and P19 cells at different cell-cycle stages. We describe modulation of MT curvature correlated with the surrounding molecular architecture, and show that nanoscale defects occur in curved MTs. The data presented here contribute to constructing realistic models of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
206
|
Böhning J, Bharat TAM. Towards high-throughput in situ structural biology using electron cryotomography. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:97-103. [PMID: 32579969 DOI: 10.1016/j.pbiomolbio.2020.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023]
Abstract
Electron cryotomography is a rapidly evolving method for imaging macromolecules directly within the native environment of cells and tissues. Combined with sub-tomogram averaging, it allows structural and cell biologists to obtain sub-nanometre resolution structures in situ. However, low throughput in cryo-ET sample preparation and data acquisition, as well as difficulties in target localisation and sub-tomogram averaging image processing, limit its widespread usability. In this review, we discuss new advances in the field that address these throughput and technical problems. We focus on recent efforts made to resolve issues in sample thinning, improvement in data collection speed at the microscope, strategies for localisation of macromolecules using correlated light and electron microscopy and advancements made to improve resolution in sub-tomogram averaging. These advances will considerably decrease the amount of time and effort required for cryo-ET and sub-tomogram averaging, ushering in a new era of structural biology where in situ macromolecular structure determination will be routine.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
207
|
Chakraborty S, Jasnin M, Baumeister W. Three-dimensional organization of the cytoskeleton: A cryo-electron tomography perspective. Protein Sci 2020; 29:1302-1320. [PMID: 32216120 PMCID: PMC7255506 DOI: 10.1002/pro.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
Traditionally, structures of cytoskeletal components have been studied ex situ, that is, with biochemically purified materials. There are compelling reasons to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent works on the cytoskeleton using cryo-electron tomography, demonstrating the power of in situ studies. We also highlight the potential of this method in addressing important questions pertinent to the field of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Marion Jasnin
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
208
|
Zhang Y, Li S, Zeng C, Huang G, Zhu X, Wang Q, Wang K, Zhou Q, Yan C, Zhang W, Yang G, Liu M, Tao Q, Lei J, Shi Y. Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res 2020; 30:532-540. [PMID: 32367042 PMCID: PMC7264284 DOI: 10.1038/s41422-020-0320-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
The nuclear pore complex (NPC) mediates the flow of substances between the nucleus and cytoplasm in eukaryotic cells. Here we report the cryo-electron tomography (cryo-ET) structure of the luminal ring (LR) of the NPC from Xenopus laevis oocyte. The observed key structural features of the LR are independently confirmed by single-particle cryo-electron microscopy (cryo-EM) analysis. The LR comprises eight butterfly-shaped subunits, each containing two symmetric wings. Each wing consists of four elongated, tubular protomers. Within the LR subunit, the eight protomers form a Finger domain, which directly contacts the fusion between the inner and outer nuclear membranes and a Grid domain, which serves as a rigid base for the Finger domain. Two neighboring LR subunits interact with each other through the lateral edges of their wings to constitute a Bumper domain, which displays two major conformations and appears to cushion neighboring NPCs. Our study reveals previously unknown features of the LR and potentially explains the elastic property of the NPC.
Collapse
Affiliation(s)
- Yanqing Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chao Zeng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuechen Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Qifan Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Kunpeng Wang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wusheng Zhang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Guangwen Yang
- Tsinghua Computing Facility & Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Minhao Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qinghua Tao
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
209
|
Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M, Fruhstorfer P, Plitzko J, Villa E. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat Protoc 2020; 15:2041-2070. [PMID: 32405053 PMCID: PMC8053421 DOI: 10.1038/s41596-020-0320-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Recent advances have made cryogenic (cryo) electron microscopy a key technique to achieve near-atomic-resolution structures of biochemically isolated macromolecular complexes. Cryo-electron tomography (cryo-ET) can give unprecedented insight into these complexes in the context of their natural environment. However, the application of cryo-ET is limited to samples that are thinner than most cells, thereby considerably reducing its applicability. Cryo-focused-ion-beam (cryo-FIB) milling has been used to carve (micromachining) out 100-250-nm-thin regions (called lamella) in the intact frozen cells. This procedure opens a window into the cells for high-resolution cryo-ET and structure determination of biomolecules in their native environment. Further combination with fluorescence microscopy allows users to determine cells or regions of interest for the targeted fabrication of lamellae and cryo-ET imaging. Here, we describe how to prepare lamellae using a microscope equipped with both FIB and scanning electron microscopy modalities. Such microscopes (Aquilos Cryo-FIB/Scios/Helios or CrossBeam) are routinely referred to as dual-beam microscopes, and they are equipped with a cryo-stage for all operations in cryogenic conditions. The basic principle of the described methodologies is also applicable for other types of dual-beam microscopes equipped with a cryo-stage. We also briefly describe how to integrate fluorescence microscopy data for targeted milling and critical considerations for cryo-ET data acquisition of the lamellae. Users familiar with cryo-electron microscopy who get basic training in dual-beam microscopy can complete the protocol within 2-3 d, allowing for several pause points during the procedure.
Collapse
Affiliation(s)
- Felix R Wagner
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reika Watanabe
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hans Persoon
- Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter Fruhstorfer
- Thermo Fisher Scientific, Eindhoven, the Netherlands
- Eppendorf AG, Hamburg, Germany
| | - Jürgen Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
210
|
Ravelli RBG, Nijpels FJT, Henderikx RJM, Weissenberger G, Thewessem S, Gijsbers A, Beulen BWAMM, López-Iglesias C, Peters PJ. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat Commun 2020; 11:2563. [PMID: 32444637 PMCID: PMC7244535 DOI: 10.1038/s41467-020-16392-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
The increasing demand for cryo-electron microscopy (cryo-EM) reveals drawbacks in current sample preparation protocols, such as sample waste and lack of reproducibility. Here, we present several technical developments that provide efficient sample preparation for cryo-EM studies. Pin printing substantially reduces sample waste by depositing only a sub-nanoliter volume of sample on the carrier surface. Sample evaporation is mitigated by dewpoint control feedback loops. The deposited sample is vitrified by jets of cryogen followed by submersion into a cryogen bath. Because the cryogen jets cool the sample from the center, premounted autogrids can be used and loaded directly into automated cryo-EMs. We integrated these steps into a single device, named VitroJet. The device’s performance was validated by resolving four standard proteins (apoferritin, GroEL, worm hemoglobin, beta-galactosidase) to ~3 Å resolution using a 200-kV electron microscope. The VitroJet offers a promising solution for improved automated sample preparation in cryo-EM studies. There is a need to further improve the automation of cryo-EM sample preparation to make it more easily accessible for non-specialists, reduce sample waste and increase reproducibility. Here, the authors present VitroJet, a single device, where sub-nl volumes of samples are deposited by pin printing thus eliminating the need for sample blotting, which is followed by jet vitrification, and they show that high-resolution structures can be obtained using four standard proteins.
Collapse
Affiliation(s)
- Raimond B G Ravelli
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.
| | - Frank J T Nijpels
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Rene J M Henderikx
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Giulia Weissenberger
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands.,CryoSol-World, Maastricht, Netherlands
| | - Sanne Thewessem
- Instrument Development, Engineering and Evaluation (IDEE), Maastricht University, Maastricht, Netherlands
| | - Abril Gijsbers
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands
| | - Bart W A M M Beulen
- CryoSol-World, Maastricht, Netherlands.,Instrument Development, Engineering and Evaluation (IDEE), Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, Netherlands. .,CryoSol-World, Maastricht, Netherlands.
| |
Collapse
|
211
|
Gallagher-Jones M, Bustillo KC, Ophus C, Richards LS, Ciston J, Lee S, Minor AM, Rodriguez JA. Atomic structures determined from digitally defined nanocrystalline regions. IUCRJ 2020; 7:490-499. [PMID: 32431832 PMCID: PMC7201287 DOI: 10.1107/s2052252520004030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.
Collapse
Affiliation(s)
- Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Karen C. Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, California, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, California, USA
| | - Logan S. Richards
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, California, USA
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Andrew M. Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, California, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
212
|
Wallum A, Nguyen HA, Gruebele M. Excited-State Imaging of Single Particles on the Subnanometer Scale. Annu Rev Phys Chem 2020; 71:415-433. [DOI: 10.1146/annurev-physchem-071119-040108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.
Collapse
Affiliation(s)
- Alison Wallum
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huy A. Nguyen
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
213
|
Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A, Plitzko JM, Baumeister W, Engel BD. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 2020; 9:53740. [PMID: 32297859 PMCID: PMC7164959 DOI: 10.7554/elife.53740] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Thylakoid membranes scaffold an assortment of large protein complexes that work together to harness the energy of light. It has been a longstanding challenge to visualize how the intricate thylakoid network organizes these protein complexes to finely tune the photosynthetic reactions. Previously, we used in situ cryo-electron tomography to reveal the native architecture of thylakoid membranes (Engel et al., 2015). Here, we leverage technical advances to resolve the individual protein complexes within these membranes. Combined with a new method to visualize membrane surface topology, we map the molecular landscapes of thylakoid membranes inside green algae cells. Our tomograms provide insights into the molecular forces that drive thylakoid stacking and reveal that photosystems I and II are strictly segregated at the borders between appressed and non-appressed membrane domains. This new approach to charting thylakoid topology lays the foundation for dissecting photosynthetic regulation at the level of single protein complexes within the cell.
Collapse
Affiliation(s)
- Wojciech Wietrzynski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Benjamin D Engel
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
214
|
Zachs T, Schertel A, Medeiros J, Weiss GL, Hugener J, Matos J, Pilhofer M. Fully automated, sequential focused ion beam milling for cryo-electron tomography. eLife 2020; 9:e52286. [PMID: 32149604 PMCID: PMC7082125 DOI: 10.7554/elife.52286] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/07/2020] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography (cryoET) has become a powerful technique at the interface of structural biology and cell biology, due to its unique ability for imaging cells in their native state and determining structures of macromolecular complexes in their cellular context. A limitation of cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam (cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET. Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here, we report a method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram averaging. Since our method reduces the time required for lamella preparation and minimizes the need for user input, we envision the technique will render previously inaccessible projects feasible.
Collapse
Affiliation(s)
- Tobias Zachs
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Zeiss Customer Center EuropeOberkochenGermany
| | - João Medeiros
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| | - Gregor L Weiss
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| | - Jannik Hugener
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
- Institute of Biochemistry, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule ZürichZürichSwitzerland
| |
Collapse
|
215
|
Jacobson K, Liu P, Lagerholm BC. The Lateral Organization and Mobility of Plasma Membrane Components. Cell 2020; 177:806-819. [PMID: 31051105 DOI: 10.1016/j.cell.2019.04.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Over the last several decades, an impressive array of advanced microscopic and analytical tools, such as single-particle tracking and nanoscopic fluorescence correlation spectroscopy, has been applied to characterize the lateral organization and mobility of components in the plasma membrane. Such analysis can tell researchers about the local dynamic composition and structure of membranes and is important for predicting the outcome of membrane-based reactions. However, owing to the unresolved complexity of the membrane and the structures peripheral to it, identification of the detailed molecular origin of the interactions that regulate the organization and mobility of the membrane has not proceeded quickly. This Perspective presents an overview of how cell-surface structure may give rise to the types of lateral mobility that are observed and some potentially fruitful future directions to elucidate the architecture of these structures in more molecular detail.
Collapse
Affiliation(s)
- Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
216
|
Ghaemi Z, Peterson JR, Gruebele M, Luthey-Schulten Z. An in-silico human cell model reveals the influence of spatial organization on RNA splicing. PLoS Comput Biol 2020; 16:e1007717. [PMID: 32210422 PMCID: PMC7094823 DOI: 10.1371/journal.pcbi.1007717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 01/12/2023] Open
Abstract
Spatial organization is a characteristic of all cells, achieved in eukaryotic cells by utilizing both membrane-bound and membrane-less organelles. One of the key processes in eukaryotes is RNA splicing, which readies mRNA for translation. This complex and highly dynamical chemical process involves assembly and disassembly of many molecules in multiple cellular compartments and their transport among compartments. Our goal is to model the effect of spatial organization of membrane-less organelles (specifically nuclear speckles) and of organelle heterogeneity on splicing particle biogenesis in mammalian cells. Based on multiple sources of complementary experimental data, we constructed a spatial model of a HeLa cell to capture intracellular crowding effects. We then developed chemical reaction networks to describe the formation of RNA splicing machinery complexes and splicing processes within nuclear speckles (specific type of non-membrane-bound organelles). We incorporated these networks into our spatially-resolved human cell model and performed stochastic simulations for up to 15 minutes of biological time, the longest thus far for a eukaryotic cell. We find that an increase (decrease) in the number of nuclear pore complexes increases (decreases) the number of assembled splicing particles; and that compartmentalization is critical for the yield of correctly-assembled particles. We also show that a slight increase of splicing particle localization into nuclear speckles leads to a disproportionate enhancement of mRNA splicing and a reduction in the noise of generated mRNA. Our model also predicts that the distance between genes and speckles has a considerable effect on the mRNA production rate, with genes located closer to speckles producing mRNA at higher levels, emphasizing the importance of genome organization around speckles. The HeLa cell model, including organelles and sub-compartments, provides a flexible foundation to study other cellular processes that are strongly modulated by spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Zhaleh Ghaemi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Joseph R. Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
217
|
Kyrilis FL, Meister A, Kastritis PL. Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biol Chem 2020; 400:831-846. [PMID: 31091193 DOI: 10.1515/hsz-2018-0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Advances in electron microscopy have provided unprecedented access to the structural characterization of large, flexible and heterogeneous complexes. Until recently, cryo-electron microscopy (cryo-EM) has been applied to understand molecular organization in either highly purified, isolated biomolecules or in situ. An emerging field is developing, bridging the gap between the two approaches, and focuses on studying molecular organization in native cell extracts. This field has demonstrated its potential by resolving the structure of fungal fatty acid synthase (FAS) at 4.7 Å [Fourier shell correlation (FSC) = 0.143]; FAS was not only less than 50% enriched, but also retained higher-order binders, previously unknown. Although controversial in the sense that the lysis step might introduce artifacts, cell extracts preserve aspects of cellular function. In addition, cell extracts are accessible, besides cryo-EM, to modern proteomic methods, chemical cross-linking, network biology and biophysical modeling. We expect that automation in imaging cell extracts, along with the integration of molecular/cell biology approaches, will provide remarkable achievements in the study of closer-to-life biomolecular states of pronounced biotechnological and medical importance. Such steps will, eventually, bring us a step closer to the biophysical description of cellular processes in an integrative, holistic approach.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany.,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle/Saale, Germany
| |
Collapse
|
218
|
von Kügelgen A, Tang H, Hardy GG, Kureisaite-Ciziene D, Brun YV, Stansfeld PJ, Robinson CV, Bharat TAM. In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer. Cell 2020; 180:348-358.e15. [PMID: 31883796 PMCID: PMC6978808 DOI: 10.1016/j.cell.2019.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Haiping Tang
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Gail G Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
219
|
Ng CT, Gan L. Investigating eukaryotic cells with cryo-ET. Mol Biol Cell 2020; 31:87-100. [PMID: 31935172 PMCID: PMC6960407 DOI: 10.1091/mbc.e18-05-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 01/06/2023] Open
Abstract
The interior of eukaryotic cells is mysterious. How do the large communities of macromolecular machines interact with each other? How do the structures and positions of these nanoscopic entities respond to new stimuli? Questions like these can now be answered with the help of a method called electron cryotomography (cryo-ET). Cryo-ET will ultimately reveal the inner workings of a cell at the protein, secondary structure, and perhaps even side-chain levels. Combined with genetic or pharmacological perturbation, cryo-ET will allow us to answer previously unimaginable questions, such as how structure, biochemistry, and forces are related in situ. Because it bridges structural biology and cell biology, cryo-ET is indispensable for structural cell biology-the study of the 3-D macromolecular structure of cells. Here we discuss some of the key ideas, strategies, auxiliary techniques, and innovations that an aspiring structural cell biologist will consider when planning to ask bold questions.
Collapse
Affiliation(s)
- Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
220
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
221
|
Toro-Nahuelpan M, Zagoriy I, Senger F, Blanchoin L, Théry M, Mahamid J. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 2020; 17:50-54. [PMID: 31740821 PMCID: PMC6949126 DOI: 10.1038/s41592-019-0630-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Spatially controlled cell adhesion on electron microscopy supports remains a bottleneck in specimen preparation for cellular cryo-electron tomography. Here, we describe contactless and mask-free photo-micropatterning of electron microscopy grids for site-specific deposition of extracellular matrix-related proteins. We attained refined cell positioning for micromachining by cryo-focused ion beam milling. Complex micropatterns generated predictable intracellular organization, allowing direct correlation between cell architecture and in-cell three-dimensional structural characterization of the underlying molecular machinery.
Collapse
Affiliation(s)
- Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabrice Senger
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
| | - Laurent Blanchoin
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Manuel Théry
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
222
|
Toro-Nahuelpan M, Zagoriy I, Senger F, Blanchoin L, Théry M, Mahamid J. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 2020; 17:50-54. [PMID: 31740821 DOI: 10.21203/rs.2.12377/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
Spatially controlled cell adhesion on electron microscopy supports remains a bottleneck in specimen preparation for cellular cryo-electron tomography. Here, we describe contactless and mask-free photo-micropatterning of electron microscopy grids for site-specific deposition of extracellular matrix-related proteins. We attained refined cell positioning for micromachining by cryo-focused ion beam milling. Complex micropatterns generated predictable intracellular organization, allowing direct correlation between cell architecture and in-cell three-dimensional structural characterization of the underlying molecular machinery.
Collapse
Affiliation(s)
- Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabrice Senger
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
| | - Laurent Blanchoin
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Manuel Théry
- CytomorphoLab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes/CEA/CNRS/INRA, Grenoble, France
- CytomorphoLab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
223
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
224
|
Fuest M, Schaffer M, Nocera GM, Galilea-Kleinsteuber RI, Messling JE, Heymann M, Plitzko JM, Burg TP. In situ Microfluidic Cryofixation for Cryo Focused Ion Beam Milling and Cryo Electron Tomography. Sci Rep 2019; 9:19133. [PMID: 31836773 PMCID: PMC6911106 DOI: 10.1038/s41598-019-55413-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
We present a microfluidic platform for studying structure-function relationships at the cellular level by connecting video rate live cell imaging with in situ microfluidic cryofixation and cryo-electron tomography of near natively preserved, unstained specimens. Correlative light and electron microscopy (CLEM) has been limited by the time required to transfer live cells from the light microscope to dedicated cryofixation instruments, such as a plunge freezer or high-pressure freezer. We recently demonstrated a microfluidic based approach that enables sample cryofixation directly in the light microscope with millisecond time resolution, a speed improvement of up to three orders of magnitude. Here we show that this cryofixation method can be combined with cryo-electron tomography (cryo-ET) by using Focused Ion Beam milling at cryogenic temperatures (cryo-FIB) to prepare frozen hydrated electron transparent sections. To make cryo-FIB sectioning of rapidly frozen microfluidic channels achievable, we developed a sacrificial layer technique to fabricate microfluidic devices with a PDMS bottom wall <5 µm thick. We demonstrate the complete workflow by rapidly cryo-freezing Caenorhabditis elegans roundworms L1 larvae during live imaging in the light microscope, followed by cryo-FIB milling and lift out to produce thin, electron transparent sections for cryo-ET imaging. Cryo-ET analysis of initial results show that the structural preservation of the cryofixed C. elegans was suitable for high resolution cryo-ET work. The combination of cryofixation during live imaging enabled by microfluidic cryofixation with the molecular resolution capabilities of cryo-ET offers an exciting avenue to further advance space-time correlative light and electron microscopy (st-CLEM) for investigation of biological processes at high resolution in four dimensions.
Collapse
Affiliation(s)
- Marie Fuest
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Miroslava Schaffer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Giovanni Marco Nocera
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | | | - Jan-Erik Messling
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Michael Heymann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany. .,Technische Universität Darmstadt, Merckstrasse 25, 64283, Darmstadt, Germany.
| |
Collapse
|
225
|
Ho CM, Li X, Lai M, Terwilliger TC, Beck JR, Wohlschlegel J, Goldberg DE, Fitzpatrick AWP, Zhou ZH. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Nat Methods 2019; 17:79-85. [PMID: 31768063 PMCID: PMC7494424 DOI: 10.1038/s41592-019-0637-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/20/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
X-ray crystallography often requires non-native constructs involving mutations or truncations, and is challenged by membrane proteins and large multicomponent complexes. We present here a bottom-up endogenous structural proteomics approach whereby near-atomic-resolution cryo electron microscopy (cryoEM) maps are reconstructed ab initio from unidentified protein complexes enriched directly from the endogenous cellular milieu, followed by identification and atomic modeling of the proteins. The proteins in each complex are identified using cryoID, a program we developed to identify proteins in ab initio cryoEM maps. As a proof of principle, we applied this approach to the malaria-causing parasite Plasmodium falciparum, an organism that has resisted conventional structural-biology approaches, to obtain atomic models of multiple protein complexes implicated in intraerythrocytic survival of the parasite. Our approach is broadly applicable for determining structures of undiscovered protein complexes enriched directly from endogenous sources.
Collapse
Affiliation(s)
- Chi-Min Ho
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA.,Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Xiaorun Li
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mason Lai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Thomas C Terwilliger
- Los Alamos National Laboratory and the New Mexico Consortium, Los Alamos, NM, USA
| | - Josh R Beck
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Z Hong Zhou
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA. .,Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
226
|
|
227
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
228
|
Engel L, Gaietta G, Dow LP, Swift MF, Pardon G, Volkmann N, Weis WI, Hanein D, Pruitt BL. Extracellular matrix micropatterning technology for whole cell cryogenic electron microscopy studies. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2019; 29:115018. [PMID: 32879557 PMCID: PMC7457726 DOI: 10.1088/1361-6439/ab419a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryogenic electron tomography is the highest resolution tool available for structural analysis of macromolecular organization inside cells. Micropatterning of extracellular matrix (ECM) proteins is an established in vitro cell culture technique used to control cell shape. Recent traction force microscopy studies have shown correlation between cell morphology and the regulation of force transmission. However, it remains unknown how cells sustain increased strain energy states and localized stresses at the supramolecular level. Here, we report a technology to enable direct observation of mesoscale organization in epithelial cells under morphological modulation, using a maskless protein photopatterning method (PRIMO) to confine cells to ECM micropatterns on electron microscopy substrates. These micropatterned cell culture substrates can be used in mechanobiology research to correlate changes in nanometer-scale organization at cell-cell and cell-ECM contacts to strain energy states and traction stress distribution in the cell.
Collapse
Affiliation(s)
- Leeya Engel
- Department of Bioengineering, Stanford University, Stanford, California
- Correspondence:
| | - Guido Gaietta
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Liam P. Dow
- Department of Bioengineering, Stanford University, Stanford, California
- Biomolecular Science and Engineering Program, University of California, Santa Barbara
| | - Mark F. Swift
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Gaspard Pardon
- Department of Bioengineering, Stanford University, Stanford, California
| | - Niels Volkmann
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - William I. Weis
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine
| | - Dorit Hanein
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Beth L. Pruitt
- Department of Bioengineering, Stanford University, Stanford, California
- Biomolecular Science and Engineering Program, University of California, Santa Barbara
- Departments of Mechanical Engineering and Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara
| |
Collapse
|
229
|
Zhang P. Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol 2019; 58:249-258. [PMID: 31280905 PMCID: PMC6863431 DOI: 10.1016/j.sbi.2019.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022]
Abstract
Cryo-electron tomography (cryoET) can provide 3D reconstructions, or tomograms, of pleomorphic objects such as organelles or cells in their close-to-native states. Subtomograms that contain repetitive structures can be further extracted and subjected to averaging and classification to improve resolution, and this process has become an emerging structural biology method referred to as cryoET subtomogram averaging and classification (cryoSTAC). Recent technical advances in cryoSTAC have had a profound impact on many fields in biology. Here, I review recent exciting work on several macromolecular assemblies demonstrating the power of cryoSTAC for in situ structure analysis and discuss challenges and future directions.
Collapse
Affiliation(s)
- Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
230
|
Redemann S, Fürthauer S, Shelley M, Müller-Reichert T. Current approaches for the analysis of spindle organization. Curr Opin Struct Biol 2019; 58:269-277. [DOI: 10.1016/j.sbi.2019.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
|
231
|
Pretzsch R, Dries M, Hettler S, Spiecker M, Obermair M, Gerthsen D. Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s40679-019-0067-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractHole-free phase plates (HFPPs), also known as Volta phase plates, were already demonstrated to be well suited for in-focus transmission electron microscopy imaging of organic objects. However, the underlying physical processes have not been fully understood yet. To further elucidate the imaging properties of HFPPs, phase shift measurements were carried out under different experimental conditions. Both positive and negative phase shifts occur depending on the diameter of the zero-order electron beam and the HFPP film temperature. The analysis of Thon ring patterns of an amorphous carbon test sample reveals that the phase-shifting patch can be significantly larger than the size of the zero-order beam on the HFPP film. An HFPP was used for in-focus phase contrast imaging of carbon nanotube (CNT) bundles under positive and negative phase-shifting conditions. The comparison of experimental and simulated images of CNT bundles gives detailed information on the phase shift profile, which depends on the spatial frequency in the vicinity of the zero-order beam. The shape of the phase shift profile also explains halo-like image artifacts that surround the imaged objects.
Collapse
|
232
|
Schwartz O, Axelrod JJ, Campbell SL, Turnbaugh C, Glaeser RM, Müller H. Laser phase plate for transmission electron microscopy. Nat Methods 2019; 16:1016-1020. [PMID: 31562475 PMCID: PMC6768090 DOI: 10.1038/s41592-019-0552-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Transmission electron microscopy (TEM) of rapidly frozen biological specimens, or cryo-EM, would benefit from the development of a phase plate for in-focus phase contrast imaging. Several types of phase plates have been investigated, but rapid electrostatic charging of all such devices has hindered these efforts. Here, we demonstrate electron phase manipulation with a high-intensity continuous-wave laser beam, and utilize it as a phase plate for TEM. We demonstrate the laser phase plate by imaging an amorphous carbon film. The laser phase plate provides a stable and tunable phase shift without charging or unwanted electron scattering. These results suggest the possibility for dose-efficient imaging of unstained biological macromolecules and cells.
Collapse
Affiliation(s)
- Osip Schwartz
- Department of Physics, University of California-Berkeley, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy J Axelrod
- Department of Physics, University of California-Berkeley, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sara L Campbell
- Department of Physics, University of California-Berkeley, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carter Turnbaugh
- Department of Physics, University of California-Berkeley, Berkeley, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Holger Müller
- Department of Physics, University of California-Berkeley, Berkeley, CA, USA. .,Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
233
|
Mind the gap: Micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. J Struct Biol 2019; 208:107389. [PMID: 31536774 DOI: 10.1016/j.jsb.2019.09.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/21/2019] [Accepted: 09/14/2019] [Indexed: 11/22/2022]
Abstract
Cryo-focused ion beam (FIB)-milling of biological samples can be used to generate thin electron-transparent slices from cells grown or deposited on EM grids. These so called cryo-lamellae allow high-resolution structural studies of the natural cellular environment by in situ cryo-electron tomography. However, the cryo-lamella workflow is a low-throughput technique and can easily be hindered by technical issues like the bending of the lamellae during the final cryo-FIB-milling steps. The severity of lamella bending seems to correlate with crinkling of the EM grid support film at cryogenic temperatures, which could generate tensions that may be transferred onto the thin lamella, leading to its bending and breakage. To protect the lamellae from such forces, we milled "micro-expansion joints" alongside the lamellae, creating gaps in the support that can act as physical buffers to safely absorb material motion. We demonstrate that the presence of micro-expansion joints drastically decreases bending of lamellae milled from eukaryotic cells grown and frozen on EM grids. Furthermore, we show that this adaptation does not create additional instabilities that could impede subsequent parts of the cryo-lamella workflow, as we obtained high-quality Volta phase plate tomograms revealing macromolecules in their natural structural context. The minimal additional effort required to implement micro-expansion joints in the cryo-FIB-milling workflow makes them a straightforward solution against cryo-lamella bending to increase the throughput of in situ structural biology studies.
Collapse
|
234
|
Karabağ C, Jones ML, Peddie CJ, Weston AE, Collinson LM, Reyes-Aldasoro CC. Segmentation and Modelling of the Nuclear Envelope of HeLa Cells Imaged with Serial Block Face Scanning Electron Microscopy. J Imaging 2019; 5:75. [PMID: 34460669 PMCID: PMC8320948 DOI: 10.3390/jimaging5090075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
This paper describes an unsupervised algorithm, which segments the nuclear envelope of HeLa cells imaged by Serial Block Face Scanning Electron Microscopy. The algorithm exploits the variations of pixel intensity in different cellular regions by calculating edges, which are then used to generate superpixels. The superpixels are morphologically processed and those that correspond to the nuclear region are selected through the analysis of size, position, and correspondence with regions detected in neighbouring slices. The nuclear envelope is segmented from the nuclear region. The three-dimensional segmented nuclear envelope is then modelled against a spheroid to create a two-dimensional (2D) surface. The 2D surface summarises the complex 3D shape of the nuclear envelope and allows the extraction of metrics that may be relevant to characterise the nature of cells. The algorithm was developed and validated on a single cell and tested in six separate cells, each with 300 slices of 2000 × 2000 pixels. Ground truth was available for two of these cells, i.e., 600 hand-segmented slices. The accuracy of the algorithm was evaluated with two similarity metrics: Jaccard Similarity Index and Mean Hausdorff distance. Jaccard values of the first/second segmentation were 93%/90% for the whole cell, and 98%/94% between slices 75 and 225, as the central slices of the nucleus are more regular than those on the extremes. Mean Hausdorff distances were 9/17 pixels for the whole cells and 4/13 pixels for central slices. One slice was processed in approximately 8 s and a whole cell in 40 min. The algorithm outperformed active contours in both accuracy and time.
Collapse
Affiliation(s)
- Cefa Karabağ
- Department of Electrical and Electronic Engineering, Research Centre for Biomedical Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, London EC1V 0HB, UK
| | - Martin L. Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK; (M.L.J.); (C.J.P.); (A.E.W.); (L.M.C.)
| | - Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK; (M.L.J.); (C.J.P.); (A.E.W.); (L.M.C.)
| | - Anne E. Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK; (M.L.J.); (C.J.P.); (A.E.W.); (L.M.C.)
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK; (M.L.J.); (C.J.P.); (A.E.W.); (L.M.C.)
| | - Constantino Carlos Reyes-Aldasoro
- Department of Electrical and Electronic Engineering, Research Centre for Biomedical Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, London EC1V 0HB, UK
| |
Collapse
|
235
|
Portillo-Ledesma S, Schlick T. Bridging chromatin structure and function over a range of experimental spatial and temporal scales by molecular modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019; 10. [PMID: 34046090 DOI: 10.1002/wcms.1434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin structure, dynamics, and function are being intensely investigated by a variety of methods, including microscopy, X-ray diffraction, nuclear magnetic resonance, biochemical crosslinking, chromosome conformation capture, and computation. A range of experimental techniques combined with modeling is clearly valuable to help interpret experimental data and, importantly, generate configurations and mechanisms related to the 3D organization and function of the genome. Contact maps, in particular, as obtained by a variety of chromosome conformation capture methods, are of increasing interest due to their implications on genome structure and regulation on many levels. In this perspective, using seven examples from our group's studies, we illustrate how molecular modeling can help interpret such experimental data. Specifically, we show how computed contact maps related to experimental systems can be used to explain structures of nucleosomes, chromatin higher-order folding, domain segregation mechanisms, gene organization, and the effect on chromatin structure of external and internal fiber parameters, such as nucleosome positioning, presence of nucleosome free regions, histone posttranslational modifications, and linker histone binding. We argue that such computations on multiple spatial and temporal scales will be increasingly important for the integration of genomic, epigenomic, and biophysical data on chromatin structure and related cellular processes.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York, 10012, USA.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
236
|
Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc Natl Acad Sci U S A 2019; 116:16866-16871. [PMID: 31375636 PMCID: PMC6708344 DOI: 10.1073/pnas.1903642116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipids have essential roles in cellular energy homeostasis and are key structural components of membranes and thereby provide the basis of cellular compartmentalization. The maintenance of lipid homeostasis is of fundamental importance to cellular physiology. Lipid droplets (LDs) are central organelles orchestrating lipid fluxes inside cells. By examining pristinely preserved frozen-hydrated HeLa cells with cryoelectron microscopy, we show that LDs exhibit different internal organizations, as well as organelle associations, depending on cellular states. We demonstrate the presence of a liquid-crystalline phase under certain conditions, which are likely to impact the physiological functions of LDs. Furthermore, crystalline droplets are a major component of atherosclerotic lesions in human arteries. Crystalline LDs secreted by cells may therefore have a direct link to pathologies. Lipid droplets (LDs) are ubiquitous organelles comprising a central hub for cellular lipid metabolism and trafficking. This role is tightly associated with their interactions with several cellular organelles. Here, we provide a systematic and quantitative structural description of LDs in their native state in HeLa cells enabled by cellular cryoelectron microscopy. LDs consist of a hydrophobic neutral lipid mixture of triacylglycerols (TAG) and cholesteryl esters (CE), surrounded by a single monolayer of phospholipids. We show that under normal culture conditions, LDs are amorphous and that they transition into a smectic liquid-crystalline phase surrounding an amorphous core at physiological temperature under certain cell-cycle stages or metabolic scenarios. Following determination of the crystal lattice spacing of 3.5 nm and of a phase transition temperature below 43 °C, we attributed the liquid-crystalline phase to CE. We suggest that under mitotic arrest and starvation, relative CE levels increase, presumably due to the consumption of TAG metabolites for membrane synthesis and mitochondrial respiration, respectively, supported by direct visualization of LD–mitochondrial membrane contact sites. We hypothesize that the structural phase transition may have a major impact on the accessibility of lipids in LDs to enzymes or lipid transporters. These may become restricted in the smectic phase, affecting the exchange rate of lipids with surrounding membranes and lead to a different surface occupancy of LD-associated proteins. Therefore, the composition and the resulting internal structure of LDs is expected to play a key role in their function as hubs of cellular lipid flux.
Collapse
|
237
|
Wang HW, Fan X. Challenges and opportunities in cryo-EM with phase plate. Curr Opin Struct Biol 2019; 58:175-182. [PMID: 31374473 DOI: 10.1016/j.sbi.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Not long after the invention of transmission electron microscope (TEM), phase plate was proposed as a novel electron-optical apparatus at the back-focal plane of the objective lens to modulate the magnified specimen images with enhanced contrast, especially in cryo-electron microscopy (cryo-EM) application of biological specimens. In the past two decades, novel phase plates of different kinds were designed and fabricated for cryo-EM application. Some of them such as the Volta phase plate have already been proved very useful in single particle cryo-EM and cryo-electron tomography (cryo-ET) analysis. In this review, we discuss the current progress, challenges and opportunities of cryo-EM with phase plate.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiao Fan
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
238
|
Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, Albert S, Engel BD, Rummel A, Smith AJ, Baumeister W, Plitzko JM. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods 2019; 16:757-762. [DOI: 10.1038/s41592-019-0497-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
|
239
|
Tomographic Collection of Block-Based Sparse STEM Images: Practical Implementation and Impact on the Quality of the 3D Reconstructed Volume. MATERIALS 2019; 12:ma12142281. [PMID: 31315199 PMCID: PMC6679239 DOI: 10.3390/ma12142281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023]
Abstract
The reduction of the electron dose in electron tomography of biological samples is of high significance to diminish radiation damages. Simulations have shown that sparse data collection can perform efficient electron dose reduction. Frameworks based on compressive-sensing or inpainting algorithms have been proposed to accurately reconstruct missing information in sparse data. The present work proposes a practical implementation to perform tomographic collection of block-based sparse images in scanning transmission electron microscopy. The method has been applied on sections of chemically-fixed and resin-embedded Trypanosoma brucei cells. There are 3D reconstructions obtained from various amounts of downsampling, which are compared and eventually the limits of electron dose reduction using this method are explored.
Collapse
|
240
|
Grotjahn DA, Lander GC. Setting the dynein motor in motion: New insights from electron tomography. J Biol Chem 2019; 294:13202-13217. [PMID: 31285262 DOI: 10.1074/jbc.rev119.003095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dyneins are ATP-fueled macromolecular machines that power all minus-end microtubule-based transport processes of molecular cargo within eukaryotic cells and play essential roles in a wide variety of cellular functions. These complex and fascinating motors have been the target of countless structural and biophysical studies. These investigations have elucidated the mechanism of ATP-driven force production and have helped unravel the conformational rearrangements associated with the dynein mechanochemical cycle. However, despite decades of research, it remains unknown how these molecular motions are harnessed to power massive cellular reorganization and what are the regulatory mechanisms that drive these processes. Recent advancements in electron tomography imaging have enabled researchers to visualize dynein motors in their transport environment with unprecedented detail and have led to exciting discoveries regarding dynein motor function and regulation. In this review, we will highlight how these recent structural studies have fundamentally propelled our understanding of the dynein motor and have revealed some unexpected, unifying mechanisms of regulation.
Collapse
Affiliation(s)
- Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
241
|
Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y, Sugie J, Pogliano K, Villa E. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 2019; 8:45257. [PMID: 31282858 PMCID: PMC6684271 DOI: 10.7554/elife.45257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023] Open
Abstract
The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Javier Lopez-Garrido
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Ziyi Zhao
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Reika Watanabe
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Yuan Yuan
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Joseph Sugie
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Kit Pogliano
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| | - Elizabeth Villa
- Division of Biological SciencesUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
242
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
243
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
244
|
Javadi A, Söderholm N, Olofsson A, Flärdh K, Sandblad L. Assembly mechanisms of the bacterial cytoskeletal protein FilP. Life Sci Alliance 2019; 2:2/3/e201800290. [PMID: 31243049 PMCID: PMC6599971 DOI: 10.26508/lsa.201800290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
FilP is a coiled-coil protein that self-assembles into striated filaments and meshwork that shares structural and biochemical characteristics with metazoan intermediate filaments. Despite low-sequence homology, the intermediate filament (IF)–like protein FilP from Streptomyces coelicolor displays structural and biochemical similarities to the metazoan nuclear IF lamin. FilP, like IF proteins, is composed of central coiled-coil domains interrupted by short linkers and flanked by head and tail domains. FilP polymerizes into repetitive filament bundles with paracrystalline properties. However, the cations Na+ and K+ are found to induce the formation of a FilP hexagonal meshwork with the same 60-nm repetitive unit as the filaments. Studies of polymerization kinetics, in combination with EM techniques, enabled visualization of the basic building block—a transiently soluble rod-shaped FilP molecule—and its assembly into protofilaments and filament bundles. Cryoelectron tomography provided a 3D view of the FilP bundle structure and an original assembly model of an IF-like protein of prokaryotic origin, thereby enabling a comparison with the assembly of metazoan IF.
Collapse
Affiliation(s)
- Ala Javadi
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
245
|
Birk UJ. Super-Resolution Microscopy of Chromatin. Genes (Basel) 2019; 10:E493. [PMID: 31261775 PMCID: PMC6678334 DOI: 10.3390/genes10070493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
Since the advent of super-resolution microscopy, countless approaches and studies have been published contributing significantly to our understanding of cellular processes. With the aid of chromatin-specific fluorescence labeling techniques, we are gaining increasing insight into gene regulation and chromatin organization. Combined with super-resolution imaging and data analysis, these labeling techniques enable direct assessment not only of chromatin interactions but also of the function of specific chromatin conformational states.
Collapse
Affiliation(s)
- Udo J Birk
- University of Applied Sciences HTW Chur, Pulvermühlestrasse 57, 7004 Chur, Switzerland.
- Institut für Physik, Universität Mainz, 55122 Mainz, Germany.
| |
Collapse
|
246
|
Eltsov M, Grewe D, Lemercier N, Frangakis A, Livolant F, Leforestier A. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res 2019; 46:9189-9200. [PMID: 30053160 PMCID: PMC6158616 DOI: 10.1093/nar/gky670] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023] Open
Abstract
In Eukaryotes, DNA is wound around the histone octamer forming the basic chromatin unit, the nucleosome. Atomic structures have been obtained from crystallography and single particle cryo-electron microscopy (cryoEM) of identical engineered particles. But native nucleosomes are dynamical entities with diverse DNA sequence and histone content, and little is known about their conformational variability, especially in the cellular context. Using cryoEM and tomography of vitreous sections we analyse native nucleosomes, both in vitro, using purified particles solubilized at physiologically relevant concentrations (25–50%), and in situ, within interphase nuclei. We visualize individual nucleosomes at a level of detail that allows us to measure the distance between the DNA gyres wrapped around. In concentrated solutions, we demonstrate a salt-dependent transition, with a high salt compact conformation resembling the canonical nucleosome and an open low salt one, closer to nuclear nucleosomes. Although further particle characterization and cartography are needed to understand the relationship between this conformational variability and chromatin functional states, this work opens a route to chromatin exploration in situ.
Collapse
Affiliation(s)
- Mikhail Eltsov
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Diana Grewe
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Nicolas Lemercier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Achilleas Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Françoise Livolant
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| | - Amélie Leforestier
- Laboratoire de Physique des Solides, UMR 8502 CNRS, Université Paris-Sud, Université Paris-Saclay, Bat 510, 91405 Orsay Cedex, France
| |
Collapse
|
247
|
Castaño-Díez D, Zanetti G. In situ structure determination by subtomogram averaging. Curr Opin Struct Biol 2019; 58:68-75. [PMID: 31233977 DOI: 10.1016/j.sbi.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
Cryo-tomography and subtomogram averaging are increasingly popular techniques for structural determination of macromolecular complexes in situ. They have the potential to achieve high-resolution views of native complexes, together with the details of their location relative to interacting molecules. The subtomogram averaging (StA) pipelines are well-established, with current developments aiming to optimise each step by reducing manual intervention and user decisions, following similar trends in single-particle approaches that have dramatically increased their popularity. Here, we review the main steps of typical StA workflows. We focus on considerations arising from the fact that the objects of study are embedded within unique crowded environments, and we emphasise those steps where careful decisions need to be made by the user.
Collapse
Affiliation(s)
- Daniel Castaño-Díez
- BioEM Lab, Center for Cellular Imaging and Nanoanalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London, WC1E 7HX, UK.
| |
Collapse
|
248
|
Gan L, Ng CT, Chen C, Cai S. A collection of yeast cellular electron cryotomography data. Gigascience 2019; 8:giz077. [PMID: 31247098 PMCID: PMC6596884 DOI: 10.1093/gigascience/giz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cells are powered by a large set of macromolecular complexes, which work together in a crowded environment. The in situ mechanisms of these complexes are unclear because their 3D distribution, organization, and interactions are largely unknown. Electron cryotomography (cryo-ET) can address these knowledge gaps because it produces cryotomograms-3D images that reveal biological structure at ∼4-nm resolution. Cryo-ET uses no fixation, dehydration, staining, or plastic embedment, so cellular features are visualized in a life-like, frozen-hydrated state. To study chromatin and mitotic machinery in situ, we subjected yeast cells to genetic and chemical perturbations, cryosectioned them, and then imaged the cells by cryo-ET. FINDINGS Here we share >1,000 cryo-ET raw datasets of cryosectioned budding yeast Saccharomyces cerevisiaecollected as part of previously published studies. These data will be valuable to cell biologists who are interested in the nanoscale organization of yeasts and of eukaryotic cells in general. All the unpublished tilt series and a subset of corresponding cryotomograms have been deposited in the EMPIAR resource for the community to use freely. To improve tilt series discoverability, we have uploaded metadata and preliminary notes to publicly accessible Google Sheets, EMPIAR, and GigaDB. CONCLUSIONS Cellular cryo-ET data can be mined to obtain new cell-biological, structural, and 3D statistical insights in situ. These data contain structures not visible in traditional electron-microscopy data. Template matching and subtomogram averaging of known macromolecular complexes can reveal their 3D distributions and low-resolution structures. Furthermore, these data can serve as testbeds for high-throughput image-analysis pipelines, as training sets for feature-recognition software, for feasibility analysis when planning new structural-cell-biology projects, and as practice data for students.
Collapse
Affiliation(s)
- Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Chen Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
249
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
250
|
Jordan MA, Pigino G. In situ cryo-electron tomography and subtomogram averaging of intraflagellar transport trains. Methods Cell Biol 2019; 152:179-195. [PMID: 31326020 DOI: 10.1016/bs.mcb.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In situ cryo-electron tomography (cryo-ET) and subtomogram averaging are powerful tools, able to provide 3D structures of biological samples at sub-nanometer resolution, while preserving information about cellular context and higher-order assembly. Best results are typically achieved, when applied to highly repetitive structures, such as viruses. Other typical examples are protein complexes that decorate long stretches along ciliary microtubules at stereotypical and precise repeats, such as axonemal dyneins. For such cases, a plethora of subtomogram averaging protocols exist. In this chapter, we show how we use cryo-ET and subtomogram averaging to study the architecture of the intraflagellar transport (IFT) machinery, a more challenging target that appears only in low copy numbers per tomogram. In the IFT trains, repeating units of IFT adaptor proteins engage two oppositely directed molecular motors to quickly shuttle ciliary building blocks and other proteins to the tip of the cilium and/or back to the base. This dynamic and sporadic nature of IFT trains poses challenges for determining the localization or precise orientation of the particles to be averaged. Solutions to these problems are described in this chapter.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|